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Abstract. In this paper we study how to compute Janet-multiplicative variables for the
elements of a given finite set of terms. A comparison between Bar Codes and the Janet tree
defined by Gerdt-Blinkov-Yanovich and reformulated by Seiler is given.

1. Introduction

The concept of involutive division dates back to the work by Janet (1920, 1924, 1927,
1929). Given the polynomial ring P := k[x1, ..., xn], in n variables, and considered a semi-
group/monomial ideal J ◁P, and its minimal set of generators G(J), he introduced the notion
of multiplicative variable for a term u ∈ G(J). All multiples of u of the form ut, where t is a
product of powers of multiplicative variables for u constitute the cone of u. Janet introduced
also the completion, a procedure whose aim is to enlarge G(J) to a set G′(J) so that the
cones of all its elements turn out to cover the whole J. This way, J is the (disjoint) union of
the cones of the generators in G′(J). Now, if J is the initial ideal of some ideal I ◁P, the
elements of G(J) (and then of G′(J)) are the leading terms of some generating polynomials
of I. While reducing a term w ∈ T with respect to I, reduction of it is allowed only by the
polynomial whose leading term contains w in its cone.

The notion and formal definition of involutive division has been provided by Gerdt and
Blinkov (1998a,b, 2011), who employed it for fast computation of Groebner bases and for
solving partial differential equations.

Bar Codes (Ceria 2019d,e) are diagrams representing finite sets of terms; in particular, if
the set is the finite Groebner escalier of a zerodimensional ideal, the Bar Code allows to
desume many properties of the aforementioned ideal. For example, Ceria (2019d) used Bar
Codes to state a bijection between zerodimensional (strongly) stable ideals in two or three
variables and some particular partitions of their (constant) affine Hilbert polynomial. On the
other hand, Ceria and Mora (2018) defined an efficient iterative algorithm to compute the
finite Groebner escalier of the vanishing ideal of a finite set of points by means of Bar Codes.
Ceria (2019a) also showed that Bar Codes allow to compute Pommaret bases and their
“Axis of Evil” factorization (Ceria 2014) for zerodimensional radical ideals, represented by
their (finite) variety.
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A6-2 M. Ceria

In this paper, we use Bar Codes in the involutive framework. In particular, given a
finite set of terms U, we see how to find the multiplicative variables for the elements in
U. A comparison between Bar Codes and the Janet tree (Gerdt et al. 2001) defined by
Gerdt-Blinkov-Yanovich and reformulated by Seiler (2010) is given.

2. Notation

Following the notation of Mora (2003, 2005, 2015, 2016), we indicate with P :=
k[x1, ..., xn] the ring of polynomials in n variables with coefficients over the field k. The
semigroup of terms, generated by the set of variables {x1, ..., xn}, is defined as

T := {xγ := xγ1
1 · · · x

γn
n |γ := (γ1, ...,γn) ∈ Nn}.

Given a term t = xγ1
1 · · · x

γn
n its degree is deg(t)=

∑︁n
i=1 γi while, for each h ∈ {1, ...,n} degh(t) :=

γh is its h-degree.
We call semigroup ordering on T a total ordering < such that we have

t1 < t2⇒ st1 < st2, ∀s, t1, t2 ∈ T .

A semigroup ordering that is also a well ordering is called term ordering. Given a term
ordering < and a polynomial g ∈ P, we denote by T(g) its leading term, namely its maximal
term with respect to the assigned term ordering.

To construct Bar Codes we will use the lexicographical term ordering (Lex, for short)
induced by the variable ordering x1 < ... < xn, namely we will set:

xγ1
1 · · · x

γn
n < xδ11 · · · x

δn
n ⇔∃ j |γ j < δ j, γi = δi, ∀i > j.

We say that a subset J ⊆ T such that if t ∈ J then st ∈ J, for each s ∈ T , is a semigroup
ideal. A subset N ⊆ T such that if t ∈ N then s ∈ N, for each s|t, is instead an order ideal. It
is clear that a subset N ⊆ T is an order ideal if and only if the complement T \N = J is a
semigroup ideal.

