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Abstract. Ab-initio predictions of nuclei with masses up to A⇠100 or more are becoming
possible thanks to novel advances in computations and in the formalism of many-body physics.
Some of the most fundamental issues include how to deal with many-nucleon interactions, how
to calculate degenerate—open shell—systems, and pursuing ab-initio approaches to reaction
theory. Self-consistent Green’s function (SCGF) theory is a natural approach to address these
challenges. Its formalism has recently been extended to three- and many-body interactions
and reformulated within the Gorkov framework to reach semi-magic open shell isotopes. These
exciting developments, together with the predictive power of chiral nuclear Hamiltonians, are
opening the path to understanding large portions of the nuclear chart, especially within the sd
and pf shells. The present talk reviews the most recent advances in ab-initio nuclear structure
and many-body theory that have been possible through the SCGF approach.

1. Introduction

Microscopic first principle predictions of atomic nuclei are highly desirable since they can
impact research of exotic isotopes. They could help in constraining extrapolations to higher
mass regions [1] and to extreme proton-neutron asymmetries [2], including regions close to
the drip lines where experimental data will be unavailable for the foreseeable future. Such
an ambitious program requires advances in quantum many-body theory that include extending
existing methods to deal with many-particle interactions, developing new approaches to calculate
degenerate (open shell) fermionic systems, and calculating microscopic optical potentials.

Ab-initio methods such as coupled-cluster (CC) [3, 4], in-medium similarity renormalization
group (IMSRG) [5, 6] or self-consistent Green’s function (SCGF) theory based on the Dyson
equation [7, 8, 9] (Dyson-GF) have accessed medium-mass nuclei up to A⇠56 on the basis of
realistic two-nucleon (NN) interactions. However, it has become clear that three-nucleon forces
(3NFs) play a major role in determining crucial features of exotic isotopes, such as the evolution
of magic numbers and the position of driplines [10, 11, 12, 13, 14]. Realistic NN and three-nucleon
(3N) interactions based on chiral perturbation theory have been used in Lattice E↵ective Field
Theory [15, 16] but also evolved to low momentum cuto↵s, retaining both induced and pre-
existing 3NFs [17, 18]. Systematic implementations of similar Hamiltonians within the above
many-body methods are required to eventually achieve quantitative predictions of observables
for medium-mass isotopes. This has been addressed only recently for CC [19, 20] and SCGF [21]
methods. Based on these developments, closed shell nuclei up to Sn can now be approached [22].



A second and major challenge to ab-initio theory is that standard implementations of
the above methods are limited to doubly closed (sub-)shell nuclei and to their immediate
neighbors [23, 14]. As one increases the nuclear mass, longer chains of truly open shell nuclei
emerge that cannot be accessed with these approaches. Many-body techniques that could tackle
genuine open shell systems—or, at least, singly open shells—would immediately extend the reach
of ab-initio studies from a few tens to several hundreds of mid-mass isotopes. Our collaboration
has proposed to exploit ideas based on breaking particle-number symmetry in order to achieve
this goal [24, 25, 26]. This has led to reformulating the SCGF in the Gorkov formalism (Gorkov-
GF) [26, 27, 28], which will be discussed in this talk. Applications of Gorkov-GF have been
successful for the Ca and neighbouring isotopes up to 54Ti [29]. Recently, similar developments
have also been introduced within the IMSRG framework [13].

The last challenge to theory is to provide consistent descriptions of the structure and reactions
of nuclei in order to constrain and improve the analysis of experimental data. Microscopic
calculations of elastic nucleon scattering were achieved, e.g., for a 16O target in [30, 31].
Recently, ab-initio calculations, including cluster projectiles, have been possible for few-body
targets by combining the ab-initio no-core shell model (NCSM) with the resonating-group
method (RGM) [32, 33]. For larger masses, the SCGF becomes the method of choice due to the
equivalence between the many-body self-energy and Fesbach theory of elastic scattering. This
fact has guided recent advances of phenomenological dispersive optical models (DOM) [34, 35]
and microscopic calculations of optical potentials [2, 30, 36]. Further developing these approaches
to proper ab-initio methods will be crucial to advance our understanding of exotic radioactive
beam experiments.

This talk reports about recent progress on the above topics within the SCGF approach to
quantum many-body physics. The new details of the formalism are discussed first and results
for finite nuclei are reported independently in sections 5 and 6.

