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Quasiparticle and quasihole states of nuclei around 56Ni
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The single-particle spectral function of 56Ni has been computed within the framework of self-consistent
Green’s functions theory. The Faddeev random phase approximation method and the G matrix technique are used
to account for the effects of long- and short-range physics on the spectral distribution. Large-scale calculations
have been performed in spaces including up to ten oscillator shells. The chiral N3LO interaction is used together
with a monopole correction that accounts for eventual missing three-nucleon forces. The single-particle energies
associated with nucleon transfer to valence 1p0f orbits are found to be almost converged with respect to
both the size of the model space and the oscillator frequency. The results support that 56Ni is a good doubly
magic nucleus. The absolute spectroscopic factors to the valence states on A = 55, 57 are also obtained. For
the transition between the ground states of 57Ni and 56Ni, the calculations nicely agree with heavy-ion knockout
experiments.
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I. INTRODUCTION

The way shell closures and single-particle energies evolve
as functions of the number of nucleons is presently one of the
greatest challenges to our understanding of the basic features
of nuclei. Doubly magic nuclei are particularly important and
closed-shell nuclei like 56Ni and 100Sn have been the focus of
several experiments during the last several years [1–7]. Their
structure provides important information on theoretical inter-
pretations and our basic understanding of matter. In particular,
recent experiments [1–6] have aimed at extracting information
about single-particle degrees of freedom in the vicinity of
56Ni. Experimental information from single-nucleon transfer
reactions and magnetic moments [1–4,6] can be used to
extract and interpret complicated many-body wave functions in
terms of effective single-particle degrees of freedom. Transfer
reactions provide, for example, information about the angular
distributions, the excitation energies, and the spectroscopic
factors of possible single-particles states. If one can infer
from experimental data that a single-particle picture is a
viable starting point for interpreting a closed-shell nucleus
like 56Ni, one can use this nucleus as a basis for constructing
valence-space effective interactions. These interactions can in
turn be used in shell-model calculations of nuclei with several
valence nucleons above the N = 28 and Z = 28 filled shells
of 56Ni. Recent measurements of spectroscopic factors of 57Ni
in high-energy knockout reactions [2] seem to indicate that
low-lying states in 57Ni can be characterized as single-particle
states on top of 56Ni as a closed-core nucleus. Large-scale
shell-model calculations by Horoi et al. [8] corroborate these
findings, whereas a recent experiment on magnetic moments
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of the ground state of 57Cu [6], expected to be described as
one valence proton outside 56Ni, resulted in moments much
smaller than those expected from a single-particle picture.
Similarly, large transition matrix elements between the 0+

1
ground state and the first excited 2+

1 state indicate that the 56Ni
core is rather soft [5] or, stated differently, it implies a rather
fragmented single-particle picture. However, one ought keep in
mind that quenchings of spectroscopic factors to about 60% are
common even for good closed-shell nuclei [9]. Experimentally,
spectroscopic factors are defined as the ratio of the observed
reaction rate with respect to the same rate calculated assuming
a full occupation of the relevant single-particle states. They are
therefore often interpreted as a measure of the occupancy of a
specific single-particle state. However, from a strict theoretical
point of view spectroscopic factors are not occupation numbers
but a measure of what fraction of the full wave function can
be factorized into a correlated state (often chosen to be a
given closed-shell core) and an independent single-particle or
single-hole state. Large deviations from the values predicted
by an independent-particle model point to a strongly correlated
system. In this regime, collective excitations that behave like
single-particle degrees of freedom—that is, quasiparticles—
can still arise.

The above-mentioned large-scale shell-model calculations
[8] have been performed in one major shell, the 1p0f shell,
with an effective interaction fitted to reproduce properties of
several nuclei that can be interpreted in terms of these single-
particle states. The number of possible Slater determinants that
can be constructed when distributing eight valence protons and
eight valence nucleons in the 1p0f shell is more than 109. This
means that the inclusion of more complicated particle-hole
excitations from shells below and above the 1p0f shell are
well beyond present capabilities of large-scale diagonalization
methods [8,10–13]. The hope is that an effective interaction
tailored to one major shell includes as many as possible of these
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neglected particle-hole excitations. However, there are other
many-body methods that allow for a computational scheme
that accounts for a systematic inclusion of more complicated
many-body corrections. Typical examples of such many-body
methods are coupled-cluster methods [14–17], various types
of Monte Carlo methods [18–20], perturbative many-body
expansions [21,22], self-consistent Green’s functions (SCGF)
methods [23–31], the density-matrix renormalization group
[32–35], and ab initio density functional theory [36,37], just
to mention some of the available methods.

The Green’s function Monte Carlo method [18,38–40]
and the no-core shell-model approach [13,41–46] have been
successfully applied to the theoretical description of light
nuclei with mass numbers A � 12 and Hamiltonians based
on nucleon-nucleon and three-nucleon interactions. However,
present experimental studies of nuclear stabilities are now
being pushed to larger mass regions, with mass numbers from
A = 40 to A = 100. Traditionally, this has been the realm of
the nuclear shell-model and nuclear density-functional theory.
These methods employ Hamiltonians and density functionals
with phenomenological corrections and are not directly related
to the vacuum nucleon-nucleon interaction employed in
ab initio calculations (exceptions are found when perturbative
many-body methods are used [22]). However, in selected
medium-mass nuclei, ab initio structure calculations can be
performed using approaches like coupled-cluster and Green’s
functions theories. These methods allow studying ground-
and excited-state properties of systems with dimensionalities
beyond the capability of present large-scale diagonalization
approaches, with a much smaller numerical effort when com-
pared to diagonalization methods aiming at similar accuracies.
The accuracy of these methods is sufficiently high to attribute
an eventual disagreement between experimental data and
theoretical results to missing physics in the Hamiltonian. In
this way, such calculations help to increase our understanding
of the nuclear interaction on a very fundamental level.

