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Abstract The notion of synergy enables one to provide

simplified descriptions of hand actions. It has been used

in a number of different meanings ranging from kine-
matic and dynamic synergies to postural and temporal

postural synergies. However, relatively little is known

about how representing action by synergies might take

in account the possibility to have a hierarchical and
multiple action representation. This is a key aspect for

action representation as it has been characterised by ac-

tion theorists and cognitive neuroscientists. Thus, the
aim of the present paper is to investigate whether and

to what extent a hierarchical and multiple action rep-

resentation can be obtained by a synergy approach. To
this purpose, we took advantage of representing hand

action as a linear combination of Temporal Postural

Synergies (TPSs), but provided that TPSs have a tree-

structured organisation. In a tree-structured organisa-
tion an hand action representation can involve a TPS

only if the ancestors of the synergy in the tree are them-

selves involved in the action representation. The results
showed that this organisation is enough for forcing a

multiple representation of hand actions in terms of syn-

ergies which are hierarchically organised.

1 Introduction

The human hand is a very complex system with more

than twenty degrees of freedom (DOF) allowing to dex-
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terously perform actions. This complexity has provided

a key challenge for action representation research. For

it seems unlikely that all DOF are individually repre-
sented and controlled during the execution of hand ac-

tions such as grasping, tearing, holding. Several studies

have highlighted the need for a simplified way of com-

puting hand actions (Iberall et al 1986; Santello et al
1998; Mason et al 2001). The notion of synergies is

crucial to this regard. Originally coined by Bernstein

(Bernstein 1967) in the motor control domain, this no-
tion refers to specific patterns in muscle activities or

movement kinematics/dynamics as building blocks for

representing and controlling actions. It has been used in
a number of different meanings ranging from kinematic

and dynamic synergies (Grinyagin et al 2005; d’Avella

et al 2006; Santello and Soechting 2000) to postural

(Tessitore et al 2010; Mason et al 2001; Santello et al
1998) and temporal postural synergies (Vinjamuri et al

2010a,b; Santello et al 2002).

Thus, for instance, it has been shown that hand ac-

tions can be represented by linear combinations of pos-
tural synergies, where the coefficients consist of tempo-

ral weightings of the synergies (Mason et al 2001). In a

similar vein, it has been proposed (Santello et al 2002;

Vinjamuri et al 2010b) that hand actions, expressed as
temporal sequences of hand-joint configurations, should

be represented by linear combinations of a small num-

ber of temporal postural synergies, that is, of specific
patterns in the space of hand-joint configurations vary-

ing over time (see Figure 1).

In spite of these studies, relatively little is known

about how representing action by synergies might take

into account a characteristic aspect of action repre-
sentation, that is, that an action can be represented

in a variety of ways differing from each other in gen-

erality (Goldman 1970; Mele 1997). Consider, for in-
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Fig. 1: Temporal Postural Synergies. Hand actions can

be expressed by linear combinations of a small number

of temporal postural synergies. This kind of synergies

are specific patterns in the space of hand-joint configu-
rations varying over the time. In figure V1,V2, ...,Vr

refer to the temporal postural synergies, u1, u2, ..., ur

to the coefficients of the linear combination.

stance, a hand action like a pinch precision grip: it

can be represented as a mere hand action, but it can
be also represented as a grasping action, as a grasp-

ing action performed with a precision grip, and finally

as a grasping action performed with a pinch precision

grip. Accordigly a given action can be represented in
multiple ways which are hierarchically organized (Gold-

man 1970). Strikingly, similar multiple action represen-

tations have been also found at the brain level. Indeed,
neurophysiological and brain imaging studies have shown

that the cortical motor system may encode actions such

as grasping hand actions with different degrees of gener-
ality (Jeannerod 1988; Jeannerod et al 1995; Rizzolatti

et al 2001; Nelissen et al 2005; Grafton and Hamilton

2007; Rizzolatti et al 2008), being this encoding also

crucial for cognitive functions such as action recogni-
tion (Pellegrino et al 1992; Gallese et al 1996; Rizzolatti

et al 1996); for a review see (Rizzolatti and Sinigaglia

2010). Thus, a natural question arises as to whether

and to what extent multiple levels of action generality

can be represented by a synergy approach.
Hence, the aim of the present paper is to tackle this

question. The question is not completely new, of course,

and some answers have been already provided. Notably,
several models of basic hand actions such grasping ac-

tions rely on a two-hierarchical synergy organisation

(Gorniak et al 2009; Latash et al 2007; Shim et al 2005;
Zatsiorsky et al 2003). The fist level of the hierarchy

consists in the synergies between thumb and virtual fin-

ger, being the latter an imaginary finger which produces

a mechanic effect (force and moment) equal to the sum
of the mechanic effects produced by all the fingers (ex-

cluding the thumb) (Iberall and Fagg 1996; Arbib et al

1985; Shim et al 2003). The second level is composed
by the synergies of the individual fingers forming the

virtual finger.

No doubt a hierarchical synergy organisation of this
kind might provide a useful way of representing action.

However, we investigated here whether and to what ex-

tent a more general hierarchical representation without

any virtual finger assumption would be able to fulfil
the need of a multiple action representation as it has

been characterised by action theorists (Goldman 1970;

Mele 1997) and by cognitive neuroscientists (Jeannerod
1988; Jeannerod et al 1995; Rizzolatti et al 2001; Nelis-

sen et al 2005; Grafton and Hamilton 2007; Rizzolatti

et al 2008). To this purpose, we took advantage of rep-
resenting hand action as a linear combination of tempo-

ral postural synergies (TPSs) involving all the hand’s

digits, but provided that TPSs assume a specific or-

ganisation. More precisely, we proposed that the hand
action representation has to fulfil a tree constraint such

as the following:

Tree-constraint The set of TPSs S = {Vi}ri=1
is orga-

nized as a rooted-tree T composed of r nodes, one

for each TPS V
i, such that each action representa-

tion can involve a synergy V
j (i.e., the correspond-

ing coefficient in the linear combination is different

from zero) only if the ancestors of Vj in T belong

themselves to the action representation, as an ex-
ample see Figure (2).

