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Abstract: Nossana represents an important pre-Alpine karst spring for drinking supply, sustaining 

a water distribution system serving 300,000 people. The goal of this study was to project Nossana 

discharges and evaluate potential supply limits for four future periods (2021–2040, 2041–2060, 2061–

2080, 2081–2100). Bias-corrected Regional Climate Models (RCMs), part of the EURO-CORDEX 

experiment and forced by three emission scenarios (RCP2.6, RCP4.5, RCP8.5), were evaluated, 

statistically downscaled, and used as input in a calibrated rainfall-runoff model ensemble. For each 

emission scenario, the calibrated model ensemble considered three RCMs and ten rainfall-runoff 

parameterizations. Projected ensemble mean discharges are lower than observations (3%–23%) for 

all RCPs, though they do not show a clear trend between the four time periods. Days characterized 

by discharges lower than actual water demand are projected to decrease, except for the RCP8.5 

emission scenarios and the period 2081–2100. Conversely, the same consecutive days are expected 

to increase after 2060 for all emission scenarios. These results reflect the projected precipitation 

trend, characterized by longer, drier summer periods and wetter autumns in comparison to today’s 

climate. Also, they indicate a possible need for alternative drinking water resources. The proposed 

methodology was demonstrated to deliver useful quantitative information for water management 

in the mid- long-term period. 

Keywords: karst; rainfall-runoff model; statistical downscaling; weather generator; drinking water; 

water management 

 

1. Introduction 

Karst springs play a fundamental role in large-scale human water supply, both from a strategic 

and socio-economic point of view [1]. Quantifying actual and future project spring discharges is 

extremely important to manage water resources in karstic areas, especially in view of the effects 

related to climate change. According to the Intergovernamental Panel on Climate Change (IPCC), the 

mean temperature is expected to increase globally throughout the 21st century, with a consequent 

increase in the frequency and magnitude of heat waves, drought periods and intense precipitation 

events in many regions of the world [2]. The prediction of the response to climate change in 

hydrogeological systems becomes vital, especially if exploited for drinking water supply [3] or the 

sustainability of groundwater dependent ecosystems [4]. 

The application of traditional groundwater flow models for the prediction of fractured media is 

complicated due to the duality of the flow systems [5]; this is particularly true for karst systems [6,7]. 

A typical karst system is formed by a fractured rock matrix, which includes both diagenetic rock 

micro pores and small fractures of tectonic origin, as well as a network of widely articulated karst 
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conduits [1,8]. This dual nature leads to a hybrid flow behavior, Darcian within the rock matrix, and 

turbulence in the conduits. In addition, flow in the conduits can be assimilated to full pipe 

(pressurized) flow or to free surface flow, based on the channel saturation. Attempts to define 

physically based, distributed models incorporating some or all of these characteristics have been 

made by many authors [9–15]. However, the definition of a conceptual model that could depict the 

system heterogeneity reliably, in terms of both 3D geometry and parameterization, can be very data 

demanding, time consuming, and costly [16]. Speleological exploration (e.g., [17]) and artificial 

tracers (e.g., [18]) can furnish information on spring catchment areas and the main geometric 

properties of the karst system. Additional insights regarding different water sources and water 

residence time in the aquifer can be derived from natural tracer analyses, such as water isotopes, 

major ions, trace elements, and dissolved organic carbon (e.g., [19–23]). In-situ hydraulic methods, 

such as pumping tests, can provide knowledge on the degree of confinement of the aquifer and its 

quantitative parameters (e.g., [24,25]). Non-invasive geophysical methods can also be used to gather 

information on aquifer geometry and boundaries (e.g., electric and seismic methods, [26,27]), to 

identify major voids and conduits (e.g., gravimetric and geomagnetical methods, [28]), and to 

recognize preferential infiltration pathways (e.g., self-potential methods, [29]). In addition, to allow 

model calibration, a continuous monitoring of at least precipitation and spring discharge is essential 

[16]. 

When the main goal of the study concerns the response of a karst spring to meteorological 

events, the continuous monitoring of precipitation and discharge could suffice for a modeling setup. 

Input-output models can be used to relate the precipitation contribution to the outflow through 

empirical equations based on lumped parameters (e.g., [30,31]), neural networks (e.g., [32]), or input-

response functions (e.g., [33,34]). An increasing number of studies involving such modelling 

approaches have been documented for karst environments in recent years (e.g., [35–39]). Due to the 

lack of physical processes representation, a limitation of these models concerns their loss of reliability 

if applied in conditions that largely differ from calibration [40,41]. Parameter transferability has been 

largely tested (e.g., [42–44]), suggesting an increase in simulation errors and uncertainties with 

increasing differences in mean rainfall. Also, performance losses appear larger when transferring 

parameters from wet to dry periods than vice versa. Vaze et al. [42] concluded that calibrated models 

could be used for climate change impact studies if mean rainfall changes between future and 

calibration periods fall within a −15% to +20% range. 