Recent coupled-cluster calculations [17] have reported
practically converged results of the ground state of medium-
mass nuclei like 40Ca, 48Ni, and 48Ca using the bare chiral in-
teraction N3LO [47]. These calculations employed a harmonic
oscillator basis to construct the single-particle basis and in-
cluded correlations of the so-called singles and doubles types.
It means that one-particle-one-hole and two-particle-two-
hole correlations acting on a many-body Slater determinant
were summed to infinite order. Recently, results with three-
particle-three-hole correlations have also been obtained [48].
The calculations were performed in a harmonic oscillator basis
containing up to 15 major shells and resulted in basically
converged ground-state properties for a given Hamiltonian.

Another method with a strong potential for performing
ab initio calculations of nuclei beyond A = 12 is self-
consistent Green’s functions theory. Differently from the
coupled-cluster and no-core shell model, this method does not
construct the wave function but evaluates directly the energies
and transition matrix elements for the transfer of one or more
nucleons. Another important point is that the self-energy—the
central component of the formalism—has been shown to be
an exact optical potential. On the one hand, one can employ
the formalism for pure ab initio studies. On the other hand,

the strong link with the response to experimental probes can
be used to constrain and improve phenomenological models.
An example of this approach is the dispersive optical model
recently derived for a chain of calcium isotopes [49,50]. This
global optical potential reproduces with high accuracy the
known elastic scattering data, up to energies of 200 MeV. Thus,
Green’s functions hold a promise of both bridging nuclear
structure and reactions and of connecting the (relatively few)
isotopes amenable to ab initio calculations to the rest of the
nuclear landscape.

In practical applications of Green’s functions theory, one
expands the self-energy in terms of resummations of Feynman
diagrams and truncates the series in a way that allows
for further systematic improvements of the formalism. A
powerful scheme for nonperturbative expansions is the so-
called Faddeev random phase approximation (FRPA) that
explicitly accounts for particle-vibration couplings [28,51].
First applications of this approach were devoted to 16O.
One single calculation yielded the basic information to be
used for microscopic studies of spectroscopic factors [29,52],
the excitation spectrum [30], two-nucleon emission [53,54],
and the nucleon-nucleus optical potential [55]. Thus, the
FRPA method pursues a global description of the many-body
dynamics, far beyond ground-state properties alone. Another
difference with the coupled-cluster approach is that Green’s
functions allow, via a diagrammatic approach, to directly
introduce the correlations outside the model space that are
associated with short-range degrees of freedom [56,57]. It can
therefore be applied to interactions with strong short-range
cores (for example, the Argonne model [58] was employed in
Ref. [31]).

Self-consistent FRPA calculations of 16O were first per-
formed by the authors of Ref. [29] and subsequently extended
to fully ab initio calculations in spaces up to eight oscillator
shells [31]. To our knowledge, the combination of the random
phase approximation phonons and the proper treatment of the
energy dependence of the interaction vertex makes this the
most accurate evaluation of single-particle states available for
this nucleus. In this work we extend the range of applications
of this formalism to studies of quasiparticle states around 56Ni,
as a first application of Faddeev random phase approximation
to 1p0f shell nuclei. As mentioned above, there is quite a bit
of experimental interest in single-particle properties around
56Ni.

This work is organized as follows. Section II reviews the
FRPA approach and discusses the approximations made to
calculate the self-consistent propagator. The convergence of
single-particle properties is discussed in Sec. III and the results
for the spectral function are described in Sec. IV. We refer the
reader directly interested in discussion of physics results to the
latter section. Conclusions are drawn in Sec. V.

II. FORMALISM

This section serves as an overview of the formalism
we employ. The treatment of short-range physics and the
implementation of self-consistency, which are improved with
respect to previous works, are discussed in detail. The FRPA
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expansion is also introduced, but we refer the reader interested
in more details to Refs. [28] and [51].

In the framework of Green’s function theory, the object
of interest is the single-particle propagator, instead of the
many-body wave function. In the following, greek indices,
α, β, . . . , label the orthonormal basis set of single-particle
states included in the model space, while latin indices, k, l, . . . ,

refer to many-body states. We employ the convention of
summing over repeated indices, unless specified otherwise.
The single-particle propagator can be written in the so-called
Lehmann representation as [23,59]

gαβ(ω) =
∑

n

(
X n

α

)∗X n
β

ω − ε+
n + iη

+
∑

k

Yk
α

(
Yk

β

)∗

ω − ε−
k − iη

, (1)

where X n
α = 〈�A+1

n |c†α|�A
0 〉(Yk

α = 〈�A−1
k |cα|�A

0 〉) are the
spectroscopic amplitudes, cα (c†α) are the second quantization
annihilation (creation) operators, and ε+

n = EA+1
n − EA

0 (ε−
k =

EA
0 − EA−1

k ). With these definitions, |�A+1
n 〉 and |�A−1

k 〉 are
the eigenstates, while EA+1

n and EA−1
k are the corresponding

energies of the (A ± 1)-nucleon system. Therefore, the poles
of the single-particle propagator reflect the energy transfer
observed in pickup and knockout reactions.

