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Nucleon self-energies for 40,48,60Ca isotopes are generated with the microscopic Faddeev-random-phase
approximation (FRPA). These self-energies are compared with potentials from the dispersive optical model
(DOM) that were obtained from fitting elastic-scattering and bound-state data for 40,48Ca. The ab initio FRPA
is capable of explaining many features of the empirical DOM potentials including their nucleon asymmetry
dependence. The comparison furthermore provides several suggestions to improve the functional form of the
DOM potentials, including among others the exploration of parity and angular momentum dependence. The
nonlocality of the FRPA imaginary self-energy, illustrated by a substantial orbital angular momentum dependence,
suggests that future DOM fits should consider this feature explicitly. The roles of the nucleon-nucleon tensor
force and charge-exchange component in generating the asymmetry dependence of the FRPA self-energies are
explored. The global features of the FRPA self-energies are not strongly dependent on the choice of realistic
nucleon-nucleon interactions.
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I. INTRODUCTION

The properties of nucleons propagating in the nucleus
exhibit characteristic deviations from the naive shell-model
picture. At positive energies, corresponding to the domain
of elastic scattering, there is unambiguous evidence that
the potential (or self-energy) that a nucleon experiences
is absorptive [1–3]. This simple observation has important
implications, since it shows that nuclear states cannot be
interpreted only in terms of a simple shell-model potential
that is real and independent of energy. The importance of the
dynamic aspects of the nuclear shell model was recognized
in Ref. [4]. The link between optical potentials and the
traditional bound-state shell model was explored by Mahaux
and Sartor [5] and extensively reviewed in Ref. [6]. These
authors realized that information on nucleon propagation at
positive energy influences the properties of the real nuclear
potential at negative energy, since the nucleon self-energy
obeys a dispersion relation that links the real part to its
imaginary part at all energies (see, e.g., Ref. [7]). Mahaux
and Sartor exploited standard representations of the imaginary
part of the optical potential in terms of volume and surface
contributions. They further assumed that the behavior of the
imaginary potential was similar near both sides of the Fermi
energy and used a subtracted form of the dispersion relation
to obtain the corresponding real part. By performing this
subtraction at the Fermi energy, only the additional knowledge
of the real potential at that energy is required. The resulting
optical potential is now called the dispersive optical model
(DOM).

Recent applications of the DOM have concentrated on
the nucleon asymmetry dependence by simultaneously fitting
data pertaining to different calcium isotopes [8,9] and to
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spherical isotopes up to tin and 208Pb [10]. Such an analysis
can be utilized to predict properties of isotopes with larger
nucleon asymmetry by extrapolating the DOM potentials.
Such data-driven extrapolations present a reliable strategy
to approach and predict properties of isotopes toward the
respective drip lines, since they can be tested by performing
appropriate experiments. An important feature extracted from
this analysis is the increase in surface absorption of protons
in heavier Ca isotopes for increasing asymmetry. While this
trend is unambiguous, there is no clear understanding of the
underlying dynamics responsible for it. A much weaker and
opposite trend was inferred for neutrons. It is therefore useful
to study the nucleon self-energy—which is the microscopic
counterpart of the DOM—to clarify this behavior and provide
a deeper understanding of the DOM potentials.

Microscopic approaches to optical potentials include, e.g.,
the Feshbach formalism [11,12], the many-body Green’s
function theory [13], and the G-matrix folding approximation
[14]. Both the Feshbach and Green’s function approaches are
exact microscopic theories for the optical potential and are
closely related. Feshbach originally developed his formalism
by projecting the many-body Hamiltonian on the subspace
of scattering states, in which the scattered nucleon is added
on top of the target wave function. This subspace includes
all the single-nucleon scattering and (A + 1)-nucleon bound
states. However, it cannot describe the so-called Pauli-blocked
(or hole) states that correspond to occupied orbits below
the Fermi surface and can be reached only through nucleon
removal processes. It has been proven that if Feshbach’s
theory is extended to a space including states both above
and below the Fermi surface, the resulting optical potential
corresponds exactly to the irreducible self-energy ��(E)
[13] (see also Refs. [15,16] for a shorter demonstration).
The Green’s function method is ideally suited to pursue
a microscopic understanding of the nucleon self-energy at
both positive and negative energies [17]. Both the propagator
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and the self-energy ��(E) of the Green’s function method
can be cast in the form of dispersion relations which are
merely a consequence of their analytic properties [see Eqs. (1)
and (4) below] associated with the correct time ordering
for adding and removing a nucleon. Hence, the dispersion
relations represent a constraint imposed by causality. The
above equivalence with the microscopic optical potential is
fundamental for the present study, since the available knowl-
edge from calculations based on the Green’s function theory
can be employed to suggest improvements of optical models.
In particular, in the DOM the dispersion relation obeyed by
��(E) is used to reduce the number of parameters and to
enforce the effects of causality. Thus, the DOM potentials
can also be thought of as a representation of the nucleon
self-energy.

The most sophisticated microscopic implementation of
the Green’s function method considers the role of long-
range or low-energy correlations in which nucleons couple
to low-lying collective states and giant resonances. This
is accomplished by using the random phase approxima-
tion (RPA) to calculate phonons of particle-particle (hole-
hole) and particle-hole types. These are then summed to
all orders in a Faddeev summation for both two-particle–
one-hole (2p1h) and two-hole–one-particle (2h1p) propa-
gation. This approach is referred to as Faddeev random
phase approximation (FRPA) [18,19]. This method is size
extensive and has been successfully benchmarked for soft
interactions in purely ab initio calculations for 4He [20],
giving results of comparable accuracy to coupled-cluster
theory.