Accordingly, an hand action can involve a TPS only if
the ancestors of the synergy in the tree T are themselves

involved in the action representation. In the present pa-

per we show that this constrain is enough for forcing a
multiple representation of hand actions in terms of syn-

ergies which are hierarchically organised. More specifi-

cally we expected that: 1) any tree level is related to a

certain degree of generality of the action representation
(multiple representation); 2) the nearer a tree level

is to the root, the higher is the degree of generality of its

action representation; synergies at higher tree levels will
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Fig. 2: Tree-structured synergies. The synergies S =
{Vi}ri=1

are organized in accordance with a rooted-tree

T composed of r nodes, one for each synergy V
i. Differ-

ent actions can be represented using different T ’s sub-
trees. In (a) and (b) an example is reported of how two

different actions can be represented using two different

sub-trees of the same rooted-tree composed of seven
nodes. In (a) the action representation uses the syner-

gies V
1, V2, V3 and V

4, in (b) the synergies V
1, V5,

V
6 and V

7. Continuous edges indicate the synergies

used in the action representation

capture common aspect shared between many actions,

whereas synergies at lower tree’s levels will capture dis-

tinctive features shared between few actions (hierar-
chical representation); 3) as it is usual in a multiple

and hierarchical representation, different subtrees will

identify different types of hand actions (multiple and
hierarchical).

To compute TPSs with the tree-structured organi-

sation, i.e., TPSs satisfying the above introduced tree-
constraint, we used an unsupervised dimensionality re-

duction method proposed by (Jenatton et al 2010). Here

we call this method Tree-Structured Synergies Method
(TSSM ), and the action representation obtained in this

way is called tree-based action representation. TSSM is

framed within the larger class of sparse coding problems

(see, for example, Aharon et al 2006; Engan et al 1999)
where any element is represented as a linear combina-

tion of atoms in which a small set of coefficients are dif-

ferent from zero. Consequently, any actions represented
by a tree-based action representation has a sparse rep-

resentation, involving a small subset of a pre-specified

set of TPS.

To assess whether and to what extent our tree-based

action representation was able to provide us with a hi-

erarchical and multiple representation of action, we col-
lected three data sets of eight different types of grasping

actions, processing them by means of five different anal-

yses: 1) Tree-structured TPSs. The first analysis aimed

to compute tree-structured TPSs and to show that this
kind of synergies organisation was more robust to kine-

matic noise than a standard synergies approach devoid

of any specific organisation. 2) Action type representa-

tion in a tree-structured synergy organisation. Given the

tree-structure TPSs found in the previous analysis, we
highlighted which subtrees are mainly involved in the

representation of the different action types. 3) Action

representation error. Here we measured to which de-
gree the TPSs belonging to a given tree level contribute

to represent actions. 4) Shared and selective TPSs. We

analysed the presence of TPSs which were involved in
reconstructing a large number of actions of different

kind (which we shall call action type-shared TPSs) and

the TPSs which were used in various actions of the same

kind (which we shall call action type-selective TPSs). 5)
Action type similarity. In the last analysis we consid-

ered the question as to whether and to what extent

action type-shared synergies enable us to distinguish
between different types of actions.

There were three main findings. Firstly, a tree-based

action representation resulted to be more robust than a
standard synergies approach. Secondly, different types

of grasping actions were represented by different sub-

trees of a pre-estabilished tree. Thirdly, we showed that

a tree-based action representation allowed us to distin-
guish between action type-shared TPSs and action type-

selective TPSs, the former being located at the higher

levels of the tree-structure and capturing common ac-
tion features, whereas the latter are located at the lower

ones and hold distinctive action features. We therefore

concluded that a tree-structured synergy organisation
allows a multiple representation of action whose levels

are hierarchically organised in terms of different syner-

gies.

2 Methods

2.1 Experimental task and procedure

Subjects were instructed to reach, grasp and hold dif-

ferent objects several times. They were seated at a ta-

ble with two clearly visible surface marks (m1 and m2)

placed at a distance of roughly 40 cm from each other.
For each target object, the subject was asked to put the

right hand on the mark m1 in a prone position. Then,

the subject had to reach and grasp the target object
which was placed on the mark m2 or an experimenter

handed it to the subject close to the mark m2. A com-

puter generated beep was used to signal the start and
the end of the action. Moreover subjects were asked to

perform the grasping actions rapidly and to hold the

object after grasping until they hear the stop signal.

Objects with different size and shape were used accord-
ing to the type of grasp used.

Eight different grasping action types were selected

from the classification made in (Feix et al 2009) (see
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Grasp name Object Grasp Picture

Prismatic-2-Finger pen

Palmar-Pinch pendrive cup

Tripod ping-pong ball

Writing-Tripod marking pen

Power-Sphere tennis ball

Extension-Type compact-disk

Sphere-4-Finger tennis ball

Sphere-3-Finger tennis ball

Table 1: Grasping action types. The table shows the
eight grasping action types used in our experiments as

defined in (Feix et al 2009).

Table 1), and each action type was executed by all the

subjects. We chose these types of actions insofar as they

represent a large enough repertoire of grasping actions,
and, at the same time, some of them exhibit kinematic

similarity such as tripod and writing-tripod or sphere-

3-finger and sphere-4-finger.

For each type of grasping actions a total of 50 ac-
tions were recorded. Thus for each subject a total of

400 actions were recorded.