The single-particle propagator gαβ(ω) enters the Dyson
equation as

gαβ(ω) = g0
αβ(ω) + g0

αγ (ω)�	
γδ(ω)gδβ(ω). (2)

It depends on the irreducible self-energy �	(ω). The latter can
be written as the sum of two terms. The first terms describes
the average mean field (MF) and the second term contains
dynamic correlations,

�	
αβ(ω) = �MF

αβ + 1
4 Vαλ,µνRµνλ,γ δε(ω)Vγδ,βε. (3)

In Eq. (2), g0(ω) is the so-called unperturbed single-particle
propagator, corresponding to nucleons moving under the effect
of the kinetic energy part of the total Hamiltonian. The
localization of the single-particle states in the nuclear mean
field is due to the term �MF, which extends the Hartree-Fock
potential to that of a fully correlated density matrix. The
term Vαβ,γ δ represents the antisymmetrized matrix elements
of the nucleon-nucleon interaction. In this work, these will be
approximated by an effective interaction, Eq. (8), discussed
in Sec. II A. Equation (3) introduces the two-particle-one-hole
(2p1h) and two-hole-one-particle (2h1p) irreducible propaga-
tor R(ω). In its Feynman expansion, this propagator contains
all diagrams with any number of particle and hole lines except
those that allow the intermediate propagation of one single
line. It can therefore be interpreted as carrying the complete
information on all configurations that cannot be reduced to a
nucleon interacting with the average nuclear field. In particular,
it includes the coupling of single-particle states to collective
vibrations like giant resonances.

The theoretical spectroscopic factors Zk and Zn for removal
and addition, respectively, of a nucleon, are given by the
normalization integral of the corresponding overlap wave

functions. In the notation of Eq. (1), these are

Zk =
∑

α

∣∣〈�A−1
k

∣∣cα

∣∣�A
0

〉∣∣2 =
∑

α

∣∣Yk
α

∣∣2
,

(4)
Zn =

∑
α

∣∣〈�A+1
n

∣∣c†α∣∣�A
0

〉∣∣2 =
∑

α

∣∣X n
α

∣∣2
.

The hole states are normalized according to

Zk =
∑

α

∣∣Yk
α

∣∣2 = 1 +
∑
α,β

(
Yk

α

)∗ ∂�∗
αβ(ω)

∂ω

∣∣∣∣
ω=ε−

k

Yk
β, (5)

which follows directly from the Dyson equation (2). The same
relation applies to particle states, with Yk

α replaced by (X n
α )∗.

Because of the analytical properties of �	(ω), the derivative
term results always in a negative contribution, leading thereby
to a quenching of the spectroscopic factors.

It must be stressed that Eqs. (2) and (3) do not involve
any approximation. Therefore, the full knowledge of �MF

and R(ω) would be equivalent to the exact solution of the
Schrödinger equation. In practical calculations, it is always
necessary to truncate the full space of available single-particle
states to a finite model space and to select a limited set of
many-body correlations. The approximations employed in the
present work to evaluate these quantities are discussed in the
rest of this section.

A. Short-range physics and effective interaction

The present calculations were performed within a large but
finite set of harmonic oscillator states, including single-particle
states up to ten major shells. To treat the short-range part of
the nucleon-nucleon interaction, one must resum explicitly
the series of ladder diagrams for two nucleons outside this
model space. These contributions are included in the self-
energy in two different ways. First, they are explicitly added
to the mean-field part, �MF, to reconstruct the contribution of
short-range correlations in the full Hilbert space. Second, they
are included in a regularized effective Hamiltonian that is used
to calculate the long-range part of correlations—described by
R(ω)—inside the chosen model space. This approach leads to
calculating the well-known G matrix [22,60], which is then
used as an energy-dependent effective interaction inside the
model space.1 In this case the �MF part of the self-energy will
also depend on energy. This is given by

�MF
αβ (ω) = i

∑
γ δ

∫
dω′

2π
Gαγ,δβ (ω + ω′)gγ δ(ω′)

=
∑
γ δ

∑
k

Gαγ,βδ(ω + ε−
k )Yk

δ

(
Yk

γ

)∗
, (6)

where Gαβ,γ δ(ω) are the matrix elements of the G matrix
interaction. Equation (6) differs from the standard Brueckner-
Hartree-Fock potential in the fact that the mean field is

1We use a definition of G(ω) in which all states belonging to the
model space are Pauli blocked because diagrams among them are
already included in the many-body calculation of R(ω).
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not represented by a set of independent nucleons that fill
completely the lowest orbits. Rather, the medium is described
by the hole spectroscopic amplitudes Yk that lead to the fully
correlated density matrix. Because the latter are obtained by
solving the Dyson equation, they must be obtained iteratively
in a self-consistent way. Whenever the second term in Eq. (3)
is neglected, this procedure simply reduces to solving the
standard Brueckner-Hartree-Fock equations. However, as soon
as the response of the medium R(ω) is accounted for,
the single-particle propagator becomes fragmented and �MF

describes the interaction of a particle with the “correlated”
medium.