2. Propagator theory

In Green’s function (or propagator) theory one calculates the single particle propagator [37]:
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by solving the Dyson equation,
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which recasts the many-body Schrödinger equation into an equation for the dressed (i.e. fully
correlated) propagator g(!). In Eq. (2), gHF(!) represents the unperturbed propagator, which
is taken to be an Hartree-Fock (HF) state for all applications discussed in the following. The
information on the many-body dynamics is coded in the irreducible self-energy ⌃?(!). This has
a Lehman representation similar to Eq. (1):
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions
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where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
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ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
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#
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2
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#
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2

∑

cd
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bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give
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which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to
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k
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a βk + V̄k∗

a β
†
k , (67a)
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Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity
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a
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Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 3. Second-order anomalous self-energies !21 (2′) (left) and
!21 (2′′) (right). See Fig. 1 for conventions.

expressions, let us introduce useful quantities
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in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that
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Given that P and R can be obtained from M through odd
permutations of indices {k1, k2, k3} and taking into account
the symmetries of interaction matrix elements, one can prove
that such quantities display the properties
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Similarly, for N , Q, and S one has
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Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.

Let us now consider !11, whose second-order contribu-
tions, evaluated in Eqs. (B17) and (B19), can be written as
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(76)

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been intro-
duced. Summing the two terms and using properties (73) and
(74) one obtains
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where
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Notice that from Eqs. (71) and (72) follow C̄k1k2k3
a =

+ηa Ck1k2k3
ã and D̄k1k2k3

a = −ηa Dk1k2k3
ã . All other second-order
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑
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∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω
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+ωk

Xk
b, (64a)

∑
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∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω
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−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Figure 1. Left: Diagram a) gives one example of the particle-vibration coupling terms that enter
the ADC(3) and FRPA expansions of the self-energy. Center and right: Contribution to the Gorkov
irreducible self-energy up to second order, for the case of NN interactions only. Diagram b) is the first
order contributions to the normal part of the static irreducible self-energy, ⌃11,(1). This also appears
in the standard Dyson formulation and extends the usual HF potential to the one corresponding to a
fully correlated density matrix. Diagram d) is the anomalous first order contribution ⌃21,(1), which
corresponds to a correlated version of the pairing potential in the HFB equations. Diagrams c) are the
normal second order terms and diagrams e) are the anomalous second order ones.

and provides the microscopic optical potential for a single nucleon interacting with the whole
many-body system. In Eq. (3), M,N are interaction matrices in the 2h1p and 2p1h (or more
complex) configuration spaces and C,D are the respective couplings to single-particle states.
⌃?,(1) represents the static (i.e., energy independent) contribution to the self-energy.

The self-energy is constructed starting from the Hamiltonian H(A) = H � T̂c.o.m.(A) =
Û(A) + V̂ (A) + Ŵ , where we correct for the centre-of-mass kinetic energy. Û , V̂ and Ŵ
collect all one-, two- and three-body interactions, respectively. For finite closed-shell nuclei,
the propagator (1) is calculated by first solving spherical HF equations. The gHF(!) propagator
is then used as a reference state to calculate the self-energy, using either the third-order algebraic
diagrammatic construction [ADC(3)] [38, 39] or the Faddeev random phase approximation
(FRPA) [40, 8] methods. Both the ADC(3) and the FRPA completely include all diagrams
up to third-order and resum many others to all orders. Moreover, they completely accounts
for particle-vibration diagrams as shown in Fig. 1a. Thus, in general, a full FRPA calculation
involves the calculations of the particle-hole (ph) response and of the two-body spectral function.
The latter has been employed, for example, to investigate nuclear correlations from two-nucleon
emission experiments [41, 42, 43]. The di↵erence between the two approaches is in the fact that
vibrations in the ph and particle-particle/hole-hole (pp/hh) channels are calculated in Tamn-
Danco↵ approximation for ADC(3) and in random phase approximation for FRPA.

It is instructive to compare the perturbation theory content of the ADC(n) and FRPA
methods to that of other many-body approaches. For the calculation of total energies, both
ADC(3)/FRPA and the coupled cluster CCSD approaches retain in full all diagrams up to
second order [44]. However, the Koltun energy sum rule in SCGF theory adds specific triple
corrections. Our experience with both G-matrix and SRG-evolved interactions is that ADC(3)
results are indeed systematically closer to CCSD(T) rather than to the simple CCSD [27].
When evaluating one nucleon addition and separation energies, the ADC(3) fully sums two-
particle–one-hole (2p1h) and two-hole–one-particle (2h1p) configurations and should therefore
be compared to the usual truncations of the excitation operator in particle-attached and particle-
removed CC. This is usually su�cient to predict the dominant quasiparticle and quasihole
fragments of the spectral distribution. Other small fragments—the so-called shakeup states—will
generally require truncation schemes beyond 2p1h/2h1p, such as the ADC(4) and ADC(5) [39].



= + + 1
4

GII

= +

Figure 2. Top: Diagrammatic representation of the e↵ective one-body interaction of Eq. (5). This
is given by the sum of the original one-body potential Û (dotted line), the two-body interaction V̂
(dashed line) contracted with a dressed one-body propagator g (double line with arrow), and the three-
body interaction Ŵ (long-dashed line) contracted with a dressed two-body propagator, gII . The correct
symmetry factor of 1/4 is also shown explicitly. Bottom: Diagrammatic representation of the e↵ective
two-body interaction of Eq. (6). This is given by the sum of the original two-body interaction and the
three-body interaction contracted with a dressed propagator.