A HumanGlove (Humanware S.r.l., Pontedera (Pisa),
Italy) endowed with 16 sensors (see Figure 3) to record

joint angles at a maximum frequency of 100Hz and with

a 12bit resolution was used. Wrist related sensors were

not considered for this work whereas 10 hand related
sensors are considered according to (Vinjamuri et al

2010a). In particular sensors which measure angles of

the carpometacarpal (CMC) and metacarpophalangeal
(MCP) joints of the thumb and the metacarpophlangeal

(MCP) and proximal interphalangeal (PIP) joints of the

other four fingers were considered, for a total of d = 10
sensors. We truncated all actions in order to preserve

only their relevant parts where the hand was actually

moving. We then resampled each action in order to have

the same length s. Note that we worked with raw-data
normalized by linear mapping each sensor value in the

range [−1, . . . , 1]. Thus, a grasping action can be ex-

pressed as a p-dimensional vector x ∈ R
p composed of

Fig. 3: DataGlove. HumanGlove (Humanware S.r.l.,
Pontedera (Pisa), Italy) endowed with 16 sensors was

used to record all the grasping actions.

a sequence of s hand-joint configurations hc ∈ R
d, i.e.,

x = [hc(1),hc(2), ...,hc(s)] with p = s× d.

Three right-handed male subjects (age ranging from

24 to 30 years and without neurological disorders) took

part in the experiments. All these subjects were in-

formed about the nature of the study and signed in-
stitutionally approved consent forms.

Summarizing, three datasets DS1, DS2, and DS3,

one for each subject, were constructed. Each dataset
contains a total of 400 grasping actions, 50 actions for

each one of the 8 action types previously described.

The actions belonging to the three datasets DS1, DS2,
and DS3 are represented as sequence of s = 28, 30, 33

hand-joint configurations, respectively.

2.2 Tree-Structured Synergies Computation

In order to find an action organisation in terms of TPSs

which fulfils our tree-constraint, we followed the method

proposed in (Jenatton et al 2010) which we called here
TSSM. Let us define a matrix X ∈ R

n×p of n rows in

R
p, each one corresponding to an experimental obser-

vation of a grasping action expressed as a sequence of

s hand-joint configurations with p = s × d. The prob-
lem we addressed can be solved by finding a matrix

V ∈ R
p×r such that each row of X can be approxi-

mated by a linear combination of the r columns of V,

i.e., Xi =

r
∑

j=1

uijV
j . V is the matrix of TPSs which

are disposed column-wise. V is also called dictionary

in machine learning context. Let us call U ∈ R
n×r the

matrix of the linear combination coefficients, i.e., the

i-th row of U corresponds to the r coefficients of the

linear combination of the r columns of V in order to

approximate the i-th row of X. Consequently, UV
T is

an approximation of X. Following (Jenatton et al 2010)

the problem can be formulated as the following mini-

mization problem:
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minU,V
1

2np
‖X−UV

T ‖2F + λ

n
∑

i=1

r
∑

j=1

‖ Dj ◦Ui ‖

s.t. ∀j ‖Vj‖2 ≤ 1

(1)

where Ui is the i-th row of U, Vj is the j-column

of V, and the matrix D ∈ R
r×p, encoding the tree T , is

defined so that dij is equal to 1 if the j-th node in T is

a descendant of the node i, and 0 otherwise. The vector

Dj ◦Ui is the element-wise product of Dj and Ui. The
first term in equation (1) is the usual reconstruction

error, the second term Ω(Ui) =
∑n

i=1

∑r
j=1
‖ Dj◦Ui ‖

is a penalization term which favours solutions of (1)

such that the tree-constraint is fulfilled. The parameter
λ ≥ 0 controls to which extension the penalization term

is used. The more λ increases, the more one obtains a

sparse representation of the actions, i.e., the action is
represented using a subset of the synergy set.

In order to solve the problem (1), we followed the

usual approach of finding the minimum by alternating
optimizations with respect to the coefficients U and

to the dictionary V. Most methods are based on this

alternating scheme of optimization (Basso et al 2011).

Therefore the algorithm used here is composed of two
alternate stages: 1) Tree-Structured Coding Stage. In

this stage the dictionary V is fixed and the matrix U is

updated. 2) Synergy Dictionary Stage. Here the matrix
V is updated while keeping the U’s values fixed. For

more details see Appendix (Section 5).

It is worth to note that different choices of the tree T
and the sparsity parameter λ induce different solutions

of the minimization problem. This dependence implies

the need for a careful choice of T and λ.

2.3 Data Analysis

In the following five data analyses, all the actions recorded

from the tree subjects were considered, i.e., we used all

the three datasets DS1, DS2 and DS3, each one com-

posed of 400 grasping actions, 50 actions for each one
of the 8 action types as reported in Section 2.1. Note

that in the analysis described in Subsection 2.3.1 each

dataset DSi, has been split into two subsets, each one
composed of 200 actions obtained choosing in a random

way 25 actions for each one of the 8 action types. For

each DSi, the first subset obtained was used as train-
ing set for a linear classifier, and we will call this subset

TSi, whereas from the second subset we built three cor-

responding noisy test sets NT 1

i , NT 2

i and NT 3

i adding

to the recorded actions a zero-mean Gaussian noise with
σ = 0.2, σ = 0.4 and σ = 0.6, respectively. Thus, these

datasets are composed of grasping actions noised by

“small” kinematic variations.

2.3.1 Tree-structured synergies

In this analysis we computed tree-structured TPSs and

tested the representational capacity of this kind of syn-
ergies comparing them with TPSs computed by a stan-

dard approach such as the Principal Component Analy-

sis (PCA) which denies any specific synergies organisa-
tion (Hastie et al 2003). In particular we compared the

tollerance to kinematic noise of the action representa-

tion obtained by these two different approaches. To this

aim we tested, for each kind of action representation,
the ability of a classifier to discriminate between the

eight action types, described in Table 1, when the clas-

sifier is fed with actions corrupted with kinematic noise.
PCA, or the equivalent method of singular value decom-

position, has been widely used in computing hand ac-

tion synergies (see Tessitore et al 2010; Vinjamuri et al
2010a,b; Mason et al 2001; Jerde et al 2003; Santello

et al 2002, 1998). As it is known, the output of PCA

is a set of ordered orthogonal vectors, called Principal

Components (PCs), which enables one to express input
data as a linear combination of these PC s. Thus, PCA

allows one to express actions as linear combination of

TPSs which correspond to the first PC s.