The minimal set of generators G(J) of a semigroup ideal J is called monomial basis
of J. We define also the following set, associated to J: N(J) := T \ J. For any G ⊂ P,
T{G} := {T(g), g ∈G} and T(G) is the semigroup ideal of leading terms defined as T(G) :=
{tT(g)| t ∈ T ,g ∈G}.

Fixed a term order <, and an ideal I ◁P the monomial basis of T(I) = T{I} is named
monomial basis of I and we denote it again by G(I). The ideal In(I) := (T(I)) is called
initial ideal of I, and the order ideal N(I) := T \T(I) is the Groebner escalier of I.

3. Recap on Bar Codes

In this section we give an outline of the main definitions and facts on Bar Codes, strongly
depending on Ceria (2019d,e). Let us start with the definition of Bar Code.

Definition 1. A Bar Code B is a picture composed by segments, called bars, superimposed
in horizontal rows, which satisfies conditions a.,b. below. Denote by

• B(i)
j the j-th bar (from left to right) of the i-th row (from top to bottom), 1 ≤ i ≤ n,

i.e. the j-th i-bar;
• µ(i) the number of bars of the i-th row
• l1(B(1)

j ) := 1, ∀ j ∈ {1,2, ...,µ(1)} the 1−length of the 1-bars;
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Bar Code vs Janet tree A6-3

• li(B
(k)
j ), 2 ≤ k ≤ n, 1 ≤ i ≤ k−1, 1 ≤ j ≤ µ(k) the i-length of B(k)

j , i.e. the number of

i-bars lying over B(k)
j

a. ∀i, j, 1 ≤ i ≤ n−1, 1 ≤ j ≤ µ(i), ∃! j ∈ {1, ...,µ(i+1)} s.t. B(i+1)
j

lies under B(i)
j

b. ∀i1, i2 ∈ {1, ...,n},
∑︁µ(i1)

j1=1 l1(B(i1)
j1

) =
∑︁µ(i2)

j2=1 l1(B(i2)
j2

); we will then say that all the rows
have the same length.

Example 2. An example of Bar Code B is

1

2

3

The 1-bars have unitary length. For what concerns the other rows, l1(B(2)
1 ) = 2,

l1(B(2)
2 ) = l1(B(2)

3 ) = 1, l2(B(3)
1 ) = 1,l1(B(3)

1 ) = 2 and l2(B(3)
2 ) = l1(B(3)

2 ) = 2. Then we
have

∑︁µ(1)
j1=1 l1(B(1)

j1
) =
∑︁µ(2)

j2=1 l1(B(2)
j2

) =
∑︁µ(3)

j3=1 l1(B(3)
j3

) = 4.
♢

It is possible to associate a Bar code to a finite set of terms, by means of the procedure we
describe below (for more details, see Ceria 2019e); an alternative construction is provided
by Ceria (2019d).

Given a term t = xγ1
1 · · · x

γn
n ∈ T ⊂ k[x1, ..., xn], for each i ∈ {1, ...,n}, we set πi(t) :=

xγi
i · · · x

γn
n ∈ T . For a finite set of terms M ⊂ T , for each i ∈ {1, ...,n}, we define M[i] :=

πi(M) := {πi(t)|t ∈ M}.We consider M ⊆ T , with |M| = m <∞ and we order its elements
in increasing order with respect to the lexicographical ordering, obtaining the list M =
[t1, ..., tm]. Then, we construct the sets M[i], and the corresponding lists1 M

[i]
, for i = 1, ...,n,

ordered w.r.t. Lex.
We define the n×m matrix of terms M such that, for i = 1, ...,n, M

[i]
is its i-th row,

namely the matrixM = (πi(t j))1≤i≤n,1≤ j≤m. We are ready to define the Bar Code diagram
associated to M, which is a Bar Code in the sense of Definition 1.