The FRPA was originally developed to describe the
self-energy of the double closed-shell nucleus 16O [19,21].
Subsequently, the method has been applied to atoms and
molecules [18,22] and recently to 56Ni [23] and 48Ca [24]. The
ab initio results of Ref. [24] are in good agreement with (e, e′p)
data for spectroscopic factors from Ref. [25] and also show
that the configuration space needed for the incorporation of
long-range (surface) correlations is much larger than the space
that can be utilized in large-scale shell-model diagonalizations.
In Ref. [26], the FRPA was employed to calculate proton
scattering on 16O and obtain results for phase shifts and low-
lying states in 17F. However, the properties of the self-energy
at larger scattering energies which are now of great interest
for the developments of DOM potentials were not addressed.
In particular, one may expect to extract useful information
regarding the functional form of the DOM from a study of
the self-energy for a sequence of calcium isotopes. It is the
purpose of the present work to close this gap. We have chosen
in addition to 40Ca and 48Ca also to include 60Ca, since the
latter isotope was studied with a DOM extrapolation in Refs.
[8,9]. Some preliminary results of these FRPA calculations
for spectroscopic factors were reported in Ref. [20], but
the emphasis in the present work is on the properties of
the microscopically calculated self-energies. The resulting
analysis is intended to provide a microscopic underpinning
of the qualitative features of empirical optical potentials.
Additional information concerning the degree and form of
the nonlocality of both the real and imaginary parts of the
self-energy will also be addressed because it is of importance

to assess the current local implementations of the DOM
method.

In Sec. II A we introduce some of the basic properties
for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice of
model space and realistic nucleon-nucleon (NN) interaction
are discussed in Sec. III. We present our results in Sec. IV and
finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈
�A

0

∣∣cα

∣∣�A+1
n

〉〈
�A+1

n

∣∣c†β ∣∣�A
0

〉
E − (

EA+1
n − EA

0

) + iη

+
∑

k

〈
�A

0

∣∣c†β ∣∣�A−1
k

〉〈
�A−1

k

∣∣cα

∣∣�A
0

〉
E − (

EA
0 − EA−1

k

) − iη
, (1)

where α, β, . . . , label a complete orthonormal basis set, and
cα (c†β) are the corresponding second quantization destruction

(creation) operators. In these definitions, |�A+1
n 〉, |�A−1

k 〉
are the eigenstates, and EA+1

n , EA−1
k the eigenenergies of

the (A ± 1)-nucleon isotope. The structure of Eq. (1) is
particularly useful for our purposes. At positive energies,
the residues of the first term, 〈�A+1

n |c†α|�A
0 〉, contain the

scattering wave functions for the elastic collision of a nucleon
off the |�A

0 〉 ground state, while at negative energies they give
information on final states of the nucleon capture process.
Consequently, the second term has poles below the Fermi
energy EF which carry information about the removal of
a nucleon and therefore clarify the structure of the target
state |�A

0 〉 itself. Green’s function theory provides a natural
framework for describing physics both above and below the
Fermi surface in a consistent manner.

The propagator (1) can be obtained as a solution of the
Dyson equation,

gαβ(E) = g
(0)
αβ (E) +

∑
γ δ

g(0)
αγ (E) ��

γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon (moving
only with its kinetic energy). ��(E) is the irreducible self-
energy and represents the interaction of the projectile (ejectile)
with the target nucleus.

A. Self-energy

For a J = 0 nucleus, all partial waves (
, j, τ ) are decou-
pled, where 
,j label the orbital and total angular momentum
and τ represents its isospin projection. The irreducible self-
energy in coordinate space (for either a proton or a neutron)
can be written in terms of the harmonic-oscillator basis used
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in the FRPA calculation as follows:

��(x, x′; E)

=
∑


jmj τ

I
jmj
(�, σ )

×
[∑

na,nb

Rna
(r)��
ab(E)Rnb
(r ′)

]
[I
jmj

(�′, σ ′)]∗, (3)

where x ≡ r, σ, τ . The spin variable is represented by σ , n is
the principal quantum number of the harmonic oscillator, and
a ≡ (na, 
, j, τ ) (note that for a J = 0 nucleus the self-energy
is independent of mj ). The standard radial harmonic-oscillator
function is denoted by Rn
(r), while I
jmj

(�, σ ) represents the
j -coupled angular-spin function.

We directly calculate the harmonic-oscillator projection of
the self-energy, which can be written as

��
ab(E) = �∞

ab(E) + �̃ab(E)

= �∞
ab(E) +

∑
r

mr
a

(
mr

b

)∗

E − εr ± iη
. (4)

The term with the tilde is the dynamic part of the self-energy
due to long-range correlations calculated in the FRPA, and
�∞

ab(E) is the correlated Hartree-Fock term which acquires an
energy dependence through the energy dependence of the G-
matrix effective interaction (see below). �∞

ab(E) is the sum of
the strictly correlated Hartree-Fock diagram (which is energy
independent) and the dynamical contributions due to short-
range interactions outside the chosen model space. The self-
energy can be further decomposed in a central (0) part and a
spin-orbit (
s) part according to

�
j> = �

0 + 


2
�



s , (5a)

�
j< = �

0 − 
 + 1

2
�



s , (5b)

with j>,< ≡ 
 ± 1
2 . The corresponding static terms are denoted

by �
∞,

0 and �

∞,


s , and the corresponding dynamic terms are

denoted by �̃

0 and �̃



s .
The FRPA calculation employs a discrete single-particle

basis in a large model space which results in a substantial
number of poles in the self-energy (4). Since the goal is to
compare the self-energy with optical potentials at positive
energy, it is appropriate to smooth out these contributions
by employing a finite width for these poles. We note that
the optical potential was always intended to represent an
average smooth behavior of the nucleon self-energy [6]. In
addition, it makes physical sense to at least partly represent
the escape width of the continuum states by this procedure.
Finally, further spreading of the intermediate states to more
complicated states (3p2h and higher excitations that are not
included in the present calculation) can also be accounted
for by this procedure. Thus, before comparing the self-energy
to the DOM potentials, the dynamic part of the microscopic
self-energy was smoothed out using a finite, energy-dependent

width for the poles:

�̃
j
na,nb

(E) =
∑

r

mr
na

mr
nb

E − εr ± iη
−→

∑
r

mr
na

mr
nb

E − εr ± i�(εr )
.