As the tree-based action representations depend on

the choice of the tree T which defines the organisation
of the TPSs we considered three different trees T1, T2

and T3 as showed in Table 2. These trees differed for the

number of both levels and nodes. T1, T2 and T3 have

a number of levels (nodes) equal to 2 (5), 3 (13) and
4 (29), respectively. We chose these three rooted-trees

insofar as they allowed to investigate the soundness of

a tree-based action representation on different degrees
of detail. To obtain a PCA-based action representation

comparable with tree-based action representations, the

number of principal components to be selected was cho-
sen varying in the set {5, 13, 29}, i.e., the number of

nodes of each of the three trees T1, T2 and T3. It is

worth to note that in a PCA-based action representa-

tion any actions is typically represented using all the
selected TPSs.

For each training set TSi, with i = 1, 2, 3, we solved
the minimization problem as expressed in (1) by TSSM

using in turn each of the three trees T1, T2 and T3,

and a regularization parameter λ (see eq. 1) ranging
in [0.01, 0.1] at step 0.005. The regularization param-

eter λ was chosen so that to obtain an high sparsity

value1. This choice enabled us to obtain both compact

1 We consider high sparsity a mean sparsity value roughly equal
to 30% of the total number of TPSs of each tree. More specifically

the mean sparsity of the tree-based action representations belong-
ing to each training set was computed as 1− 1

pn

∑n
j=1 ‖ Uj ‖0,

where Uj are the coefficients of the tree-based action represen-
tation for j-th action of the training set. Note that the mean



6 G. Tessitore et al.

and meaningful action representations. Thus, for each

training set TSi we found three different sets of TPSs,
Si
T1

, Si
T2

and Si
T3

.

Each action belonging to the training set TSi was

represented by three different tree-based action repre-

sentations, one for each tree. Similarly, for each action
belonging to the training set TSi we obtained three dif-

ferent PCA-based action representations, one for each

choice of the maximum number of principal components
({5, 13, 29}).

A regularized linear regression model was used as

multi-class classifier (Hastie et al 2003). The regular-

ization parameter for the linear regression model λrm

was varied in the range log10 (λrm) ∈ [−22,−21, . . . , 1].

Hence, by feeding the multiclass classifier with the

coefficients of the obtained action representations, a 5-

fold cross-validation method was used to choose the
classifier regularization parameter λrm. Thus, at the

end of the training phase, the TPSs computed by TSSM

and PCA, and the classifier’s parameters were deter-

mined.

In the test phase the actions belonging to the noisy
test sets NT 1

i , NT 2

i and NT 3

i were used. Here, while

leaving unchanged the TPSs computed previously in

the training phase, for each action belonging to each
NT

j
i we computed, similarly to the training phase, three

different tree-based action representations and three PCA-

based action representation. The classifier as determined
in the training phase was fed, for each action belong-

ing to each noisy test set, with the corresponding two

tree-based action representations and the correspond-

ing PCA-based action representations. Finally, the per-
formance of the multi-class classifier was measured by

classification accuracy which is defined as the ratio be-

tween correctly classified actions over the total number
of actions. Thus, for each noisy test set, we obtained:

1) for the tree-based action representations, three clas-

sification accuracy values corresponding to the three
different trees, 2) for the PCA-based action representa-

tions, three classification accuracy values.

2.3.2 Action type representation in a tree-structured

synergy organisation

Given the sets of TPSs Si
T previously found, we ana-

lyzed which subsets of TPSs in T are mainly used in

the representation of the different 8 action types. Thus,
given a set Si

T we proceeded according to the following

two consecutive steps: first, for each synergy V
k ∈ Si

T

value of the sparsity multiplied by the number of synergies gives
the mean number of synergies used to represent each action.
For the corresponding λ we found that the reconstruction error
1

2np
‖X−UV

T ‖2
F

was always lower than 4× 10−3.

# levels split total

at each level nodes

T3 3 4, 2, 2 29

T2 2 4, 2 13

T1 1 4 5

Table 2: Tree-structured synergies. The Tree-Structured

Synergy Method (TSSM) has been applied using 3 dif-
ferent rooted-trees T1, T2 and T3 which have heights 1, 2

and 3, respectively. The tree T1 is composed of 5 nodes

with 4 nodes at the level 1, the tree T2 is composed of
13 nodes with 4 nodes at the level 1 and 8 nodes at the

level 2, and the tree T3 is composed of 29 nodes with

4, 8 and 16 nodes at the levels 1, 2 and 3, respectively.

To each tree a number of TPSs is associated, which is
equal to the number of tree nodes, one for each node.

we compute the percentage of actions belonging to the
h-th action type Ah which uses the k-th synergy as

ahk = usage
(

V
k, Ah

)

=
1

card (h)

∑

j∈Ai

‖ ujk ‖0 (2)

where card (h) is the number of actions belonging

to the h-th type of actions; second, for each action type

Ah, with h = 1, 2, 3, ..., 8, we weighted the T edge going
from the synergy l to the synergy m with the value ahm.

Thus, we obtained, for each rooted-tree T , 8 different

weighted trees, one for each action type. Each weighted

tree gives a representation of an action type in terms of
synergy usage. Recall that by construction if a node m

is involved in the representation of an action, then all

the ancestor nodes of m are also involved in the repre-
sentation. In order to obtain a multiple and hierarchical

action representation we expected that each action type

used a distinct subtree involving almost all the levels of
the rooted-tree T .