Definition 3. The Bar Code diagram B associated to M (or, equivalently, to M) is a n×m
diagram, made by segments s.t. the i-th row of B, 1 ≤ i ≤ n is constructed as follows:

(1) take the i-th row ofM, i.e. M
[i]

(2) consider all the sublists of repeated terms, i.e. [πi(t j1),πi(t j1+1), ...,πi(t j1+h)] s.t.
πi(t j1 ) = πi(t j1+1) = ... = πi(t j1+h), noticing that2 0 ≤ h < m

(3) underline each sublist with a segment
(4) delete the terms of M

[i]
, leaving only the segments (i.e. the i-bars).

We usually label each 1-bar B(1)
j , j ∈ {1, ...,µ(1)} with the term t j ∈ M.

1M contains only distinct elements, while there may be repetitions in the sets M
[i]

, for 1 < i ≤ n. In case
some repeated terms occur in M

[i]
, 1 < i ≤ n, they clearly need to be consecutive in the list, due to the imposed

lexicographical ordering.
2Clearly if a term πi(t j) is not repeated in the list M

[i]
, the sublist containing it will be [πi(t j)], namely we will

have h = 0.
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A6-4 M. Ceria

Example 4. Given M = {x1, x3
1, x2x3

3, x1x2
2x3

3, x
3
2x3

3} ⊂ k[x1, x2, x3], we display the table on
the left and the Bar Code on the right:

x1 x3
1 x2x3

3 x1x2
2x3

3 x3
2x3

3

1 1 x2x3
3 x2

2x3
3 x3

2x3
3

1 1 x3
3 x3

3 x3
3

x1 x3
1 x2x3

3 x1x2
2x3

3 x3
2x3

3
1

2

3

♢

Now we see a procedure to associate a finite set MB ⊂ T to a Bar Code B. We already
gave a more general procedure to do so (Ceria 2019d) and now we specialize it in order to
have a unique set of terms for each Bar Code. Here we give only the specialized version,
namely we follow the two steps B1 and B2 below:

B1 take the n-th row, composed by the bars B(n)
1 , ...,B

(n)
µ(n). Let l1(B(n)

j ) = ℓ(n)
j , for

j ∈ {1, ...,µ(n)}. Label each bar B(n)
j with ℓ(n)

j copies of x j−1
n .

B2 For each i = 1, ...,n−1, 1 ≤ j ≤ µ(n− i+1) consider the bar B(n−i+1)
j and suppose

that it has been labelled by ℓ(n−i+1)
j copies of a term t. Consider all the (n− i)-

bars B(n−i)
j
, ...,B(n−i)

j+h
lying immediately above B(n−i+1)

j ; note that h satisfies 0 ≤

h ≤ µ(n− i)− j. Denote the 1-lengths of B(n−i)
j
, ...,B(n−i)

j+h
by l1(B(n−i)

j
) = ℓ(n−i)

j
,...,

l1(B(n−i)
j+h

) = ℓ(n−i)
j+h

. For each 0 ≤ k ≤ h, label B(n−i)
j+k

with ℓ(n−i)
j+k

copies of txk
n−i.

Definition 5. A Bar Code B is called admissible if the set M obtained by applying B1 and
B2 to B is an order ideal.

Using B1 and B2 is the only way to associate an order ideal to an admissible Bar Code, by
definition of order ideal.

Definition 6. Given a Bar Code B, let us consider a 1-bar B(1)
j1

, with j1 ∈ {1, ...,µ(1)}. The

e-list associated to B(1)
j1

is the n-tuple e(B(1)
j1

) := (b j1,n, ....,b j1,1), defined as follows:

• consider the n-bar B(n)
jn

, lying under B(1)
j1

. The number of n-bars on the left of B(n)
jn

is b j1,n.

• for each i = 1, ...,n−1, let B(n−i+1)
jn−i+1

and B(n−i)
jn−i

be the (n− i+1)-bar and the (n− i)-bar

lying under B(1)
j1

. Consider the (n− i+1)-block associated to B(n−i+1)
jn−i+1

, i.e. B(n−i+1)
jn−i+1

and all the bars lying over it. The number of (n− i)-bars of the block, which lie on
the left of B(n−i)

jn−i
is b j1,n−i.

Remark 7. Given a Bar Code B, we take a 1-bar B(1)
j , with j ∈ {1, ...,µ(1)}.