(6)

Solving for the real and imaginary parts we obtain

�̃
j
na,nb

(E) =
∑

r

(E − εr )

(E − εr )2 + [�(εr )]2
mr

na
mr

nb

+ i

[
θ (EF −E)

∑
h

�(εh)

(E − εh)2 + �(εh)2
mh

na
mh

nb

− θ (E−EF )
∑

p

�(εp)

(E−εp)2+[�(εp)]2
mp

na
mp

nb

]
,

(7)

where r implies a sum over both particle and hole states, h

denotes a sum over the hole states only, and p denotes a sum
over the particle states only. For the width, the following form
was used [27]:

�(E) = 1

π

a (E − EF )2

(E − EF )2 − b2

with a = 12 MeV and b = 22.36 MeV. This generates a
narrow width near EF that increases as the energy moves away
from the Fermi surface, in accordance with observations.

In the DOM representation of the optical potential the self-
energy is recast in the form of a subtracted dispersion relation

��
ab(E) = �∞

ab, S + �̃ab(E)S, (8)

where1

�∞
ab S = ��

ab(EF ) , (9)

�̃ab(E)S = ��
ab(E) − ��

ab(EF ) . (10)

For the imaginary potential, this is the same as the above
defined self-energies (4), and it can therefore be directly
compared to the DOM potential. For the real parts we will
employ either the normal or the subtracted form in the
following as appropriate.

B. Volume integrals

In fitting optical potentials, it is usually found that volume
integrals are well constrained by the experimental data [6,28].
For this reason, they have been considered as a reliable
measure of the total strength of a potential. For a nonlocal
and 
-dependent potential of the form (3) it is convenient
to consider separate integrals for each angular momentum
component, �


0(r, r ′) and �


s(r, r

′), which correspond to the
square brackets in Eq. (3) and decomposed according to (5).
Labeling the central real part of the optical potential with V ,

1It is the (real) �∞
ab, S and the imaginary part of �̃ab(E)S that are

parametrized in the DOM potential. Re �̃ab(E)S is then fixed by the
subtracted dispersion relation.
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and the central imaginary part by W , we calculate

J 

W (E) = 4π

∫
drr2

∫
dr ′r ′2Im �


0(r, r ′; E), (11a)

J 

V (E) = 4π

∫
drr2

∫
dr ′r ′2Re �


0(r, r ′; E). (11b)

We also employ the volume integral of the central real
part at the Fermi energy denoted by J 


F = J 

V (EF ), and the

corresponding averaged quantities

J
avg
W (E) = 1

N{
}

∑

∈{
}

J 

W (E), (12a)

J
avg
V (E) = 1

N{
}

∑

∈{
}

J 

W (E) . (12b)

In Eqs. (12a) and (12b) N{
} is the number of partial waves
included in the average, and the sum runs over all values of 


except if otherwise indicated. We also introduce the notation
J

avg
F = J

avg
V (EF ).

The correspondence between the above definitions and
the volume integrals used for the (local) DOM potential in
Refs. [8,9] can be obtained by casting a spherical local
potential U (r) into a nonlocal form U (r, r ′) = U (r)δ(r − r ′).
Expanding this in spherical harmonics gives

U (r, r ′) =
∑

m

U
(r, r ′)Y ∗

m(�′)Y
m(�) , (13)

with the 
 projection

U
(r, r ′) = U (r)

r2
δ(r − r ′) , (14)

which is actually angular-momentum independent. The defi-
nition (11) for the volume integrals leads to

J 

U = 4π

∫
dr r2

∫
dr ′r ′2U
(r, r ′)

= 4π

∫
U (r)r2dr =

∫
U (r) d r, for any 
 (15)

and reduces to the usual definition of the volume integral for
local potentials. Thus, Eqs. (11) and (12) can be directly com-
pared to the corresponding integrals determined in previous
studies of the DOM.

C. Ingredients of the Faddeev-random-phase approximation

The self-energy is shown in terms of Feynman diagrams
in Fig. 1. The calculations are carried out in two steps by
following the same procedure as in Ref. [23], where further
details can be found. First, a configuration space is selected that

+Σ= +Σ*
(2h1p)(2p1h)

R R

FIG. 1. (Color online) Self-energy ��(E) separates exactly into
a static (mean-field) term �∞ and the polarization propagators
R(2p1h/2h1p)(E) for the 2p1h/2h1p motion. These R(E) are expanded
in terms of particle-vibration couplings as depicted below in Fig. 3.

should be as large as possible to account for the treatment of a
nuclear collective motion. We then account for the short-range
part of a realistic NN interaction by directly calculating the
two-body scattering for nucleons that propagate outside the
model space. The result is the so-called G-matrix that must be
employed as an energy-dependent effective interaction inside
the chosen space. The contribution from ladder diagrams
from outside the model space is also added to the calculated
self-energy and results in an energy-dependent correction to
�∞

ab [see Eq. (4)]. When the corresponding self-energy is
calculated, this energy dependence enhances the reduction
of the spectroscopic strength of occupied orbits by about
10%. A similar depletion is also obtained in nuclear-matter
calculations with realistic interactions [17] and confirmed by
high-energy electron scattering data [29,30]. The details of
this partitioning procedure are presented in Ref. [23]. For the
present discussion, it should be clear that this corresponds to
calculating separately the contribution of propagators that lie
outside the model space and then to add it to the final FRPA
results. This does not introduce phenomenological parameters,
and the calculation should be regarded as a microscopic study
based only on the original realistic interaction.