We remind the reader that using the G matrix in Eq. (6)
corresponds to summing the mean-field term form Eq. (3) and
ladder diagrams with intermediate two-particle states outside
the chosen model space. This partitioning procedure has two
main consequences. First, the effects of short-range physics
at the two-body level on the total energy are included in the
renormalized interaction. This leads to a softer force that can
be applied within a “low-momentum” model space. Second,
due to the explicit energy dependence, the term �MF(ω)
contributes as well to the normalization of spectroscopic
factors, Eq. (5). This provides a natural way to determine the
amount of strength that the free interaction would admix into
configurations outside the model space, see, for example, the
discussion of Refs. [56] and [57]. Thus, the present approach
differs from methods based on the renormalization group,
where instead an explicit renormalization of the effective
operators would be required [61].

The energy dependence of the G matrix becomes cum-
bersome in calculating the polarization propagator. We define
therefore a static effective interaction for our model space to be
used in our calculations of the second term on the right-hand
side of Eq. (3). To do this we evaluate the average energy for
the harmonic oscillator single-particle states according to

εho
α = 〈α| p2

2m
|α〉 +

∑
β∈F

Gαβ,αβ

(
ω = εho

α + εho
β

)
, (7)

where the sum is limited to those states that correspond to
filled orbits in the independent particle model. Note that in
Eq. (7) the single-particle energies are derived iteratively while
the oscillator wave functions remain unchanged. Clearly, these
orbits are a crude approximation to the real quasiparticle states
and are not used to construct R(ω) in Sec. II B, which will
be rather determined in a self-consistent fashion. The main
purpose of the above procedure is to yield a prescription for
obtaining a starting energy-independent effective interaction.
Following Gad and Müther [62], we use the single-particle
energies from Eq. (7) to define an interaction for the given
model space by

Vαβ,γ δ = 1
2

[
Gαβ,γ δ

(
ω = εho

α + εho
β

) + Gαβ,γ δ

(
ω = εho

γ + εho
δ

)]
.

(8)

The G matrix can be computed according Refs. [22] and [60]
for negative energies, up to about −5 MeV. For larger values we
fix the starting energy to ω = −5 MeV. Note that the starting
energy appearing in Eq. (6) is shifted by the quasihole poles

ε−
k . This ensures that the energy dependence of �MF(ω) is fully

accounted for all quasiparticle states in the 1p0f shell.

B. The Faddeev random phase approximation method

The polarization propagator R(ω) can be expanded in terms
of simpler Green’s functions that involve the propagation
of one or more quasiparticle states. This approach has the
advantage that it aids in identifying key physics ingredients
of the many-body dynamics. By truncating the expansion to a
particular subset of diagrams or many-body correlations, one
can then construct suitable approximations to the self-energy.
Moreover, because infinite sets of linked diagrams are summed
the approach is nonperturbative and satisfies the extensivity
condition [14]. This expansion also serves as a guideline for
systematic improvements of the method.

Following Refs. [28] and [51], we first consider the particle-
hole polarization propagator that describes excited states in the
A-particle system,

�αβ,γ δ(ω) =
∑
n�=0

〈
�N

0

∣∣c†βcα

∣∣�N
n

〉 〈
�N

n

∣∣c†γ cδ

∣∣�N
0

〉
ω − (

EN
n − EN

0

) + iη

−
∑
n�=0

〈
�N

0

∣∣c†γ cδ

∣∣�N
n

〉 〈
�N

n

∣∣c†βcα

∣∣�N
0

〉
ω + (

EN
n − EN

0

) − iη
, (9)

and the two-particle propagator that describes the addi-
tion/removal of two particles,

gII
αβ,γ δ(ω) =

∑
n

〈
�N

0

∣∣cβcα

∣∣�N+2
n

〉 〈
�N+2

n

∣∣c†γ c
†
δ

∣∣�N
0

〉
ω − (

EN+2
n − EN

0

) + iη

−
∑

k

〈
�N

0

∣∣c†γ c
†
δ

∣∣�N−2
k

〉 〈
�N−2

k

∣∣cβcα

∣∣�N
0

〉
ω − (

EN
0 − EN−2

k

) − iη
. (10)

These Green’s functions contain in their Lehmann represen-
tations all the relevant information regarding the excitation of
particle-hole and two-particle or two-hole collective modes.
In this work we are interested in studying the influence of
giant resonance vibrations, which can be described within the
random phase approximation (RPA). In the FRPA approach,
the propagators of Eqs. (9) and (10) are then evaluated
by solving the usual RPA equations, which are depicted
diagrammatically in Fig. 1. Because these equations reflect
two-body correlations, they still have to be coupled to an
additional single-particle propagator, as in Fig. 2, to obtain
the corresponding approximation for the two-particle-one-
hole and two-hole-one-particle components of R(ω). This is
achieved by solving two separate sets of Faddeev equations,
as discussed in Ref. [28].

