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ABSTRACT

Objective: The purpose of this study was to determine whether passive robotic-assisted hand motion, in addition to
standard rehabilitation, would reduce hand pain, edema, or spasticity in all patients following acute stroke, in patients
with and without hand paralysis.

Methods: Thirty-five participants, aged 45 to 80 years, with functional impairments of their upper extremities after a stroke
were recruited for the study from September 2013 to October 2013. One group consisted of 16 patients (mean age + SD,
68 £ 9 years) with full paralysis and the other groups included 14 patients (mean age + SD, 67 = 8 years) with partial
paralysis. Patients in the both groups used the Gloreha device for passive mobilization of the hand twice a day for 2
consecutive weeks. The primary outcome measure was hand edema. Secondary outcome measures included pain intensity
and spasticity. All outcome measures were collected at baseline and immediately after the intervention (2 weeks).
Results: Analysis of variance revealed that the partial paralysis group experienced a significantly greater reduction of
edema at the wrist (P =.005) and pain (P =.04) when compared with the full paralysis group. Other outcomes were similar
for the groups.

Conclusion: The results of the current study suggest that the partial paralysis group experienced a significantly
greater reduction of edema at the wrist and pain when compared with the full paralysis group. The reduction in pain
did not meet the threshold of a minimal clinically important difference. (J Manipulative Physiol Ther 2016;xx:0-10)
Key Indexing Terms: Hand; Rehabilitation; Robotics

INTRODUCTION

A stroke (or cerebrovascular accident) is a sudden
ischemic or hemorrhagic episode that disturbs generation
and integration of neural commands from the sensorimotor
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areas of the cortex.! As a consequence, the ability to

selectively activate muscle tissues to perform movement is
reduced.” One of the many possible consequences of
disturbed neural command generation of the sensorimotor
cortex is impairment of arm and hand functioning.**
Cerebrovascular diseases are the third cause of mortality
and the second cause of long-term disability in Western
countries.* Sixty percent of those individuals who survive a
stroke exhibit a sensory or motor deficit of the hand, or both,
and should undergo rehabilitation in an attempt to optimize
recovery of the upper extremity.*° Restoration of arm and
hand mobility is essential for independent performance of
activities of daily living.>* A prompt and effective
rehabilitation approach is essential” to obtain maximum
recovery of the impaired limb to prevent tendon shortening,
spasticity,® and pain.Recent technological advances have
facilitated the use of robots as tools to assist patients in the
rehabilitation process to maximize patient outcomes.’
Several groups have developed robotic tools for upper limb
rehabilitation of the shoulder and elbow.'® These robotic
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tools assist the patient with carrying out exercise protocols
and may help restore upper limb mobility.*''The most
commonly reported treatment approaches provided by
rehabilitation robots are:

® Assisted passive limb movement: A robotic device
moves a patient’s arm.

® Assisted active limb movement: A robotic device helps
patients to execute movements they would not be able
to fully execute with their current muscle strength.

® Resisted active limb movement: A robotic device
resists a patient’s active movement.

® Assisted/resisted bimanual exercise: A robotic device
recognizes an active movement of a patient’s unaffected
limb and reproduces it (mirroring) on the patient’s
affected limb with an assisted active or passive limb
movement.”

The complexity of wrist and finger articulations delayed
the development of dedicated rehabilitation robots until the
introduction in 2003 of the first tool based on continuous
passive motion (CPM) technology, which was followed by
several other solutions with various levels of complexity and
functionality. '> Continuous passive motion was first intro-
duced by the Canadian surgeon R. B. Salter.” Salter focused
the emerging technology on a wide range of pathologies
restricting movement of joints. The CPM technique, when
applied to orthopedic pathologies, can reduce postoperative
pain, enhance local arterial and venous circulation, reduce
perspiration, accelerate the return to normal movements, and
reduce serious complications caused by intra- and
extra-articular adhesions.” The use of CPM has also been
reported to reduce edema and articular effusion,’’ thus
shortening hospital stays. '*

Continuous passive motion is a therapy in which a joint
is passively moved according to a predetermined sequence
for a defined length of time. The external forces causing the
joint movement should never overcome physiological joint
stiffness and should strictly respect any degrees of freedom
of the joint being treated.