In addition to the influence of short-range (and tensor)
correlations, it is essential to consider the role of long-range
correlations in which nucleons couple to low-lying collective
states and giant resonances. This is calculated in the second
step inside the model space by employing the FRPA method.
The physics content of the FRPA is better summarized by
looking at its diagrammatic expansion illustrated in Figs. 2 and
3. The basic ingredients are the particle-hole (ph) polarization
propagator �αβ,γ δ(E), that describes excited states of the
A-nucleon system, and the two-particle propagator gII

αβ,γ δ(E),
that describes the propagation of two added/removed particles.
These propagators are calculated as summations of ring and
ladder diagrams in the random-phase approximation (RPA).
This allows for a proper description of collective excitations in
the giant-resonance region when the model space is sufficiently
large. The RPA induces time orderings as those shown in
Fig. 2 for the ph case and accounts for the presence of
two-particle–two-hole and more complicated admixtures in
the ground state, which are generated by correlations. In the
FRPA, the R(2p1h)(E) and R(2h1p)(E) propagators that appear

...

= ++ ...++

+ + +

(ph)Π

FIG. 2. (Color online) Expansion of the ph propagator �(E) in
a series of ring diagrams. The second line gives examples of time-
inversion patterns that are generated by the RPA. A similar expansion,
in terms of ladders diagrams, applies to gII (E). The diagrams are time
ordered, with time propagating upward.
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(ph)

(pp/hh)

ΠΠ
II

Π
(ph)

g II (pp/hh)

(ph)

Π
(ph)

g

FIG. 3. (Color online) Left: Example of one of the diagrams for
R(2p1h)(E) that are summed to all orders by means of the Faddeev
method. Each of the ellipses represent an infinite sum of rings
[�(E)] or ladders [gII (E)]. The diagrams included in �(E) are
shown in Fig. 2, and gII (E) is the analogous one for ladders [18].
Right: Corresponding contribution to the self-energy obtained from
R(2p1h)(E) (compare to Fig. 1).

in Fig. 1 are obtained by recoupling �(E) and gII (E) to
single-particle or hole states, as shown in Fig. 3. This is
done by solving the set of Faddeev equations detailed in
Refs. [18,19]. Contributions from ph, particle-particle, and
hole-hole excitations in all possible partial waves are included
in the FRPA as this is required for a complete solution of
the problem. Moreover, R(2p1h)(E) and R(2h1p)(E) also include
energy-independent vertex corrections to ensure consistency
with perturbation theory up to third order to guarantee accurate
results at the Fermi surface [31]. We refer the reader to Ref. [18]
for more details.

Green’s function theory—and in particular the FRPA—
involves infinite summations of linked diagrams. This implies
that computational requirements scale favorably with the
increase of the model-space size and that the method is size
extensive, which allows controlling theoretical errors when
increasing the size of the system. The FRPA method has been
tested in purely ab-initio calculations of 4He in Ref. [20] and
was found to achieve accuracies comparable to coupled-cluster
results [32]. The further advantage of the FRPA formalism
is that it calculates explicitly the effects of all many-body
excitations including the region of giant resonances. The result
is a global description of the self-energy over a wide range
of energies. The FRPA is then the method of choice for our
purpose of investigating medium-mass nuclei in a wide energy
domain around the Fermi surface.

III. CALCULATIONS

Extremely large models spaces are not required for the
present analysis because we already account for the short-
range part of the interactions through the partitioning proce-
dure described in Sec. II C [23]. In the energy regime we are
interested in, short-range physics affects mainly the real part
of the self-energy in the domain of interest. The contributions
to the imaginary part are not included as they show up at very
high positive energies which are not considered here [17]. The
self-energies of 40Ca, 48Ca, and 60Ca were calculated using the
FRPA in a harmonic-oscillator model space with frequency

h̄� = 10 MeV. Calculations for 60Ca were possible in no-core
model spaces including up to eight major shells (Nmax = 7),
and we therefore employed this truncation for all the results
presented in Sec. IV. This space is deemed large enough to
provide a proper description of the physics around the Fermi
surface and qualitatively good at energies in the region of
giant-resonance excitations which are of interest in this study.

In this work we will mostly focus on averaged properties
of the self-energy, as described by the volume integrals
(11), for which meaningful results can be obtained. Due to
the unavoidable truncation of the model space, calculations
will be reliable within an energy interval centered around
EF . We checked these limits by calculating JW of 48Ca for
model spaces of different sizes, including up to 10 major
oscillator shells (which is possible for this isotope [24]). As
expected, results are similar over a range of energies that
increases with Nmax. Based on this comparison, we deduce
that the self-energies calculated for Nmax = 7 (eight shells)
and discussed in this work will be meaningful for energies in
the range −80 MeV < E − EF < 80 MeV.

We report results obtained using the realistic Argonne
AV18 potential [33] which is local and contains a strongly
repulsive core. Calculations based on the softer and nonlocal
N3LO interaction [34] gave only slightly less absorption for
E > EF , especially in 40Ca. Nevertheless, the results for the
two interactions are qualitatively similar, and we limit the
discussion to the AV18 case.