Climate projections are derived from Global Circulation Models (GCMs) forced according to the 

representative concentration pathways (RCP, [45]) proposed by the IPCC [2]. Usually, these models 

are run at large horizontal resolutions (≥ 80 km) and are therefore not able to reproduce climate states 

at regional or local scales reliably [46]. To obtain climate projections at a finer resolution by 

reproducing the physics of the processes, dynamical downscaling through Regional Climate Models 

(RCMs) is performed (e.g., [47,48]). With the ongoing climate modeling experiments—for example, 

the Coordinated Regional Climate Downscaling Experiment (CORDEX, http://www.cordex.org/), 

WorldClim dataset project (http://www.worldclim.org/), and the Climate Change, Agriculture, and 

Food Security research program (CCAFS, http://ccafs-climate.org/downscaling/)—future climate 

projections are made available over several domains worldwide with a horizontal resolution of up to 

12.5 km. Some studies (e.g., [49,50]) demonstrated that dynamical downscaling can be applied to 

achieve an even larger detail (≤4 km). However, these methods are computationally very intensive 

and often show performance losses over complex terrains [46,51]. The computationally inexpensive 

alternative is statistical downscaling, which provides a predictive framework of local conditions 

(with almost no bias with historical records) through statistical relationships with regional climatic 

aspects. The hypothesis is that the relationship between large-scale atmospheric circulation and local 

scale dynamics is constant [52–54]. Therefore, statistical downscaling allows for producing large 

ensembles of climate change projections for extended time periods [46,55]. 

The overarching goal of this study is to propose a methodological approach to evaluate possible 

variations in the discharge regime of a karst spring in basins affected by climate change. The selected 

study area is the hydrogeological basin of the Nossana Spring (northern Italy), which is heavily 
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exploited for drinking water. Using a control data period covering 1998–2017, the specific objectives 

of this study are: (i) quantification of the expected changes in precipitation and temperature in the 

study area, for twenty-year periods till 2100, as resulting from the statistical downscaling of RCMs 

run under three RCPs (2.6, 4.5, 8.5); (ii) calibration and validation of a lumped-parameter model (GR4J 

with CemaNeige [56–58]) based on observed data; (iii) recognition of possible limits in the future 

utilization of the spring as a drinking supply based on simulated discharge and actual warning 

thresholds. 

2. Study Area 

The Nossana Spring is located in the central Prealps of Seriana Valley, within the Lombardy 

Region of the Province of Bergamo (Northern Italy) (Figure 1). Its hydrogeological basin covers an 

area of about 80 km2 and is characterized by large differences in altitude, ranging from 474 m a.s.l. 

(Nossana Spring) to 2512 m a.s.l. (Pizzo Arera Mountain). 

The spring is managed by the public company UniAcque S.p.A. and feeds the main local water 

distribution system, serving over 300,000 people. The observed mean annual discharge (1998–2017) 

is 3.77 m3 s−1. For the same period, the observed daily variability is extremely high, with values 

ranging from 0.55 m3 s−1 to 18.00 m3 s−1. In a single day, discharge varied up to 12 m3 s−1, suggesting 

high flow velocities characterizing the system. 

To manage the water resource, UniAcque S.p.A. set two warning thresholds based on average 

water demand according to the period of the year (one threshold for the cold-wet season and one 

threshold for the hot-dry months). Below these discharge thresholds, there is a need to integrate the 

spring resources pumping water from deep wells in the Serio River Valley. This entails different 

issues, from costs increase to quality decrease. Moreover, nowadays the additional discharges are 

limited (0.50 m3 s−1). During wet, cold periods, the warning threshold is set at 1.32 m3 s−1; during dry, 

hot periods, the threshold is set at 1.52 m3 s−1. These two discharge rates include a share for UniAcque 

S.p.A. (0.80 and 1.00 m3 s−1, respectively) and a share for environmental flow and use of the 

downstream municipalities (0.52 m3 s−1). Water that is not used by UniAcque S.p.A. flows into the 

Serio River, the main watercourse of the Seriana Valley. 

Many studies have defined a hypothetical hydrogeological catchment for the spring [59,60], 

considering the geological, geomorphological, and tectonic evidences of the area [61–64]. The karst 

massif that characterizes the area consists of calcareous and calcareous-silicoclastic series (medium-

late Triassic). The main calcareous formation is represented by “Calcare di Esino” (middle-late Trias), 

constituted by deeply karstified massive or stratified limestone, with a maximum thickness of about 

800 m. Karst evidences (e.g., dolines and tunnels) are mainly recognized in the western and north-

eastern area of the basin. The late-Triassic marl formations with low permeability (Breno Formation, 

Metamorphic Bergamasco Limestone and Gorno Formation) link the massif to its southern, western, 

and eastern borders along the tectonic contacts with the Calcare di Esino formation. Three main 

fragile structures mark the limits of the massif along the northern side (“Valtorta-Valcanale thrust”), 

west side (“Grem fault”), and southeast side (“Clusone fault”). More specific geological information 

about the study area can be found in literature [63,65,66]. 

According to Vigna and Banzato [67], based on the geological and hydrographic characteristics 

described above, Nossana can be classified as a karst spring fed by a dominant drainage system. 

These systems are usually characterized by a high permeability, which is linked to a considerable 

karstification process. The outflow network is well-organized with a series of main natural tunnels 

and secondary conduits that rapidly discharge incoming infiltration water. The most important 

features are the very low or complete absence of a classic phreatic zone (indeed, the presence of a 

phreatic zone has not been verified for Nossana yet) and the very high flow velocity. 

The climate of the study area is wet and temperate. According to data recorded at the 

meteorological station of Clusone (591 m a.s.l.), located at around 4 km east of Nossana Spring, 

rainfall is distributed throughout the year. Mean annual rainfall calculated for the period 1998–2017 

is 1384 mm, with November as the wettest month (average of 160 mm) and January as the driest 

(average of 65 mm). May, June, October, and November yield similar amounts of rainfall. Conversely, 
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the winter lowest values indicate a change from liquid (rainfall) to solid precipitation (snow/ice). 