3. Extension of propagator theory to include three-body interactions

We have extended the Dyson SCGF formalism to the case of Hamiltonians which include three-
body interactions. Full details are presented in Refs. [21, 45] and involve defining in-medium
e↵ective interactions that regroup specific sets of diagrams, such that only interaction-irreducible

ones are retained1. Moreover, proper corrections to the Kotlun sum rule are required to calculate
total binding energies. For a pure two-body Hamiltonian, the only possible interaction-reducible
contribution to the self-energy is the generalised Hartree-Fock diagram of Fig. 1b2. However,
many more appear when three- and many-body forces are present. This makes it useful to define
e↵ective interactions to group such contributions.

Hence, for a system with up to 3NFs, we define an e↵ective Hamiltonian,

eH = eU + eV + Ŵ (4)

where eU and eV represent e↵ective interaction operators. As long as only interaction-irreducible
diagrams are calculated when using these e↵ective interactions, no double counting of any
diagram is possible [21]. The explicit expressions for the one- and two-body e↵ective interaction
operators are:

eU =
X

↵�

2

64U↵� � ih̄
X

��

V↵�,�� g��(t � t+) +
ih̄

4

X

�✏
�⌘

W↵�✏,��⌘ g
II
�⌘,�✏(t � t+)

3

75 a†↵a� , (5)

eV =
1

4

X

↵�
��

"
V↵�,�� � ih̄

X

✏⌘

W↵�✏,��⌘ g⌘✏(t � t+)

#
a†↵a

†
�a�a� , (6)

where we have introduced specific orientations of the one-body, g(⌧), and two-body, gII(⌧),
green functions in time representation [46]. Eqs. (5) and (6) are shown diagrammatically in
Fig. 2.

1 A diagram is said to be interaction-reducible if it can be factorized in two lower order diagrams by cutting an
interaction vertex or, equivalently, if it is connected and there exists a group of lines (whether interacting among
themselves or not) that leave an interaction vertex and eventually all return to it.
2 For the Gorkov formalism, one would also have the interaction-reducible Bogoliubov potential of Fig. 1d.
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Figure 3. Calculated ground state energies of oxygen isotopes for di↵erent approximations of the
3NFs contributions to the static self-energy, see Eqs. (5) and (7). All results are obtained from a SRG
evolved NN+3N interactions with cuto↵ �SRG=2 fm�1 and are based on the full ADC(3) self-energy [14].
However, the last term in Eq. (5) is calculated at di↵erent levels of self-consistency by contracting the
3NF with all unperturbed HF propagators (single line loops), by contracting with one dressed propagator
(double line loops), or with two dressed propagators. The corresponding diagrams are shown on the right.
Dressing self-consistently all the single-particle propagators is mandatory to obtain convergence with
respect to the many-body truncation. Higher order contributions from ladder diagrams (TDA ladders in
the figure) do not further contribute for the present interaction.

The use of e↵ective interactions greatly reduces the number of diagrams to be accounted for
in practical calculations. By construction, the only possible interaction-irreducible contribution
at first-order is precisely given by Eq. (5), and it equals the static irreducible self-energy:

⌃?,(1)
↵� = eU↵� . (7)

Even though it only contributes to the self-energy at first order, the e↵ective one-body potential
eU is very important. It represents the (energy-independent) mean field seen by each particle,
including contributions from all many-body interactions. The simplest approximation to
eU would consists in performing the averages of Eq. (5) over Hartree-Fock or other Slater
determinant reference states. This is equivalent to reducing eU to the one-body term of a normal
ordered Hamiltonian. Analogous treatments of the e↵ective interaction have been employed in
nuclear physics calculations up to date, including both finite nuclei [10, 18, 12, 47] and nuclear
matter [48, 49, 50, 51] applications. For the particular case of ab-initio SCGF calculations, we
find that it is mandatory to fully dress the reference propagators entering Eq. (5) [14]. This
is shown in Fig. 3, where the last term of Eq. (5) is gradually improved. While dressing the
propagators that enter the HF contribution coming from 3NFs is mandatory, additional NN
correlations such as ladder series do not sensibly a↵ect the final results3.

At second order, the perturbative expansion of the irreducible self-energy generates five
diagrams. By exploiting the two-body e↵ective interaction eV , these are all grouped into the
two interaction-irreducible terms show in Fig. 4. Likewise, there exist 53 diagrams at third
order which reduce to the 17 interaction-irreducible ones shown in Fig. 5.