Continuous passive motion treatment has also been
found to be effective in patients with neurologic disorders.
A study on a group of patients with chronic hemiplegia who
used CPM reported a reduction in spasticity of the distal
extremity of the upper limb.'> Other studies report that
CPM is effective in reducing hand edema,* particularly in
patients with flaccid hemiplegia in the subacute phase. '

A recent review of the mechanisms for motor relearning
reported that factors such as attention and stimuli (reinforce-
ment) are crucial during learning, which indicates that motor
relearning can take place in patients with neurologic disorders
even when only passive stimulation is applied.'” Additionally,
another review reported the benefits of CPM for stretching and
upper limb passive mobilization for patients with stroke but
indicated CPM treatment requires further research. '*
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This purpose of this study was to determine whether
passive robotic-assisted hand motion, in addition to standard
rehabilitation, reduces hand pain, edema, or spasticity after
acute stroke, in patients with and without hand paralysis.

METHODS

Trial Design

We conducted a double-blind clinical trial without
randomization of subjects. Informed consent was obtained
from all participants, and procedures were conducted according
to the Declaration of Helsinki (Protocol No. GLOO1). The
ethics committee of the Azienda Sanitaria Locale of Bergamo,
Italy, approved the study. The study has been registered at the
Current Controlled Trials website as NCT01936298. The
protocol can be accessed at http://clinicaltrials.gov/.

Participants

Thirty-five participants aged 45 to 80 years were recruited
from the Department of Neurologic Rehabilitation, Istituto
Clinico Habilita, Sarnico, Bergamo, Italy, for the study from
October to December 2013. All subjects were in the acute
phase following their stroke. All patients had functional
impairments of their upper extremity after the stroke. A
neurologist established the diagnosis of acute phase of stroke.
One group, P-ROM (passive range of motion), consisted of 16
patients (mean age + SD, 68 + 9 years) with full paralysis of the
wrist and fingers who could not voluntarily initiate and control
finger and wrist extension movement. The other group,
A-ROM (active range of motion), consisted of 14 patients
(mean age =+ SD, 67 + § years) with partial paralysis of the wrist
and fingers who had difficulty in voluntarily initiating and
controlling finger and wrist extension movements. Each
patient underwent subjective and physical examinations
performed by a physician experienced in neurologic conditions
and rehabilitation to evaluate inclusion and exclusion criteria.
To be included in the study, participants had to meet the
following criteria: they had to be in the acute phase of stroke
(<12 months postonset)'’; this had to be their first stroke
episode; they could not have a history of peripheral nerve
injury or musculoskeletal disease (eg, arthritis, musculotendi-
nous injury, or bone fracture) in the affected upper extremity;
there could be no contracture of the affected wrist or fingers
(Modified Ashworth Scale score <3)?°; and they could have
no history of any invasive procedure (botulinum toxin type A)
for the treatment of spasticity for at least 6 months before the
start of this study.?' Participants in the P-ROM group had
paralysis of the wrist and fingers and inability to voluntarily
initiate and control finger and wrist extension movements.
Those in the partial paralysis (A-ROM) group had to have
partial paralysis of the wrist and fingers and difficulty in
voluntarily initiating and controlling finger and wrist extension
movements '’ (capable of voluntarily extending the wrist to
20° against gravity from a flexed position as measured by
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goniometry).> Participants with unstable medical disorders,
active complex regional pain syndrome, severe spatial neglect,
aphasia, or cognitive problems were excluded.?!

None of the individuals in this study had received prior
interventions poststroke. Therefore, they were naive to the
treatment they received. Participants were not treated with
diuretics, analgesics, muscle relaxants, or anti-inflammatory
drugs for 24 hours prior to the examination.

