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Abstract 

Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine 

system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict 

interaction between neuroendocrine system and inflammation, which can play an important role in 

NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, 

can favor cancer induction and progression, and can promote immune editing. On the other hand, a 

balanced immune system represents a relevant step in cancer prevention through the elimination of 

dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-

tumorigenic. In this review, we provide an overview concerning the complex interplay between 

inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical 

implications in these tumors. 
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1. Introduction 

Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine 

system. NENs develop most commonly in the gastroenteropancreatic (GEP) tract [1, 2]. Despite the 

seven-fold increase in NEN incidence in the last four decades, no clear risk factors have been 

recognized for these tumors. Research over the last decades has underlined the dual role of 

inflammation in the development and progression of malignancies. Chronic and unbalanced 

inflammation enhances tumorigenesis. This relationship could be hypothesized also in GEP NEN 

development, as chronic inflammatory diseases and chronic gastritis are well known predisposing 

conditions for these tumors. However, under specific inflammatory conditions, immune cells are 

able to eliminate dysplastic and cancer cells. In this review, we provide an overview concerning the 

complex interplay between inflammation and GEP NENs, focusing on the tumorigenesis and 

clinical implications in these tumors.  

 

 

2. Role of microenvironment in tumorigenesis and progression of GEP NENs 

through modulation of inflammation 

The tumor microenvironment (TME) is a dynamic compartment that develops during cancer 

evolution. TME is not simply constituted by neoplastic cells, but it includes blood and lymphatic 

vascular networks, extracellular matrix, cancer-associated fibroblasts (CAFs), adipose cells, 

neuroendocrine cells, immune-inflammatory cells and different molecular players, such as pro-

inflammatory and oncogenic mediators [3]. The interplay between all these elements, in particular 

the inflammatory microenvironment, is crucial to shape the fate and the evolution of several tumors 

(figure 1). Although underestimated until now, TME has a relevant role in tumorigenesis, 

progression and response to the therapy in GEP NENs [4, 5].  

 

2.1 Vasculature 

Blood and lymphatic vessels deliver nutrients and oxygen, necessary for cancer survival, and are 

relevant for tumor progression and the development of immune cell infiltration. The hypoxic tumor 

microenvironment prompts the release of proangiogenic factors, like vascular endothelial growth 

factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) and 

transforming growth factor β (TGF-β), promoting the rapid and aberrant vasculature formation 

within the tumor [6]. NENs are highly vascularized. The development of new blood vessels 

involves different proangiogenic factors. The best known and characterized is surely VEGF and its 

receptors (VEGFRs). VEGF overexpression is generally associated to an increased microvascular 



density, leading to tumor progression. GEP NENs are characterized by a marked expression of 

VEGF/VEGFRs [7, 8], but the relationship between VEGF, tumor vascularization and prognosis is 

not straightforward. In gastrointestinal NENs this correlation is unclear, only in pancreatic NENs it 

has been reported that VEGF expression is higher in benign and low-grade tumors. Therefore, this 

condition results to be associated to a good prognosis and prolonged survival [9, 10]. A 

comprehensive explanation for this paradox could be that in pancreatic NENs the vascular density is 

more likely a marker of differentiation than a marker of aggressiveness. FGF, PDGF and TGF-β are 

also strongly expressed in GEP-NENs [4].  

In order to study in vivo the tumor-induced angiogenesis, we have developed an innovative model 

through the xenograft of human NEN cells into Tg(fli1a:EGFP)
y1

 [11] zebrafish embryos. This 

transgenic line, expressing the enhanced green fluorescent protein (EGFP) in the endothelial cells of 

the entire vascular tree, offers the possibility to estimate the proangiogenic potential of injected 

tumor cells and to analyze the contribution of the TME to the tumor progression in a living selective 

microenvironment [12-14]. 

 

2.2 Reactive stromal cells 

Extracellular matrix is structurally constituted by interstitial matrix, which mainly includes stromal 

cells, and by basement membrane. Extracellular matrix contains soluble molecules, such as 

chemokines, matrix metalloproteinases, protease inhibitors and growth factors. An abnormal 

extracellular matrix favors tumor progression, promoting cellular transformation and metastasis 

[15]. Among different factors involved in extracellular matrix remodeling, proteoglycans play 

different roles in cancer. In GEP NENs the expression of syndecan 2 and glypican 1 proteoglycans 

has been reported to be high in well-differentiated tumors. Their levels correlated positively with 

patient survival [16]. In a recent paper, the prometastatic enzyme heparanase, a glucuronidase, 

resulted to be overexpressed in well- but not in poorly differentiated NENs [17]. 

CAFs, a population of activated fibroblasts (also known as myofibroblasts), represent the major 

non-cancer cells within the tumor stroma. They share properties with fibroblast stimulated by 

inflammation or wound healing. Indeed, they can secrete a variety of mesenchyme-specific proteins 

[18], chemokines (CXCL-8 and CXCL-12), cytokines (interleukin-6) and growth factors, including 

VEGF, TGF-β, FGF, hepatocyte growth factor and epidermal growth factor (EGF). These factors 

are involved in paracrine signaling or activate CAFs in autocrine loops. The crosstalk between 

CAFs and cancer cells is responsible for the promotion and maintaining of the activated phenotype 

of fibroblasts and, in turn, the production of soluble factors by CAFs fosters the cancer growth and 

progression, promoting the remodeling of extracellular matrix, cell proliferation and angiogenesis 



[19]. Activated fibroblasts are recruited to the tumor site miming excessive fibrosis, as a 

consequence of inflammation and aging [20]. It has been observed that NENs are often associated 

with local or distant fibrosis and that the crosstalk between NEN cells and fibroblasts has a pivotal 

role in fibrogenesis [21]. The most common examples of fibrosis are mesenteric fibrosis, associated 

with small bowel NENs in up to 50% of cases [22], and carcinoid heart disease, characterized by 

development of fibrotic endocardial plaques, that affects up to 40% of patients with carcinoid 

syndrome [23, 24]. Several factors take part in NEN-related fibrogenesis, such as serotonin, 

connective tissue growth factor, PDGF, insulin-like growth factors (IGFs), FGF and VEGF [21]. A 

strict interaction between NEN cells and fibroblasts, with a mutual induction of cell proliferation, is 

relevant for these events [4]. 

The TME exerts a significant role in every step of tumorigenesis and progression through reciprocal 

interactions and modulation of chronic inflammation [25]. It is well-known the dual role of immune 

infiltration in tumors [26]. An imbalance of the immune system may cause chronic inflammation 

with a pro-oncogenic environment, on the contrary a well-regulated adaptive immune response is 

considered anti-tumorigenic [27]. Immune surveillance can eliminate some pre-malignant lesions 

[28], but over time, tumor cells can undergo a process called immune editing [29], becoming 

resistant to the first line of defense and able to manipulate immune cells through secretion of 

chemokine and cytokines [26]. Therefore, an inflammatory response may be either pro- or anti-

tumorigenic, depending on the overall balance of inflammatory mediators and on the type of 

immune cells infiltrating the tumor. These aspects have been also reported in GEP-NENs, where 

chronic inflammation is a relevant hallmark [1]. 

Tumor-infiltrating immune cells include T and B lymphocytes, natural killer (NK) cells, 

macrophages, dendritic cells (DC) and neutrophils [30, 31]. In a contest of chronic inflammation, 

leukocytes provide directly and indirectly several factors that can promote proliferation of cancer 

and stromal cells [32], stimulate angiogenesis, facilitate cancer cell dissemination and tumor 

immune evasion [33].  

Tumor-infiltrating lymphocytes contain various proportions of T helper cells (CD4+) and cytotoxic 

T cells (CD8+). Their presence is associated with a better prognosis in a wide range of solid tumors 

[25, 30, 34]. In NENs, particularly in carcinoids of lung and midgut, tumor-infiltrating lymphocytes 

(CD4+, CD8+ and CD20+) are often found and its occurrence correlates inversely with the presence 

of metastases [35]. Also pancreatic NENs commonly showed an intratumoral infiltration with 

CD4+, CD8+ and CD3+ T cells [36]. A recent paper characterized T-cell subpopulations in both 

intra- and extra-tumoral compartments in small intestine and pancreatic NENs through a panel of T-

cell markers, comprising CD3 (general T-cell marker), CD45RO (T memory), CD8 (cytotoxic T 



cell), and FOXP3 (T regulatory cell). T-cells (CD3+, CD45RO+ and CD8+) were observed in both 

small intestine and pancreatic NENs, with a more relevant infiltration in pancreatic NENs, 

particularly in the extratumoral compartment. Levels of FOXP3 T regulatory cell infiltration were 

low in both tumors [37]. However, the expression of regulatory T cells appears to be not marginal 

in NENs, particularly in aggressive forms. These cells can stimulate metastasis formation and 

mediate the suppression of the immune system [38-40]. In another series of NENs, pancreatic 

intratumoral regulatory T cell infiltration was present in 55% of intermediate/high-grade tumors, 

whereas only in 16% of low-grade NENs [39]. Patients with midgut carcinoid showed higher levels 

of circulating regulatory T cells compared to healthy donors, particularly in patients with a high 

tumor burden [40].  

Macrophages represent a remarkable portion in tumor mass. These cells display a substantial grade 

of plasticity, with different state of activation in response to a variety of external stimuli. Indeed, 

macrophages can be polarized into type I (M1) and type II (M2) [41]. M1 macrophages exert an 

anti-tumor effect, through the production of several pro-inflammatory cytokines, chemokines, and 

effector molecules, such as interleukin-1 (IL-1), IL-12, IL-23, TNF-, CXCL10, iNOS and 

MHCI/II. In contrast, M2 macrophages promote tumor proliferation and progression, tumor 

angiogenesis, metastasis formation and immune suppression, through the expression of a wide 

spectrum of anti-inflammatory molecules, such as IL-10, TGF-β and arginase-1 [41, 42]. M2 

macrophages can also switch T-lymphocytes to regulatory T cells, allowing the suppression of 

tumor immunity [43]. Numerous studies have demonstrated in most human cancers that a high 

presence of infiltrated macrophages is linked with poor prognosis [26, 44]. In pancreatic NENs, 

tumor-associated macrophages infiltration correlates with proliferative activity, tumor grade, 

presence of liver metastases, angiogenesis and recurrence after surgery [45-47]. In addition, low 

tumor-associated macrophages, low peritumoral CD4+ cell and high intratumoral CD8+ T cell 

infiltration was associated with prolonged disease-free and/or disease-specific survival in pancreatic 

NENs [48]. 

DCs are key mediators of the adaptive and innate immune responses, therefore, these cells play a 

pivotal role in shaping the immune response. DCs are designed to present antigens and provide 

different signals, such as co-stimulatory molecules and cytokines, essential for T cell activation, to 

interact with other immune cells, including NK and B cells [49]. Tumor-infiltrating DCs are present 

in different types of solid tumors and can be associated with both a better and poor prognosis [50]. 

Besides, phenotype and amount of DCs are dynamic over time and may considerably influence 

tumor progression [49]. Although a complete characterization of DCs has never been reported in 

GEP NENs, Schott et al. described that vaccination with tumor lysate-pulsed DCs induced a clear 



antitumor effect in a patient with pancreatic neuroendocrine carcinoma [51]. Interestingly, 

Papewalis and colleagues identified a population of DCs with NK cell properties, expressing the 

CD56 NK marker [52]. Afterwards, it has been reported higher numbers of circulating  

CD14+/CD56+ monocytes in 4 patients with gastrointestinal neuroendocrine cancer compared to 

healthy controls [53]. 