Although they have not all been investigated in actual calculations, the diagrams of Figs. 4
and 5 are expected to contribute very di↵erently to the self-energy and other computed

3 For methods like CC, such dressing of the mean field is generated implicitly when solving the CC equations
iteratively. However, in the SCGF philosophy, this is included directly in the e↵ective interaction eU and the
dressed propagator can be thought of as an improved reference state.
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Figure 4. Interaction-irreducible diagrams contributing to the irreducible self-energy at second order.
These are the only contributions that must be considered when using the e↵ective Hamiltonian of Eq. (4).

quantities. In these figures, they are ordered in terms of their expected decreasing importance.
Figs. 4a, 5a and 5b are the most relevant terms and are those already appearing in the case of
only NN interactions. However, they account here for the e↵ects of 3NFs at lowest order through
the e↵ective NN term of Eq. (6). These all involve 2p1h and 2h1p intermediate states and are
the first contributions to the ADC(3) and FRPA expansions. Diagram 5c does not introduce
any new intermediate state but describes the mixing among 2p1h and 2h1p configuration
due to irreducible 3NFs. This is expected to be less important on the basis that 3NFs are
generally weaker than the corresponding NN force (typically, < cW >⇡ 1

10 < bV > for nuclear
interactions [52, 53]). Studies of normal-ordered Hamiltonians also clearly suggest that this
term gives a small correction to the total energy compared to diagrams 5a and 5b [19, 18].
Note that diagrams 5a-5c contain the first-order terms of the all order summation that
generates configuration mixing between 2p1h or 2h1p excitations. Nowadays, resummations
of these configurations are performed routinely for the 5a the 5b terms in ADC(3) and FRPA
calculations [8, 9, 54].

The diagrams in Figs. 4b and 5d to 5k introduce additional configurations of the 3p2h and
3h2p type. These are expected to a↵ect sensibly the distribution of small fragments in the
particle and hole spectral strength distribution but have smaller relevance for calculation of
total binding energies and dominant quasipartcle and quasihole peaks. All these third order
contributions provide the transition matrix elements connecting 2p1h to 3p2h (and 2h1p to
3h2p). However, diagrams 5d to 5g may be more important than the remaining four, since they
involve one more NN vertex. Note that the terms 4b and 5d to 5k together induce the same
type of configurations that appear only from the fourth-order ADC(4) and beyond, when 3NFs
are missing. Thus, they are expected to have similar impact on the many-body truncation. The
remaining diagrams, 5l to 5q, describe the explicit mixing among 3p2h or 3h2p configurations
and are expected to give contributions comparable to the NN-only ADC(5) approximation.

The energy sum rule originally proposed by Galitskii-Migdal [55] and by Koltun [56] needs
to be extended for the presence of many-body interactions. When only up to three-body forces
are present, this can be re-expressed in one of two equivalent forms:

EA
0 =

X

↵�

1

4⇡i

Z

C"
d! [U↵� + !�↵� ] g�↵(!) � 1

2
h A

0 |W | A
0 i (8)

and

EA
0 =

X

↵�

1

6⇡i

Z

C"
d! [2U↵� + !�↵� ] g�↵(!) +

1

3
h A

0 |V | A
0 i . (9)

Both Eqs. (8) and (9) are exact but they rely on the possibility of estimating the expectation
value of either the two- or the three-body part of the Hamiltonian. Most recent SCGF
calculations exploited Eq. (8) based on the consideration that absolute errors in evaluating
h A

0 |Ŵ | A
0 i should be smaller, since the contribution of the 3NF is about an order of magnitude

less than that of the NN force [14, 51, 29]. For finite nuclei and SRG cuto↵s of �SRG=2.0 fm�1,
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Figure 5. Interaction-irreducible diagrams that contribute to the irreducible self-energy at third order.
These are the only third-order contributions that must be considered when using the e↵ective Hamiltonian
of Eq. (4).

we found that h A
0 |Ŵ | A

0 i can be evaluated at first order in the dressed propagators and this is
su�cient to converge the calculated binding energy with respect to many-body truncations [14].
This is the same level of approximation needed to converge the e↵ective potential eU with respect
to many-body truncations (see Fig. 3 and its discussion above).