Study Setting

The work was carried out at the Department of
Neurological Rehabilitation at the Istituto Clinico Habilita
in Sarnico, Italy.

Interventions

Main Features of the Robotic Device.  Gloreha (Idrogenet,
Brescia, Italy) was designed by the first author with his team at
the University of Brescia (Italy) and prototyped by Polibrixia,
Brescia Italy. The Velcro fastenings and glove were
manufactured by Spidi Sport Srl, Vicenza, Italy. The device
was first presented at an Italian conference® > and a complete
description of the system can be found in the literature>°
(Fig 1). Two main modules with well-defined mechanical
characteristics constitute the glove. One is the actuator, where
forces, speeds, and displacements originate; this module may
be considered the engine of the glove, and it is located on the
upper side of the forearm, close to the wrist (and to the
impaired hand) and yet separated from it. The transmission is
composed of several elastic transmissions that are moved by
an actuator and properly transmit displacement, speed, and
forces to one or more impaired fingers during a rehabilitation
session. Although the actuator module has a rigid and defined
structure and is fixed to the forearm section of the glove, the
“transmission” module has in fact a labile and extended
structure, as it has to reach all 5 fingers (1, some, or all might
be impaired and in need of rehabilitation) up to their tips and
move them in an effective and reliable manner. This is indeed
the critical part of the glove: it has to be flexible, adoptable to
an impaired hand anatomy, and still capable of fulfilling its
“transmission” task in an efficient manner. The glove is not
(apart from the disposable and optional glove mentioned
before) a structure fully covering an impaired hand like a
second skin, but it is a sequence of sectors that links one to the
other through elastic transmissions, which remain on the back
side of an impaired hand/finger and reflect and follow the
hand anatomy in terms of its natural parts and articulations.
Each sector, to be effective in movement actuation and
transmission, is fixed to the corresponding anatomic part of
the impaired hand or finger by a Velcro fastening, thus
allowing a precise fit on a flaccid or an edematous (or both)
hand or finger. The brace is initially affixed to the forearm,
then the first finger, and then all other fingers.
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Fig 1. Wearable glove/orthosis.

The movement transmission was a critical aspect of glove
design, as it had to be flexible and capable of' eliminating any
risk of mechanical overstress caused by possible malfunc-
tioning of a glove component, on an impaired hand or finger
often presenting with articular rigidity and pain?; adapting to
different hand and finger sizes; and’ leaving, for medical
reasons, the hand palm, and inner part of fingers free.

Kinematic Aspects of the Device. ~ Referring to Figure 2, the
principal movements of a finger can be described by Eq. (1),
where Ipp, /vp, and Ipp are the phalanx segment lengths, and
Onmcp, Oprp, and Opp are the joint angles.27

x = Ippcos(Oycp + Opip + Opip) + Lup cos(0ycp + 0 pip)
+1pp cos(0ucp)

y = lppsin(Oucp + Opip + Opip) + Lup sin(0ycp + 0 pip)
+1ppsin(0ycp)

(1)

A flexible rod with length / moves the fingertip to which it is
connected through a hinge and a subsequent rigid L-shaped
element having lengths / and f'(Fig 2). Testing has indicated
excessive flexion of the rod can cause excessive stroke of
actuators, mechanical overstress, and can result in a risk of
injury to patients with jerky movements. The shapes of the rod
were also aesthetically unacceptable. Changes were made to
the rectilinear slides mounted on some sections of the glove.
The slides are now conveniently long so that the rod does not
hunch while gliding through them, which appears to have
solved the problem.