NK cells are a subset of innate lymphoid cells and represent about 5–15% of the circulating blood 

mononuclear cell population. These cells are involved in the first line of defense against infection 

and cancer [54, 55]. It has been reported that NK cell activity, expressed as percentage of 

cytotoxicity in patients with gastrointestinal NENs, is affected by the type of gastrointestinal 

hormones produced and by the course of the disease with an impairment during tumor progression 

[56]. In addition, serotonin, the hormone most frequently related to carcinoid syndrome in NENs, 

stimulates migration of NK cell [57] and protects these cells against oxidatively induced functional 

inhibition and apoptosis [58]. 

 

2.3 Inflammatory mediators 

The interplay between immune cell components and tumor cells is well orchestrated and several 

molecular mediators and pathways take part in inflammation-mediated cancer and immune 

modulation. Common inflammatory mediators are cytokines, chemokines, nuclear factor kappa B 

(NFk-B), STAT3, cyclooxygenase-2 and reactive oxygen and nitrogen species. An inflammatory 

stimulus causes the recruitment and activation of different immune cells (macrophages, DCs and 

neutrophils), which release reactive oxygen and nitrogen species. The over-production of these 

oxidative agents causes genomic instability, the increase of angiogenesis and transcriptional 

activation of proto-oncogenes, concurring to inflammation-induced carcinogenesis and tumor 

metastatic potential [59].  

Chronic inflammation plays a critical role in the occurrence of GEP NENs through the network of 

different cytokines and growth factors, which modulate tumor cell growth [60], such as TNF-α, IL-

2, IL-6, IL-8, IL-1β [61-65]. Noteworthy, cytokine genes are highly polymorphic. Single nucleotide 

polymorphisms affect cytokine expression and function regulation. IL-2–330G/G genotype was 

associated to higher IL-2 serum levels and an higher risk to develop GEP NENs compared to 

healthy volunteers. Interestingly, highest IL-2 serum levels were observed in patients with 

functional NENs [61]. Similar associations have been observed between IL-6–174G/G, TNF-α-

1031C and IL-1β-511C/T genotypes, high circulating levels of corresponding cytokines and an 

increased risk to develop GEP NENs [62, 66, 67]. GEP NENs are characterized by an abundant 

production and secretion of growth factors, in particular VEGF, EGF, PDGF, IGF, FGF and TGF-β, 



which, in combination with high level of cytokines, connect chronic inflammation to 

gastrointestinal carcinogenesis [68-71].  

The pro-inflammatory mediators, produced during chronic inflammation, activate several signaling 

cascades, such as NFk-B and STAT3 pathways, that are central in the development and maintaining 

of the TME. NFk-B is a transcription factor that, following an inflammatory stimulus, translocates 

to the nucleus, where it activates transcription of target genes encoding pro-inflammatory cytokines, 

chemokines, NOS2 and cyclooxygenase-2. Moreover, NFk-B activation stimulates angiogenesis by 

VEGF secretion and makes tumor cells more resistant to necrosis and apoptosis. NFk-B is linked to 

different cellular signaling pathways. Over the last years, several reports have described Notch-

NFk-B pathway crosstalk [72]. In NENs it has been demonstrated that non-canonical Notch 

signaling impacts on tumorigenesis by the involvement of different signaling pathways, among 

them NFk-B [72, 73]. 

The signal transducer and activator of transcription, STAT3, has a relevant role in inducing and 

maintaining a pro-carcinogenic inflammatory TME. Its persistent activation in cancer cells 

promotes cell proliferation, tumor invasion and angiogenesis. Like NFk-B, STAT3 is activated by 

different factors and it can stimulate the transcription of several pro-inflammatory cytokines, 

controlling inflammation and immune evasion. In GEP NENs STAT3 has been reported to be up-

regulated and nuclear STAT3 expression correlated with metastatic status [74]. 

Other players taking part in this complex scenario, are cyclooxygenases. These are enzymes 

necessary to the production of prostaglandins from fatty acids. Prostaglandins are key mediators in 

inflammation, and in tumors can affect cell proliferation, DNA mutation rates, angiogenesis and 

promote metastasis formation [75]. Cyclooxygenase-2 expression has been detected in the vast 

majority of GEP NENs, both in functioning and non-functioning tumors [76], and its expression has 

been associated with a poor prognosis and more aggressive pathologic variables [77-79].  

Therefore, chronic inflammation promotes tumor, causing genomic instability, increasing 

angiogenesis, altering the genetic/epigenetic state and increasing cell proliferation. Several studies 

have shown that GEP NENs are closely associated with inflammatory conditions. 

 

 

3. NEN and inflammatory GEP diseases 

The gastrointestinal tract contains the highest concentration of bacteria anywhere within the human 

body. This organ is constantly exposed to materials originating from the external environment. The 

balance of the gastrointestinal microbial community is critical not only for this organ but also for 



maintenance of host health. Indeed, failure of gut homeostasis is an important factor in the 

pathogenesis and progression of systemic inflammation, which has a relevant role in the process of 

aging and several age-related disease [80, 81]. 

Throughout the whole gastroenteric tract and pancreas at least 19 types of neuroendocrine cells 

have been observed. As previously reported, these cells are not exempt from the detrimental effects 

of long-standing inflammation. Indeed, neuroendocrine cells can be overstimulated by chronic 

inflammation, leading to hyperplasia and sometimes to dysplasia, that may evolve to neoplastic 

transformation. This consequential relationship has been demonstrated in some districts of the GEP 

tract. 

 

3.1 Gastric NEN 

Gastric NENs are tumors originating from enterochromaffin-like (ECL) cells which are mainly 

localised in the gastric fundus and corpus. The main role of ECL-cells is the secretion of histamine, 

that stimulates acid secretion by parietal cells. Clinically, gastric NENs are categorized into types I, 

II, and III. Type I lesions correspond to the majority of gastric NENs and they are associated with 

chronic atrophic gastritis, either autoimmune-driven or as a consequence of Helicobacter pylori 

infection. In chronic atrophic gastritis, the destruction of the gastric parietal cells reduces the 

production of hydrochloric acid and intrinsic factor, promoting hypergastrinemia and pernicious 

anemia, respectively. The gastrin excess stimulates ECL cells proliferation and favors the 

development of type I gastric NEN [82, 83]. 

A population-based case-control study, comparing 1,138,390 cancer cases with 100,000 matched 

individuals without cancer, showed that subjects with chronic atrophic gastritis associated with 

pernicious anemia have a significantly increased risk of type I gastric NENs (odds ratio, 11.43; 95% 

CI 8.90–14.69) [84]. This tumor arises in patients with chronic atrophic gastritis in a percentage 

variable from 1 to 11%  [85-88]. 

Helicobacter pylori is a gram-negative bacterium whose outer membranes are composed by 

lipopolysaccharides. Experiments made on rat ECL cell preparation showed that Helicobacter 

pylori lipopolysaccharides stimulate histamine release, that was independent by the gastrin action, 

and potentiate gastrin-driven DNA synthesis in ECL cells [89]. 

Other alterations in the gastric microbiota could be also involved in this detrimental process. In fact, 

hypochlorhydria is able to modify the composition of the gastric microbiota by providing a different 

environment for colonization. This event could potentially increase the risk of developing a gastric 

malignancy. A recent study comparing the human gastric microbiota in different conditions, showed 

that autoimmune atrophic gastritis resulted in greater bacterial abundance and diversity compared to 



normal stomach and patients with Helicobacter pylori-induced atrophic gastritis. In both patients 

with atrophic gastritis due to autoimmune etiology or Helicobacter pylori, an over-activation of 

several pathways has been observed compared to controls. Interestingly, gastric-atrophy resulted to 

be associated with a modulation in the citric acid cycle, a biochemical pathway with a relevant role 

in gastric carcinogenesis [90].  

Therefore, autoimmune stimuli or Helicobacter pylori infection trigger an inflammatory response 

that determines parietal cell loss [91]. ECL cells are spared by this cellular destruction and induced 

to proliferate [89]. Indeed, in the setting of type A chronic atrophic corpus-fundus restricted 

gastritis, both hyperplastic and dysplastic lesions of ECL cells may be observed (figure 2), each 

bearing increased risk of tumor development [88]. It was shown that a gastric mucosa with severe 

hyperplasia (at least 6 intraglandular ECL cell chains of at least 5 cells each per mm of mucosa or at 

least 9 linear plus micronodular changes) and dysplasia (enlarged, fused or stroma dissected 

micronodules or microinfiltrative lesions) needs to be adequately followed by endoscopy and 

biopsies because of the increased neoplastic risk of these lesions [88]. 

 

3.2 Pancreatic NEN 

Chronic pancreatitis represents an independent significant risk factor for pancreatic cancer [92, 93]. 

The strength of the relationship between these two diseases has been widely reported. In a 

multicenter cohort study of 2015 cases [92] of pancreatitis, 56 cases of pancreatic cancer were 

registered during a mean follow-up of 7.4 years.  Among these, 29 cases were diagnosed 2 years 

after the diagnosis of pancreatitis. This number was higher than the expected for age, sex and the 

center. A case-control study [93] analyzed how frequent was the occurrence of pancreatitis in 2639 

patients with pancreatic cancer, compared to 7774 control subjects. The evidence was that 

pancreatitis was present in around 6% of patients with cancer and it represents a strong risk factor 

for development of pancreatic tumors. Although in most of these studies the tumor histotype was 

not specified, this association appears to be relevant for pancreatic adenocarcinoma.  

On the other hand, it is less clear the potential association between NEN and pancreatitis. In this 

setting, even hyperplastic and dysplastic lesions of endocrine cells consequent to inflammation, 

have never been clearly described. Rather, what is known is that, in the late phase of chronic 

pancreatitis, an apparent prominence of the endocrine cells is observed, probably due to the 

preferential loss of acinar tissue. This "pseudohypertrophy" may be difficult to distinguish from 

neuroendocrine microadenoma (figure 3). Therefore, data related to the incidence of cancer in this 

setting may be influenced by the potential of incorrect diagnosis of NEN.  



A case-control study including 162 sporadic pancreatic NENs and 648 controls showed that history 

of chronic pancreatitis (OR =  8.6; 95% CI, 1.4–51) and diabetes (OR =  40.1; 95%  CI, 4.8–328.9) 

resulted to be independent risk factors for the development of this tumor [94]. Although the 

association between pancreatic NENs and chronic pancreatitis has been not confirmed in other 

studies, a recent meta-analysis showed that history of diabetes mellitus was associated with an 

increased risk of sporadic pancreatic NENs (pooled adjusted odds ratio 2.74, 95% CI: 1.63-4.62) 

[95]. It is still unclear whether diabetes is a real risk factor or a secondary effect due to the 

pancreatic tumor. Furthermore, it is possible that chronic inflammation and oxidative stress may 

contribute to the pathogenesis of both diabetes and pancreatic NENs through the induction of DNA 

mutation [96]. A recent study showed that in genetically engineered transgenic mice, chronic 

inflammation in the absence of TP53 developed in all animals several subtypes of pancreatic 

cancer, including NENs [97].  