Taking the two-particle-one-hole (2p1h) case as an exam-
ple, one can split R(2p1h)(ω) in three different components
R̄(i)(ω) (i = 1, 2, 3) that differ from each other by the last pair
of lines that interact in their diagrammatic expansion,

R̄
(2p1h)
αβγ,µνλ(ω) = [

G0>

αβγ,µνλ(ω) − G0>

βαγ,µνλ(ω)
]

+
∑

i=1,2,3

R̄
(i)
αβγ,µνλ(ω), (11)
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Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>
(ω) is the 2p1h propagator for three freely propa-

gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)�(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices �(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)

(ph)

(pp/hh)

ΠΠ
II

Π(ph)

gII (pp/hh)

(ph)

Π(ph)

g

FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices �(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
�MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
n�∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑
k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)
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where F represents the set of occupied orbits. The single-
particle energies εIPM and wave functions φ are chosen such
that gIPM(ω) coincides with the real propagator g(ω) at the
Fermi surface. To do this we define the following moments of
the poles of Eq. (1).

M
p

αβ =
∑

n

(
X n

α

)∗X n
β

[EF − ε+
n ]p

+
∑

k

Yk
α

(
Yk

β

)∗

[EF − ε−
k ]p

,

(15)
p = 0, 1, 2, . . . ,

where EF is the Fermi energy. Equation (14) is determined
by imposing M

0,IPM
αβ = M0

αβ and M
1,IPM
αβ = M1

αβ . The purpose
of Eq. (15) is to define a set of effective single-particle orbits
and energies that conserve the total spectroscopic strength
carried by the self-consistent propagator and the centroids of
its fragmented states. While effective single-particle properties
form an appropriate starting point to evaluate R(ω), it remains
clear that they only represent average quantities. Instead, it is
Eq. (1) that must be related to experiment.

The propagator gIPM(ω) is derived from Eq. (1) and it
still needs to be evaluated in an iterative way. Therefore, the
resulting propagator R(ω) is (partially) self-consistent. We
stress that Eq. (6) can be calculated easily from the fully
dressed propagator. Thus self-consistency is achieved exactly
at the mean-field level.

III. CALCULATIONS AND CONVERGENCE

The present calculations were performed using a harmonic
oscillator basis and including up to ten major harmonic
oscillator shells. We label these spaces with Nmax = 3, 5, 7, or
9, where N = 2n + l. For the largest model space employed,
Nmax = 9, all partial waves with orbital angular momentum
l � 7 were included. This amounts to 368 single-particle states
for each particle species, protons and neutrons in our case. The
total number of available Slater determinants for 56Ni without
any particular restrictions is proportional to the product of the
two binomials (

368
28

)
×

(
368
28

)
,

a number that clearly exceeds the capabilities of any direct
large-scale diagonalization procedure.

The codes utilize a jj -coupling scheme to decouple the
Faddeev equations of Eqs. (12). At each iteration, the RPA
equations are solved in the particle-hole and the particle-
particle and hole-hole channels using the single-particle
orbits and energies from Eq. (14). The resulting propagators
are inserted in Eqs. (12), which in turn are casted into
a non-Hermitian eigenvalue problem [28]. In our largest
calculation we diagonalize dense matrices of dimensions up to
26 × 103 two-particle-one-hole states. This number is bound
to increase when larger nuclei are investigated or more details
of nuclear fragmentation (that is, more poles) are included in
gIPM(ω) (14). The numerical implementation of the Faddeev
random phase approximation required careful optimization
in evaluating the elements of the Faddeev matrix and a
proper generalization of the Arnoldi algorithm [67] to employ

multiple pivots. These developments allowed the extension of
large-scale calculations from the A = 16 mass region to A =
56. The dimensions reached in this work represent roughly the
upper limit when using table-top single-processor computers.
Obviously, there is much to gain by taking advantage of
modern supercomputer facilities and future research efforts
should be put into parallelization of the present algorithms.

Model spaces of eight to ten major shells are large enough
for a proper description of the response due to long-range
correlations. These include excitations of several MeVs into
the region of giant resonances. The effects of short-range
physics are also included by using a G matrix and an effective
interaction as discussed in Sec. II A. These are derived using
the chiral nucleon-nucleon interaction N3LO by Entem and
Machleidt [47]. This interaction employs a cutoff of � =
500 MeV.

Typical realistic two-nucleon interactions fail in repro-
ducing the spin-orbit splittings and gaps between different
shells. In particular, for the N = 28 and Z = 28 subshell
closures these lead to an underestimation of the gap at the
Fermi surface. In these cases, a complete diagonalization of
the Hamiltonian would predict a deformed ground state of
these nuclei even when they are experimentally known to
be good spherical closed-shell systems [11,68]. This issue
can be cured with a simple modification of the monopole
strengths of the interaction. Recently, Zuker has reported
that the same correction works well for several isotopes
throughout the nuclear chart and proposed that this may be
interpreted as a signature of missing three-nucleon interactions
[69].