IV. RESULTS

A. Angular-momentum dependence

Figure 4 gives an overall example of the features of the real
part of the self-energy, J 


V . These results are shown for neutrons
in 40Ca, employing the AV18 interaction, and are separated in
partial waves up to 
 = 5. The variation of J 


V with respect to

-600

-400

-200

0

-600

-400

-200

0

J V
 / 

A
   

[M
eV

 f
m

3 ]

-100 0 100
E - E

F
 [MeV]

-800

-600

-400

-200

0

-100 0 100
E - E

F
 [MeV]

l = 3l = 2

l = 4

l = 0 l = 1

l = 5

FIG. 4. (Color online) Volume ntegrals of Re �

0 for ineutrons

in 40Ca. The horizontal, dashed lines are the volume integrals of
�

∞,

0 (EF ).
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0 1 2 3 4 5 6 7
l

-600

-500

-400

-300

-200

-100

0

100
J V

(E
F
) 

[M
eV

 f
m

3 ]

FIG. 5. (Color online) Angular momentum dependence for the
volume integrals J 


F = J 

V (EF ) of �∞,
(EF ) excluding the contri-

bution of the dynamic part of the self-energy. For each 
, results
for protons are given by solid diamonds and neutrons by solid
circles. Proton potentials are considerably less attractive due to the
Coulomb energy. When the Coulomb interaction is suppressed (open
diamonds), the proton results are close to the neutron results. The
results shown are for 40Ca using the AV18 interaction.

J 

F = J 


V (EF ) obtained from �
∞,

0 (EF ) also decreases with

increasing 
 (Fig. 4), This reflects a similar reduction of
the imaginary parts J 


W , to which J 

V are linked through the

dispersion relation. The effect may be partly explained by the
truncated model space, since the higher 
 channels also have
fewer active orbits. On the other hand, the horizontal lines in
Fig. 4, which are the contributions of �

∞,

0 to J 


F = J 

V (EF ),

clearly suggest that most of this decrease must arise from the 


dependence implied by the nonlocality of the potential. Such
an 
 dependence suggests that it may be important to include
nonlocal features in DOM potentials. In Fig. 5 the volume
integrals J 


F = J 

V (EF ) are shown excluding the contribution

of the dynamic part. Note that because the proton potential is
not as deep as that of the neutrons, the volume integral will be
smaller for protons than for neutrons. When the calculation is
done without the Coulomb potential, the volume integrals for
the protons are comparable to those for the neutrons.

This effect of nonlocality can be illustrated by taking,
e.g., the energy dependence of the volume contribution of
a DOM potential [9] and replacing the radial form factor
by a nonlocal potential. The radial parameters of such a
nonlocal potential employed here correspond to the nonlocal
Hartree-Fock potential of Ref. [35]. Such a nonlocal potential
is of the form proposed by Perey and Buck [36] and contains
a Gaussian form factor describing the nonlocality. The results
are shown in Fig. 6. Since the nonlocal potential depends on
the angle between r and r ′ there is an automatic 
 dependence
of the projected J 


W that exhibit a systematic decrease in
absorption for increasing 
. While it is apparently possible to fit
elastic scattering data with local potentials, a nonlocal potential
has a substantial effect on the interior scattering wave function
and therefore, e.g., on the analysis of transfer reactions that
rely on such wave functions [37,38].

The possible importance of nonlocality for the calculation
of observables below the Fermi energy was pointed out in
Ref. [35]. When the real part of the self-energy at the Fermi
energy is represented by a truly nonlocal potential, it becomes
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FIG. 6. (Color online) Imaginary volume integrals of the volume
part of a DOM self-energy with a local Woods-Saxon form factor
replaced by a nonlocal form proposed by Perey and Buck. The results
shown are for 
 = 0 (solid), 
 = 1 (long dash), 
 = 2 (long dot dash),

 = 3 (short dash), and 
 = 4 (short dot dash).

possible to properly calculate the spectral functions below
the Fermi energy and observables like the charge density.
The importance of nonlocality for the imaginary part of the
self-energy suggested by the FRPA calculations may actually
provide a handle on describing the nuclear charge density for
40Ca more accurately than was possible in Ref. [35].

A direct comparison of 
-averaged FRPA volume integrals
with the corresponding DOM result is made in Fig. 7. Since the
DOM results are calculated from a local potential, they must be
corrected by the effective mass that governs nonlocality [6,35]
before they can be compared with the FRPA results, which
are generated from nonlocal potentials. The overall effect
of this correction is to enhance the absorption. Referring to
Fig. 7, one can see that the FRPA exhibits different behavior
above and below EF than is assumed in the DOM. The

0

100

200

-100 0 100 200
E - E

F
 [MeV]

0

100

200

| J
Wav

g  / 
A

 | 
 [

M
eV

 f
m

3 ]

40
Ca (p)

48
Ca (p)

FIG. 7. (Color online) FRPA results for the average over all

 channels (dashed) are compared with the DOM result (solid),
corrected for nonlocality.
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FIG. 8. (Color online) Separate partial wave contributions of
JW averaged over 
 channels with the same number of harmonic-
oscillator orbits in the model space. This plot is for neutrons in 40Ca.
The dashed–double-dotted curve represents the DOM result.