4. Gorkov formulation for semi-magic open shell systems

In Refs. [26, 27, 28], we have introduced an extension of the SCGF scheme that is based on
the Gorkov’s formalism [57] and that can address open shell nuclei. The Gorkov method is based
on the idea of allowing the breaking of particle number symmetry in order to achieve an e↵ective
description of the pairing correlations, which play a crucial role in open shell systems and remove
degeneracies in the reference state. In order to work with the correct number of protons and
neutrons in average, chemical potentials are added to the Hamiltonian, that is, we consider the
grand canonical Hamiltonian ⌦̂(A) = H � T̂c.o.m.(A) � µp Ẑ � µn N̂ . Additional (anomalous)
propagators that account for the breaking and formation of Cooper pairs are introduced. The
Lehman representation of the Gorkov propagators is

G11
↵�(!) =

X

k

(
Uk
↵ Uk⇤

�

! � !k + i⌘
+

V̄k⇤
↵ V̄k

�

! + !k � i⌘

)
, (10a)

G12
↵�(!) =

X

k

(
Uk
↵ Vk⇤

�

! � !k + i⌘
+

V̄k⇤
↵ Ūk

�

! + !k � i⌘

)
, (10b)

G21
↵�(!) =

X

k

(
Vk
↵ Uk⇤

�

! � !k + i⌘
+

Ūk⇤
↵ V̄k

�

! + !k � i⌘

)
, (10c)

G22
↵�(!) =

X

k

(
Vk
↵ Vk⇤

�

! � !k + i⌘
+

Ūk⇤
↵ Ūk

�

! + !k � i⌘

)
, (10d)

where the poles of the propagators are now given by !k ⌘ ⌦k � ⌦0, ⌦0 is the ground state of the
even-A isotope and the index k labels odd-A eigenvalues of ⌦̂: ⌦̂ | ki = ⌦k | ki. The residues of
pole !k relate to the probability amplitudes Uk (Vk) to reach state | ki by adding (removing)
a nucleon to (from) the even-A ground state | 0i.

Formally, Eqs. (2) and (3) still hold with all quantities (propagators and self-energies) now
being matrices in a 2 ⇥ 2 Gorkov space. The self-energy still splits into static and dynamic
contributions, ⌃g1g2(!) = ⌃g1g2,(1) +⌃g1g2,(dyn)(!) (where gi=1,2 are the Gorkov indices). The
working equations for the Gorkov formalism have been derived in full up to second order and NN
interactions [26]. The corresponding self-energy diagrams are shown Figs. 1b to 1e. In the present
implementation of the Gorkov formalism, we add 3NFs as described in Sec. 3 by exploiting the
e↵ective interactions of Eqs. (5) and (6) and adding the anomalous term corresponding to Ũ [29].
The extension of the Gorkov framework to FRPA and ADC(3) type of self-energies is currently
underway.

5. Studies of correlations and optical potentials

In Eq. (2), the irreducible self-energy ⌃?(!)—or, equivalently, the Gorkov’s normal self-
energy ⌃11(!)—acts as an energy dependent non-local single particle potential. In fact, it can
be proven that ⌃?(!) is exactly the Fesbach microscopic optical potential, once this is extended
to treat both nucleon-nucleus states (above the Fermi surface, EF ) and hole-nucleus states
(below EF ) [58, 59]. This provides a way to calculate optical potentials from ab-initio theory.

In order to investigate the microscopic properties of optical models, we transform Eq. (3)
to coordinate space and separate its central and spin-orbit angular momentum components as



follows [2]:

⌃?(x,x0;E) =
X
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I`jmj (⌦,�)

"
X

na,nb

Rna`(r)⌃
?
ab(E)Rnb`(r
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#
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=
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`jmj⌧
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i
(I`jmj (⌦

0,�0))⇤, (11)

where x ⌘ r,�, ⌧ . In (11), � represents the spin variable, ⌧ is the isospin, n is the principal
quantum number of the harmonic oscillator basis used in the calculations, and a ⌘ (na, `, j, ⌧)
(note that for a J = 0 target the self-energy is independent of mj). The standard radial
harmonic-oscillator function is denoted by Rn`(r), while I`jmj (⌦,�) represents the j-coupled
angular-spin function. We calculated the potential (11) in Ref. [2] by using FRPA and the
Argonne V18 NN interaction [60].

The most recent implementations of the dispersive optical model (DOM) are substantially
phenomenological optical potentials whose analytical structure is, however, constrained by our
best knowledge of ab-initio calculated self-energies [34, 61, 62, 35]. In fact, the DOM can be
seen as a phenomenological parameterisation of ⌃?(!) that allows for data driven extrapolations
to exotic isotopes. Note that the analytic structure of Eq. (3) implies a dispersive relation that
links the real and imaginary parts of ⌃?(!) and that it encodes the causality principle. This
relation is at the core of the DOM approach. In fitting optical potentials, it is usually found
that volume integrals are better constrained by the experimental data [63, 64]. Thus, we focus
our attention on the imaginary part of the central self-energy, which corresponds to the total
absorption. Its volume integral is given by

J `
W (E) = 4⇡

Z
drr2

Z
dr0r02 Im ⌃`

0(r, r
0;E) . (12)

The left panel of Fig. 6 compares the `-averaged FRPA volume integrals (Javg
w ) with the

corresponding global DOM potentials of Ref. [61]. This local form of the DOM has been corrected
by the e↵ective mass [63, 65] to account for non-locality. The overall e↵ect of this correction is
to enhance the absorption. The FRPA exhibits di↵erent behavior above and below EF than the
DOM. Microscopic calculations predict significantly less absorption below EF , whereas in the
DOM fit, the absorption was assumed to be roughly symmetric up to about 50 MeV away from
EF [63, 61, 62]. Since only the absorption above the Fermi energy is strongly constrained by
elastic scattering data, it is encouraging that the `-averaged FRPA result is reasonably close to
the DOM fit for both nuclei, up to E �EF < 80 MeV where the FRPA results are not sensibly
a↵ected by the truncation of the model space.