Average monthly temperatures vary between 1.4 °C (January) and 21.7 °C (July), with an overall 

mean annual temperature of 11.5 °C. According to Köppen–Geiger climate classification [68], the 

climate of the area can be classified as Cfb; namely, temperate with a wet summer, the mean 

temperature of the warmest month below 22 °C, and at least four months above an average of 10 °C. 

 

Figure 1. Geographical and geological setting of the study area. 
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3. Data 

Data used to perform the study were derived from three main sources. Daily spring discharge 

values (m3 s−1) were provided by UniAcque S.p.A. for the period 1998–2017. Observed daily 

precipitation (mm), minimum and maximum temperature (°C) time series (1998–2017) were 

downloaded for the Clusone meteorological station from the web portal of the Regional Agency for 

the Environment (ARPA Lombardia, https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-

dati-misurati.aspx). In addition, daily time series of precipitation, minimum temperature, and 

maximum temperature resulting from climate simulations were extracted for the period 1970 to 2100 

from selected RCM model runs of the EURO-CORDEX database. The latter were accessed through 

the Earth System Grid Federation (ESGF https://esgf-data.dkrz.de). In detail, bias corrected RCM 

model runs available at 12.5 km resolution for all emission pathways (RCP2.6, RCP4.5, RCP8.5) were 

selected (Table 1). This selection was done to allow a robust and coherent comparison between the 

projected future emission pathways, which depend on the political and economic actions that will be 

undertaken to reduce greenhouse gas emissions. The RCP2.6 scenario foresees that emissions will be 

halved from the year 2050; for RCP 4.5 this target will be reached in 2080; while according to RCP8.5 

emissions will continue to increase with today’s rate [2]. The constraint to have the same models for 

all the RCPs limited their number; however, they include two GCMs, three different ensemble runs, 

and two RCMs. All models were corrected for bias by the Swedish Meteorological and Hydrological 

Institute (SMHI) using a distribution-based scaling method [69] based on MESAN reanalysis data 

(1989–2010). 

Table 1. Summary of the climate model data sources used for this study. 

ID 
Global Circulation 

Model 

Ensemble 

Member 

Regional Climate 

Model 
Institution 

Mod_1 
ICHEC-EC-

EARTH 
r12i1p1 RCA4_v1 

Swedish Meteorological and 

Hydrological Institute (SMHI) 

Mod_2 MPI-ESM-LR r2i1p1 REMO2009_v1 
Max Planck Institute for Meteorology, 

Climate Service Center 

Mod_3 MPI-ESM-LR r1i1p1 REMO2009_v1 
Max Planck Institute for Meteorology, 

Climate Service Center 

4. Methods 

The study is based on four main steps, which are summarized in Figure 2. First, climate models 

are evaluated to verify their ability to reproduce the general climatology of the study area. Second, 

RCMs future projections are downscaled through statistical methods and local climate changes are 

evaluated. Third, observed time series of precipitation and temperature are used as input in a rainfall-

runoff hydrologic model, which is calibrated and validated against observed discharge. Finally, the 

downscaled time series are used to feed the calibrated hydrologic model and possible changes in the 

spring discharge rate characteristics are analyzed. 
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Figure 2. Flow chart summarizing the applied methodological approach. 

4.1. Climate Models Evaluation 

Daily time series of precipitation, minimum temperature, and maximum temperature were 

extracted for the three RCMs realizations and the three RCPs (total of nine combinations) from the 

grid cell where the Clusone meteorological station is located. The RCMs were evaluated by 

comparing their results for the control period (1998–2017) with the available observational data. 

Representative Concentration Pathways begin to diverge after 2005; therefore, between this date and 

the end of the control period, the same model, under different RCPs, could produce data with small 

differences. For this reason, the evaluation included all nine modeling combinations. 

The evaluation consisted of the comparison of monthly rainfall and temperature climatology, 

and of the verification of their similarity through two performance indices. The selected indices were 

the Nash-Sutcliffe Efficiency (NSE—[70]) and the Mean Absolute Error (MAE). The RCMs were 

considered to be generally able to catch the local climatology for positive (>0.8) NSE values and MAE 

values lower than 20% of the mean monthly rainfall (temperature). The indices are calculated as: 

NSE = 1.0 −
∑ (OBSt − MODt)2N

t=1

∑ (OBSt − OBS̅̅ ̅̅ ̅)2N
t=1

, (1) 

  MAE =
1

N
∑ |OBSt-MODt|

N

t=1
,  

 
(2) 

where OBS refers to observations, MOD to modelled data, t indicates the time step (in this case the 

month), and N is the total number of time steps. 

4.2. Statistical Downscaling 

Precipitation and temperature data for the nine modeling combinations were statistically 

downscaled using a two-step approach, based on change factors and weather simulators (e.g., [71]). 

Assuming a stable climatology for twenty-year periods, the downscaling was performed for four time 

intervals (2021–2040; 2040–2060; 2061–2080; 2081–2100). Change factors [72] were calculated from 

daily modeled data, on a monthly (half-monthly) basis, for a selected set of rainfall (temperature) 

statistics, for each modeling combination and time period. For details on change factors calculation 

of different rainfall and temperature statistics, the reader can refer to Kilsby et al. [73]. Once 
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calculated, change factors were applied to the same set of observed statistics to obtain values 

describing the local scale future behavior for each month of the year. These local scale, future statistics 

were used as inputs to fit a stochastic rainfall and temperature generator returning daily time series. 