Kinematic analysis of correct dimensioning of the
movement transmission system proceeds by fixing a
position of a finger as identified by the angles Oycp, Opip,
and Op;p, by determining the positions of the main points of
the system and by imposing adequate kinematic constraints
to the rod. This analysis allows the flexible rod in a spatial
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Fig 2. Kinematic scheme of finger and orthosis.

configuration; in particular, the positions of points D, E, and
P may be determined by Egs. (2)-(4).

xp = x4+ acos(Oycp) + My cos(@Mcp— g)
+bCOS(0Mcp—ﬂ.’) 2

. . 7 (2)

Yp = Ya + GSII’I(QMcP) + My Sll’l(eMcp— *)

2
+b Sin(eMcp—TC)

T
TR = ITA+ (a -+ C) COS(OMCP) + hy COS(HMCP_*)

2
+bcos(0ycp) (3)
. 3 T
yp = ys+ (a4 ¢)sin(Oycp) + Iy Sln(gMCP_§>
+bSin(0Mcp)
xp= x4+ lppcos(Oycp) + Lup cos(0pp + Oycp)+
+lppcos(Oprp + Oprp + Oncp)+
T
+hcos <0DIP + 0prp + O rrcp— 5) +
+f cos(0pip + Oprp + Orcp—n)
yp = yu + lppsin(Oycp) + lyp sin(0prp + 0 pop)+

+Ippsin(0prp + Opip + O ycp)+

. T
+hsin <0D]p + Opip + Opcp— 5) +

+fsin(0prp + Oprp + Oprcp—)

(4)

Polynomial splines of minimum degree are used”®
compatibly with constraints adopted to represent the flexible
rod sections between the main points calculated with
Egs. (2)-(4). In particular, the coordinates of points H belonging
to arcs OD, DE, and EP are represented by Egs. (5)-(7), and
must comply with bounds indicated by Egs. (8)-(10).

y=u-+v- P +w-z+2 (5)
y=w-z+ 2 (6)
y=v-2*+w-z+2 (7)
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y(0) =0, y(zp) =yp, ¥ (0)=0, /(z) =y (a}) (8)

y(zp) = yp, Y(TE) =Yg )

y(zg) = yp, y(zp) = yp, ¥ (zp) =¥ (2}) (10)

As the adopted rod is extremely flexible and inexten-
sible, the arch length function allows it to calculate the arch
formed by the rod section outside the guide O (Fig 2). This
result links a fingertip position with the geometric variable
describing actuator movement and calculates the actuator
stroke required to move the system. In particular, at point H
of the flexible rod, the arch OH length is described by Eq.
(11), where y(x) is a point on the rod, as shown in Eq. (12).

SH:/::H\/Ier’(x)zdx (11)

ul-x3+v1-x2, HEO0D
wy - x+ 23, HEDE (12)
v3~x2+w3-x+23, HEEP

y(z) =

The rod excursion inside the guide can be determined by
calculating the position of P and the length of the arch s°, as
described in Eq. (13),

s = /:?)\/ 1+ y/(z)* da (13)

when the orthosis is idle and by appropriately fixing values of
the angles Oycp, Opip, and Opp; the desired range of motion
(ROM) is imposed and the length of the arch sy i
calculated always with the appropriate values of angles 0y;cp,
Opp, and Oppp in Eq. (14);

Max

sM‘”:/P 1+ y(2)de (14)
0

eventually the actuator stroke can be determined as the
difference between the two arch lengths in Eq. (15).

¢ = gMw—_g0 (15)

Further dimensioning and material choice are omitted in this
article.

The participants in both groups, full and partial paralysis,
were treated by one clinician with postgraduate orthopedic
physiotherapy training and more than 8 years of clinical
experience in the management of musculoskeletal disorders.
Patients in both groups received two treatment sessions daily
for 2 weeks. The patients did not take any drugs or perform
any procedures that might have affected spasticity during the
study period.

All patients received the same intervention. Each patient
used the Gloreha (Idrogenet, Lumezzane, BS, Italy) device
for passive mobilization of the hand for 1'% hours in the
morning and afternoon. Each of the patient’s fingers was
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hooked to individual thimbles connectable through a nylon
thread to a device fixed on the glove that interfaced with a
hybrid system (compressed air and oil), allowing flexion—
extension of the fingers. In the morning, the robotic device
moved each finger individually for half an hour in total. In the
afternoon, the index, long, ring, and small fingers were
passively moved together, and only the thumb was moved
individually for half an hour in total.