 

3.3 Small bowel and appendix NEN 

Several chronic inflammatory bowel conditions represent a potential risk factor predisposing to the 

development of small bowel NENs [98]. 

In celiac disease (CD), an immune-mediated disorder involving the small bowel, serotonin-

producing neuroendocrine cells are increased [99]. Well-oriented bioptic samples taken from 17 

patients affected by refractory CD, were compared with 84 non-healthy and 16 healthy control 

subjects. In this study the number of neuroendocrine cells was absolutely more represented in 

refractory CD. A higher expression was also observed in case of CD before gluten-free diet that 

restored to normality after [99]. This finding was indicative of a possible etiologic role of the 

immune system in the proliferative activity of these cells [100]. In addition, significantly higher 

serotonin levels have been described in patients with CD compared to healthy subjects [101]. In a 

large population-based cohort study, the standardized incidence ratio for small-intestinal cancer 

(adenocarcinomas, stromal tumors and NENs) was more than fourfold in patients with CD. 

However, the association between CD and NENs is doubtful. Indeed, in this study there are no data 

on the number of patients with NENs [102]. Despite the hyperplasia of entero-chromaffin cells has 

been demonstrated in CD, only few case reports have been published describing CD subjects with 

small bowel NENs [103-107]. 

Population-based studies [108, 109] have shown that the incidence of NENs is significantly 

increased in inflammatory bowel diseases (IBD) involving the small bowel. Among a cohort of 

20.917 patients affected by Crohn's disease in the time frame between 1978 and 2010, 23 small 

bowel adenocarcinoma and 9 NENs were observed, resulting, respectively in a 14-fold and 7-fold 



increased neoplastic risk, as compared to the general population. In both histotypes the severity of 

the surrounding inflammatory disease was moderate to severe and its distribution was extensive. 

Furthermore, while almost all adenocarcinomas arose in mucosal areas affected by Crohn's disease, 

78% of NENs developed far from them. This suggests that the development of NENs may be 

secondary to the effects of pro-inflammatory cytokines, rather than a local inflammatory effect from 

adjacent Crohn's disease. In the same study 42.872 cases of ulcerative colitis were also analyzed 

and no significantly increased risk of cancer was found among those patients [108]. 

The appendix is the third more frequent site of gastrointestinal-NENs. Appendiceal NENs are often 

diagnosed incidentally on histopathological examination of appendectomy specimens. In about two 

thirds of cases, they are found at the tip of the organ and are not the direct cause of the appendicitis 

[110]. In case of acute appendicitis, the number of enterochromaffin cells, that populate the crypt 

epithelium, and of subepithelial neuroendocrine cells is depleted [111]. Although no clear data are 

available concerning a potential association between chronic appendiceal inflammation and risk of 

NEN, the inflammation caused by other disease, such as Crohn’s disease, represents a favorable 

situation for the development of the appendiceal NEN. Indeed, it seems to occur more frequently in 

the samples from inflamed surrounding than that reported in autopsy studies [112]. 

A recent meta-analysis of observational studies provides additional evidence for a link between 

inflammation and intestinal NENs. This study reported that aspirin use was associated with a 

significant decrease in the risk of several tumors, including small intestinal NENs (RR = 0.17, 95% 

CI: 0.05–0.58) [113].  

 

3.4 Colonic and rectal NEN 

During inflammatory diseases affecting the colonic and rectal tube, as IBD, post-dysenteric colitis, 

Campylobacter enteritis and irritable bowel syndrome, an increase in number of neuroendocrine 

cells (figure 4) can be observed [114]. In all these cases, there is a disruption of the intestinal 

epithelial barrier that dysregulates innate and immune responses toward the enteric microbiota. This 

favors the release of several cytokines, that finally affect the commitment of multipotential-

secretory precursor cells and promote the differentiation of enteroendocrine precursor cells [115]. 

This phenomenon was deepened with in vitro and in vivo models of intestinal inflammation [114], 

where it was shown that PI3K/Akt signaling and autophagy are implicated in the increase of colonic 

intestinal epithelial cells expressing chromogranin. Indeed, the concomitant treatment of interferon-

γ plus TNF-α increased the number of chromogranin A-positive cells in the distal colon of colitic 

mice and this determined an increase of pAkt (Ser473) and pAkt(Thr308), an augmented 



phosphorylation of β-catenin at Ser552 [116], GSK3β at Ser9 [117] and 14-3-3ζ at Ser58 [118], 

three well-known targets of Akt, and enhanced PTEN phosphorylation. p-PTEN is the inactive 

form, that causes PI3K/Akt signaling activation in chromogranin A-positive cells. The reason why 

cytosolic chromogranin A increases in case of inflammation is not clear. It was supposed that 

entero-endocrine cells, with their capacity of antigen internalization, could represent a relevant 

sensor for the mucosa during inflammation. Similarly, in humans neuroendocrine differentiation is 

relatively common and represents an early event in the ulcerative-colitis-associated carcinogenesis, 

where chromogranin A and p53 are up-regulated [119]. 

Discordant opinions exist on whether the coexistence of IBD (both ulcerative colitis and Crohn's 

disease) and colonic and rectal NEN is only coincidental. According to some authors [120], an 

apparent high rate of incidental NENs in IBD patients could be explained only because they 

frequently undergo intestinal surgery. Indeed, adjusted for resection type, sex and age, a lower 

prevalence of NENs in IBD patients has been reported compared to non-IBD patients (diverticulitis 

or ischemic). 

Other studies reported an increased risk (up to 15 times) of intestinal NENs in IBD. While 

neuroendocrine tumors are more common in segments that are free from inflammation [121, 122], 

neuroendocrine carcinomas develop mainly in inflamed mucosa [122, 123], just like what it 

happens for non-neuroendocrine cancer. Although NENs occur in ulcerative colitis [124] as well as 

during Crohn's disease, some authors are inclined to think that the incidence is higher in Crohn's 

disease, triggered by prolonged inflammation, even in distant bowel segments [121, 125].  

 

 

4. Prognostic value of inflammatory markers in NENs 

In support of a role of inflammation in tumor development and progression, several studies 

recognized few inflammatory biomarkers as independent prognostic markers in patients with 

tumors [126]. Most of these data have been recently confirmed in NENs. Neutrophils, the most 

abundant white blood cell subset, appear to have an active role in tumorigenesis and tumor 

progression by secreting several cytokines, able to promote tumor cell proliferation, local invasion, 

angiogenesis and resistance to chemotherapy [127]. On the other hand lymphocytes play an 

important role in cell-mediated immune response activation. CD4+ T lymphocytes are involved in 

senescence and cancer immune-surveillance, detecting and eradicating precancerous and cancerous 

cells, also by activation of CD8+ T lymphocytes. Lymphocyte infiltration is common in NENs, as 

assessed by immunohistochemistry for CD3, CD4, CD8, and CD56 [39, 128]. In patients with 



intermediate-grade NENs a prominent tumor infiltration of T cells (CD3+) was associated with 

improved regression free survival, while a low level of infiltrating regulatory T cells in liver 

metastases was a predictor of prolonged survival [39]. 

Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are systemic 

inflammation markers with a prognostic value in several neoplasms. Some studies addressed the 

prognostic relevance of NLR and PLR in GEP NENs, demonstrating that these parameters could be 

useful in identifying patients with a worse outcome [129, 130]. In a retrospective study including 

172 patients with pancreatic NENs, elevated NLR and PLR were both associated with advanced 

tumor stage and high grade. In the univariate analysis, elevated NLR and PLR were both 

significantly associated with decreased overall survival and disease free survival, while in the 

multivariate analysis, the preoperative NLR, but not the PLR, was an independent risk factor. In 

detail, a preoperative NLR >2.31 was predictive of significantly worse survival in the subgroup of 

patients with stage I/II or grade 1/2 tumors. Moreover, predictive models based on both the NLR 

and conventional stratification systems, such as the WHO classification and AJCC stage, showed 

improved predictive power as compared to the stratification systems alone [131].  

Recently, increased NLR was found to be associated to advanced T stage, lymph node metastasis, 

tumor thrombus formation and advanced grade in pancreatic NENs. In addition, the recurrence-free 

survival of these patients with high NLR was significantly lower compared with those with low 

NLR [132]. Accordingly, in patients with gastric NEN, NLR was an independent prognostic factor 

for recurrence-free survival and overall survival [133].  

The gamma-glutamyltransferase (GGT) level is a biomarker of oxidative stress and correlates with 

inflammation in the extracellular tissue microenvironment. GGT can play a relevant role in cancer 

progression and biological behaviour, and is considered a significant prognostic biomarker in 

several tumors. On the other hand, lymphocytopenia, indicating a state of depressed immune 

function, could negatively affect survival of cancer patients because of a reduced host response. 

Therefore, the GGT to lymphocyte ratio index (GLRI) could represent a potentially useful 

prognostic biomarker in oncology. In a retrospective study including 125 non-functioning 

pancreatic NENs undergoing curative resection, GLRI was found to be an independent predictor of 

overall survival and disease free survival. Moreover, preoperative GLRI was associated with 

advanced tumor stage [134]. 

C reactive protein (CRP) is an acute-phase protein, produced in the liver, whose synthesis is 

triggered by secretion of IL-6 from macrophages and T cells. Any type of chronic or acute 

inflammatory process can activate acute phase response, making CRP levels a sensitive but 

unspecific marker. CRP has been shown to be an independent prognostic marker in patients with 



secreting (insulinoma, gastrinoma and other rare functioning tumours) and non-secreting sporadic 

pancreatic NENs, since it correlated with overall survival. Moreover in univariate Cox regression, 

pancreatic NEN patients with elevated CRP levels had a significantly higher hazard ratio for death 

[135]. 

Angiopoietins (Ang)-1 and -2, and the tyrosine kinase receptor Tie-2 family are involved in 

angiogenesis that in turn is known to have a key function in tumorigenesis. In addition, this system 

has a relevant role in the inflammatory processes, with a close loop relationship between 

angiogenesis and inflammation, particularly in IBD. Interaction of Ang-1 with Tie-2 promotes 

endothelial cell survival, while Ang-2 exerts a marked pro-angiogenic effect, when VEGF is 

present, and is involved in chemo-attraction of monocytes in neoplastic tissue. Monocytes 

expressing Tie-2 and recruited into inflamed or neoplastic tissues can promote angiogenesis. 

Moreover, there is a soluble form of Tie-2 that has been found increased in several conditions 

including cancer. GEP NEN patients showed enhanced serum levels of soluble form of Tie-2, Ang-

1, and Ang-2, compared to age-matched healthy controls. Soluble Tie-2 and Ang-2 levels were 

significantly higher in GEP NENs with metastases compared to those without metastases. 

Furthermore, Ang-1, Ang-2, and Tie-2 expression was found to be increased in freshly isolated 

tumor cells from GEP NEN. Interestingly, an enhanced expression and function of Tie-2 was 

detected in monocytes from GEP NEN patients. Overall these data would suggest that the Ang/Tie-

2 system is involved in the growth and dissemination of GEP NENs, also favouring the recruitment 

of Tie-2(+) monocytes to the tumor site, where they can promote inflammation and angiogenesis 

[136]. Similarly, Srirajaskanthan R et al. found Ang-2 levels to be increased in patients with well or 

moderately differentiated NENs, mostly of pancreatic, duodenal or jejunum origin, as compared to 

healthy controls, and to be significantly higher in presence of metastases as compared to non-

disseminated tumours. Moreover patients with higher Ang-2 levels (>4756  pg/ml) showed a shorter 

time to disease progression, overall suggesting a potential prognostic role for Ang-2 in patients with 

NENs [137]. 