The inclusion of three-nucleon interactions to the Faddeev
random phase approximation formalism is beyond the scope
of the present work. However, it is shown in Sec. III A
that properly reproducing the Fermi gap is crucial to obtain
meaningful results for the valence space spectroscopic factors.
Thus, we follow Ref. [69] and modify the monopoles in the
N3LO interaction model as

�V T
f r → �V T

f r − (−1)T κM,
(16)

�V T
ff → �V T

ff − 1.5(1 − T )κM,

where f and r stand for the Brueckner-Hartree-Fock states
associated with the 0f7/2 and the (1p3/2, 1p1/2, 0f5/2) orbits,
respectively. In the limit of large spaces, the Brueckner-
Hartree-Fock orbits converge to the Hartree-Fock states and
this correction becomes independent of the choice of the
single-particle basis. Note that the prescription of Eq. (16)
modifies only a few crucial matrix elements while about
six million of them are defined in the Nmax = 9 model
space.

We also note that the present truncation of the model
space, in terms of the number of oscillator shells, does not
separate exactly the center-of-mass motion. Coupled-cluster
calculations have shown that the error introduced by this
truncation becomes negligibly small for large model spaces
such as the ones employed here and therefore it does not
represent a major issue [17,70]. In calculations of binding
energies, it is customary to subtract the operator for the kinetic
energy of the center of mass directly from the Hamiltonian.
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This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap �Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄� = 10 or 18 MeV). The gap �Eph

increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of �Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
�Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄� = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l � 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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FIG. 4. (Color online) Dependence of the neutron 1p3/2 particle
energy and the 0f7/2 hole energy with respect to the oscillator
frequency and the size of the model space.
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FIG. 5. (Color online) Dependence of neutron single-particle
energies on the oscillator frequency. The energies plotted here are the
poles of g(ω) corresponding to the valence 1p0f orbits. Calculations
were performed for Nmax = 9 and l � 7.

IV. RESULTS FOR THE SPECTRAL FUNCTION

Our results for spectroscopic factors for the 1p0f -shell
valence orbits and the corresponding single-particle energies
are collected in Table I. In general, the modified N3LO
interaction predicts single-particle energies about 2–3 MeV
lower than the experimental ones. The Coulomb shift between
corresponding neutron and proton orbits is calculated to be
about 10.2 MeV and it is closer to the empirical value of
9.5 MeV. For the oscillator parameter chosen, h̄� = 10 MeV,
we obtain an inversion of the 1p1/2 and 0f5/2 excited states in
57Ni, with respect to the experiment. However, this discrepancy
disappears for larger values of h̄� (see Fig. 5). This effect is in
fact smaller than the residual dependence on the model space
and therefore no conclusion can be made about the ordering
for the fully converged result. The spectroscopic factor for
the transition between the ground states of 57Ni and 56Ni was

TABLE I. Energies (in MeV) and spectroscopic factors (as a
fraction of the independent-particle model) for transitions to the
1p0f valence orbits, obtained for h̄� = 10 MeV, Nmax = 9, and
κM = 0.57 MeV. The experimental single-particle energies are taken
from Ref. [72]. The measured spectroscopic factor for transfer
between the ground states of 57Ni and 56Ni is from Ref. [2].

ε+
n , ε−

k Zn/(2j + 1), Zk/(2j + 1)

FRPA Exp. FRPA Exp.

57Ni
ν1p1/2 −11.43 −9.134 0.63
ν0f5/2 −10.80 −9.478 0.59
ν1p3/2 −12.78 −10.247 0.65 0.58(11)
55Ni
ν0f7/2 −19.22 −16.641 0.72
57Cu
π1p1/2 −1.28 +0.417 0.66
π0f5/2 −0.58 0.60
π1p3/2 −2.54 −0.695 0.67
55Co
π0f7/2 −9.08 −7.165 0.73

extracted from high-energy knockout reactions in Ref. [2]. The
self-consistent Faddeev random phase approximation result
for this quantity yields 65% of the independent-particle model
value and agrees with the empirical data within experimental
uncertainties. The theoretical spectroscopic factors for the
excited states in 57Ni are similar, with the 0f5/2 state being
somewhat smaller, at about 59%. A larger value is obtained for
knockout to the ground state of 55Ni, which is predicted to be
72%. The results for proton transfer to particle (hole) states in
57Cu (55Co) are only slightly larger. According to the analysis
of Fig. 3, it is expected that these predictions are converged
within 1–2% of the independent-particle model values.

Past studies [5,6,73] have questioned whether low-energy
quasiparticle states in 57Ni are strongly admixed to excitations
of a soft 56Ni core. The results obtained here do not suggest
substantial differences with respect to other known closed-
shell nuclei. The spectroscopic factors from Table I are in
line with observations from stable nuclei [9,74] and support
the hypothesis that 56Ni is a good closed-shell nucleus. In
our calculations we find that the 1p3/2 quasiparticle state of
57Ni carries 65% of the strength for this orbit. Another 20%
is located in the particle region below ε+

n = 2 MeV (above
this energy strength associated with the 2p1f 0h shell starts
to appear), and about 3% is in the hole region above ε−

k =
−40 MeV (see Fig. 6). Similarly, the 0f7/2 state has 72% of the
independent-particle model strength in the quasihole peak (the
ground state of 55Ni), 10% in the fragmented hole region, and
3% in the fragmented particle region. This analysis confirms
that the main mechanism responsible for the quenching of the
spectroscopic factors lies in the admixture between single-
particle states and collective excitations in the region of giant
resonances [24]. Because of these correlations a large part
of the missing strength from the valence peak is shifted and
spread over an adjacent region about 15–20 MeV wide. Further
reduction of the spectroscopic factors comes from the mixing
with configurations at much higher energies and momenta and
is accounted for through the energy dependence of Eq. (6).