2.3.3 Action representation error

Using the sets of TPSs Si
T , which were computed as

described in the previous subsection, we obtained tree-

based action representations of the actions belonging

to the datasets DS1, DS2 and DS3, i.e, all the actions

collected by the three subjects involved in the present
experiment. Afterwards, on the basis of these represen-

tations we measured how the TPSs belonging to a given

level of the rooted-tree T contribute to representing the
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collected grasping actions. More specifically, for each

set of TPSs Si
T =

{

V
h
}r

h=1
and each action belonging

to the corresponding dataset DSi, we computed the

reconstruction error between the recorded actions and

the reconstructed actions using only the TPSs belong-
ing to the first j levels of the the rooted-tree T . Given a

dataset DSi and a rooted-tree T this reconstruction er-

ror is defined as err
j
i,T = 1

2np
‖X−U(V|Lj

)T ‖2F , where
Lj is the set of node indexes belonging to the first j lev-

els of the tree T , and V|Lj
is the matrix composed of

the V’s columns belonging to Lj only. The index j runs

in the range from 0 to pT , where pT is the maximum
number of levels in T .

2.3.4 Shared and selective TPSs

Using the sets of TPSs Si
T computed as described in

subsection 2.3.1, we measured to what extension a TPS

is either shared between different kinds of actions or

used in just one specific action type. To this aim, we
introduced two measures: commonality and selectivity.

A TPS with a high commonality is strongly used in

more than one type of action. A TPS with a high se-

lectivity is mainly used in just one type of actions. The
commonality of a given TPS V

k is defined as:

commonality
(

V
k
)

=
MVk

1 + SVk

(3)

where MVk and SVk are the mean and standard

deviation of the usage values for the k-th synergy over
all action types.

Note that for any given V
k, 0 ≤ commonality

(

V
k
)

≤
1. A value near to 1 means that the corresponding syn-

ergy is widely used by almost all the action types.

We now turn to the selectivity property which is

defined as follows:

selectivity
(

V
k
)

=

maxi usage
(

V
k, Ai

)

− 1

C−1

∑

j 6=ik
usage

(

V
k, Aj

) (4)

where ik is the index of the action type for which
usage

(

V
k, Ai

)

assumes the maximum value. Note that

also selectivity
(

V
k
)

lies between 0 and 1. The maxi-

mum value 1 is reached when a given synergy is used
by all the actions belonging to just one type of actions.

Once computed these measures, as the sets of TPSs
Si
T that we are using have a tree-structured organisa-

tion T , we computed the mean values of commonality

and selectivity for each level of the trees T .

2.3.5 Action type similarity

For each set of TPSs Si
T , we grouped together the types

of actions on the basis of the usage of the synergies be-
longing to the first level of the rooted-tree T . We chose

the first level of the tree as we expected that on this first

level there were synergies which had a degree of com-

monality (see subsection (2.3.4)) higher than in other
T ’s levels. More in detail, given the set of TPSs Si

T and

the corresponding 8 weighted trees, one for each action

type, which were computed as described in the previous
subsection (2.3.2), we grouped together the types of ac-

tions which have the same most used synergy belonging

to the first level of the corresponding weighted tree.

In order to asses the resulting groups we introduced

the notion of action-type temporal profile. For each ac-

tion x(t) belonging to one of the 8 types of grasping
actions, at a given time t we computed the cosine be-

tween the vector x(t) and the p-dimensional unit vector

1p. At each time t, the mean and standard deviation of
these values over all actions of the same action type

were computed. Hence, we obtained 8 different action-

type temporal profiles which enable us to asses the sim-

ilarity between the 8 types of grasping actions from a
kinematic point of view.

2.4 Results

2.4.1 Finding tree-structured synergies

In Table 3, for each one of the noisy test sets NT 1

1

(σ = 0.2), NT 1

2
(σ = 0.4) and NT 1

3
(σ = 0.6), the three

classification accuracy values, for the tree-based action
representations, and the three classification accuracy

values, for the PCA-based action representations, are

shown. Classification accuracies for the tree-based ac-
tion representations corresponding to trees T3 and T2

were always higher than for PCA-based action represen-

tations, but in one case (see Subject 2, noise σ = 0.2
in Table 3). Moreover this difference is much more ev-

ident in case of higher noise, see second row (σ = 0.4)

and third row (σ = 0.6 ) in Table 3. Conversely, when

the tree-based action representation involves TPSs or-
ganized using the tree T1 the classification accuracy

turns out to be always very low, therefore these TPSs

were discarded for further analyses.

Accordingly, only the two different sets of TPSs,

Si
T2

and Si
T3

, corresponding to the two rooted-tree T2

and T3 were considered. In Figure 4 and 5 the sets of
TPSs S1

T2
and S1

T3
are shown. Note that the synergies be-

come more smooth (in the sense of having fewer peaks)

as the synergies come closer to the root of the tree.
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Noise Subject 1 Subject 2 Subject 3

T3 T2 T1 T3 T2 T1 T3 T2 T1

σ = 0.2 Tree-based 0.98 0.98 0.58 0.96 0.92 0.56 0.88 0.84 0.63
PCA-based 0.94 0.97 0.84 0.94 0.94 0.80 0.74 0.80 0.83

σ = 0.4 Tree-based 0.92 0.94 0.52 0.85 0.89 0.52 0.69 0.75 0.57
PCA-based 0.80 0.87 0.80 0.72 0.84 0.82 0.41 0.61 0.73

σ = 0.6 Tree-based 0.69 0.81 0.51 0.72 0.82 0.50 0.48 0.58 0.53
PCA-based 0.59 0.67 0.68 0.57 0.73 0.67 0.29 0.51 0.57

Table 3: Action classification accuracy. The table shows the accuracy of a linear classification when a PCA-based

action representation or a tree-based action representation with a sparseness less than 0.3 is used. The classification

task consists in classifying grasping actions belonging to 8 different action types. Classification accuracies are

reported for different noise levels (σ) . For more details see text.

We used these TPS sets Si
T2

and Si
T3

, with i running
on the three different subjects involved in the present

experiment, in both the three analyses described in sub-

section 2.3.4, 2.3.2 and 2.3.5.

2.4.2 Action type representation in a tree-structured

synergy organisation

In figures 6 and 7 the use of the TPSs belonging to S1

T2

and S1

T3
(subject 1), respectively, for each one of the

8 different action types is shown. The thickness and

the darkness of an edge going from the node l to m

represents the usage of the m-th synergy as described
in Subsection (2.3.2). It is worth noting that each action

type uses a specific sub-tree including all the levels of

the tree.