 

 

5. Therapeutic applications with new checkpoint inhibitors 

Unravelling and understanding the mechanisms implicated in the immune response to neoplasms, 

induced by tumour-associated antigens, is crucial also in the context of NENs, for gaining new 

knowledge on tumour biology and for improving the management with the perspective of an 

immunotherapeutic approach. The therapeutic implications of the involvement of immune system in 

patients with NENs are known since the introduction of interferon-α biotherapy, which inhibits cell 



cycle progression and hormone synthesis in tumor cells, reduces neoangiogenesis, and activates 

immune cells [138]. Somatostatin receptors, which are targets widely used for the diagnosis and 

therapy of NETs [139-142], are also present in immune cells and able to mediate immune and 

inflammatory reactions [143]. Monocyte-derived cells and mature T-lymphocytes express 

somatostatin receptors -2 and -3, respectively. Human lymphoid follicle centers, thymus, and spleen 

express both receptors as well. In thymus, several evidences suggest the potential physiological role 

of somatostatin receptors in thymocytes maturation [144]. Although the effects of somatostatin 

analogues on immune system are not well defined in patients with NETs, these compounds are able 

to potentiate the cytotoxicity of interleukin-2 activated peripheral blood mononuclear cells in 

patients with medullary thyroid cancer [145].   

The occurrence of immune response to NENs is demonstrated by the frequent finding of 

lymphocyte infiltration within the tumour, as discussed in the previous paragraphs. In the view of a 

potential immunotherapy, specific tumour-associated antigens recognised by CD8+ T cells have 

been identified in patients with midgut NENs [128].  

NENs can elude immunosurveillance regardless of the immunocompetence of the host. In 

pancreatic NENs, HLA class I antigen expression was lost or reduced in most of the cases, with the 

loss of beta-2microglobulin as the most frequent alteration in HLA class I phenotype. HLA class II 

antigens seemed not to contribute to the biology of NENs, since they were not expressed in all 

investigated samples [36]. However, in another study, MHC class II expression on pancreatic tumor 

cells correlated significantly with severity and activity of intratumoral inflammation, as well as with 

the infiltration of CD4+ T lymphocytes [146].  

Anti-tumor immune responses can be impaired by regulatory T cells. Midgut carcinoid patients 

exhibited increased frequencies of circulating regulatory T cells and patients’ T cells were less 

responsive to polyclonal activation and had a decreased proliferative capacity compared to controls. 

Moreover, circulating T helper-promoting cytokines were reduced [40]. 

Programmed death 1 (PD-1), its ligands (PD-L1 and PD-L2) and cytotoxic T-lymphocyte antigen 4 

(CTLA-4) are immunosuppressive molecules with a relevant role in the host immune response to 

tumors, inhibiting T-cell activation. Lamarca A. et al. found that one third of 62 patients with well-

differentiated small intestinal NEN expressed PD-L1 in tumor or tumor-infiltrating lymphocytes 

[147]. Expression of PD-L1 was observed also in 14% of tumors and in 27% of tumor-associated 

immune cells in patients with poorly-differentiated neuroendocrine carcinomas of the digestive 

system [148]. In GEP NEN patients, PD-L1 expression was found significantly associated with a 

high-grade WHO classification (G3) but not with gender, primary site, or lymph node status. 

Moreover, G3 tumors were characterized by strong PD-L1 expression in intra/peri-tumoral 



infiltrating immune cells [149]. Likewise, in a study of 32 metastatic GEP NEN, the expression of 

PD-L1, observed in 22% of patients, was associated with higher WHO tumor grade (grade 3) and 

had both predictive and prognostic value for survival of patients [150]. In 244 GEP NENs, mostly 

of the small intestine and pancreas and predominantly G1-G2, high tumor-infiltrating lymphocytes 

(19.6%) and high PD-1 (16.1%) expression significantly correlated with shorter patient survival and 

with a higher grading. In the same study, expression of PD-L1 (8.7%) showed a trend toward a 

shorter patient survival [151]. Furthermore, Sampedro Nunez et al. found PD-1/PD-L1 expressed in 

1 to 8% of GEP NENs. In the same patients, PD-1 tumor expression was higher in metastatic 

patients, while PD-1 expression in peripheral blood monocytes was associated with tumor 

progression [152].  

Conversely, in 66 patients with GEP NEN, mostly of pancreatic origin, PD-L1 expression was 

observed in 9%, while PD-L2 was present in 50% with no association with disease stage at 

diagnosis or survival. However, they found an inverse relationship between hypoxia and 

angiogenesis biomarkers and PD ligands, as PD-L1 positive tumors had lower VEGF-A, Hif-1a and 

Carbonic Anhydrase (CaIX) expression, while PD-L2 positive tumours had lower CaIX and lower 

proportion of vascular invasion [153]. Recently, in 102 NENs of duodenum, jejunum and ileum, 

expression of PD-L1 in ≥1% and ≥50% of tumor cells was found in 39% and 14% of cases 

respectively, with an intratumor host immune response found to be apparently absent in 34% and 

intense in 21% of cases. PD-L1 expression and extent of immune infiltration were significantly 

higher in duodenal as compared with jejunal/ileal NENs.  However, neither PD-L1 expression nor 

the degree of immune infiltration showed any prognostic significance [154]. 

Antibodies targeting PD-1 (pembrolizumab, nivolumab, PDR001, JS001), PD-L1 (avelumab, 

durvalumab) or CTLA-4 (ipilimumab, tremelimumab) have been recently used in several cancers 

with promising results, and few trials are now in progress for GEP NENs (table 1). In a phase Ib 

study (KEYNOTE-028), that included patients with various advanced solid tumors, pembrolizumab 

(10 mg/kg every 2 weeks) resulted in an objective response rate of 12% out of 25 advanced PD-L1-

positive carcinoid patients and 6% out of 16 pancreatic NEN patients. None of the carcinoid and 

pancreatic NEN patients reached complete remission, whereas 60% and 88% of the patients, 

respectively, had stable disease [155]. 

Taking into consideration that, in some studies, PD-1/PD-L1 expression appears to correlate with 

higher NEN grade and with reduced survival, immunotherapy targeting this system might be 

interesting for this subgroup of tumors with a poor prognosis. Nevertheless, more knowledge about 

the composite immune landscape of these heterogeneous tumors needs to be gained in order to 

identify the subset of NEN patients most likely to benefit from immunotherapeutic approach.  



 

6. Conclusions 

Several evidences suggest a relationship between neuroendocrine system and inflammation, which 

in turn can play a relevant role in tumorigenesis. Inflammatory mediators, which are produced by 

the NEN or as part of the host innate immune response, can favour angiogenesis, cancer progression 

and metastatic spread, and can promote immune editing. On the other hand, a balanced immune 

system represents a relevant step in cancer prevention through the elimination of dysplastic and 

cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. 

Although several studies reported an increased risk of GEP NENs in patients with gastrointestinal 

inflammatory diseases (chronic atrophic gastritis, chronic pancreatitis, celiac disease, Crohn’s 

disease and ulcerative colitis), most of these studies are retrospective and characterized by potential 

biases. Therefore, further studies are required to improve the level of evidence, particularly 

concerning the association between NENs and IBD. 

The modulation of the TME may represent an innovative therapeutic strategy in G3 NENs, through 

the use of checkpoint inhibitors binding to PD-1, PD-L1 or CTLA-4, thereby preventing tumors to 

evade the immune system. This aspect will be further defined with the completion of several 

ongoing clinical trials. 
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Figure legends: 

 

Figure 1: Components of tumor microenvironment and their role in carcinogenesis and 

tumor progression through modulation of inflammation. 

 

Figure 2: Gastric hyperplastic changes of ECL cells. (a) A mild atrophic gastritis is 

shown (hematoxylin and eosin stain, 10x magnification). (b) At higher magnification (hematoxylin 

and eosin stain, 20x magnification), few cells with a clear perinuclear halo can be observed 

(arrows). (c) They are more evident on immunohistochemistry with chromogranin (20x 

magnification): neuroendocrine cells display both linear (arrow) and micronodular arrangement (*). 

 

Figure 3: Pseudohypertophy of neuroendocrine cells in chronic pancreatitis. (a) An 

example of chronic pancreatitis, where exocrine pancreatic tissue is partially replaced by fibrosis 

(hematoxylin and eosin stain, 20x magnification). (b) Langerhans islands seem to be  hyperplastic 

and more evident on immunohistochemistry with chromogranin (20x magnification).   

 

Figure 4: Inflammatory bowel diseases and NEN. (a) The rectal submucosa was occupied 

by a neuroendocrine carcinoma (positive to chromogranin) in a patient with a history of ulcerative 

colitis of at least 20 years. In the mucosa overlying the neoplastic lesion, neuroendocrine cells were 

normally represented (20x magnification). (b) Far from this lesion, an increased number of 

neuroendocrine cells was detected (40 x magnification). 
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Table 1: Ongoing clinical trials of PD-1/PD-L1 or CTLA-4 checkpoint inhibitors in 

gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) 

 

Study Phase Drug Status Clinicaltrials.gov 

identifier 

Open-label study in patients with metastatic 

high grade NENs 

2 Pembrolizumab 

 

Recruiting NCT02939651 

Recurrent high grade neuroendocrine 

carcinoma 

2 Pembrolizumab Active NCT03190213 

Chemotherapy naïve patients with metastatic 

or unresectable high grade GEP or lung 

(excluding small cell) neuroendocrine 

carcinoma 

2 Pembrolizumab + 

cisplatin or carboplatin 

+ etoposide 

Not yet 

recruiting 

NCT03901378 

High grade neuroendocrine carcinomas 2 Pembrolizumab alone 

or Pembrolizumab + 

Irinotecan/Paclitaxel 

Recruiting NCT03136055 

Advanced GEP NENs 1/2 Pembrolizumab + 

Lanreotide depot 90mg 

Recruiting NCT03043664 

Open-label study in patients with advanced 

or metastatic, well-differentiated, non-

functional NENs of pancreatic, 

gastrointestinal, or thoracic origin or poorly-

differentiated GEP neuroendocrine 

carcinoma, that have progressed on prior 

treatment. 