The information carried by the calculated single-particle
propagator g(ω) is collected in Fig. 6 for neutrons and partial
waves up to l = 3. The plot shows the spectral strength
associated with each pole of g(ω). Fragments below the
Fermi surface (EF ) refer to the separation of a neutron
(55Ni), whereas those above correspond to neutron addition
(57Ni). The poles corresponding to the 1p0f valence orbits
are indicated by arrows. These are the same single-particle
energies that have been discussed in Sec. III B and Table I.
As noted above, the fragments found at slightly higher energies
(just above ε+

n ∼ −8 MeV) originate from the mixing of
these orbits with two-particle-one-hole configurations and
collective excitations of the nucleus. The overall fragmentation
effect is substantial but not strong enough to destroy the
single-particle character of the principal quasiparticle peaks
(note that a logarithmic scale has been chosen in Fig. 6
to make smaller fragments of the spectral distribution more
visible). This observation supports the use of valence single-
particle states as the relevant degrees of freedom that govern
low-lying excitations, as assumed in conventional shell-model
applications. We note that the question whether a system can
be approximated as a good shell closure is better addressed
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FIG. 6. (Color online) Spectral
strengths for one-neutron transfer on
56Ni obtained from the self-consistent
single-particle propagator g(ω). Poles
above (below) the Fermi energy, EF ,
correspond to transition to eigenstates
of 57Ni (55Ni). The respective spectro-
scopic factors are given as a fraction of
the independent-particle model value.
The quasiparticle poles corresponding
to the valence orbits of the 1p0f shell
are indicated by arrows. A logarithmic
scale was chosen to put in stronger evi-
dence the distribution of the fragmented
strength. Results are for h̄� = 10 MeV,
Nmax = 9, and κM = 0.57 MeV.

by analyzing the spectroscopic factors and strength distribu-
tion rather than occupation numbers, because the latter are
integrated quantities.2 While unoccupied states can be probed
by the addition of a nucleon, occupied states are accessed by
knockout to states of the A − 1 nucleon system. A similar
fragmentation pattern is therefore seen for the 0f7/2 orbit
but reversed below the Fermi surface. Interestingly enough,
the Faddeev random phase approximation predicts that states
corresponding to orbits in the 1s0d and 2s1d0g shells maintain
a strong single-particle character even though they are further
apart from the Fermi surface. The fragmentation of these orbits
requires excitations across shells of different parity (e.g., 1s0d

and 1p0f ) and could become stronger if the energy difference
among major shells is reduced. A comparison of our results
with electron scattering measurements on 58Ni [75] suggests
that indeed the N3LO interaction tends to overestimate the
gaps between these major shells. Note that in the present
calculations the 2s1d0g quasiparticles are found at energies of
about −3 MeV and overlap with the fragmented 1p0f states.

Far from the Fermi energy EF , the mixing with complex
configurations becomes strong and it is no longer possible
to identify sharp quasiparticle and quasihole states. Still, the
energy region occupied by the major shells can be identified
clearly. The N3LO interaction places the states associated
with the 1s0d shell between −60 and −30 MeV, whereas the
0p-shell states appear below −50 MeV. Other hole fragments

2Occupation numbers are normally defined in terms of the density
matrix, which involves an integral sum over each hole pole of
Eq. (1). Especially for deeply bound orbits, it is possible that a strong
fragmentation pattern still leads to large occupation numbers.

are observed around −30 MeV for the 1p1/2, 1p3/2, and 0f5/2

partial waves. These originate from particle states in the 1p0f

shell that are partially occupied due to the smearing of the
Fermi surface. Nucleon knockout from these orbits requires
little energy transfer and leads to low-lying states in 55Ni
or 55Cu. These states originate from the mixing of particle
orbits with two-hole-one-particle configurations (R(2h1p)) in
the Dyson equation. Still, the 55Ni ground state is strongly
influenced by the 0f7/2 hole component.

Analogous fragmentation patterns extend to the shells
further away from the Fermi surface, although these are
not shown in Fig. 6. On the particle side, ε+

n = 0 MeV
marks the threshold for the single-particle continuum in
the (A + 1)-nucleon system. Above this, the exact spectral
function becomes a continuous function of energy. In the
present calculations a structure of separate poles is found
due to the discretization of the model space. A continuum
distribution also develops for the hole part of the exact spectral
function below the energy ε−

k = (EA
0 − EA−1

k′=0) − SA−1
N , where

SA−1
N is the one-nucleon separation energy from the ground

state of A − 1 particles. The distribution on both sides of the
Fermi surface is similar but not fully symmetric, the strength
being stronger at large positive energies. This is because
the (A + 1)-nucleon system can access a larger phase space
than a single hole within the A-nucleon ground state. This
asymmetry is already observed at the level of the self-energy
�	(ω), a result in line with available fits of global optical
potentials [49,50].

For the proton case, the poles of g(ω) correspond to the
addition (removal) of a proton to the eigenstates of 57Co (55Cu).
The corresponding spectral strength is substantially the same
as that discussed for neutrons due to the almost exact isospin
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symmetry of the nuclear force. However, it is shifted to higher
energies by the Coulomb repulsion.