Rainfall, minimum temperature, and maximum temperature time series were generated for each 

modeling combination and time interval. 

4.2.1. Rainfall Generator 

For future precipitation simulation, RainSim V3.1.1 [74] was used. RainSim is a rainfall generator 

software able to work in both single site and spatial-temporal mode. It is based on a Neymann-Scott 

Rectangular Pulses (NSRP) model [75,76], which manages rainfall occurrence and amount as a single 

process. Storms arrive as Poisson processes and each storm is characterized by a random number of 

rain cells, each having a certain origin delay time from the beginning of the storm, a certain duration, 

and a certain intensity. In single site mode—the one used in this study—to generate rainfall time 

series, RainSim needs to fit five internal parameters for each calendar month (Table 2). These 

parameters are fitted through an optimization function embedded in the software, which works 

based on a set of input statistics (e.g., for future periods those obtained from the change factor 

approach described in Section 4.2). For each month, seven statistics were used to fit the model: mean 

daily rainfall, daily variance, daily skew, lag-1 autocorrelation, probability of dry days (threshold 0.2 

mm), probability of dry day to dry day transition, and probability of wet day to wet day transition. 

Table 2. RainSim parameters for time series generation in single site mode [74]. 

Parameter Description Units 

λ−1 Mean time between adjacent storm origins [h] 

β−1 Mean waiting time for raincell origins after storm origin [h] 

η−1 Mean duration of raincell [h] 

Ν Mean number of raincells per storm [-] 

ξ−1 Mean intensity of a raincell [mm·h-1] 

4.2.2. Temperature Generator 

To generate maximum and minimum temperature time series, the approach presented by 

Richardson [77] was adopted and implemented in the R software (www.r-project.org). The R-scripts 

were first developed by Camera et al. [78] and adjusted for this study. Temperature was modeled as 

a stochastic process with the daily mean and standard deviation conditioned on the wet and dry state 

of the day (threshold 0.2 mm). Richardson [77] proposed an approach in which residual time series 

are generated, so the first step consisted of computing the residuals for the minimum and maximum 

temperature time series recorded in Clusone. To do so, means and standard deviations of the 20-year 

time series were calculated for dry and wet days for each half-month. Going forward, a first-order 

Fourier series was fitted through these values, using the least squares method to obtain mean and 

standard deviation values for each calendar day (1–365) for both dry and wet states. 

As in [77], a weak stationary generating process [79] was used to simulate time series. Only one 

residual time series was generated for each variable (minimum and maximum temperature) because 

in working with residuals the effect of the wet or dry state of the day was removed. Once the residuals 

time series were obtained, the daily values of minimum and maximum temperature were calculated 

multiplying the residual by the standard deviation and adding the mean, according to the state of 

day. Before back-transforming the generated residual time series into actual temperature values, 

standard deviation and mean were modified by applying the calculated change factors. In this way, 

the simulated future temperature time series were linked to the rainfall series previously generated. 

4.2.3. Evaluation of the Local Climate Change Signature 

A visual comparison between the monthly climatology calculated from observations and those 

derived from the generated time series was carried out for each time interval (2021–2040, 2041–2060, 
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2061–2080, 2081–2100) and RCP, to verify possible shifts in the general climate trend of the area. In 

addition, changes in mean annual precipitation and temperature were calculated. It was verified that 

mean annual rainfall changes projected by the statistical downscaling of every modelling 

combination fell between −15% and +20% in comparison to the control period. This is the range 

suggested by Vaze et al. [42] as a limit for a solid and reliable temporal transferability of lumped 

model parameter sets. 

4.3. Hydrologic Modelling 

To model the spring response to precipitation events, the daily rainfall-runoff (here applied as 

rainfall-discharge) four-parameter GR4J model (Génie Rural Journalier with 4 parameters, [56]), 

extended with the CemaNeige snow accounting routine [57,58,80], was applied. Model calibration, 

validation, and future discharge simulations were performed using the open-source AirGR 1.4.3.52 

package [81,82] in the R 3.5.3 software (www.r-project.org). GR4J was selected since it is under 

continuous development and widely known (e.g., [83,84]), as well as being characterized by a 

parsimonious but flexible structure that allows for the simulation of complex catchments [85]. Also, 

it was already applied and verified in karst environments (e.g., [38,85,86]). 

4.3.1. Model Description 

A schematic representation of the model is presented in Figure 3. Model inputs are time series 

of daily precipitation (P) and daily potential evapotranspiration (E). The model structure consists of 

two non-linear reservoirs, the production store and the routing store, a delay function element, and 

a groundwater exchange component. From the inputs, a net rainfall (Pn) or a net evapotranspiration 

(En) is calculated. In case of net evapotranspiration, a quantity Es (actual evapotranspiration) is 

subtracted from the production store. In case of net rainfall (Pn), this is split into two components. 