In addition to the passive robotic-assisted hand motion,
all patients underwent a standard rehabilitation program
consisting of 1 hour of interventions for 2 sessions, 5 days
per week, that included both physical and occupational
therapy. Rehabilitation interventions were standard inter-
ventions received after a stroke: including active ROM,
passive ROM, tone inhibition, gait training, and facilitation
techniques. The rehabilitation physical and occupational
therapists were blinded to all data that was collected for the
study. Each patient attended 20 sessions over a period of
2 weeks (10 sessions per week).

Outcomes

The outcome measures were assessed at baseline and after
completion of the 2-week intervention. All outcomes measures
were captured at baseline (preintervention) and immediately
after intervention (postintervention) by an assessor blinded to
group assignment. The sequence of testing for the outcome
measures was randomized among participants.

Assessment of the patient’s response to therapy was
monitored with the following assessment tools: perimeter
edema of the wrist, maximum hand circumference (MHC) and
hand circumference joint,” visual analog scale (VAS),**!
Modified Ashworth Scale for Grading Spasticity (MAS)***
to measure spasticity, and ROM with a goniometer>*~>; raters
reviewed charts using Clinical Global Impression>®" criteria
to assess severity of illness.

Pain Intensity. ~ The intensity of hand pain was assessed with
a VAS.® The VAS is a 100-mm line anchored with a 0 at one
end, representing no pain, and 100 at the other end, representing
the worst pain imaginable.’® The VAS was selected as the
primary outcome measure based on its ability to detect change
(minimal clinically important difference, 20 mm).***

Hand Edema.  Edema reduction was a secondary outcome.
The wrist and hand measurements included wrist circumfer-
ence, the close measurement that follows wrist contour at the
minimum girth measurement (including the styloid processes);
MHC, the closed measurement that follows a hand contour at
the maximum at the base of the hand (maximum bulge of the
palm including the thumb thenar muscles); and hand contour
(HC), the close measurement that follows hand contour at the
distal palmar crease. The measurements were performed with a
flexible tape around the perimeter of each corresponding
section of the hand in the vertical plane when the hand
and wrist was positioned horizontally, resting on a flat surface.
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The techniques of measurements were as per guidelines in
NASA-1024 (1978)."'

Modified Ashworth Scale.  Hand spasticity was a secondary
outcome measure. The MAS is used to test resistance to
passive movement about a joint with varying degrees of
velocity within a range from 0 to 4, with 6 choices.

Assessment of spasticity included flexion and extension
movements around the upper limb (shoulder, elbow, wrist,
and fingers), with the patient in resting position. Spasticity
was defined as a MAS score >1 for any of the passive
movements performed, in accordance with most previous
studies on spasticity after stroke.”*

Sample Size

A priori sample size calculation was performed to
determine the necessary number of subjects needed for this
study and was based on the results of a previous pilot study. **

Similarity of Interventions
All study participants received the same intervention.

Statistical Methods

Data were analyzed using SPSS Version 19.0 (SPSS,
Chicago, IL). Intention-to-treat analysis was not performed
because all subjects completed the study. Group data were
summarized using means and standard deviations. The
Kolmogorov—Smirnov test confirmed the normality of the
distribution of the data, so a repeated-measures analysis of
variance (ANOVA) was used to determine the differences in
the A-ROM and P-ROM groups with time (preintervention and
postintervention) as the within-subject factor and group (both
groups) as the between-subject factor. The main hypothesis of
interest was the group x time interaction. Between-group
differences were expressed as mean differences with 95%
confidence intervals (Cls). Between-group effect sizes were
calculated using Cohen’s d coefficient.** An effect size >0.8
was considered large, that of 0.5 moderate, and a size <0.2
small.** Spearman’s rank correlation coefficient () was used to
evaluate the relationship between the VAS and the other
parameters evaluated. The » values were interpreted according
to Domholdt’s recommendations.** Statistical analysis was
conducted at a 95% confidence level, and a P value < .05 was
considered to indicate statistical significance.