2.4.3 Action representation error

Given the TPS’s sets Si
T2

and Si
T3

selected in Section

2.4.1, with i = 1, 2, 3, for each dataset DSi we com-

puted the reconstruction errors errji,T2
, with j = 0, 1, 2,

and the reconstruction errors errji,T3
, with j = 0, 1, 2, 3.

The Table 4 shows these values for the three dataset
DSi (all the subjects). Note that the reconstruction er-

ror decreases when a tree level is added to the repre-

sentation of action. The error decreasing assumes the

maximum value when one adds to the representation
of action the TPSs belonging to the first level of the

tree only. On the contrary, the error decreasing assumes

lower values when TPSs belonging to lower tree levels,
that is, tree levels which are farer from their correspond-

ing root, are included.

2.4.4 Shared and selective synergies

On the basis of the seleceted TPS’s sets Si
T1

and Si
T2

, for
each subject, we computed the selectivity and common-

ality mean values for each level of the trees T1 and T2.

The top-left graphs in Figure 8 and 9 show these mean

values for the dataset DS1 (subject 1). The synergy as-
sociated to the root of the tree is not included in the

analysis as it is always used for construction. The re-

maining graphs in Figure 8 and 9 show the usage of the
synergies for each level (or depth) of the tree. In partic-

ular, for each tree depth the percentage of the synergy

usage for each action type is reported. It is worth not-
ing that for both trees the commonality (selectivity)

mean values have a decreasing (increasing) trend over

tree levels. A similar behaviour is obtained also the for

other two subjects as showed in Figure 10.

2.4.5 Action type similarity

On the basis of the analysis described in SubSection

(2.3.5), in Table 5 and 6 the action type groups ob-
tained considering the usage of the set of TPSs S1

T1
and

tree S1

T2
(subject 1) are shown. Note that very similar

results are obtained for both the sets of TPSs. In par-
ticular in both cases the Palmar-pinch type is put alone

into a specific group, while the two precision grasps Tri-

pod and Writing-Tripod, the two whole-hand grasping

types Power-Sphere and Sphere-4-Finger, and the ac-
tion types Sphere-3-Finger and Prismatic-3-Finger are

grouped together.

In order to emphasize the similarity and the differ-
ences between each action type we have reported the

action-type temporal profile for each one of the 8 ac-

tion types in Figure 11.
It is worth noting that action types belonging to

the same group, as shown in Table 5 and 6, have a very

similar action-type temporal profile.

Very similar results were obtained also the for other
two subjects.

3 Discussion

The main aim of the present study was to assess whether

and to what extent a tree-structured synergies organi-

sation might provide a multiple and hierarchical repre-
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Level 0 Level 1 Level 2 Level 3
Subject 1 T2 0.051 0.018 (69%) 0.003 (31%)

T3 0.059 0.026 (57%) 0.008 (31%) 0.001 (12%)

Subject 2 T2 0.055 0.019 (72%) 0.005 (28%)
T3 0.067 0.032 (54%) 0.011 (32%) 0.002 (14%)

Subject 3 T2 0.046 0.015 (72%) 0.003 (28%)
T3 0.044 0.018 (60%) 0.006 (28%) 0.001 (12%)

Table 4: Reconstruction errors for levels. We defined errj(t) (see text) as the reconstruction error between the
recorded actions and the reconstructed actions using only the TPSs belonging to the first j levels of a tree-

structured TPS organisation. The table shows such reconstruction error for all the dataset DSi and using the trees

T2 and T3. The contribution (in percent) of each tree level to the reconstruction error is reported in brackets.

Most used synergy

belonging to level 1 of T2

Prismatic 2 Finger Extension Type Sphere 3 Finger

2

Palmar Pinch

11

Tripod Writing Tripod

8

Power Sphere Sphere 4 Finger

5

Table 5: Grouping actions types by TPSs. In a tree-based action representation using the tree T2 we have grouped

all action types on the basis of the most used synergies belonging to the first level.

Most used synergy

belonging to level 1 of T3

Prismatic 2 Finger Sphere 3 Finger

16

Palmar Pinch

23

Tripod Writing Tripod

2

Power Sphere Sphere 4 Finger Extension Type

9

Table 6: Grouping actions types by TPSs. In a tree-based action representation using the tree T3 we have grouped
all action types on the basis of the most used synergies belonging to the first level. The results are presented in

the figure.
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Fig. 6: Synergy usage for the tree T2. The figure shows the usage of the TPSs in a tree-based action representation

for the eight action types of actions when the tree T2 is used. The numbered white squares organized in a tree

refer to the computed TPSs. The gray level of an edge going from i to j, with j > i, represents the usage of the
TPSs j. Black level indicates the maximum value. If the edge is absent the synergy is not used.

sentation of action. To this purpose, we processed three

data sets of eight different types of grasping actions by

means of five different analyses. In the first analysis
we compared the representation of the different types

of grasping actions based on our tree-structured TPS

organisation computed by TSSM with that resulting

from TPS computed by PCA and devoid of any spe-
cific organisation. The task consisted in classifying the

collected grasping actions noised by “small” kinematic

variations. The results showed that tree-based action

representations were more robust than PCA-based ac-
tion representations with respect to the kinematic noise.

In the second analysis, we highlighted that different

subtrees involving a limited number of TPSs represent

different action types. In the third analysis we measured
to which degree the TPSs belonging to a given level of



Hierarchical and multiple action representation using temporal postural synergies 13

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Prismatic 2 Finger

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Palmar Pinch

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Tripod

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Writing Tripod

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Power Sphere

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Extension Type

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Sphere 4 Finger

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

16

17

18 19

20

21 22

23

24

25 26

27

28 29

Sphere 3 Finger

Fig. 7: Synergy usage for the tree T3. The figure shows the usage of the synergies in a tree-based action represen-

tation for the eight types of actions when the tree T3 is used. The numbered white squares organized in a tree

refer to the computed TPSs . The gray level of a edge going from i to j, with j > i, represents the usage of the
TPS j. Black level indicates the maximum value. If the edge is absent the synergy is not used.

the rooted-tree contribute to represent grasping actions.