The first component (Ps) is added to the production store, while the second component is added to 

the release from the production store (Perc) to give a total amount Pr. Ps, Es, and Perc are defined as 

functions of the production store level (S) and of its maximum capacity (X1). Pr is then split into two 

fixed amounts; 0.9Pr is routed by the unit hydrograph HU1 so that a quantity Q9 enters the routing 

store, while 0.1Pr is routed through the unit hydrograph HU2 so that a quantity Q1 is available for 

fast drainage towards the basin outlet. The unit hydrographs are defined based on the model 

parameter X4. Before reaching the outlet, Q1 could lose or gain water from interactions with 

groundwater, resulting in Qd. Water is also released towards the basin outlet from the routing store 

(Qr) based on the store level (R), its maximum capacity (X3), and interactions with groundwater. The 

latter are controlled by the parameter X2 (exchange coefficient). The model output discharge (Q) is 

given by the sum of Qr and Qd. In a karst environment the roles played by the production store and 

the routing store could be assimilated to those of the rock matrix and the conduits, respectively. 
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Figure 3. Schematic representation of the coupling between the GR4J hydrological model and the 

Cema-Neige snow accounting routine. 

The CemaNeige module allowed us to account for delays in the GR4J precipitation input, 

transforming part of the precipitation into snowfall and simulating snow melting according to 

temperature data and two parameters. Model inputs are daily precipitation, minimum temperature, 

and maximum temperature time series, which need to be referred to a specific elevation. In addition, 

the distribution of the elevations within the study area is necessary. Based on these data, with an 

internal routine, the model divides the study area in elevation layers of equal areas and the user can 

optionally define a mean annual snowfall value for each. For layers with median elevations lower 

than 1500 m a.s.l., CemaNeige partitions precipitation (PRS) into rainfall (RAIN) and snow (SNOW) 

as follows: 
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RAIN = {

PRS if Tmax > 0 °C;  Tmin > 0 °C
0 if Tmax ≤ 0 °C;  Tmin ≤ 0 °C

PRS ∙
Tmax

Tmin − Tmax
 if Tmax > 0 °C;  Tmin < 0 °C

 (3) 

SNOW = PRS − RAIN (4) 

where Tmax and Tmin are daily maximum and minimum temperature, respectively. For layers with 

median elevations equal or higher to 1500 m a.s.l., the model calculates the rainfall fraction as follows: 

RAIN = {

PRS if Tmax > 3 °C;  Tmin > 3 °C 
0 if Tmax ≤ −1 °C;  Tmin ≤ −1 °C 

PRS ∙
Tmax

Tmin − Tmax
 if − 1 °C < Tmax and Tmin ≤ 3 °C 

 (5) 

The snow fraction is calculated according to Equation (4) in this case also. Melting is then 

controlled by temperature and the two model parameters: Kf [-], which is the degree-day melting 

factor, and Ctg [mm° C−1 day−1], namely the weighting coefficient for snowpack thermal state, which 

describes the thermal inertia of the accumulated snow. The higher is Kf, the larger is the snowmelt; 

the higher is Ctg, the later snow melts. Recently, Riboust et al. [80] presented a modified and extended 

version of the CemaNeige module to account for the melting heterogeneity of the snow. To do so, 

they enriched the model with two additional parameters to simulate hysteresis cycles with a linear 

model. The two extra parameters define the accumulation threshold at which the Snow Cover Area 

(SCA) equals 100% and the melting threshold at which the SCA drops below 100%. In this study, both 

the standard and the hysteretic CemaNeige modules were tested. 

4.3.2. Model Calibration and Validation 

Regarding the inputs, potential evapotranspiration was calculated using minimum and 

maximum temperature records applying the Hargreaves equation [87]. For the CemaNeige module, 

the elevation of the Clusone meteorological station (591 m a.s.l.) was specified as the reference one. 

Based on the elevation distribution within the study area, five equal area layers were created (458–

882, 882–1222, 1222–1518, 1518–1789, 1789–2507 m a.s.l.). For each layer, the mean annual snowfall 

value (45 mm, 60 mm, 100 mm, 155 mm, 200 mm, respectively) was derived, in water equivalent, 

from the available national and regional snowfall maps [88,89]. For the conversion between snowfall 

and water equivalent, the conventional 10:1 water density to snow density proportion (1 cm of snow 

equals 1 mm of rainfall) was applied [90]. 

The observation period (1998–2017) was split into three intervals: two years for model spin-up 

(1998–1999) and nine years each for calibration and validation (2000–2008 and 2009–2017, 

respectively). Ten thousand random parameter sets were generated within the ranges specified in 

Table 3. The ranges of the GR4J parameters correspond to the 80% confidence intervals obtained by 

Perrin et al. [56] calibrating the model over 429 catchments worldwide. The ranges of the CemaNeige 

model parameters are those suggested by Ayzel et al. [91] for Kf and Ctg. For the accumulation 

threshold (X7–Tacc), the mean annual snowfall of the lower elevation layer was considered to be the 

maximum value of the range (minimum zero). For the melting threshold (X8–Tmelt), the maximum 

flexibility was given to the model. The model was run with each parameter set for both 2000–2008 

and 2009–2017 periods. Only parameter sets returning, for both periods, a Kling-Gupta Efficiency 

(KGE, [92,93]) larger than 0.7 and a Nash-Sutcliffe Efficiency [70] calculated on logarithmic values 

(lNSE) larger than 0.5 were retained for future simulations. KGE was selected as one of the two 

performance indices since it is rather complete, addressing linear correlation (r), bias (β), and 

variability (γ) occurring between simulated and observed discharge values. Similarly, lNSE was 

selected because it is the most common evaluation index for hydrologic models and in its logarithmic 

formulation it gives particular importance to low flow values, which are of particular interest in this 

study for the exploitation of the spring for drinking supply. The formulation of KGE is presented 

below, while for lNSE the reader can refer to Equation (1). 
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KGE=1-√(r-1)2+(β-1)
2
+(γ-1)2, (6) 

with: 

r=
∑ OBSi∙MODi - 

1
N ∙(∑ OBSi

N
i=1 )N

i=1 (∑ MODi
N
i=1 )

√[∑ OBSi
2 - 

1
N ∙(∑ OBSi

N
i=1 )

2N
i=1 ] ∙ [∑ MODi

2 - 
1
N ∙(∑ MODi

N
i=1 )

2N
i=1 ]

 , (7) 

  β=
μ

MOD

μ
OBS

,   (8) 

  γ=
CVMOD

CVOBS
,   (9) 

where μ is the mean flow rate [m3 s−1], and CV is the coefficient of variation [-]. 