FRPA predicts that there is significantly less absorption below
EF than above, whereas according to the assumptions made
in a DOM fit, the absorption is roughly symmetric above
and below up to about 50 MeV away from EF [6,8–10].
While this assumption is made in the local version of the
DOM, the transition to a nonlocal implementation distorts
this assumption of symmetry because the attendant correction
involving the effective mass is different above and below
the Fermi energy as can be seen in Fig. 7. Since only the
absorption above the Fermi energy is strongly constrained by
elastic scattering data, it is encouraging that the 
-averaged
FRPA result is reasonably close to the DOM fit for both nuclei
in the domain where the FRPA is expected to be relevant
on account of the size of the chosen model space.2 The
simplifying assumptions of a symmetric absorption around
EF and locality in the DOM generate unrealistic occupation of
higher 
 values below the Fermi energy which is not obtained
in the FRPA. More insight into this result is obtained in
Fig. 8 where the volume integral is averaged over 
 channels
with the same number of harmonic-oscillator orbits inside the
chosen model space for neutrons in 40Ca. Below the Fermi
energy the contribution with three (dashed line) and four
(solid line) orbits dominate due to the prevalence of low-

orbits like s, p, and d. Higher 
 values are less relevant below
the Fermi energy and this is clearly illustrated in the figure.
The dashed–double-dotted curve illustrates the DOM result,
which is also shown as the solid curve in the upper panel
of Fig. 7 (proton and neutron imaginary potentials are the
same in the DOM for 40Ca). The DOM result should therefore
probably be compared below the Fermi energy with curves
corresponding to the dominant 
 values, whereas above the
Fermi energy the higher 
 values play a more prominent
role. Nevertheless, it is clear that the DOM overestimates
the absorption of partial waves below the Fermi energy that

2Note that the calculated JW decreases quickly at energies
E − EF > 100 MeV due to the truncation of the model space.
Instead, the DOM predicts correctly that it remains sizable even at
higher energies.

TABLE I. Particle-hole gaps in MeV.

AV18 N3L0 DOM Expt.

40Ca ν 10.7 12.0 7.79 7.23
π 7.9 12.1 7.20 7.24

48Ca ν 4.8 4.9 2.83 4.79
π 11.6 13.5 6.78 6.18

60Ca ν 4.9 6.5 4.95
π 10.4 12.3 6.13

are Pauli blocked in agreement with the observations in
Ref. [35].

Further comparison of the FRPA with the DOM self-energy
is made in Table I for the ph gap. The AV18 seems to
provide smaller ph gaps by 1–2 MeV compared to N3LO.
However, in both cases these gaps substantially overestimate
the experimental results (see Table I). The DOM fits from
Ref. [9] are also included in the table and are typically closer
to experiment.

B. Parity dependence

In Fig. 9, the absorption of the negative parity channels
is compared with that of the positive parity channels in
40Ca, 48Ca, and 60Ca. The averages (

∑
even 
 J 


W )/Neven 
 and
(
∑

odd 
 J 

W )/Nodd 
 are shown to see the trends more clearly.

An interesting feature in 40Ca is that just below EF there is
more negative parity absorption than for even parity, while just
above EF the opposite is true. The effect can be understood
in terms of the number of 2p1h and 2h1p states, which are
the configurations beyond the mean-field approximation that
are closest to EF . In these states, the ph and the hole-particle
(hp) phonons have negative parity, since the holes are in the
sd shell while the particles are in the pf shell. Thus, near EF ,
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FIG. 9. (Color online) JW averaged over even 
 channels (solid)
is compared with JW averaged over odd 
 channels (dashed).
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the 2h1p states will have negative parity and the 2p1h states
will have positive parity.

Proton ph configurations at low energy continue to have
negative parity as the neutron number increases in the pf

shell. However, phonons with positive parity can be created at
energies close to EF due to the partial filling of the neutron pf

shell. So, both parities for 2p1h and 2h1p states are possible.
As a result, in 48Ca one sees little difference between the
absorption from negative and positive parity states.

In 60Ca, which is the next closed shell, the neutron pf

shell is filled and the corresponding low-lying neutron ph
configurations again have negative parity, as in 40Ca; but in
this case the neutron holes have negative parity corresponding
to 
 = 1 and 3. Thus, there are more 2h1p states with positive
parity near EF for the neutrons. The situation for the protons
is similar to the case of 40Ca. The inversion of the dominant
parity above and below EF is quite general when major shells
are filled or depleted and also is visible in the partial waves
separately.

C. Asymmetry dependence

The behavior of the nuclear self-energy with changing
proton-neutron asymmetry [α = (N − Z)/A] has important
implications for unstable isotopes. Its understanding is fun-
damental in obtaining proper global parametrizations of the
DOM so that these can be trusted in extrapolations toward
the drip lines. Moreover, a strong absorption in the optical
potential, even if at intermediate energies, affects the absolute
quenching of spectroscopic factors [24]. Thus, the study of JW

can in principle contribute to the much-debated asymmetry
dependence of spectroscopic factors observed in knockout and
transfer reactions [20,37,39–43].

The J
avg
W for the three different Ca isotopes are shown in the

top panels of Fig. 10. These results predict an opposite behavior
of protons and neutrons above EF , with the proton (neutron)
potential increasing (decreasing) when more neutrons are
added, qualitatively in agreement with expectations from the
Lane potential model [44]. A recent DOM analysis based on
several isotopes, including the Ca and Sn chains, employs
a similar trend for the volume integrals [10]. However, the
same analysis suggests different behavior of the imaginary
surface contributions: neutron surface absorption appears to be
rather independent of asymmetry, while variations are much
stronger for protons and for chains of isotopes tend to increase
with asymmetry. The separation between volume and surface
effects is an artifact of the functional form chosen for the
optical model, and such a separation cannot be carried out
uniquely in a fully microscopic approach like the present
FRPA. In general, one can argue that most of the physics
at scattering energies below 50 MeV is dominated by surface
effects which are well covered by the FRPA, whereas volume
effects pertain to higher energies, less well covered by the
FRPA chosen model space. At energies below the Fermi
surface, the overall absorption of both protons and neutrons
does not show much variation with changing asymmetry.
Since the DOM analysis employs less data from energies
below EF , this result must be further tested in future work.
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FIG. 10. (Color online) Asymmetry dependence of the absorption
for neutrons and protons and dependence on tensor correlations.
The top panels shows J

avg
W for 40Ca (solid) as compared with the

results for 48Ca (dashed) and 60Ca (dotted-dashed). The middle panels
are obtained by suppressing the tensor component in the AV18
interaction. The difference between the top two panels is plotted
in the bottom panels to provide a more detailed assessment of the
correlations induced by including the tensor force.