Looking at Definition 6 and at the two steps B1 and B2, we can see that the entries of the
e-list e(B(1)

j ) := (b j,n, ....,b j,1) are equal to the exponents of the term labelling B(1)
j , obtained

by means of B1 and B2 applied to B (compare Example 4).

Proposition 8 (Admissibility criterion). (see Ceria 2019d, Proposition 6) A Bar Code B is
admissible if and only if, for each 1-bar B(1)

j , j ∈ {1, ...,µ(1)}, the e-list e(B(1)
j ) = (b j,n, ....,b j,1)
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satisfies the following condition:

∀k ∈ {1, ...,n} s.t. b j,k > 0, ∃ j ∈ {1, ...,µ(1)} \ { j} s.t.

e(B(1)
j

) = (b j,n, ...,b j,k+1, (b j,k)−1,b j,k−1, ...,b j,1).

□

Until now, we focused on the correspondence between Bar Codes and Groebner escaliers of
monomial ideals. We show now that, given an admissible Bar Code B and the associated
order ideal N, a particular generating set for the monomial ideal I s.t. N(I) = N can be
deduced.

Definition 9. The star set of an order ideal N and of its associated Bar Code B is a set FN
constructed as follows:

a) ∀1 ≤ i ≤ n, let ti be a term which labels a 1-bar lying over B(i)
µ(i), then xiπ

i(ti) ∈ FN;

b) ∀1 ≤ i ≤ n−1, ∀1 ≤ j ≤ µ(i)−1 let B(i)
j and B(i)

j+1 be two consecutive bars not lying

over the same (i+1)-bar and let t(i)
j be a term which labels a 1-bar lying over B(i)

j ,

then xiπ
i(t(i)

j ) ∈ FN.

We can display FN within the associated Bar Code B; it is enough to insert every t ∈ FN on
the right of the bar from which it is desumed. Reading the terms from left to right and from
the top to the bottom, means reading FN ordered with respect to Lex.

Example 10.
For N = {1, x1, x2} ⊂ k[x1, x2], we have FN = {x2

1, x1x2, x2
2}; in relation with

Definition 9, we can observe that the terms x1x2, x2
2 come from part a), while

the term x2
1 comes from part b).

0

2

1

x2
2

x2
1

x1 x2

1 x1 x2

♢

Given a monomial ideal I, Ceria et al. (2015) define the star set:

F (I) =
{︄

xγ ∈ T \N(I)
⃓⃓⃓⃓⃓

xγ

min(xγ)
∈ N(I)

}︄
,

where min(xγ) is the minimal variable appearing with nonzero exponent in xγ

Proposition 11. (Ceria 2019d, Proposition 21) With the above notation FN = F (I).

There is a very strong connection between the star set F (I) of a monomial ideal I
and Janet’s theory (Janet 1920, 1924, 1927, 1929), and to the notion of Pommaret basis
(Pommaret 1978; Pommaret and Haddak 1991; Seiler 2010). Such a relation was explicitly
addressed by Ceria et al. (2015). In particular, for some monomial ideals called quasi-stable
ideals, the star set is finite and coincides with the Pommaret basis.
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4. Janet decomposition

Given a monomial/semigroup ideal J ⊂ T and its monomial basis G(J), Janet (1920)
introduced both the notion of multiplicative variables and the connected decomposition of
J into disjoint cones. In accordance to definition of involutive division (Gerdt and Blinkov
1998a), the involutive cones can be either disjoined or embedded.

Definition 12. (Janet 1920, pp.75-9) Let U ⊂ T be a set of terms and t = xα1
1 · · · x

αn
n be an

element of U. A variable x j is called multiplicative for t with respect to U if there is no

term in U of the form t′ = xβ1
1 · · · x

β j
j x
α j+1
j+1 · · · x

αn
n with β j > α j. We denote by M(t,U) the set

of Janet multiplicative variables for t with respect to U.
The variables that are not multiplicative for t w.r.t. U are called non-multiplicative and we
denote by NM(t,U) the set containing them.