In addition, the outputs of the model obtained with the calibrated and validated parameter sets 

were checked against two emergency discharge thresholds, counting the days, and the maximum 

number of consecutive days below those discharges. Modeled values were compared with 

observations. 

4.4. Changes in Discharge Regimes at Nossana Karst Spring 

To evaluate the changes in discharge regime at Nossana karst spring, the model was run in 

ensemble mode with all the calibrated and validated parameter sets, and the downscaled future time 

series of precipitation and temperature as input. The last two years of observations (2016–2017) were 

used as the spin-up period. Changes in discharge regimes were analyzed mainly in terms of low flow. 

Variations in the number of days and consecutive days below the warning thresholds were 

calculated. In addition, an analysis of the general sensitivity of the spring to climate change was 

carried out, analyzing variations in average discharges in relation to modifications in precipitation 

amounts, precipitation partitioning into rain and snow, and temperature. 

Table 3. Parameter ranges used to generate the random samples for model calibration and 

validation. 

GR4J 

Parameter Description Calibration range 

X1 Production store capacity [mm] 100–1200 

X2 Intercatchment exchange coefficient [mm/day] −5–3 

X3 Routing store capacity (mm) 20–300 

X4 Time constant of unit hydrograph (day) 1.1–2.9 

CemaNeige 

X5-Kf Weighting coefficient of the snowpack thermal state [-] 0–1 

X6-Ctg Day-degree rate of melting [mm °C-1 day-1] 0–10 

X7-Tacc Accumulation threshold [mm] 0–45 

X8-Tmelt Fraction of annual snowfall defining the melt threshold [-] 0–1 

5. Results 

5.1. Climate Models Evaluation 

The results of the RCMs evaluation are presented in Table 4. Regarding precipitation, Mod_1 

(see Table 1) is the model that best responds under all three RCP scenarios (divergence after 2005). 

Its NSE values result higher than 0.65 and the normalized MAE values lower than 15%. The other 

two models show larger errors and a lower fit with the observed climatology but they are generally 

able to represent the precipitation annual cycle, too. In addition, all models can satisfactorily catch 
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the minimum and maximum temperature monthly climatology. NSE values are all very high (>0.95), 

while normalized MAE values for mean temperature range between 4% and 7%. All models were 

considered suitable for statistical downscaling. 

Table 4. Performance statistics for the considered RCMs calculated in comparison with observed 

precipitation, minimum temperature, and maximum temperature monthly climatology. NSE is the 

Nash –Sutcliffe Efficiency coefficient, MAE the Mean Absolute Error and %MAE the normalized 

Mean Absolute Error. For RCMs name attribution, the reader can refer to Table 1. 

 Precipitation Tmin Tmax 

Model NSE MAE (mm) %MAE NSE MAE (°C) %MAE NSE MAE (°C) %MAE 

Mod_1 RCP 2.6 0.79 12.35 10.71 0.96 1.10 17.69 0.97 1.18 7.09 

Mod_1 RCP 4.5 0.66 14.97 12.97 0.97 1.00 17.19 0.97 1.08 6.48 

Mod_1 RCP 8.5 0.76 12.71 11.20 0.97 1.00 15.96 0.98 0.90 5.43 

Mod_2 RCP 2.6 0.31 19.81 17.16 0.97 0.90 14.20 0.97 0.99 5.95 

Mod_2 RCP 4.5 0.52 17.44 15.12 0.97 1.00 16.13 0.96 1.27 7.65 

Mod_2 RCP 8.5 0.31 22.90 19.85 0.97 0.90 15.42 0.96 1.28 7.66 

Mod_3 RCP 2.6 0.23 20.53 17.79 0.97 1.00 15.96 0.96 1.19 7.14 

Mod_3 RCP 4.5 0.37 17.17 14.88 0.98 0.80 12.79 0.97 0.99 5.95 

Mod_3 RCP 8.5 0.52 17.78 15.41 0.98 0.80 12.69 0.97 0.98 5.88 

5.2. Statistical Downscaling—Local Climate Change Signature 

The results obtained from the statistical downscaling of the RCMs are presented by RCP scenario 

in twenty-year periods, to be consistent with observations (1998–2017). For convenience, the twenty-

year periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100 are defined as p1, p2, p3, and p4, 

respectively. 

Projected changes in mean annual precipitation, for all models and RCPs, fall within the range 

suggested by Vaze et al. [42] for the application of rainfall-runoff models outside their calibration-

validation conditions (Table 5). The only exception is the decrease (−18.5%) projected by Mod_1 for 

p2 and RCP4.5. In terms of temperature, mean annual changes range from 0.7 °C (RCP2.6, p1) to 5.8 

°C (RCP8.5, p4). The actual occurrence of these changes would lead to a modification in the climatic 

regime of the area, according to the Köppen and Geiger classification [68]. The shift would be from 

Cfb to Cfa (i.e., a temperate climate characterized by wet summer and temperatures of the warmer 

month always higher than 22 °C). Except that for RCP8.5 and p4, the different RCMs usually agree 

in terms of projected temperature, while they show some differences in precipitation. 