We found that TPSs belonging to the higher levels of

the tree-structure synergy organisation capture much of
the action development, whereas TPSs belonging to the

lower levels represent grasping action details. The pres-

ence of both synergies shared between many kinds of

action, action type-shared synergies, and synergies se-
lective to just one kind of action, action type-selective

synergies, was tested in the fourth analysis. The re-

sult was that the former have been mainly located near
the root of the tree whereas the latter near the leafs.

This property reflects the hierarchical organisation of

the synergies in tree-based action representation. Fi-
nally in the last analysis we showed that similar action

types are represented by the same action type-shared

synergies.

Taken together, these analyses suggest that basic ac-

tions such as grasping hand actions can be multiply and

hierarchically represented by means of TPSs, provided

that the latter are organised in a suitable tree-structure.

As far as the multiple nature of action representa-

tion is concerned, Figure 6 and Figure 7 clearly show
that, in our tree-based action representation, any grasp-

ing hand action was represented using almost all the

levels of the rooted-tree, and grasping actions of the
same type tend to use the same subset of TPSs. Inter-

estingly, grasping actions of different type used differ-

ent subsets of TPSs which could overlap. Consequently,
the representation of the different grasping actions was

distributed on a small subset of TPSs. In addition, we

found that any TPS can be either selective for a specific

action or for an action type or shared between different
action types. Thus, grasping actions were represented

with different degrees of generality by different TPSs.

In other words, they were multiply represented.
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Fig. 8: Commonality and selectivity using the tree T3. The top-left graph shows selectivity and commonality mean

values computed for each level of the rooted-tree T3 used in the tree-based action representation. The black bar
stands for the first level, the gray bar stands for the second level, and the white bar stands for the last level. The

remaining three graphs show the usage of the synergies for each level of the tree. For each tree level the synergy

usage, in percentage, for each action type is reported.
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values computed for each level of the tree T2 used in the tree-based action representation. The black bar stands
for the first level and the white bar stands for the last level. The remaining two graphs show the usage of the

synergies for each level of the tree T2. For each tree level the synergy usage, in percentage, for each action type is
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Fig. 10: Commonality and Selectivity. The figure shows selectivity and commonality mean values computed for

each level of the tree T3 (first row) and T2 (second row) used in the tree-based action representation and for all
the subjects. In the first row the black bar stands for the first level, the gray bar stands for the second level and

the white bar stands for the last level of the tree T3. In the second row the white bar stands for the second level

of the tree T2.
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Fig. 11: Comparing action-type temporal profiles. In this

figure the action temporal profile of the types of actions
considered in the third test are compared. For each type

of action a temporal profile is computed at each time

t as the mean of the cosine between the hand configu-

ration at the time t and the d-dimensional unit vector
1p.

This multiple action representation turned out to
be also hierarchical in nature. Indeed, Figure 8, Figure

9 and Figure 10 show that the TPSs exhibit a com-

monality value which has a decreasing trend over the
tree levels, from the top to the bottom. On the con-

trary, the selectivity value reveals an increasing trend.

In the case of tree T3 we obtained a obtained an increas-
ing selectivity trends only for the first two levels. This

was mainly due to the fact that some synergies of the

last level tended to be much more specific for a small

subset of grasping actions of a given action type. This
result, together with the trend of the reconstruction er-

ror over different levels showed in Table (4), suggests

that the TPSs on the higher levels of the tree captured
action features which were shared from many grasp-

ing actions belonging to different action types. On the

contrary, TPSs on the lower levels of the tree included
action features which which were selective for just one

action type. Interestingly, Table 5, 6 and Figure 11 in-

dicate that similar action types could be grouped to-

gether on the basis of the synergies of the first level
only. Grasping actions were therefore represented with

different degrees of generality on the different levels of

the tree-structured synergy organisation.

The notion of a synergy based hierarchical repre-

sentation of action is not completely new, of course.
Several models of basic hand actions such as grasping

actions have been provided over the last decade. Most

of these models rely on a two-level synergy organisation
(Gorniak et al 2009; Latash et al 2007; Shim et al 2003;

Zatsiorsky et al 2003).

In spite of their theoretical relevance, however, these
models do not seem to be general enough in taking into

account the main hierarchical features of action repre-

sentation. Indeed, the hierarchy of their action repre-
sentation was determined only by two different synergy

levels: the first level was formed by the synergies be-

tween thumb and a virtual finger (that is, an imaginary
finger with mechanic effect equal to the sum of the me-

chanic effects produced by all the other four fingers),

while the second level was constituted by the syner-

gies of the individual four fingers forming the virtual
one. As a consequence, their action representation does

not naturally include further hierarchical levels. On the

contrary, our tree-based action representation turns out
to be flexible enough to represent action with hierarchi-

cal levels which may vary in number, being not a priori

defined in terms of specific pattern of finger synergies.
In addition, unlike the two-level synergy models, our

tree-based action representation sheds new light on the

multiple nature of the representation of action, by cap-

italising it in accounting for the hierarchical structure
of action.

To this regard, it is worth noting that our tree-based
action representation is in line not only with action the-

ories emphasising the multiple and hierarchical struc-

ture of action representation (Goldman 1970), but also

with several findings on the differentiated activation
of the cortical motor system when planning and exe-

cuting hand grasping actions. In particular, single cell

recordings from the ventral premotor cortex (Rizzolatti
et al 1988) and the inferior parietal lobule of the mon-

key brain showed that most neurons do not discharge

in association with simple movements (like flexing the
fingers), but are activated only and exclusively by the

execution of movements accomplishing the representa-

tion of a given action such as grasping, tearing, holding

or manipulating objects (Jeannerod et al 1995; Gallese
2000; Murata et al 2000; Fogassi et al 2005).