It is clear that the above definition depends on the order set on the variables.

Example 13. Consider the set U = {x1, x2} ⊂ k[x1, x2]. If x1 < x2, then M(x1,U) = {x1},
NM(x1,U) = {x2}, M(x2,U) = {x1, x2}, NM(x2,U) = ∅. If, instead x2 < x1, then M(x1,U) =
{x1, x2}, NM(x1,U) = ∅, M(x2,U) = {x2}, NM(x2,U) = {x1}. ♢

Definition 14. With the previous notation, the cone of t with respect to U is defined as the
set

CJ(t,U) := {txλ1
1 · · · x

λn
n |where λ j ≠ 0 only if x j is multiplicative for t w.r.t. U}.

Example 15. Consider the set J = {x3
1, x

3
2, x

4
1x2x3, x2

3} ⊆ k[x1, x2, x3]; suppose x1 < x2 < x3.
Let t = xα1

1 xα2
2 xα3

3 = x3
1, so α1 = 3, α2 = α3 = 0. The variable x1 is multiplicative for t w.r.t J

since there are no terms t′ = xβ1
1 xβ2

2 xβ3
3 ∈ J satisfying both conditions:

• β1 > 3;
• β2 = β3 = 0.

On the other hand, x2 is not multiplicative for t since t′′ = x3
2 ∈ U satisfies t′′ = xγ1

1 xγ2
2 xγ3

3
with γ2 = 3 > 0 = α2, γ3 = α3 = 0. Similarly, x3 is not multiplicative since x2

3 ∈ U. In
conclusion, we have M(t,U) = {x1}, NM(t,U) = {x2, x3}; CJ(t,U) = {xh

1|h ∈ N, h ≥ 3}. ♢

Remark 16. Notice that, by definition of multiplicative variable, the only element in the
intersection CJ(t,U)∩U is t itself. Indeed, if t ∈ U and also ts ∈ U for a non constant term
s, then max(s) cannot be multiplicative for t, hence. ts ∉CJ(t,U).

Janet introduced then the concept of complete system and gave a procedure, called comple-
tion, to find the decomposition in cones.

Definition 17. (Janet 1920, pp.75-9) A set of terms U ⊂ T is called complete if for every
t ∈ U and x j ∈ NM(t,U), there exists t′ ∈ U such that x jt ∈CJ(t′,U). The term t′ is called
involutive divisor of x jt w.r.t. Janet division.

Since the notion of completeness depends on that of multiplicative variable, both of them
depend on the variables’ ordering.

Remark 18. If U = {t} ⊆ k[x1, ..., xn] has cardinality 1, then it is complete, since M(t,u) =
{x1, ..., xn}.
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In the same paper (Janet 1920), with the aim of describing Riquier’s formulation (Riquier
1910) of the description for the general solutions of a PDE problem, Janet gave a similar
decomposition in terms of disjoint cones, generated by multiplicative variables, also for the
related normal set/order ideal/escalier N(J).

For each term t of a finite set U ⊂ T it is easy to assign its Janet multiplicative variables
(see Definition 12) by means of the Bar Code associated to U.

Suppose x1 < x2 < ... < xn and consider a finite set U ⊂ T ⊂ k[x1, ..., xn] . It is always
possible to associate a Bar Code B to U. Once B is constructed (even if it is not necessary
that B is an admissible Bar Code) we can mimick on it the set up we generally perform to
construct the star set. In particular:

a) ∀1 ≤ i ≤ n, put a star symbol ∗ on the right of the bar B(i)
µ(i);

b) ∀1 ≤ i ≤ n−1, ∀1 ≤ j ≤ µ(i)−1 let B(i)
j and B(i)

j+1 be two consecutive bars not lying
over the same (i+1)-bar; put a star symbol ∗ between these two bars.

Now, given a term t ∈ U, to detect its multiplicative variables it is enough to check the bars
over which it lies, as stated in the following proposition.

Proposition 19. Let U ⊆ T be a finite set of terms and let us denote by BU its Bar Code.
For each t ∈ U xi, 1 ≤ i ≤ n is multiplicative for t if and only if the i-bar B(i)

j of BU , over
which t lies, is followed by a star.