Current DOM implementations assume that surface absorption
is similar above and below the Fermi energy, which is clearly
not suggested by the FRPA results.

The above pattern, in which one type of nucleon becomes
more correlated when increasing the number of its isotopic
partners, is a rather general feature in nuclear systems that
is also found for asymmetric nucleonic matter [45,46]. FRPA
calculations of stable and drip-line nuclei show that this effect
results in an asymmetry dependence of spectroscopic factors
similar to that observed in knockout reactions, although the
overall change from drip line to drip line is rather modest [20].
We note, however, that there also exist other mechanisms that
can affect this quenching besides the coupling to the giant-
resonance region, including a strong correlation to the ph gap
[23] and effects of the continuum at the drip lines [43].

From the characteristics of the above asymmetry depen-
dence, one expects that the nuclear interaction between protons
and neutrons plays a major role. The tensor force of the
nuclear interaction can provide one such mechanism since
it is particularly strong in the T = 0 sector. Moreover, it has
already been shown to influence the evolution of single-particle
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FIG. 11. (Color online) Effect of the tensor force and charge
exchange on correlations on the proton-48Ca self-energy. The solid
curve is the imaginary volume integral J

avg
W from the full FRPA

calculation, while the dashed curve results from removing the tensor
term in the AV18 interaction. The dashed-dotted curve is obtained by
excluding charge exchange from the full calculation. Similar results
are found for neutrons and the other Ca isotopes.

energies at the Fermi surface [47]. To investigate its implication
for single-particle properties at energies farther removed from
EF , we recalculated J

avg
W by suppressing the tensor component

of the AV18 interaction. This is shown in Fig. 11 for protons
on 48Ca and in the middle panels of Fig. 10 for all isotopes. Its
removal results in a drastic reduction of absorption at energies
|E − EF | > 30 MeV. Thus, tensor effects give an important
contribution to scattering at these energies. The difference with
the complete solution is plotted in the bottom panels of Fig. 10
to highlight the separate effect of the tensor force although this
subtraction disregards the presence of interference terms. It is
apparent that the tensor force has a very significant effect on
the correlations far from the Fermi surface, but it contributes
only to the asymmetry dependence of neutron scattering. On
the other hand, both scattering and negative energy states near
the Fermi surface are dominated by correlations other than
tensor which thus produce most of the asymmetry dependence
obtained in the full calculation.

In Fig. 11 (dotted-dashed line), we have also calculated the
FRPA self-energy by suppressing charge-exchange excitations
in the polarization propagator �(E). These contributions
correspond to a mechanism in which the proton (neutron)
projectile is Pauli exchanged with a neutron (proton) in the
target. It was argued that this could enhance surface absorption
due to the presence of Gamow-Teller resonances, with strength
increasing as ≈3(N − Z) [9]. However, the FRPA results
suggest that charge-exchange excitations of the target interfere
only very weakly with the nucleon-nucleus scattering process.

D. Analysis of radial dependence

Improving the analysis of elastic scattering data above
the Fermi energy and observables related to quantities below
the Fermi energy in a DOM framework appears to depend
sensitively on the treatment of nonlocality in the imaginary
part of the self-energy [35]. It is therefore useful to gain some
insight into the properties of the microscopic FRPA self-energy

in order to provide some guidance for future implementations
of nonlocality in the DOM. We therefore performed a few
simple fits to represent the central part of the imaginary part
of the FRPA self-energy in coordinate space at a given energy
assuming the following form of the potential

WNL(r, r ′) = W0

√
f (r)

√
f (r ′)H

(
r − r ′

β

)
. (16)

We deviate from the standard Perey prescription for nonlo-
cality by employing square-root factors of the function f (r)
which is still represented by the conventional Woods-Saxon
form factor

f (r) = 1

1 + e
r−R
a0

, (17)

with R = r0A
1/3. The function H determines the degree

of nonlocality and is assumed to be a Gaussian following
Ref. [36]:

H

(
r − r′

β

)
= 1

π3/2β3
exp

( |r − r′|2
β2

)
. (18)

When the angular dependence in H is projected out, an analytic
solution is obtained for each orbital angular momentum 
:

W

NL(r, r ′) = W0

√
f (r)

√
f (r ′)

4

π1/2β3

×exp

(−r2 + r ′2

β2

)
i
(−1)
j
(iz), (19)

where z = 2rr ′/β2 and j
 is a spherical Bessel function with a
purely imaginary argument. The fact that an analytic projection
is possible provided the motivation of the choice of Eq. (16).
In arriving at the result of Eq. (19), use has been made of
the relation between the spherical Bessel functions and the
Legendre polynomials P
:

j
(z) = 1

2i


∫ +1

−1
dt eiztP
(t). (20)

We have chosen to fit the imaginary part of the FRPA self-
energy at an energy of E − EF = 44 MeV, where surface
physics dominates. In practice, we consider only a fit to the

 = 0 self-energy since it represents the partial wave with the
best convergence properties associated with the limited model
space considered. An attempt was made to fit the volume
integral of the microscopic self-energy.