The simplifying assumptions of a symmetric absorption around EF and locality in the DOM
imply an unrealistic occupation of higher `-values below the Fermi energy which is not obtained
in the FRPA. This is shown in the right panel of Fig. 6 for scattering of neutrons against 40Ca.
Below the Fermi energy the contribution from s, p and sd orbits dominates while higher `-values
are suppressed. This is a clear indication of the nucleon occupations in the mean field shell
structure of the target nucleus. The dash-double-dotted curve illustrates the same DOM fit
also shown in the left panel. This compares favourably to FRPA for the low-` partial waves
below the Fermi surface. Recent fits of the DOM include non-locality e↵ects explicitly and find
that this is required in order to reproduce the features of spectral distribution of single particle
strength below EF , including the experimentally observed position of quasiparticle peaks [35].
This also allow for the description of high-momentum components that is suggested by (e,e0p)
observations at Je↵erson Laboratory [66, 67, 68].
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Figure 6. Left: The FRPA results for the volume integral averaged over all `-channels Javg
w (dashed

line) are compared with the DOM result (solid line), corrected for non-locality, for proton scattering
on 40Ca and 48Ca. Right: Separate partial wave contributions to JW averaged over adjacent `-channels
in the model space. This plot is for neutrons in 40Ca. The dash-double-dotted curve represents the DOM
result. All calculation are based on the NN-only AV18 realistic interaction.

The behavior of the nuclear self-energy with changing proton-neutron asymmetry
(↵ = (N � Z)/A) is very important in seeking for global parametrizations of the DOM. Hence
its understanding is pivotal in predicting unstable isotopes. The changes in the calculated Javg

W
for isotopes going from 40Ca to 60Ca are shown in the top-left panels of Fig. 7. These cover
a range of asymmetries form ↵=0 to 1/3. Microscopic FRPA predicts an opposite behavior of
protons and neutrons above EF , with the proton (neutron) potential increasing (decreasing)
when more neutrons are added, qualitatively in agreement with expectations from the Lane
potential model [69]. The DOM fit of Ref. [62] includes several isotopes in the Ca and Sn chains
and employs a similar trend for the volume integrals.

The characteristics of the above asymmetry dependence indicate that the nuclear interaction
between protons and neutrons plays a major role. The tensor force of the nuclear interaction
can provide one such mechanism since it is particularly strong in the isospin T = 0 sector.
Moreover, it has already been shown to influence the evolution of single-particle energies at
the Fermi surface [70]. To investigate its implication for single-particle properties at energies
farther removed from EF , we recalculated Javg

W by suppressing the tensor component of the
AV18 interaction. It is apparent that this has a very significant e↵ect on the correlations far
from the Fermi surface for nucleon-nucleus scattering. On the other hand, absorption near the
Fermi surface are dominated by correlations other than tensor.

In the right panel of Fig. 7 (dot-dashed line), we have also calculated the FRPA self-energy
by suppressing charge-exchange excitations in the polarization propagator ⇧(ph) (see Fig. 1a).
These contributions correspond to a mechanism in which the proton (neutron) projectile is
exchanged with a neutron (proton) in the target. This includes Gamow-Teller resonances whose
strength increase with asymmetry as ⇡ 3(N � Z) [61]. Ab-initio FRPA calculations indicate
that such correlations do not generate significant absorption in scattering processes.
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(dot-dashed). The figures in the lowest row are the di↵erence between the full calculation and the middle
row figures, to show the e↵ect of correlations arising from the tensor force. Right: E↵ect of the tensor
force and charge exchange correlations on the proton-48Ca self-energy. The solid curve is the imaginary
volume integral Javg

W from the full FRPA calculation, while the dashed curve results from removing the
tensor term in the AV18 interaction. The dash-dotted curve is obtained by excluding charge exchange
from the full calculation. Similar results are found for neutrons and the other Ca isotopes. All calculation
are based on the NN-only AV18 realistic interaction.