RESULTS

Between October and December 2013, 35 consecutive
patients (n = 35) with acute-phase stroke were screened for
eligibility criteria. A total of 16 subjects (8 females, 8 male,
aged 50-77 years) presenting with A-ROM satisfied all
eligibility criteria and agreed to participate. Also agreeing to
participate were the 14 age and sex-matched participants in the
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[ Enrollment ] Assessed for eligibility (n = 35)
Excluded (n=5)
»| + Not meeting inclusion criteria
(n=5)
Randomized (n = 30)
Y [ Allocation ] Y
Allocated to Experimental Allocated to control intervention
intervention (n = 16) (n=14)
+ Received allocated intervention + Received allocated intervention
v [ Analysis ] v
Analyzed (n = 16) Analyzed (n = 14)
Fig 3. Flow diagram.
P-ROM group (7 females, 7 male, aged 54-83). Fifty-three =~ Table 1. Baseline Demographics for Both Groups
percent of all subjects exhibited unilateral stroke in their left  gasal Metabolic Data A-ROM (n=16) P-ROM (n = 14)
(nonfiomlnan.t) hand. o Age.y P 6829
Five subjects were eliminated from the study after  pemale sex, n (%) 8 (50.0) 7 (50.0)
originally being included. The reasons for ineligibility — Event, n (%)
were: medically instability (uncontrolled hypertension, Ischemic ictus 10 (75.0) 12 (71.4)
arthythmia) (n = 3), and active complex regional pain Hemorrhagic ictus 4(25.0) 4(28.6)
_ . . Time from event, acute (d) 43 £24 58 +42
syndrome (n = 2) (Fig 3). Baseline features of both groups . N
.. . Affected upper limb, n (%)
were similar for al.l variables (Table 1). No adverse effects Right 8 (50) 8 (57.1)
were detected during or after treatment, and none of the Left 8 (50) 6 (42.9)

subjects started diuretic therapy during the study.

Primary Outcomes: Pain

The mean pain score of the A-ROM group decreased from
3.7+ 2.3 to 2.7 £ 2.1. The mean pain score of the P-ROM
group remained unchanged at 0.5 £ 0.5. The VAS revealed a
significant time factor (F[1.0]=5.2; P=.04, partial = 0.286)
and group x time interaction (F[1.0] = 5.2, P = .04, partial
1n=10.286) in the A-ROM group. Post hoc analysis revealed
significant differences between the 20 sessions for the
A-ROM group (P = .01) but not for the P-ROM group
(P > .05). There was a statistically significant difference
between the groups (P < .005). Between-group effect size
was large (d = 1.42) after the intervention. The data are
summarized in Table 2.

Secondary outcomes
Edema (circumference).  In the A-ROM group, edema in the
affected wrist measured 18.5 + 0.7 cm and decreased after

d, day; A-ROM, active range of motion; P-ROM, passive range of motion;
¥, year.

treatment by 5.4%. In contrast, in the P-ROM group, the
edema in the affected hand measured 19.5 £ 1.2 cm and
remained unchanged. The 2 X 2 mixed-model ANOVA
indicated a significant group X time interaction (F[1.0] =
6.127, P = .03, partial 1 = 0.4), but not for time (F/]1.0] =
0.245, P = .6, partial n) = 0.02), for wrist edema. Post hoc
analysis revealed significant differences between the 20
sessions for the P-ROM group (P = .005), but not for the
A-ROM group (P > .05). There was no significant difference
between the groups (P > .05). Between-group effect size was
large (d = 1.41) after the intervention.