In Fig. 12 we display the diagonal of the central imaginary
part of the self-energy in coordinate space for 
 = 0 for the
FRPA self-energy for 40Ca, 48Ca, and 60Ca by solid lines offset
by 5 MeV for the different isotopes. The corresponding 
 = 0
projections of Eq. (16) given by Eq. (19) are shown by the
dashed curves. The fit according to Eq. (16) appears to be
quite satisfactory suggesting that a reasonable representation
of the microscopic self-energy is possible and may provide a
useful starting point for future choices for DOM functionals.

The main characteristic of an absorptive potential is
the volume integral. For local potentials this quantity is
well constrained by experimental cross sections [9,10]. The
properties of the imaginary part of the FRPA self-energy in
terms of its nonlocality content are summarized in Table II
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FIG. 12. (Color online) Diagonal part of FRPA imaginary self-
energy for protons at E − EF = 44 MeV (solid) and the correspond-
ing parametrized self-energy (dashed). The results shown are for

 = 0 and are offset by 5 MeV for each subsequent nucleus.

for the three different nuclei. The parameters are fitted to
reproduce the essential properties of the self-energy including
the volume integral for 
 = 0. We observe that the values
for the diffuseness are larger than standard ones and increase
with neutron number. The radius parameter exhibits a similar
nonstandard trend. The value of the nonlocality parameter
β is also substantially larger than typically assumed for real
nonlocal potentials. The DOM analysis of Ref. [35] introduced
a nonlocal Hartree-Fock potential to allow the calculation of
additional properties below the Fermi energy from the spectral
functions that are the solutions of the Dyson equation. The
adjusted nonlocality parameter in that work corresponded to
0.91 fm.

The DOM fit to Ca isotopes suggests that surface terms
of the neutron imaginary potential should remain more or
less unchanged as the neutron drip line is approached [9].
In order to investigate this trend for the microscopic potential
we integrate the nonlocal FRPA self-energy over one radial

TABLE II. Parameters from nonlocal fits to the imaginary part
of the proton self-energy at E − EF = 44 MeV for 40Ca, 48Ca, and
60Ca. W0 is in MeV; r0, a0, β are in fm; and JW is in units of MeV
fm3.

Isotope W0 r0 a0 β |JW /A| |JW /A|
FRPA

40Ca 14.1 1.23 1.23 1.54 187 188
48Ca 16.1 1.32 1.30 1.54 242 241
60Ca 13.6 1.50 1.50 1.49 266 268

-15

-10

-5

0

40
Ca

48
Ca

60
Ca

0 2 4 6 8 10
r  [fm]

-15

-10

-5

0

5

Im
Σ in

tl=
0 (r

) 
 [

M
eV

]

2 4 6 8 10
r  [fm]

FRPA - neutrons

DOM - neutrons

FRPA - protons

DOM - protons

FIG. 13. (Color online) Left panels: FRPA imaginary self-energy
integrated over r ′ for protons in 40Ca (solid), 48Ca (dashed), and 60Ca
(dotted-dashed), see Eq. (21). The results shown are for 
 = 0 and at
an energy of 44 MeV above EF . Right panels: For comparison, the
DOM imaginary potentials at the same energy are shown for 40Ca and
48Ca. Since these are local, they have been corrected for nonlocality
by the k mass.

coordinate,

�

int(r; E) =

∫
dr ′r ′2�


0(r, r ′; E), (21)

for the partial wave 
 = 0. This is compared to the DOM fit in
Fig. 13 at the same energy E − EF = 44 MeV. In accordance
with the DOM analysis, we find that the contribution to the
proton imaginary part in the surface region increases with the
neutron number. The neutron potential changes very little at
the surface between 40Ca and 48Ca, also in agreement with the
DOM assumption. However, FRPA neutron absorption at the
surface decreases more substantially when going all the way
to 60Ca, pointing out that a simple extrapolation of the surface
term to very large asymmetries may not be trivial.

V. CONCLUSIONS

In this investigation, an attempt was made to establish links
between the DOM—an empirical approach to the nuclear-
many-body problem based on the framework of the Green’s
function method and relevant experimental data—and the
microscopic FRPA approach. An analysis of the volume
integrals calculated from both approaches proved to be a
useful link, and on the whole, both the DOM and the FRPA
produced similar results. However, there were some significant
and illuminating differences.

The FRPA exhibits some important shell effects as neutrons
are added to 40Ca. In particular, there is a parity dependence
in 40Ca and 60Ca, but not in 48Ca, where both parities occur at
low energy due to the partial filling of the neutron pf shell.
Such an effect has not hitherto been taken into account in the
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DOM. Inspection of the imaginary volume integrals generated
by the FRPA also calls into question the assumption in most
DOM analyses that the imaginary part is symmetric about
EF for the surface absorption, suggesting that absorption of
high-
 waves corresponding to unoccupied orbits is suppressed
below EF . Further insight into the underlying physics of DOM
potentials is provided by the observation that a substantial
contribution to the absorption is due to the NN tensor force.
This influence becomes dominant at energies about 40 MeV
above or below EF . For protons, however, most of the observed
asymmetry dependence of the absorption at positive energy in
the DOM fits appears to be due to central components of the
interaction. For neutrons the decrease in absorption at positive
energy obtained with the FRPA must be contrasted with the
weaker effects deduced so far from DOM fits. Noteworthy is
also the relevance of the nonlocality of the absorption process
obtained from the microscopic FRPA. It leads to an important

 dependence that may play an important role in explaining

data like the nuclear charge density that are associated with
properties of the self-energy below the Fermi energy. Its
role in scattering processes remains to be studied as well
and has important consequences for the analysis of transfer
and knockout reactions which are sensitive to interior wave
functions generated by optical potentials.
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