6. Role of chiral three-nucleon forces in medium mass isotopes

Calculations were performed using chiral NN and 3N forces evolved to low momentum scales
through free-space similarity renormalization group (SRG) techniques [17]. The original NN
interaction is generated at next-to-next-to-next-to-leading order (N3LO) with cuto↵ ⇤NN=500
MeV [71, 72] and is supplemented by a local NNLO 3NF [73] with a reduced cuto↵ of
⇤3N=400 MeV, as in Ref. [18]. The chiral NNLO 3NF contain the two-pion exchange Fujita-
Miyazawa contribution. The SRG evolution of the sole chiral NN interaction already generates
3N operators in the Hamiltonian, which we refer to hereafter as the “induced” 3NF. When the
pre-existing chiral 3N interaction is also included, we refer to it as the “full” 3NF. A SRG cuto↵
�SRG=2.0 fm�1 was used for most calculations presented in this section.

Fully ab-initio calculations based on evolved NN plus full 3NFs can accurately reproduce
ground state energies of the entire oxygen isotopic chain, as shown in Fig. 3 and reported in
Ref. [77]. This was subsequently confirmed by extended calculations across di↵erent many-
body methods, which estimated in details the errors associated with the SRG evolution and
the many-body truncations schemes [13, 14]. These results give a first principle confirmation of
the repulsive e↵ects of the two-pion exchange Fujita-Miyazawa interaction, which was found to
be at the origin of the anomalous dripline at 24O [10]. This is seen in the left panel of Fig. 8,
which shows the predicted evolution of neutron single particle spectrum (addition and separation
energies) for oxygen isotopes. Induced 3NFs reproduce the overall trend but predict a bound
d3/2 when the sd shell is filled. Adding pre-existing 3NFs—the full Hamiltonian—raises this
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Figure 8. Left: Energies for the addition and separation of a neutron to and from various oxygen
isotopes. These correspond to the dominant quasiparticle peaks that can be observed in the final Z=8
and N±1 isotopes. Right: Ground-state energies of nitrogen and fluorine isotopes calculated for induced
and full interactions. Experimental data are from [74, 75, 76]. Calculations have been performed with
chiral two- and three-body interactions evolved to �SRG = 2.0 fm�1 by means of SRG techniques [14]. In
both plots, the dashed and full lines join results for the induced and full interactions, respectively.

orbit above the continuum also for the highest masses.
The same mechanism a↵ects neighboring isotopic chains, as demonstrated in the right panel

of Fig. 8 for the odd-even semi-magic nitrogen and fluorine. Induced 3NF forces consistently
under bind these isotopes and even predict a 27N close in energy to 23N. This is fully corrected
by full 3NFs that strongly binds 23N with respect to 27N, in accordance with the experimentally
observed dripline. The repulsive e↵ects of filling the d3/2 is also observed in 29F but it is counter
balanced by attractions due to the inclusion of an extra proton. This leads to a slightly bound
29F in accordance with observation [76]. Eventually, leading-order (NNLO) original three-body
terms are crucial both to bring calculated energies close to the experiment and to yield a correct
description of the drip lines.

Both Dyson and Gorkov formalisms yield the single particle spectral function. Its diagonal
part,

S↵(!) =
1

⇡
|Im g↵↵(!)| =

1

⇡
|Im G11

↵↵(! + µ↵)| , (13)

describes the energy distribution of the spectral strength (i.e. spectroscopic factors) for the
addition or removal of one particle. This is demonstrated in Fig. 9 for second-order Gorkov
calculations of 44Ca. The left panel shows the spectral distribution for di↵erent partial waves.
States below (above) the Fermi surface refer to the separation (addition) of a neutron, leading to
final states of 43Ca (45Ca). These results refer to calculations based on evolved NN interactions
only, with all (induced and full) 3NFs discarded. The e↵ects of 3NFs on the spectral distribution
in the sd and pf shells is shown in the right panel, and it is compared to the NN-only results
from the left. We find that the NN plus full 3NFs Hamiltonian is fundamental to predict the
correct location of the Fermi surface with respect to the single-particle continuum. 3NFs also
reduce the average energy separation of the two major valence shell, sd and pf, by a factor of
two and bring these in closer agreement with the experiment. In our calculations we find that
the neutron separation energy to the J⇡ = 3/2+ state of 43Ca is about -16 MeV. This is close
to the phenomenological predictions based on the DOM of Ref. [61].

The newly introduced Gorkov-GF method allows for the first time ab-initio calculations of
adjacent isotopes within large portions of the nuclear chart. The importance of leading order
chiral 3NFs in reproducing the correct trend of binding energies for the oxygen nuclides is then
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confirmed for heavier isotopes. This is shown in the left panel of Fig. 10, which compares induced
and full Hamiltonians for Ca isotopes. The trend of the binding energies is predicted incorrectly
by the induced 3NFs alone (blue dashed line), which generate a wrong slope and exaggerate
the kink at 40Ca. This problem is fully amended by the inclusion of NNLO chiral 3NFs (red
full line). However, the latter introduce additional attraction that results in a systematic over
binding of ground-states throughout the whole chain. Analogous results for Ar, K, Sc and Ti
isotopic chains are shown in the left panel for full 3NFs and lead to the same conclusion regarding
the role of the initial chiral 3NF: it provides the correct trend of binding energies but it generates
a rather constant over binding throughout this mass region.