Most interestingly for the purposes of our study,
both the ventral premotor and inferior parietal motor

neurons represented the corresponding grasping actions

with different degrees of generality: indeed, there were

motor neurons that were sensitive to a motor action
such as grasping a piece of food, regardless of whether

the latter was accomplished with a specific grip (grasp-

ing with a whole hand prehension, grasping with a pre-
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cision grip, etc.). However, even when selectivity was at

its highest, the motor responses of neurons could not
be interpreted in terms of single and merely physical

movements. The neurons that discharged during certain

movements (flexing of a finger, for example) performed
with a specific motor goal (e.g. grasping), discharged

weakly or not at all during the execution of those move-

ments with a different motor goal (e.g. scratching) (Riz-
zolatti et al 2004, 2008). Similar findings have been ob-

tained by brain imaging studies (Nelissen et al 2005)

in monkeys and humans (Grafton and Hamilton 2007;

Rizzolatti et al 2008).

In conclusion, the present study shows that tree-

structured TPSs allow for both a multiple and hier-
archical representation of basic actions such as grasp-

ing actions. Similar results might be obtained by using

other notions of synergies such as dynamic or postu-
ral synergies, provided that they fulfil a suitable tree

structure organisation. Moreover, our tree-based action

representation exploits linear combinations of synergies,
being the latter enough to represent fast hand move-

ments such as reach-to-grasp actions performed in a

natural way. However, grasping actions can be also rep-

resented in terms of non-linear superposition of syner-
gies. Hence, a still open issue is to investigate whether

and to what extent actions can be multiply and hierar-

chically represented by means of a non-linear superpo-
sition of synergies.
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5 Appendix: Tree-Structured Synergy Method
(TSSM)

We will use the following notations. Bold uppercase let-
ters refer to matrices, e.g., X,V, and bold lowercase let-

ters designate vectors, e.g., x,v. We denote by Xi and

Xj the i-th row and the j-th column of a matrix X,
respectively. We use the notation xi and vij to refer to

the i-th element of the vector x and the element in the

i-th row and the j-th column of the matrix V, respec-

tively. Given x ∈ R
p we use the notation ‖x‖ to refer to

l∞ norm. Given two vectors x and y in R
p, we denote

by x ◦ y = (x1y1, x2y2, ..., xpyp) ∈ Rp the element-wise

product of x and y.

5.0.6 Tree-Structured Stage

The update of the U’s values is performed in this stage,
and, more importantly, following the approach suggested

by Jenatton et al (2010), a tree-structured represen-

tation of the rows in X is found. The main difficulty
is that the optimization of the Ui, i ∈ 1, 2, ..., n, for

a fixed V involves the nonsmooth regularization term

Ω(Ui) =
∑r

j=1
wj ‖ Dj ◦ Ui ‖, where wj are posi-

tive weights2. In this case the update of the vectors
Ui can be performed using a proximal method (Com-

bettes and Wajs 2006). In general proximal approaches

are used when one has to minimize a convex nonsmooth

objective function which assumes the following general
form:

f(u) + λΩ(u)

where f(u) is the usual data-fitting term 1

2
‖x −

uV
T ‖2

2
and Ω(u) is a non-differentiable regularization

term. In a nutshell, the proximal approach consists of
two consecutive updating steps: first, the vector u is

updated using the standard gradient update rule w.r.t

the first term of the objective function as follows:

ū← u−
1

σU

∇f(u) = u+
1

σU

(x− uV
T )V (5)

then, starting from the value ū the new value for u is

computed by applying a proximal operator ΠU defined
by the following minimization problem:

ΠU(u) = argminv

1

2
‖u− v‖2

2
+ λΩ(v) (6)

Thus we obtain u
new ← ΠU(ū). For a number of

regularization terms the minimization problem expressed

in (6) can lead to closed-form solutions. For example
when Ω(u) is the ℓ1 norm of u the corresponding prox-

imal operator ΠU is the well-known soft-thresholding

operator. In the case of the regularization term used
here this minimization problem can be solved by a primal-

dual approach which enable us to implement the proxi-

mal operator defined in (6) by the procedure presented

in Algorithm (1).

Summarizing, the optimization of the Ui values is
performed using the gradient descent rule expressed in

(5) and, then, applying the proximal operator as defined

previously.

2 Note that all wj are fixed to 1 in the experiments
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Algorithm 1 Proximal operator. Π∗
λwj

is the orthog-
onal projection on the ball of radius λwj of the dual

norm ‖ · ‖∗.

Input: u ∈ Rr and D ∈ Rr×p

Output: v ∈ Rr

for i← 0 to MaxNumberOfIteration

for j ← 1 to r

Pj ← u−
∑

h 6=j

Ph

Pj ← Π∗
λwj

(Pj ◦Dj)

end for

end for

v← u−

r∑

j=1

Pj

5.0.7 Synergy Dictionary Stage

This stage consists in updating the V’s values while
keeping fixed the values of U. Note that the objective

function in (1) is composed of two terms to be min-

imized, and the second term does not depend on V.

Therefore, the optimization problem posed in (1) can
be, in this stage, reformulated as follows:

min
V

1

2np
‖X−UV

T ‖2F s.t. ∀i ‖Vi‖2 ≤ 1 (7)

Due the fact that the columns of V are constrained
to lie inside the unit ball, the update of V is performed

in two consecutive steps. First, we apply a standard

gradient updating rule as follows

V̄← V +
1

σVnp
(X−UV

T )UT (8)

where η is a parameter. Then, we use the projection

operator Π(v) = v

max{1,‖v‖2}
in order to project the

columns of V̄ on the unit ball in R
p. Consequently the

update of V is computed as follows:

V← Π(V +
1

σVnp
(X−UV

T )UT ) (9)

The overall algorithm of TSSM is reported in algo-

rithm 2. Note that a fixed step gradient descent pro-

cedure was adopted with the two learning rate σU and
σV chosen equal to the Lipschitz constant of ∇f(u) and

∇f(v) respectively.
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