2 PDR001 

 

 

 

Active NCT02955069 

Advanced NENs following failure of first-

line 

1 JS001  

 

 

Recruiting NCT03167853 

Open-label, single arm study of Nivolumab 

in combination with Ipilimumab in subjects 

with advanced NENs 

2 Nivolumab + 

Ipilimumab 

Recruiting NCT03420521 

A GCO trial exploring the efficacy and safety 

of Nivolumab monotherapy or Nivolumab 

plus Ipilimumab in pre-treated patients with 

advanced, refractory pulmonary or GEP 

poorly differentiated neuroendocrine tumors 

2 Nivolumab +/- 

Ipilimumab 

Recruiting NCT03591731 

Gastrointestinal, neuro-endocrine and 

gynaecological cancers 

2 Ipilimumab + 

Nivolumab 

Recruiting NCT02923934 

Recurrent/refractory small-cell lung cancer 

and advanced neuroendocrine tumors 

2 Nivolumab + 

Temozolomide 

Recruiting NCT03728361 

Advanced GEP and pulmonary NENs 2 Durvalumab + 

Tremelimumab 

Recruiting NCT03095274 

Unresectable/metastatic, progressive grade 2-

3 NENs 

2 Avelumab Recruiting NCT03278379 

Advanced, metastatic high grade 

neuroendocrine carcinomas (NEC G3) in 

progression after first line chemotherapy 

2 Avelumab Recruiting NCT03352934 

Unresectable/metastatic, progressive, poorly 

differentiated grade 3 neuroendocrine 

carcinomas 

1/2 Avelumab Recruiting NCT03278405 

Metastatic GEP neuroendocrine carcinoma 

(NEC G3) as second-line treatment after 

failing to etoposide+cisplatin: integration of 

genomic analysis to identify predictive 

molecular subtypes 

2 Avelumab Recruiting NCT03147404 
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MEDIATORS

Cytokines

Chemokines

NFk-B

STAT3

Cyclooxygenase-2

Reactive oxygen and nitrogen species

-Modulate tumor cell growth

-Promote tumor cell invasion

-Stimulate angiogenesis

-Make tumor cells more resistant to apoptosis

-Maintain a pro-carcinogenic inflammatory TME

CAFs AND EXTRACELLULAR MATRIX

-Promote excessive local or distant fibrosis

-Favour tumor progression, promoting cellular transformation

and metastases

VASCULATURE AND 
TUMOR-INDUCED ANGIOGENESIS

-Deliver oxygen

and nutrients

-Contribute to the spread of

cancer

-Promote immune cell 

infiltrating

TUMOR-INFILTRATING 
IMMUNE CELLS

Macrophages

Lymphocytes

Dendritic cells

Neutrophils

Natural killers

        ANTI- AND PRO-TUMOR ROLES:   

-Modulate proliferation of cancer and stromal

    cells

-Release of pro- or anti-inflammatory molecules 

-Stimulate angiogenesis

-Facilitate tumor cell dissemination and

    tumor immune evasion
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Abstract 

Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine 

system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict 

interaction between neuroendocrine system and inflammation, which can play an important role in 

NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, 

can favor cancer induction and progression, and can promote immune editing. On the other hand, a 

balanced immune system represents a relevant step in cancer prevention through the elimination of 

dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-

tumorigenic. In this review, we provide an overview concerning the complex interplay between 

inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical 

implications in these tumors. 
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1. Introduction 

Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine 

system. NENs develop most commonly in the gastroenteropancreatic (GEP) tract [1, 2]. Despite the 

seven-fold increase in NEN incidence in the last four decades, no clear risk factors have been 

recognized for these tumors. Research over the last decades has underlined the dual role of 

inflammation in the development and progression of malignancies. Chronic and unbalanced 

inflammation enhances tumorigenesis. This relationship could be hypothesized also in GEP NEN 

development, as chronic inflammatory diseases and chronic gastritis are well known predisposing 

conditions for these tumors. However, under specific inflammatory conditions, immune cells are 

able to eliminate dysplastic and cancer cells. In this review, we provide an overview concerning the 

complex interplay between inflammation and GEP NENs, focusing on the tumorigenesis and 

clinical implications in these tumors.  

 

 

2. Role of microenvironment in tumorigenesis and progression of GEP NENs 

through modulation of inflammation 

The tumor microenvironment (TME) is a dynamic compartment that develops during cancer 

evolution. TME is not simply constituted by neoplastic cells, but it includes blood and lymphatic 

vascular networks, extracellular matrix, cancer-associated fibroblasts (CAFs), adipose cells, 

neuroendocrine cells, immune-inflammatory cells and different molecular players, such as pro-

inflammatory and oncogenic mediators [3]. The interplay between all these elements, in particular 

the inflammatory microenvironment, is crucial to shape the fate and the evolution of several tumors 

(figure 1). Although underestimated until now, TME has a relevant role in tumorigenesis, 

progression and response to the therapy in GEP NENs [4, 5].  

 

2.1 Vasculature 

Blood and lymphatic vessels deliver nutrients and oxygen, necessary for cancer survival, and are 

relevant for tumor progression and the development of immune cell infiltration. The hypoxic tumor 

microenvironment prompts the release of proangiogenic factors, like vascular endothelial growth 

factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) and 

transforming growth factor β (TGF-β), promoting the rapid and aberrant vasculature formation 

within the tumor [6]. NENs are highly vascularized. The development of new blood vessels 

involves different proangiogenic factors. The best known and characterized is surely VEGF and its 

receptors (VEGFRs). VEGF overexpression is generally associated to an increased microvascular 



density, leading to tumor progression. GEP NENs are characterized by a marked expression of 

VEGF/VEGFRs [7, 8], but the relationship between VEGF, tumor vascularization and prognosis is 

not straightforward. In gastrointestinal NENs this correlation is unclear, only in pancreatic NENs it 

has been reported that VEGF expression is higher in benign and low-grade tumors. Therefore, this 

condition results to be associated to a good prognosis and prolonged survival [9, 10]. A 

comprehensive explanation for this paradox could be that in pancreatic NENs the vascular density is 

more likely a marker of differentiation than a marker of aggressiveness. FGF, PDGF and TGF-β are 

also strongly expressed in GEP-NENs [4].  

In order to study in vivo the tumor-induced angiogenesis, we have developed an innovative model 

through the xenograft of human NEN cells into Tg(fli1a:EGFP)
y1

 [11] zebrafish embryos. This 

transgenic line, expressing the enhanced green fluorescent protein (EGFP) in the endothelial cells of 

the entire vascular tree, offers the possibility to estimate the proangiogenic potential of injected 

tumor cells and to analyze the contribution of the TME to the tumor progression in a living selective 

microenvironment [12-14]. 

 

2.2 Reactive stromal cells 

Extracellular matrix is structurally constituted by interstitial matrix, which mainly includes stromal 

cells, and by basement membrane. Extracellular matrix contains soluble molecules, such as 

chemokines, matrix metalloproteinases, protease inhibitors and growth factors. An abnormal 

extracellular matrix favors tumor progression, promoting cellular transformation and metastasis 

[15]. Among different factors involved in extracellular matrix remodeling, proteoglycans play 

different roles in cancer. In GEP NENs the expression of syndecan 2 and glypican 1 proteoglycans 

has been reported to be high in well-differentiated tumors. Their levels correlated positively with 

patient survival [16]. In a recent paper, the prometastatic enzyme heparanase, a glucuronidase, 

resulted to be overexpressed in well- but not in poorly differentiated NENs [17]. 

CAFs, a population of activated fibroblasts (also known as myofibroblasts), represent the major 

non-cancer cells within the tumor stroma. They share properties with fibroblast stimulated by 

inflammation or wound healing. Indeed, they can secrete a variety of mesenchyme-specific proteins 

[18], chemokines (CXCL-8 and CXCL-12), cytokines (interleukin-6) and growth factors, including 

VEGF, TGF-β, FGF, hepatocyte growth factor and epidermal growth factor (EGF). These factors 

are involved in paracrine signaling or activate CAFs in autocrine loops. The crosstalk between 

CAFs and cancer cells is responsible for the promotion and maintaining of the activated phenotype 

of fibroblasts and, in turn, the production of soluble factors by CAFs fosters the cancer growth and 

progression, promoting the remodeling of extracellular matrix, cell proliferation and angiogenesis 



[19]. Activated fibroblasts are recruited to the tumor site miming excessive fibrosis, as a 

consequence of inflammation and aging [20]. It has been observed that NENs are often associated 

with local or distant fibrosis and that the crosstalk between NEN cells and fibroblasts has a pivotal 

role in fibrogenesis [21]. The most common examples of fibrosis are mesenteric fibrosis, associated 

with small bowel NENs in up to 50% of cases [22], and carcinoid heart disease, characterized by 

development of fibrotic endocardial plaques, that affects up to 40% of patients with carcinoid 

syndrome [23, 24]. Several factors take part in NEN-related fibrogenesis, such as serotonin, 

connective tissue growth factor, PDGF, insulin-like growth factors (IGFs), FGF and VEGF [21]. A 

strict interaction between NEN cells and fibroblasts, with a mutual induction of cell proliferation, is 

relevant for these events [4]. 

The TME exerts a significant role in every step of tumorigenesis and progression through reciprocal 

interactions and modulation of chronic inflammation [25]. It is well-known the dual role of immune 

infiltration in tumors [26]. An imbalance of the immune system may cause chronic inflammation 

with a pro-oncogenic environment, on the contrary a well-regulated adaptive immune response is 

considered anti-tumorigenic [27]. Immune surveillance can eliminate some pre-malignant lesions 

[28], but over time, tumor cells can undergo a process called immune editing [29], becoming 

resistant to the first line of defense and able to manipulate immune cells through secretion of 

chemokine and cytokines [26]. Therefore, an inflammatory response may be either pro- or anti-

tumorigenic, depending on the overall balance of inflammatory mediators and on the type of 

immune cells infiltrating the tumor. These aspects have been also reported in GEP-NENs, where 

chronic inflammation is a relevant hallmark [1]. 

Tumor-infiltrating immune cells include T and B lymphocytes, natural killer (NK) cells, 

macrophages, dendritic cells (DC) and neutrophils [30, 31]. In a contest of chronic inflammation, 

leukocytes provide directly and indirectly several factors that can promote proliferation of cancer 

and stromal cells [32], stimulate angiogenesis, facilitate cancer cell dissemination and tumor 

immune evasion [33].  

Tumor-infiltrating lymphocytes contain various proportions of T helper cells (CD4+) and cytotoxic 

T cells (CD8+). Their presence is associated with a better prognosis in a wide range of solid tumors 

[25, 30, 34]. In NENs, particularly in carcinoids of lung and midgut, tumor-infiltrating lymphocytes 

(CD4+, CD8+ and CD20+) are often found and its occurrence correlates inversely with the presence 

of metastases [35]. Also pancreatic NENs commonly showed an intratumoral infiltration with 

CD4+, CD8+ and CD3+ T cells [36]. A recent paper characterized T-cell subpopulations in both 

intra- and extra-tumoral compartments in small intestine and pancreatic NENs through a panel of T-

cell markers, comprising CD3 (general T-cell marker), CD45RO (T memory), CD8 (cytotoxic T 



cell), and FOXP3 (T regulatory cell). T-cells (CD3+, CD45RO+ and CD8+) were observed in both 

small intestine and pancreatic NENs, with a more relevant infiltration in pancreatic NENs, 

particularly in the extratumoral compartment. Levels of FOXP3 T regulatory cell infiltration were 

low in both tumors [37]. However, the expression of regulatory T cells appears to be not marginal 

in NENs, particularly in aggressive forms. These cells can stimulate metastasis formation and 

mediate the suppression of the immune system [38-40]. In another series of NENs, pancreatic 

intratumoral regulatory T cell infiltration was present in 55% of intermediate/high-grade tumors, 

whereas only in 16% of low-grade NENs [39]. Patients with midgut carcinoid showed higher levels 

of circulating regulatory T cells compared to healthy donors, particularly in patients with a high 

tumor burden [40].  