For the low emission scenario (RCP 2.6) (Figure 4), the monthly precipitation trend usually 

remains unchanged. Exceptions are January after 2040 and the spring season, both characterized by 

a slight increase in precipitation (15-20 mm). Also, Mod_1 projects a large increase of precipitation in 

May, for p1 and p2 (>25 mm), and an even larger decrease of precipitation in September (>50 mm), 

starting from p3. Temperatures in p1, p2, and p3 are projected to remain constant in the summer 

period, while showing a slight increase (around 1.0 °C) in the winter months. A strong increase in 

temperature is projected by Mod_1 in p4 for all the months of the year, up to a maximum of about 3 

°C. 
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Table 5. Relative changes (%) in mean annual precipitation, in comparison to observations (1998–

2017), for the three RCMs (Mod_1, Mod_2, Mod_3, see Table 1) under different RCPs, for four future 

periods (p1, 2021–2040; p2, 2041–2060; p3, 2061–2080; p4, 2081–2100). 

 RCP2.6 RCP4.5 RCP8.5 

Period 
Mod_1 

[%] 

Mod_2 

[%] 

Mod_3 

[%] 

Mod_1 

[%] 

Mod_2 

[%] 

Mod_3 

[%] 

Mod_1 

[%] 

Mod_2 

[%] 

Mod_3 

[%] 

p1 −3.8 2.7 2.4 1.6 9.4 7.1 1.7 6.3 −14.1 

p2 6.6 −5.2 0.7 −18.5 3.4 6.8 15.1 5.9 −6.9 

p3 −4.4 5.4 −13.4 −3.0 0.9 −0.7 2.5 11.0 −2.4 

p4 −4.4 8.3 −2.0 2.2 9.7 −8.4 −10.4 4.8 −7.9 

 

Figure 4. Comparison between the observed and projected monthly climatology for the three RCMs 

(Mod_1, Mod_2 and Mod_3, see Table 1) forced under RCP 2.6 for four twenty-year periods p1 is 

2021−2040, p2 is 2041−2060, p3 is 2061−2080, and p4 is 2081−2100. 

For the mid emission scenario (RCP4.5, Figure 5), in comparison to observations, the models 

(ensemble mean) project a slight increase in precipitation in the spring (around 20 mm, early spring 

in p1, shifting to May moving to p4), a marked decrease in the summer (up to 40 mm in August and 

30 mm in September during p3), and another increase in autumn with peaks in October (around 40 

mm in p3). The periods p2 and p3 are the most affected. Temperature trends are generally preserved, 

with a slightly higher increase observed in the winter months rather than in the summer period for 

p1 and p2. In the other two periods, changes appear quite homogeneous throughout the year, 

reaching up to approximately 2.5 °C. 

The precipitation regime of the high emission scenario (RCP8.5, Figure 6) shows large 

differences in comparison to observations and the other two scenarios, exhibiting an extreme autumn 

peak (up to 322 mm/month according to Mod_2 for November in p2), a precipitation increase in the 

winter months (particularly in January), and a marked decrease in the summer period (25 mm or 

more in July, August and September for all models in p4). Temperatures constantly increase from p1 

to p4, when they show monthly values in the summer of up to 4.7 °C (ensemble mean) larger than in 

the control period. 
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Figure 5. Comparison between the observed and projected monthly climatology for the three RCMs 

(Mod_1, Mod_2 and Mod_3, see Table 1) forced under RCP 4.5 for four twenty-year periods; p1 is 

2021−2040, p2 is 2041−2060, p3 is 2061−2080, and p4 is 2081−2100. 

 

Figure 6. Comparison between the observed and projected monthly climatology for the three RCMs 

(Mod_1, Mod_2 and Mod_3, see Table 1) forced under RCP 8.5 for four twenty-year periods; p1 is 

2021−2040, p2 is 2041−2060, p3 is 2061−2080, and p4 is 2081−2100. 

5.3. Hydrologic Model Calibration and Validation 
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The calibration-validation procedure led to a recognition of ensembles of ten 6-parameter sets 

(GR4J and CemaNeige model) and eight 8-parameter sets (GR4J and CemaNeige with hysteresis) able 

to satisfy the established performance criteria. The ensemble of calibrated-validated sets for the 6-

parameter model with the corresponding performance indices are presented in Table 6. Since no 

significant differences in the simulated discharges were found between the two snow modules (for 

conciseness the results obtained with hysteresis are not shown), the model with six parameters was 

preferred. 

Table 6. Calibrated and validated parameter sets for the GR4J-CemaNeige model. KGE is the Kling–

Gupta Efficiency, lNSE is the logarithmic Nash—Sutcliffe Efficiency, Cal indicates the calibration 

period (2000–2008), and Val indicates the validation period (2009–2017). For model parameters (X1–

X6) see Table 3. 