V. CONCLUSIONS

The aim of this work has been to extend large-scale calcu-
lations of self-consistent Green’s functions to medium-mass
nuclei and to investigate the properties of the single-particle
spectral function of 56Ni.

Many-body Green’s functions hold a number of interesting
mathematical properties. Because one aims at obtaining exci-
tations relative to a reference nucleus calculations scale more
gently when increasing the number of particles as opposed to
direct large-scale diagonalization methods. Only connected
diagrams are summed to all orders so that the extensivity
condition is satisfied [14]. Moreover, the self-consistent
approach provides a path to ensure the conservation of basic
macroscopic quantities. However, the greatest advantage of the
self-consistent Green’s functions formalism is that its building
blocks, the many-body propagators, contain information on the
response to several particle transfer and excitation processes.
Therefore, they can be directly compared to a large body of
experimental data. Due to these characteristics the formalism
can be used to gain unmatched insights into the many-
body dynamics of quantum mechanical systems. Within this
framework, the Faddeev random phase approximation method
proposed in Ref. [28] is a good candidate to pursue ab initio
studies of medium mass isotopes.

In this work we have presented the basic details of cal-
culating the Faddeev random phase approximation expansion
and discussed results for the spectral function of 56Ni. This
is the first application of the self-consistent Green’s function
approach to the 1p0f shell region. The calculations employ
the chiral N3LO two-nucleon interaction, with a modified
monopole to account for missing many-nucleon forces. In ad-
dition to this one-parameter modification of the Hamiltonian,
the only remaining parameters that enter our calculations are
those defining the nucleon-nucleon interaction.

Calculations were performed in models spaces including
up to ten major oscillator shells. These large spaces are
large enough to allow for a sophisticated treatment of long-
range correlations. The quasiparticle and quasihole energies
of the 1p0f valence orbits were found to be rather well
converged. In the largest calculations they appeared to be
almost constant for oscillator frequencies in the range h̄� ∈
[8, 20] MeV. These convergence properties are possible thanks
to a prediagonalization of the effects of short-range correla-
tions. This is done using the G matrix technique [22,60] to
resum ladder diagrams outside the model space. Our results
put in evidence the strong sensitivity of spectroscopic factors
on the particle-hole gap at the Fermi surface. For the N = 28
and Z = 28 subshell closures the bare N3LO potential fails
in describing the experimental gap (in an analogous way to
other realistic two-nucleon interactions [11]). This effect has
been attributed to missing three-nucleon interactions [69]. It
is found that a proper correction of a few monopole terms of
the Hamiltonian allows us to extract reliable results for the
fragmentation of single-particle strength.

Fully self-consistent Faddeev random phase approximation
calculations have till now only been presented for 16O. The
extension to accurate ab initio calculations in the 1p0f shell
represent a major technical advance. However, no substantial
use of parallel computation has been made in applying this
formalism. Improvements in numerical algorithms are still
possible and it is expected that they will allow a better treatment
of fragmentation in the self-consistent approach, as well as
pushing the limits of present calculations well beyond mass
A = 56. Another obvious extension is the inclusion of explicit
three-nucleon forces. Within the framework of self-consistent
Green’s function theory this has already been achieved for
nuclear matter studies [76]. Similar developments can be
expected for finite nuclei as well.

For open-shell systems with weakly bound states and/or
resonances, one needs a single-particle basis that can handle
continuum states, as done in Ref. [77]. Normally, this leads
to a much larger space and may require parallelization
of our codes. On the other hand, the effective interaction
among valence-space quasiparticles is already generated in
the present calculations and can be used for standard shell-
model calculations in one or two major shells. The issue
of degenerate unperturbed states for open-shell systems has
also been addressed for Green’s functions theory in Ref. [78]
by using a Bogoliubov-type quasiparticle transformation. In a
self-consistent treatment, one may improve on this approach
by extending the Faddeev RPA method to include explicit con-
figuration mixing between the nucleons inside the open shell.

The N = 28 and Z = 28 subshell closure has also at-
tracted recent experimental interest following the discussion of
whether the low-lying states of 57Cu are strongly fragmented
because of a soft 56Ni core (see, for example, Ref. [6]).
Whereas no direct experimental information is available for
the transition between these two isotopes, the spectroscopic
factor for neutron knockout from 57Ni has been measured in
Ref. [2]. The present calculations describe well the quenching
of the experimental cross section. At the same time, we
report predictions for both proton and neutron transfer to
the other valence orbits around 56Ni. These calculations can
thereby provide theoretical benchmarks for the forthcoming
experiments of Refs. [3] and [4]. These spectroscopic factors
are all in the range of 60–70% of the independent-particle
model value and in fair agreement with the observation of
valence states in several stable nuclei [9]. The fragmentation
pattern of valence orbits predicted by the Faddeev random
phase approximation is also found in substantial agreement
with what is known for closed-shell nuclei [24] and supports
the description of 56Ni as a doubly magic nucleus. Finally, we
note that the effects of admixing configurations with several
particle-hole excitations are not included in the present study.
These effects can be accounted for by using configuration
interaction (shell-model) methods. However, based on the
analysis of Refs. [68,79,80], these corrections are not expected
to be dominant.
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