Proof. "⇐"
Let t = xα1

1 · · · x
αn
n ∈ U and B(i)

j the i-bar of BU under t.

Suppose that there is a star placed just on the right of B(i)
j : we have to prove that xi ∈M(t,U).

Suppose first i = n; if there is s ∈ U, with degn(s) > αn, then s should lie over B(n)
k , for some

integer k > j, and so there could be no stars after B(n)
j , contradicting the hypothesis. Then,

such an s cannot exist and we have xn ∈ M(t,U).
Let now i < n: if j = µ(i) and if there is s ∈ U, degi(s) > αi, degh(s) = αh for i+1 ≤ h ≤ n,
then this would lie over an i-bar on the right of B(i)

j = B(i)
µ(i). This contradicts the maximality

of µ(i), so there cannot exist such a term and xi ∈ M(t,U).
Let otherwise j < µ(i) and let t be the term that lies over B(i)

j and we denote by B(i+1)
j′ the

(i+1)-bar under it. After B(i)
j there is a star, so B(i)

j+1 must be over B(i+1)
j′+1 .

Now, if xi ∈ NM(t,U), then there is a term s = xβ1
1 · · · x

βi
i xαi+1

i+1 · · · x
αn
n ∈ U such that βi > αi.

Since degl(s) = degl(t) for l = i+ 1, ...,n, then s would have to lie over B(i+1)
j′ , but since

degi(s) > degi(t) s should also lie over an i-bar on the right of B(i)
j , which is impossible. We

can conclude that xi ∈ M(t,U).
"⇒"
Let t ∈ U, xi ∈ M(t,U) and B(i)

j the i-bar under t. We prove that there must be necessarily a

star after B(i)
j .

If i = n, being xn ∈ M(t,U), there are no terms s ∈ U s.t. degn(s) > degn(t), i.e. αn =

max{degn(u) : u ∈ U}. This implies j = µ(n), so after B(n)
j there is a star.

If i < n, let B(i+1)
j′ be the (i+1)-bar under B(i)

j ; if, by contradiction, B(i)
j is not followed by

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. 2, A6 (2019) [12 pages]



A6-8 M. Ceria

a star, also B(i)
j+1 would be over B(i+1)

j′ . Now, any term s ∈ U, lying over B(i)
j+1, would be

s.t. degi+1(s) = αi+1,..., degn(s) = αn and degi(s) > αi, so the existence of s would make xi
non-multiplicative for t, which is impossible. □

Example 20. For the set U = {x3
1, x

3
2, x

4
1x2x3, x2

3} ⊆ k[x1, x2, x3], x1 < x2 < x3, of example 15,
we have the following Bar Code

0

1

2

x3
1 x3

2 x4
1x2x3 x2

3

3

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

Then, looking at the stars, we can desume that:

• M(x3
1,U) = {x1}, NM(x3

1,U) = {x2, x3};
• M(x3

2,U) = {x1x2}, NM(x3
2,U) = {x3};

• M(x4
1x2x3,U) = {x1, x2}, NM(x4

1x2x3,U) = {x3};
• M(x2

3,U) = {x1, x2, x3}, NM(x2
3,U) = ∅.

and actually this configuration is in accordance with Janet’s definition. Indeed

• M(x3
1,U)= {x1} : no terms with x0

2x0
3 have x1-degree greater than 3. Since x3

2, x
2
3 ∈U,

x2, x3 ∈ NM(x3
1,U);

• M(x3
2,U) = {x1, x2} : no terms with x3

2x0
3 have x1-degree greater than 0, nor terms

with x0
3 have x2-degree greater than 3. Since x2

3 ∈ U, x3 ∈ NM(x3
2,U);

• M(x4
1x2x3,U) = {x1, x2} : no terms with x2x3 have x1-degree greater than 4, nor

terms with x3 have x2-degree greater than 1. Since x2
3 ∈ U, x3 ∈ NM(x4

1x2x3,U);
• M(x2

3,U) = {x1, x2, x3} : neither terms with x0
2x2

3 have x1-degree greater than 0, nor
terms with x2

3 have x2-degree greater than 0. There are no terms with x3-degree
greater than 2.