Macrophages represent a remarkable portion in tumor mass. These cells display a substantial grade 

of plasticity, with different state of activation in response to a variety of external stimuli. Indeed, 

macrophages can be polarized into type I (M1) and type II (M2) [41]. M1 macrophages exert an 

anti-tumor effect, through the production of several pro-inflammatory cytokines, chemokines, and 

effector molecules, such as interleukin-1 (IL-1), IL-12, IL-23, TNF-, CXCL10, iNOS and 

MHCI/II. In contrast, M2 macrophages promote tumor proliferation and progression, tumor 

angiogenesis, metastasis formation and immune suppression, through the expression of a wide 

spectrum of anti-inflammatory molecules, such as IL-10, TGF-β and arginase-1 [41, 42]. M2 

macrophages can also switch T-lymphocytes to regulatory T cells, allowing the suppression of 

tumor immunity [43]. Numerous studies have demonstrated in most human cancers that a high 

presence of infiltrated macrophages is linked with poor prognosis [26, 44]. In pancreatic NENs, 

tumor-associated macrophages infiltration correlates with proliferative activity, tumor grade, 

presence of liver metastases, angiogenesis and recurrence after surgery [45-47]. In addition, low 

tumor-associated macrophages, low peritumoral CD4+ cell and high intratumoral CD8+ T cell 

infiltration was associated with prolonged disease-free and/or disease-specific survival in pancreatic 

NENs [48]. 

DCs are key mediators of the adaptive and innate immune responses, therefore, these cells play a 

pivotal role in shaping the immune response. DCs are designed to present antigens and provide 

different signals, such as co-stimulatory molecules and cytokines, essential for T cell activation, to 

interact with other immune cells, including NK and B cells [49]. Tumor-infiltrating DCs are present 

in different types of solid tumors and can be associated with both a better and poor prognosis [50]. 

Besides, phenotype and amount of DCs are dynamic over time and may considerably influence 

tumor progression [49]. Although a complete characterization of DCs has never been reported in 

GEP NENs, Schott et al. described that vaccination with tumor lysate-pulsed DCs induced a clear 



antitumor effect in a patient with pancreatic neuroendocrine carcinoma [51]. Interestingly, 

Papewalis and colleagues identified a population of DCs with NK cell properties, expressing the 

CD56 NK marker [52]. Afterwards, it has been reported higher numbers of circulating  

CD14+/CD56+ monocytes in 4 patients with gastrointestinal neuroendocrine cancer compared to 

healthy controls [53]. 

NK cells are a subset of innate lymphoid cells and represent about 5–15% of the circulating blood 

mononuclear cell population. These cells are involved in the first line of defense against infection 

and cancer [54, 55]. It has been reported that NK cell activity, expressed as percentage of 

cytotoxicity in patients with gastrointestinal NENs, is affected by the type of gastrointestinal 

hormones produced and by the course of the disease with an impairment during tumor progression 

[56]. In addition, serotonin, the hormone most frequently related to carcinoid syndrome in NENs, 

stimulates migration of NK cell [57] and protects these cells against oxidatively induced functional 

inhibition and apoptosis [58]. 

 

2.3 Inflammatory mediators 

The interplay between immune cell components and tumor cells is well orchestrated and several 

molecular mediators and pathways take part in inflammation-mediated cancer and immune 

modulation. Common inflammatory mediators are cytokines, chemokines, nuclear factor kappa B 

(NFk-B), STAT3, cyclooxygenase-2 and reactive oxygen and nitrogen species. An inflammatory 

stimulus causes the recruitment and activation of different immune cells (macrophages, DCs and 

neutrophils), which release reactive oxygen and nitrogen species. The over-production of these 

oxidative agents causes genomic instability, the increase of angiogenesis and transcriptional 

activation of proto-oncogenes, concurring to inflammation-induced carcinogenesis and tumor 

metastatic potential [59].  

Chronic inflammation plays a critical role in the occurrence of GEP NENs through the network of 

different cytokines and growth factors, which modulate tumor cell growth [60], such as TNF-α, IL-

2, IL-6, IL-8, IL-1β [61-65]. Noteworthy, cytokine genes are highly polymorphic. Single nucleotide 

polymorphisms affect cytokine expression and function regulation. IL-2–330G/G genotype was 

associated to higher IL-2 serum levels and an higher risk to develop GEP NENs compared to 

healthy volunteers. Interestingly, highest IL-2 serum levels were observed in patients with 

functional NENs [61]. Similar associations have been observed between IL-6–174G/G, TNF-α-

1031C and IL-1β-511C/T genotypes, high circulating levels of corresponding cytokines and an 

increased risk to develop GEP NENs [62, 66, 67]. GEP NENs are characterized by an abundant 

production and secretion of growth factors, in particular VEGF, EGF, PDGF, IGF, FGF and TGF-β, 



which, in combination with high level of cytokines, connect chronic inflammation to 

gastrointestinal carcinogenesis [68-71].  

The pro-inflammatory mediators, produced during chronic inflammation, activate several signaling 

cascades, such as NFk-B and STAT3 pathways, that are central in the development and maintaining 

of the TME. NFk-B is a transcription factor that, following an inflammatory stimulus, translocates 

to the nucleus, where it activates transcription of target genes encoding pro-inflammatory cytokines, 

chemokines, NOS2 and cyclooxygenase-2. Moreover, NFk-B activation stimulates angiogenesis by 

VEGF secretion and makes tumor cells more resistant to necrosis and apoptosis. NFk-B is linked to 

different cellular signaling pathways. Over the last years, several reports have described Notch-

NFk-B pathway crosstalk [72]. In NENs it has been demonstrated that non-canonical Notch 

signaling impacts on tumorigenesis by the involvement of different signaling pathways, among 

them NFk-B [72, 73]. 

The signal transducer and activator of transcription, STAT3, has a relevant role in inducing and 

maintaining a pro-carcinogenic inflammatory TME. Its persistent activation in cancer cells 

promotes cell proliferation, tumor invasion and angiogenesis. Like NFk-B, STAT3 is activated by 

different factors and it can stimulate the transcription of several pro-inflammatory cytokines, 

controlling inflammation and immune evasion. In GEP NENs STAT3 has been reported to be up-

regulated and nuclear STAT3 expression correlated with metastatic status [74]. 

Other players taking part in this complex scenario, are cyclooxygenases. These are enzymes 

necessary to the production of prostaglandins from fatty acids. Prostaglandins are key mediators in 

inflammation, and in tumors can affect cell proliferation, DNA mutation rates, angiogenesis and 

promote metastasis formation [75]. Cyclooxygenase-2 expression has been detected in the vast 

majority of GEP NENs, both in functioning and non-functioning tumors [76], and its expression has 

been associated with a poor prognosis and more aggressive pathologic variables [77-79].  

Therefore, chronic inflammation promotes tumor, causing genomic instability, increasing 

angiogenesis, altering the genetic/epigenetic state and increasing cell proliferation. Several studies 

have shown that GEP NENs are closely associated with inflammatory conditions. 

 

 

3. NEN and inflammatory GEP diseases 

The gastrointestinal tract contains the highest concentration of bacteria anywhere within the human 

body. This organ is constantly exposed to materials originating from the external environment. The 

balance of the gastrointestinal microbial community is critical not only for this organ but also for 



maintenance of host health. Indeed, failure of gut homeostasis is an important factor in the 

pathogenesis and progression of systemic inflammation, which has a relevant role in the process of 

aging and several age-related disease [80, 81]. 

Throughout the whole gastroenteric tract and pancreas at least 19 types of neuroendocrine cells 

have been observed. As previously reported, these cells are not exempt from the detrimental effects 

of long-standing inflammation. Indeed, neuroendocrine cells can be overstimulated by chronic 

inflammation, leading to hyperplasia and sometimes to dysplasia, that may evolve to neoplastic 

transformation. This consequential relationship has been demonstrated in some districts of the GEP 

tract. 

 

3.1 Gastric NEN 

Gastric NENs are tumors originating from enterochromaffin-like (ECL) cells which are mainly 

localised in the gastric fundus and corpus. The main role of ECL-cells is the secretion of histamine, 

that stimulates acid secretion by parietal cells. Clinically, gastric NENs are categorized into types I, 

II, and III. Type I lesions correspond to the majority of gastric NENs and they are associated with 

chronic atrophic gastritis, either autoimmune-driven or as a consequence of Helicobacter pylori 

infection. In chronic atrophic gastritis, the destruction of the gastric parietal cells reduces the 

production of hydrochloric acid and intrinsic factor, promoting hypergastrinemia and pernicious 

anemia, respectively. The gastrin excess stimulates ECL cells proliferation and favors the 

development of type I gastric NEN [82, 83]. 

A population-based case-control study, comparing 1,138,390 cancer cases with 100,000 matched 

individuals without cancer, showed that subjects with chronic atrophic gastritis associated with 

pernicious anemia have a significantly increased risk of type I gastric NENs (odds ratio, 11.43; 95% 

CI 8.90–14.69) [84]. This tumor arises in patients with chronic atrophic gastritis in a percentage 

variable from 1 to 11%  [85-88]. 

Helicobacter pylori is a gram-negative bacterium whose outer membranes are composed by 

lipopolysaccharides. Experiments made on rat ECL cell preparation showed that Helicobacter 

pylori lipopolysaccharides stimulate histamine release, that was independent by the gastrin action, 

and potentiate gastrin-driven DNA synthesis in ECL cells [89]. 

Other alterations in the gastric microbiota could be also involved in this detrimental process. In fact, 

hypochlorhydria is able to modify the composition of the gastric microbiota by providing a different 

environment for colonization. This event could potentially increase the risk of developing a gastric 

malignancy. A recent study comparing the human gastric microbiota in different conditions, showed 

that autoimmune atrophic gastritis resulted in greater bacterial abundance and diversity compared to 



normal stomach and patients with Helicobacter pylori-induced atrophic gastritis. In both patients 

with atrophic gastritis due to autoimmune etiology or Helicobacter pylori, an over-activation of 

several pathways has been observed compared to controls. Interestingly, gastric-atrophy resulted to 

be associated with a modulation in the citric acid cycle, a biochemical pathway with a relevant role 

in gastric carcinogenesis [90].  

Therefore, autoimmune stimuli or Helicobacter pylori infection trigger an inflammatory response 

that determines parietal cell loss [91]. ECL cells are spared by this cellular destruction and induced 

to proliferate [89]. Indeed, in the setting of type A chronic atrophic corpus-fundus restricted 

gastritis, both hyperplastic and dysplastic lesions of ECL cells may be observed (figure 2), each 

bearing increased risk of tumor development [88]. It was shown that a gastric mucosa with severe 

hyperplasia (at least 6 intraglandular ECL cell chains of at least 5 cells each per mm of mucosa or at 

least 9 linear plus micronodular changes) and dysplasia (enlarged, fused or stroma dissected 

micronodules or microinfiltrative lesions) needs to be adequately followed by endoscopy and 

biopsies because of the increased neoplastic risk of these lesions [88]. 

 

3.2 Pancreatic NEN 

Chronic pancreatitis represents an independent significant risk factor for pancreatic cancer [92, 93]. 