In the A-ROM group, MHC and HC edema in the
affected hand measured 20.3 + 0.4 and 18.5 = 0.7 cm and
decreased after treatment by 2.5% and 2.7%, respectively.
Similarly, in the P-ROM group, MHC and HC edema in the
affected hand measured 24.0 + 2.8 and 21.4 + 1.4 cm and
decreased after treatment by 2.1% and 1.9%, respectively.
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Table 2. Mean (SD) for Outcomes at All Study Visits for Each Group and Mean (SD) Differences Within Groups “

Effect Size CI Between Groups

Group Preintervention Postintervention ~Change Score Effect Size CI Within Group at Postintervention
Pain

A-ROM 3.7+23 27421 -1 0.45 (-0.25, 1.15)

P-ROM 05+0.5 05+0.5 0 0

Between-group difference  —2.5 (-2.1, 1.8)°¢ -1.5(1.9,-3.9)°¢ 1.09 (0.33, 1.86)
Wrist Circumference

A-ROM 18.5+0.7 17.5+£0.7 —1* 1.42 (0.59, 2.25)

P-ROM 195+1.2 195+1.2 0 0

Between-group difference —1.0 (-3.7, 1.7) -2.0 (—4.8,0.8) 2.00 (1.12-2.87)
Maximum Hand Circumference

A-ROM 203+ 0.4 198+ 0.4 -0.5 1.25(0.49, 2.01)

P-ROM 24.0+2.8 235+2.7 -0.5 0.18 (-0.56, 0.92)

Between-group difference 3.7 (-9.6, 2.1) -3.7 (-9.6, 2.0) 0 0
Hand Circumference

A-ROM 18.5+0.7 18.0 £ 0.7 0.5 0.71 (0, 1.49)

P-ROM 214+ 1.4 21.0+ 1.8 -0.4 0.24 (-0.49, 0.99)

Between-group difference —2.9 (5.9, 0.1) -3.0 (-6.9, 0.9) -0.1 0.35 (~0.36, 1.07)
Spasticity (MAS Score)

A-ROM 0.1+0.3 03+1.0 0.2 0.27 (96, 0.42)

P-ROM 0.6 +0.9 0.6+0.9 0 0

Between-group difference 0.5 (-1.0, —=0.01)¢ —0.3 (-1.1, 0.4) 0.2 0.27 (-0.44, 0.99)

A-ROM, active range of motion; CI, confidence interval; MAS, Modified Ashworth Scale; P-ROM, passive range of motion.
? Data are means =+ standard deviations (SD) except for between-group differences which are means and 95% confidence intervals.

® Significantly different within group, P < .05 (95% CI).
¢ Significant difference between groups, P < .05 (95% CI).

For MHC and HC edema, there was no significant finding
for time (F11.0] = 1.524, P =29, partial n=0.28, and F]1.0] =
1.524, P = .29, partial n = 0.28, respectively) or group x time
interaction (F11.0] = 0.0, P = 1.0, partial n} < 0.001, and
F11.0]1=0.0, P=1.0, partial n < 0.001, respectively) (Table 2).
All participants in both groups exhibited changes (decreases)
over the 20 treatments. There were no significant differences
between the groups (P > .05). Between-group effect sizes were
small posttreatment (d < 0.2).

Spasticity. ~ The 2 x 2 repeated-measures ANOVA did not
reveal a significant effect for time (F]1.0] = 0.871, P = .36,
partial = 0.03) or group x time interaction (#]1.0] = 0.871,
P = 36, partial n = 0.03].

Correlations

Spearman’s rank correlation coefficients revealed a strong,
significant and positive relationship between pain and edema
(wrist, MHC, and HC edema) (» = 0.85, 0.862, and 0.862,
respectively, all P <.004) in the P-ROM group, but not for the
A-ROM group (P> .05). No significant correlation was found
between pain and spasticity (Table 3). Finally, no significant
correlation was found between edema and spasticity.

DiscussioN

This purpose of this study was to determine if passive
robotic-assisted hand motion, in addition to standard

rehabilitation, reduces hand pain, edema, or spasticity in all
patients after acute stroke, in patients with and without hand
paralysis.