The systematic of S2n obtained with the NN plus full 3NF is displayed in Fig. 11 along Ar,
K, Ca, Sc and Ti isotopic chains, up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce the experiment to good accuracy. The results are quite
remarkable considering that NN+3N chiral interactions have been fitted solely to few-body data
up to A = 4. Still, the quality slightly deteriorates as the proton chemical potential moves down
into the sd shell, that is, going from Ca to K and Ar elements. The increasing underestimation
of the S2n is consistent with a too large gap between proton sd and pf major shells, which
prevents quadrupole neutron-proton correlations to switch on when the two chemical potentials
sit on both sides of the gap. This is supported by the results found for NN-N3LO potential in
Refs. [9, 81] and in Fig. 9. The too large jump of the S2n between N=20 and N=22 is visible
for all elements and becomes particularly pronounced as one moves away from the proton magic
40Ca nucleus where the experimental jump is progressively washed out. At N=18, the situation
deteriorates going from 38Ca to 39Sc and 40Ti, when the proton chemical potential moves up
into the pf shell (but not going to 37K and 36Ar). This is again consistent with an exaggerated
shell gap between sd and pf shells. These finding suggest that repulsive e↵ects form higher chiral
cuto↵s or improved 3NFs may become important in heavy nuclei.

We note that the present calculations may be sensible to the truncations in three-body space
performed during the SRG evolution. Nevertheless, the error introduced is expected to be small
and only at large values of N for isotopes around Ca [22].



7. Conclusions

This talk reviewed the recent developments in ab-initio calculations of finite nuclei based
on the self-consistent Green’s function method. The SCGF formalism o↵ers important
opportunities in advancing the theory of exotic isotopes by providing direct theoretical links
between nuclear structure and reactions. Such calculations yield both binding energies and the
single particle spectral function, which is probed in most nuclear structure experiments. At
the same time they provide a path to generate optical potentials from first principles and at
intermediate energies (up to ⇡100 MeV), where ab-initio methods are currently lacking.

Successful ab-initio applications based on SCGF have become possible very recently following
a series of technical advances [8, 9, 27, 14] and the availability of chiral interactions evolved
to low-momentum scales [17, 18]. Of particular relevance are the recent extension to three-
and many-body forces [21, 51, 14] and the introduction of the Gorkov SCGF formalism that
allows for the first time calculations of semi-magic nuclei through large portions of the nuclear
chart [26, 27, 28]. Applications to scattering have so far been limited to pilot studies of proton-
nucleus scattering [30] and microscopic optical potentials [2].

The SCGF self-energies were calculated for 40Ca, 48Ca and 60Ca and compared with potentials
from the DOM that were obtained from fitting elastic-scattering and bound-state data. The
microscopic FRPA results explain many features of the empirical DOM potentials and provides
several suggestions to improve their functional, including the exploitation of parity and angular
momentum dependence, which stem from the di↵erent fillings of core orbits. The non-locality of
the calculated self-energies has also suggested further developments of the DOM potential [35].
The NN tensor force has also been seen to strongly enhance the absorption in elastic scattering
at energies above 20-30 MeV.

The recent ab-initio calculations of Ref. [14, 13, 29] nicely validate chiral Hamiltonians within
a wide range of masses. In particular, these prove the capability of the leading order initial 3NFs
(up to NNLO) to predict the trend of binding energies along full chains of open shell isotopes
and at large neutron-proton asymmetry. To our knowledge, Ref. [29] provides for the first time
a study of several adjacent isotopic chains based on first principles. These results make evident
that presently available interactions generate a systematic over binding of ⇡1 MeV/A throughout
the Ca region and this is further confirmed for heavier closed shell nuclides in Ref. [22]. Overall,
this indicates that repulsive e↵ects form higher chiral cuto↵s or from four-body interactions may
become important in heavy nuclei. Improved 3NFs, at N3LO and beyond, may also have an
impact on improving this situation.

To date, the ab-initio SCGF is a very promising approach which is being extended in scope.
A most compelling challenge for the coming future will be to provide reliable (and converging)
microscopic calculations of optical potentials, so that these can be exploited in the analysis of
nuclear structure experiments. Other possible directions can involve linking the SCGF formalism
to the phenomenological shell model. In this respect, the ab-initio calculations of e↵ective
interactions is an application of current interest [82, 83] that has already been employed in
approximate form within the SCGF formalism [81]. A consistent approach can also be used to
extract corresponding e↵ective charges [84].
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[27] Somà V, Barbieri C and Duguet T 2013 Phys. Rev. C 87 011303
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