The strength of the relationship between these two diseases has been widely reported. In a 

multicenter cohort study of 2015 cases [92] of pancreatitis, 56 cases of pancreatic cancer were 

registered during a mean follow-up of 7.4 years.  Among these, 29 cases were diagnosed 2 years 

after the diagnosis of pancreatitis. This number was higher than the expected for age, sex and the 

center. A case-control study [93] analyzed how frequent was the occurrence of pancreatitis in 2639 

patients with pancreatic cancer, compared to 7774 control subjects. The evidence was that 

pancreatitis was present in around 6% of patients with cancer and it represents a strong risk factor 

for development of pancreatic tumors. Although in most of these studies the tumor histotype was 

not specified, this association appears to be relevant for pancreatic adenocarcinoma.  

On the other hand, it is less clear the potential association between NEN and pancreatitis. In this 

setting, even hyperplastic and dysplastic lesions of endocrine cells consequent to inflammation, 

have never been clearly described. Rather, what is known is that, in the late phase of chronic 

pancreatitis, an apparent prominence of the endocrine cells is observed, probably due to the 

preferential loss of acinar tissue. This "pseudohypertrophy" may be difficult to distinguish from 

neuroendocrine microadenoma (figure 3). Therefore, data related to the incidence of cancer in this 

setting may be influenced by the potential of incorrect diagnosis of NEN.  



A case-control study including 162 sporadic pancreatic NENs and 648 controls showed that history 

of chronic pancreatitis (OR =  8.6; 95% CI, 1.4–51) and diabetes (OR =  40.1; 95%  CI, 4.8–328.9) 

resulted to be independent risk factors for the development of this tumor [94]. Although the 

association between pancreatic NENs and chronic pancreatitis has been not confirmed in other 

studies, a recent meta-analysis showed that history of diabetes mellitus was associated with an 

increased risk of sporadic pancreatic NENs (pooled adjusted odds ratio 2.74, 95% CI: 1.63-4.62) 

[95]. It is still unclear whether diabetes is a real risk factor or a secondary effect due to the 

pancreatic tumor. Furthermore, it is possible that chronic inflammation and oxidative stress may 

contribute to the pathogenesis of both diabetes and pancreatic NENs through the induction of DNA 

mutation [96]. A recent study showed that in genetically engineered transgenic mice, chronic 

inflammation in the absence of TP53 developed in all animals several subtypes of pancreatic 

cancer, including NENs [97].  

 

3.3 Small bowel and appendix NEN 

Several chronic inflammatory bowel conditions represent a potential risk factor predisposing to the 

development of small bowel NENs [98]. 

In celiac disease (CD), an immune-mediated disorder involving the small bowel, serotonin-

producing neuroendocrine cells are increased [99]. Well-oriented bioptic samples taken from 17 

patients affected by refractory CD, were compared with 84 non-healthy and 16 healthy control 

subjects. In this study the number of neuroendocrine cells was absolutely more represented in 

refractory CD. A higher expression was also observed in case of CD before gluten-free diet that 

restored to normality after [99]. This finding was indicative of a possible etiologic role of the 

immune system in the proliferative activity of these cells [100]. In addition, significantly higher 

serotonin levels have been described in patients with CD compared to healthy subjects [101]. In a 

large population-based cohort study, the standardized incidence ratio for small-intestinal cancer 

(adenocarcinomas, stromal tumors and NENs) was more than fourfold in patients with CD. 

However, the association between CD and NENs is doubtful. Indeed, in this study there are no data 

on the number of patients with NENs [102]. Despite the hyperplasia of entero-chromaffin cells has 

been demonstrated in CD, only few case reports have been published describing CD subjects with 

small bowel NENs [103-107]. 

Population-based studies [108, 109] have shown that the incidence of NENs is significantly 

increased in inflammatory bowel diseases (IBD) involving the small bowel. Among a cohort of 

20.917 patients affected by Crohn's disease in the time frame between 1978 and 2010, 23 small 

bowel adenocarcinoma and 9 NENs were observed, resulting, respectively in a 14-fold and 7-fold 



increased neoplastic risk, as compared to the general population. In both histotypes the severity of 

the surrounding inflammatory disease was moderate to severe and its distribution was extensive. 

Furthermore, while almost all adenocarcinomas arose in mucosal areas affected by Crohn's disease, 

78% of NENs developed far from them. This suggests that the development of NENs may be 

secondary to the effects of pro-inflammatory cytokines, rather than a local inflammatory effect from 

adjacent Crohn's disease. In the same study 42.872 cases of ulcerative colitis were also analyzed 

and no significantly increased risk of cancer was found among those patients [108]. 

The appendix is the third more frequent site of gastrointestinal-NENs. Appendiceal NENs are often 

diagnosed incidentally on histopathological examination of appendectomy specimens. In about two 

thirds of cases, they are found at the tip of the organ and are not the direct cause of the appendicitis 

[110]. In case of acute appendicitis, the number of enterochromaffin cells, that populate the crypt 

epithelium, and of subepithelial neuroendocrine cells is depleted [111]. Although no clear data are 

available concerning a potential association between chronic appendiceal inflammation and risk of 

NEN, the inflammation caused by other disease, such as Crohn’s disease, represents a favorable 

situation for the development of the appendiceal NEN. Indeed, it seems to occur more frequently in 

the samples from inflamed surrounding than that reported in autopsy studies [112]. 

A recent meta-analysis of observational studies provides additional evidence for a link between 

inflammation and intestinal NENs. This study reported that aspirin use was associated with a 

significant decrease in the risk of several tumors, including small intestinal NENs (RR = 0.17, 95% 

CI: 0.05–0.58) [113].  

 

3.4 Colonic and rectal NEN 

During inflammatory diseases affecting the colonic and rectal tube, as IBD, post-dysenteric colitis, 

Campylobacter enteritis and irritable bowel syndrome, an increase in number of neuroendocrine 

cells (figure 4) can be observed [114]. In all these cases, there is a disruption of the intestinal 

epithelial barrier that dysregulates innate and immune responses toward the enteric microbiota. This 

favors the release of several cytokines, that finally affect the commitment of multipotential-

secretory precursor cells and promote the differentiation of enteroendocrine precursor cells [115]. 

This phenomenon was deepened with in vitro and in vivo models of intestinal inflammation [114], 

where it was shown that PI3K/Akt signaling and autophagy are implicated in the increase of colonic 

intestinal epithelial cells expressing chromogranin. Indeed, the concomitant treatment of interferon-

γ plus TNF-α increased the number of chromogranin A-positive cells in the distal colon of colitic 

mice and this determined an increase of pAkt (Ser473) and pAkt(Thr308), an augmented 



phosphorylation of β-catenin at Ser552 [116], GSK3β at Ser9 [117] and 14-3-3ζ at Ser58 [118], 

three well-known targets of Akt, and enhanced PTEN phosphorylation. p-PTEN is the inactive 

form, that causes PI3K/Akt signaling activation in chromogranin A-positive cells. The reason why 

cytosolic chromogranin A increases in case of inflammation is not clear. It was supposed that 

entero-endocrine cells, with their capacity of antigen internalization, could represent a relevant 

sensor for the mucosa during inflammation. Similarly, in humans neuroendocrine differentiation is 

relatively common and represents an early event in the ulcerative-colitis-associated carcinogenesis, 

where chromogranin A and p53 are up-regulated [119]. 

Discordant opinions exist on whether the coexistence of IBD (both ulcerative colitis and Crohn's 

disease) and colonic and rectal NEN is only coincidental. According to some authors [120], an 

apparent high rate of incidental NENs in IBD patients could be explained only because they 

frequently undergo intestinal surgery. Indeed, adjusted for resection type, sex and age, a lower 

prevalence of NENs in IBD patients has been reported compared to non-IBD patients (diverticulitis 

or ischemic). 

Other studies reported an increased risk (up to 15 times) of intestinal NENs in IBD. While 

neuroendocrine tumors are more common in segments that are free from inflammation [121, 122], 

neuroendocrine carcinomas develop mainly in inflamed mucosa [122, 123], just like what it 

happens for non-neuroendocrine cancer. Although NENs occur in ulcerative colitis [124] as well as 

during Crohn's disease, some authors are inclined to think that the incidence is higher in Crohn's 

disease, triggered by prolonged inflammation, even in distant bowel segments [121, 125].  

 

 

4. Prognostic value of inflammatory markers in NENs 

In support of a role of inflammation in tumor development and progression, several studies 

recognized few inflammatory biomarkers as independent prognostic markers in patients with 

tumors [126]. Most of these data have been recently confirmed in NENs. Neutrophils, the most 

abundant white blood cell subset, appear to have an active role in tumorigenesis and tumor 

progression by secreting several cytokines, able to promote tumor cell proliferation, local invasion, 

angiogenesis and resistance to chemotherapy [127]. On the other hand lymphocytes play an 

important role in cell-mediated immune response activation. CD4+ T lymphocytes are involved in 

senescence and cancer immune-surveillance, detecting and eradicating precancerous and cancerous 

cells, also by activation of CD8+ T lymphocytes. Lymphocyte infiltration is common in NENs, as 

assessed by immunohistochemistry for CD3, CD4, CD8, and CD56 [39, 128]. In patients with 



intermediate-grade NENs a prominent tumor infiltration of T cells (CD3+) was associated with 

improved regression free survival, while a low level of infiltrating regulatory T cells in liver 

metastases was a predictor of prolonged survival [39]. 

Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are systemic 

inflammation markers with a prognostic value in several neoplasms. Some studies addressed the 

prognostic relevance of NLR and PLR in GEP NENs, demonstrating that these parameters could be 

useful in identifying patients with a worse outcome [129, 130]. In a retrospective study including 

172 patients with pancreatic NENs, elevated NLR and PLR were both associated with advanced 

tumor stage and high grade. In the univariate analysis, elevated NLR and PLR were both 

significantly associated with decreased overall survival and disease free survival, while in the 

multivariate analysis, the preoperative NLR, but not the PLR, was an independent risk factor. In 

detail, a preoperative NLR >2.31 was predictive of significantly worse survival in the subgroup of 

patients with stage I/II or grade 1/2 tumors. Moreover, predictive models based on both the NLR 

and conventional stratification systems, such as the WHO classification and AJCC stage, showed 

improved predictive power as compared to the stratification systems alone [131].  

Recently, increased NLR was found to be associated to advanced T stage, lymph node metastasis, 

tumor thrombus formation and advanced grade in pancreatic NENs. In addition, the recurrence-free 

survival of these patients with high NLR was significantly lower compared with those with low 

NLR [132]. Accordingly, in patients with gastric NEN, NLR was an independent prognostic factor 

for recurrence-free survival and overall survival [133].  

The gamma-glutamyltransferase (GGT) level is a biomarker of oxidative stress and correlates with 

inflammation in the extracellular tissue microenvironment. GGT can play a relevant role in cancer 

progression and biological behaviour, and is considered a significant prognostic biomarker in 

several tumors. On the other hand, lymphocytopenia, indicating a state of depressed immune 

function, could negatively affect survival of cancer patients because of a reduced host response. 

Therefore, the GGT to lymphocyte ratio index (GLRI) could represent a potentially useful 

prognostic biomarker in oncology. In a retrospective study including 125 non-functioning 

pancreatic NENs undergoing curative resection, GLRI was found to be an independent predictor of 

overall survival and disease free survival. Moreover, preoperative GLRI was associated with 

advanced tumor stage [134]. 