♢

Proposition 19, first proved in this paper, has been used in two papers, where it is stated
without proof. This proposition was used by Ceria (2019b), together with the definition of
complete set, to desume an algorithm that, given a finite set U ⊂ T , computes - if it exists -
an ordering on the variables x1, ..., xn such that U turns out to be Janet complete. If such an
ordering does not exist, then it returns an error. The algorithm is defined as greedy since
it uses backtracking techniques to avoid the trial and error procedure, which would have
needed to compute all n! Bar Codes. This proposition was also stated and applied by Ceria
(2019c) for studying a particular division, called Janet-like division.

Example 21. For the set U = {x4, xy, x2z,yz, t,yt} ⊂ k[x,y,z, t], our greedy algorithm first
observes that x cannot be the maximal variable since it appears with non-consecutive
exponents in U (i.e. 0,1,2,4), so x would be a nonmultiplicative variable for x2z, and there
would no potential involutive divisor in U for x3z.

The other variables are good candidates for being the maximal variable, so we try with z,
getting:

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. 2, A6 (2019) [12 pages]



Bar Code vs Janet tree A6-9

x4 xy t yt x2z yz

∗

In this case, z is nonmultiplicative for t ∈ U and there is no divisor of zt among x2z,yz, so z
is a bad choice for the maximal variable. Choosing t and then continuing with z,y, x, we get
the following Bar Code, which proves that U is complete w.r.t. x < y < z < t:

x4 xy x2z yz t yt
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∗

∗

∗

∗

♢

5. Bar Code and Janet tree

The Bar Code we are using to detect multiplicative variables is a reformulation of Gerdt-
Blinkov-Yanovich Janet tree (Gerdt et al. 2001), but in the (equivalent) presentation given
by Seiler (2010). However, given a finite set of terms, the algorithms for producing its Janet
decomposition which can be deduced from both the formulations above of the Janet tree,
are different from the algorithm naturally arising from the previous Proposition 19.

The Gerdt-Blinkov-Yanovich Janet tree (Gerdt et al. 2001) is a binary tree representing
the structure of a finite set of terms U = {t1, ..., tm}. The root represents the term 1, whereas
the leaves represent the terms t1, ..., tm. The term t jxi (increased by one degree of the current
variable xi) is assigned to the left child whereas the right child points at the next variable
with respect to chosen ordering. In this representation, assigning multiplicative variables
is done by walking on the tree from the root to the leaves. In particular, consider the path
corresponding to the term ti ∈ U. When walking on it, every time we move from a node
w to the direction a new variable x j, we have to ask us whether in the graph there are still
arrows from w in the previous variable x j+1, which do not belong to the path of ti. If so,
x j+1 ∈ NM(ti,U); otherwise x j+1 ∈ M(ti,U).

Example 22. For the set U = {z2y, xz,y2, xy, x2} ⊂ T , x < y < z, we display the Janet tree,
the Bar Code and the table of multiplicative variables:
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z0

z

z2 zy0

z2y0 zx0 z0y0

yz2 xz y

y2 yx0 z0y0 x0

xy x

x2

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗

x2 xy y2 xz yz2

t ML(t,U)
x2 x
xy x
y2 x,y
xz x,y
yz2 x,y,z

♢

We need to remark that there is a big difference between the Janet tree and the Bar Code
representation defined here, namely that the Bar Code is independent on the degree of the
monomials, in the sense that, as an example, for M1 = {x,y2}, M2 = {x2,y4} the Bar Code is
the same, while the Janet tree increases its size with the degree of the terms in the given set.

y0

y

y2 y0 x0

x

y0

y

y2

y3

y4

y0 x0

x

x2

∗ ∗

∗

x y2

∗ ∗

∗

x2 y4

It is true that in practical cases Janet-like divisions (Gerdt and Blinkov 2005a,b) are used
in the case of high-degree sets M, but we remark that Bar Codes can simply deal also with
that case (Ceria 2019c).
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