Generalizability

The results of this study may be generalized to stroke
patients that have either a right or left hand affected by the
stroke and are on average age 67 to 68 + 9 years of age. The
patients could have had either an ischemic or a hemorrhagic
stroke on average 43 to 58 + 42 days prior to the onset
of treatment.

Interpretations

The results of the current study suggest that when compared
with the P-ROM group, the A-ROM group experienced a large
effect size in reduction of edema at the wrist and pain as
measured with the VAS score.*® However, to be of clinical
significance, the change in VAS score needed to be 2 points,
not 1 point.***

Hand rehabilitation poststroke is essential in improving
mobility of the upper extremity and function. It is possible
that a wearable glove may assist with the rehabilitation
process and improve hand function. However, future studies
are needed to determine this. The emergence of end effector
robots that exhibit interesting rehabilitation outcomes for gait
training has been reported in the literature*’; however, there
have yet to be any studies examining their benefits in hand
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Table 3. Spearman’s Rank Correlation Coefficients Between Pain
and the Other Parameters

Variable Group Spearman’s P Value
Age A-ROM 0.5 .67
P-ROM 0.49 .88
Wrist circumference A-ROM 0.5 .67
P-ROM 0.85 .004°
Maximum hand circumference = A-ROM 0.5 .67
P-ROM 0.862 .003 %
Hand circumference A-ROM 0.5 .67
P-ROM 0.862 .003°
MAS score A-ROM  -0.5 .67
P-ROM 0.572 .05

A-ROM, active range of motion; MAS, Modified Ashworth Scale; P-ROM,
passive range of motion.
* Significantly different, P < .05 (95% confidence interval).

function, and they have not been able to guarantee safety and
natural kinematic motion in acute hand patients.*® Indeed,
this tool has to be effective in terms of actions addressed to an
impaired or flaccid hand, has to guarantee high reliability, and
has to be easy to use for the patient and therapist. A wearable
glove (orthosis) is the only solution offering a satisfactory
compromise of these issues.

Limitations

The study has some limitations. Small sample size may
have reduced the ability to find a statistically significant
difference between groups when in fact one may have existed.
In addition, the effect size CI intervals crossed zero when
interpreting the effect size between groups at the posttreatment
assessment for hand circumference and MAS score changes,
indicating that the treatment perhaps had no effect.

The group with some volitional hand motion had
decreased edema in their affected hand both at baseline and
after the intervention. It is impossible to quantify the effect of
partial hand motion on reduction of edema. All patients had
both occupational therapy and physical therapy in addition to
the robotic-assisted passive hand mobilization, which could
have been the reason there was less edema in the A-ROM
group. It is impossible to determine the effect of therapy or
robotic passive mobilization in isolation on reduction in hand
edema. This study could have benefited from a third control
group that received only standard stroke rehabilitation
without the robotic intervention.

The absence of one or more follow-up assessments and
the limited period of treatment do not provide information
on long-term rehabilitation results. Also, a functional
objective outcome measure associated with the limited
observation time window was not used. Dr. Borboni is a
designer of the proposed rehabilitation device and a
shareholder in Polibrixia; therefore, there exist elements
of study bias. Future studies are needed to determine the
correct dosage and long-term benefits of the intervention.

Journal of Manipulative and Physiological Therapeutics
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CONCLUSION

The results of the current study suggest that the A-ROM
group experienced a significantly greater reduction of
edema at the wrist and pain when compared with the
P-ROM group. The reduction in pain did not meet the
threshold of a minimum clinically important difference.
However, all other outcomes were similar for the 2 groups.
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Practical Applications

® Active range of motion group experienced a
significantly greater reduction of edema at the
wrist when compared with the P-ROM group.

e All of the other outcomes were similar for the
groups.

® The proposed device, with its compliant me-
chanical transmission, may represent an innova-
tive solution to rehabilitation, because the hand
can grasp and the orthosis is lightweight.
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