C reactive protein (CRP) is an acute-phase protein, produced in the liver, whose synthesis is 

triggered by secretion of IL-6 from macrophages and T cells. Any type of chronic or acute 

inflammatory process can activate acute phase response, making CRP levels a sensitive but 

unspecific marker. CRP has been shown to be an independent prognostic marker in patients with 



secreting (insulinoma, gastrinoma and other rare functioning tumours) and non-secreting sporadic 

pancreatic NENs, since it correlated with overall survival. Moreover in univariate Cox regression, 

pancreatic NEN patients with elevated CRP levels had a significantly higher hazard ratio for death 

[135]. 

Angiopoietins (Ang)-1 and -2, and the tyrosine kinase receptor Tie-2 family are involved in 

angiogenesis that in turn is known to have a key function in tumorigenesis. In addition, this system 

has a relevant role in the inflammatory processes, with a close loop relationship between 

angiogenesis and inflammation, particularly in IBD. Interaction of Ang-1 with Tie-2 promotes 

endothelial cell survival, while Ang-2 exerts a marked pro-angiogenic effect, when VEGF is 

present, and is involved in chemo-attraction of monocytes in neoplastic tissue. Monocytes 

expressing Tie-2 and recruited into inflamed or neoplastic tissues can promote angiogenesis. 

Moreover, there is a soluble form of Tie-2 that has been found increased in several conditions 

including cancer. GEP NEN patients showed enhanced serum levels of soluble form of Tie-2, Ang-

1, and Ang-2, compared to age-matched healthy controls. Soluble Tie-2 and Ang-2 levels were 

significantly higher in GEP NENs with metastases compared to those without metastases. 

Furthermore, Ang-1, Ang-2, and Tie-2 expression was found to be increased in freshly isolated 

tumor cells from GEP NEN. Interestingly, an enhanced expression and function of Tie-2 was 

detected in monocytes from GEP NEN patients. Overall these data would suggest that the Ang/Tie-

2 system is involved in the growth and dissemination of GEP NENs, also favouring the recruitment 

of Tie-2(+) monocytes to the tumor site, where they can promote inflammation and angiogenesis 

[136]. Similarly, Srirajaskanthan R et al. found Ang-2 levels to be increased in patients with well or 

moderately differentiated NENs, mostly of pancreatic, duodenal or jejunum origin, as compared to 

healthy controls, and to be significantly higher in presence of metastases as compared to non-

disseminated tumours. Moreover patients with higher Ang-2 levels (>4756  pg/ml) showed a shorter 

time to disease progression, overall suggesting a potential prognostic role for Ang-2 in patients with 

NENs [137]. 

 

 

5. Therapeutic applications with new checkpoint inhibitors 

Unravelling and understanding the mechanisms implicated in the immune response to neoplasms, 

induced by tumour-associated antigens, is crucial also in the context of NENs, for gaining new 

knowledge on tumour biology and for improving the management with the perspective of an 

immunotherapeutic approach. The therapeutic implications of the involvement of immune system in 

patients with NENs are known since the introduction of interferon-α biotherapy, which inhibits cell 



cycle progression and hormone synthesis in tumor cells, reduces neoangiogenesis, and activates 

immune cells [138]. Somatostatin receptors, which are targets widely used for the diagnosis and 

therapy of NETs [139-142], are also present in immune cells and able to mediate immune and 

inflammatory reactions [143]. Monocyte-derived cells and mature T-lymphocytes express 

somatostatin receptors -2 and -3, respectively. Human lymphoid follicle centers, thymus, and spleen 

express both receptors as well. In thymus, several evidences suggest the potential physiological role 

of somatostatin receptors in thymocytes maturation [144]. Although the effects of somatostatin 

analogues on immune system are not well defined in patients with NETs, these compounds are able 

to potentiate the cytotoxicity of interleukin-2 activated peripheral blood mononuclear cells in 

patients with medullary thyroid cancer [145].   

The occurrence of immune response to NENs is demonstrated by the frequent finding of 

lymphocyte infiltration within the tumour, as discussed in the previous paragraphs. In the view of a 

potential immunotherapy, specific tumour-associated antigens recognised by CD8+ T cells have 

been identified in patients with midgut NENs [128].  

NENs can elude immunosurveillance regardless of the immunocompetence of the host. In 

pancreatic NENs, HLA class I antigen expression was lost or reduced in most of the cases, with the 

loss of beta-2microglobulin as the most frequent alteration in HLA class I phenotype. HLA class II 

antigens seemed not to contribute to the biology of NENs, since they were not expressed in all 

investigated samples [36]. However, in another study, MHC class II expression on pancreatic tumor 

cells correlated significantly with severity and activity of intratumoral inflammation, as well as with 

the infiltration of CD4+ T lymphocytes [146].  

Anti-tumor immune responses can be impaired by regulatory T cells. Midgut carcinoid patients 

exhibited increased frequencies of circulating regulatory T cells and patients’ T cells were less 

responsive to polyclonal activation and had a decreased proliferative capacity compared to controls. 

Moreover, circulating T helper-promoting cytokines were reduced [40]. 

Programmed death 1 (PD-1), its ligands (PD-L1 and PD-L2) and cytotoxic T-lymphocyte antigen 4 

(CTLA-4) are immunosuppressive molecules with a relevant role in the host immune response to 

tumors, inhibiting T-cell activation. Lamarca A. et al. found that one third of 62 patients with well-

differentiated small intestinal NEN expressed PD-L1 in tumor or tumor-infiltrating lymphocytes 

[147]. Expression of PD-L1 was observed also in 14% of tumors and in 27% of tumor-associated 

immune cells in patients with poorly-differentiated neuroendocrine carcinomas of the digestive 

system [148]. In GEP NEN patients, PD-L1 expression was found significantly associated with a 

high-grade WHO classification (G3) but not with gender, primary site, or lymph node status. 

Moreover, G3 tumors were characterized by strong PD-L1 expression in intra/peri-tumoral 



infiltrating immune cells [149]. Likewise, in a study of 32 metastatic GEP NEN, the expression of 

PD-L1, observed in 22% of patients, was associated with higher WHO tumor grade (grade 3) and 

had both predictive and prognostic value for survival of patients [150]. In 244 GEP NENs, mostly 

of the small intestine and pancreas and predominantly G1-G2, high tumor-infiltrating lymphocytes 

(19.6%) and high PD-1 (16.1%) expression significantly correlated with shorter patient survival and 

with a higher grading. In the same study, expression of PD-L1 (8.7%) showed a trend toward a 

shorter patient survival [151]. Furthermore, Sampedro Nunez et al. found PD-1/PD-L1 expressed in 

1 to 8% of GEP NENs. In the same patients, PD-1 tumor expression was higher in metastatic 

patients, while PD-1 expression in peripheral blood monocytes was associated with tumor 

progression [152].  

Conversely, in 66 patients with GEP NEN, mostly of pancreatic origin, PD-L1 expression was 

observed in 9%, while PD-L2 was present in 50% with no association with disease stage at 

diagnosis or survival. However, they found an inverse relationship between hypoxia and 

angiogenesis biomarkers and PD ligands, as PD-L1 positive tumors had lower VEGF-A, Hif-1a and 

Carbonic Anhydrase (CaIX) expression, while PD-L2 positive tumours had lower CaIX and lower 

proportion of vascular invasion [153]. Recently, in 102 NENs of duodenum, jejunum and ileum, 

expression of PD-L1 in ≥1% and ≥50% of tumor cells was found in 39% and 14% of cases 

respectively, with an intratumor host immune response found to be apparently absent in 34% and 

intense in 21% of cases. PD-L1 expression and extent of immune infiltration were significantly 

higher in duodenal as compared with jejunal/ileal NENs.  However, neither PD-L1 expression nor 

the degree of immune infiltration showed any prognostic significance [154]. 

Antibodies targeting PD-1 (pembrolizumab, nivolumab, PDR001, JS001), PD-L1 (avelumab, 

durvalumab) or CTLA-4 (ipilimumab, tremelimumab) have been recently used in several cancers 

with promising results, and few trials are now in progress for GEP NENs (table 1). In a phase Ib 

study (KEYNOTE-028), that included patients with various advanced solid tumors, pembrolizumab 

(10 mg/kg every 2 weeks) resulted in an objective response rate of 12% out of 25 advanced PD-L1-

positive carcinoid patients and 6% out of 16 pancreatic NEN patients. None of the carcinoid and 

pancreatic NEN patients reached complete remission, whereas 60% and 88% of the patients, 

respectively, had stable disease [155]. 

Taking into consideration that, in some studies, PD-1/PD-L1 expression appears to correlate with 

higher NEN grade and with reduced survival, immunotherapy targeting this system might be 

interesting for this subgroup of tumors with a poor prognosis. Nevertheless, more knowledge about 

the composite immune landscape of these heterogeneous tumors needs to be gained in order to 

identify the subset of NEN patients most likely to benefit from immunotherapeutic approach.  



 

6. Conclusions 

Several evidences suggest a relationship between neuroendocrine system and inflammation, which 

in turn can play a relevant role in tumorigenesis. Inflammatory mediators, which are produced by 

the NEN or as part of the host innate immune response, can favour angiogenesis, cancer progression 

and metastatic spread, and can promote immune editing. On the other hand, a balanced immune 

system represents a relevant step in cancer prevention through the elimination of dysplastic and 

cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. 

Although several studies reported an increased risk of GEP NENs in patients with gastrointestinal 

inflammatory diseases (chronic atrophic gastritis, chronic pancreatitis, celiac disease, Crohn’s 

disease and ulcerative colitis), most of these studies are retrospective and characterized by potential 

biases. Therefore, further studies are required to improve the level of evidence, particularly 

concerning the association between NENs and IBD. 

The modulation of the TME may represent an innovative therapeutic strategy in G3 NENs, through 

the use of checkpoint inhibitors binding to PD-1, PD-L1 or CTLA-4, thereby preventing tumors to 

evade the immune system. This aspect will be further defined with the completion of several 

ongoing clinical trials. 
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Figure legends: 

 

Figure 1: Components of tumor microenvironment and their role in carcinogenesis and 

tumor progression through modulation of inflammation. 

 

Figure 2: Gastric hyperplastic changes of ECL cells. (a) A mild atrophic gastritis is 

shown (hematoxylin and eosin stain, 10x magnification). (b) At higher magnification (hematoxylin 

and eosin stain, 20x magnification), few cells with a clear perinuclear halo can be observed 

(arrows). (c) They are more evident on immunohistochemistry with chromogranin (20x 

magnification): neuroendocrine cells display both linear (arrow) and micronodular arrangement (*). 

 

Figure 3: Pseudohypertophy of neuroendocrine cells in chronic pancreatitis. (a) An 

example of chronic pancreatitis, where exocrine pancreatic tissue is partially replaced by fibrosis 

(hematoxylin and eosin stain, 20x magnification). (b) Langerhans islands seem to be  hyperplastic 

and more evident on immunohistochemistry with chromogranin (20x magnification).   

 

Figure 4: Inflammatory bowel diseases and NEN. (a) The rectal submucosa was occupied 

by a neuroendocrine carcinoma (positive to chromogranin) in a patient with a history of ulcerative 

colitis of at least 20 years. In the mucosa overlying the neoplastic lesion, neuroendocrine cells were 

normally represented (20x magnification). (b) Far from this lesion, an increased number of 

neuroendocrine cells was detected (40 x magnification). 
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