Parameter set X1 X2 X3 X4 X5 X6 lNSE Cal KGE Cal lNSE Val KGE Val 

Set 1 1091.94 2.07 171.26 1.35 0.01 3.22 0.67 0.73 0.51 0.71 

Set 2 1078.07 2.81 226.15 1.32 0.18 4.38 0.66 0.72 0.51 0.72 

Set 3 1196.85 2.98 219.46 1.31 0.08 2.91 0.65 0.72 0.53 0.72 

Set 4 1187.37 2.53 188.70 1.34 0.18 2.06 0.64 0.72 0.52 0.71 

Set 5 1164.21 2.97 182.71 1.18 0.01 6.33 0.67 0.76 0.53 0.72 

Set 6 1075.06 2.50 207.87 1.30 0.05 3.10 0.66 0.72 0.52 0.71 

Set 7 1118.65 2.72 173.46 1.30 0.06 6.74 0.67 0.75 0.52 0.71 

Set 8 1146.42 2.38 144.62 1.30 0.04 3.74 0.68 0.76 0.54 0.71 

Set 9 1050.21 2.55 181.51 1.12 0.10 5.07 0.68 0.76 0.52 0.71 

Set 10 1158.85 2.74 176.41 1.46 0.15 5.89 0.67 0.75 0.52 0.71 

 

Simulated discharge time series for the calibration and validation periods are shown in Figure 

7, together with the non-exceedance probabilities. From the hydrograph, simulated discharges seem 

to approximate low-flow observations well, while peak flows are generally overestimated. Low-flow 

non-exceedance probabilities are also somewhat overestimated, especially for the calibration period. 

This model behavior is underlined by the mean discharge values and number of days below the 

warning thresholds. During calibration, the simulated mean flow is on average 7.7% (9.2% for 

validation) higher than the observed flow (3.48 m3 s−1 and 4.00 m3 s−1 for calibration and validation, 

respectively). In terms of the number of days below the thresholds, the model ensemble 

underestimates observations in both calibration and validation period. For the calibration period, the 

days below the 1.32 m3 s−1 (1.52 m3 s−1) threshold are 758 (992), while for the model ensemble they 

range from 141 to 310 (307-513). Similarly, for the validation period there are 335 (522) observed days 

below the 1.32 m3 s−1 (1.52 m3 s−1) threshold, while the model ensemble simulates a number of days 

between 122 and 207 (216–391). The model ensemble returns better results in terms of the maximum 

number of consecutive days below the thresholds, which are slightly underestimated with the 

exception of the lower threshold during the calibration period. Specifically, for the calibration period 

and the 1.32 m3 s−1 (1.52 m3 s−1) threshold, this index is calculated as 10 (46) days for observations and 

58–63 (35–44) days for the model ensemble. The consecutive number of days below the threshold can 

therefore be considered the most reliable parameter to evaluate the future behavior of the Nossana 

Spring and discuss its future management. It is an indicator of a critical period length, during which 

the service company could need additional water resources to meet the demand. 
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Figure 7. Comparison between observed and simulated (a) daily discharges for the period 1998–2017, 

(b) non-exceedance probabilities of daily flow rates for the calibration period (2000–2008), and (c) the 

validation period (2009–2017). In (b) and (c) daily flow rates are plotted on a logarithmic scale. 

5.4. Changes in Discharge Regimes at Nossana Karst Spring 

The distribution of simulated mean discharge rates for the rainfall-runoff model ensemble, 

presented by RCP scenario, RCM, and twenty-year period, is shown through the boxplots in Figure 

8. Simulated thirty-member (RCM and rainfall-runoff) ensemble mean discharges are lower than the 

mean observed flow (3.77 m3 s−1) for every twenty-year period and RCP scenario, ranging from −3% 

(for p1 and RCP4.5) to −23% (for p4 and RCP8.5). However, a monotonous trend with time cannot be 

recognized. Also, the high emission scenario (RCP8.5) results in noticeably lower mean discharges 

than the other two RCPs only for p1 and p4. 

Considering single RCPs, it is noted that the variability within the rainfall-runoff ensemble 

appears to be limited, while the variability between RCMs for the same period of time is much larger. 

Indeed, mean discharge values are strictly connected with mean annual rainfall amounts, which are 

extremely variable (see Table 5). For example, the mean annual rainfall decrease of 18.5% projected 

by Mod_2 for RCP4.5 and p2 corresponds to a 39% decrease in mean discharge. Similarly, the mean 

annual rainfall increase of 15.1% projected by Mod_1 for RCP8.5 and p2 corresponds to a 6% increase 

in mean discharge. However, although a decrease in mean annual rainfall is always closely related 

to a decrease in mean annual discharge, an increase in rainfall does not necessary lead to an increase 

in discharge. This lacking increase is related to a simultaneous increase in temperature and therefore 

evapotranspiration rates. As an example, for Mod_2 and RCP8.5, rainfall increases of about 6% and 

5% (in p2 and p4) correspond to decreases in mean discharge of about 5% and 9%, respectively. 
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Figure 8. Boxplots representing the distribution of the mean daily discharge values obtained from the 

rainfall-runoff ensemble when run with time series obtained from different RCMs (Mod_1, Mod_2, 

Mod_3, see Table 1) for four twenty-year periods (p1, 2021–2040; p2, 2041–2060; p3, 2061–2080; and 

p4, 2081–2100) under different emission scenarios (a) RCP2.6, (b) RCP4.5 and (c) RCP8.5.The 3.77 m3 

s−1 line represents the observed (1998–2017) mean daily discharge. 

Figure 9 shows the relationships between the average snowpack thickness (expressed in snow 

water equivalent) and the 30-day average discharge in the Nossana basin, for the observation 

modelling period (2000–2017) and the four future periods under RCP 4.5. Under RCP 2.6 and RCP 

8.5, the variables behave according to the same principles and thus they are not shown. First, Figure 

9 shows that the model can reproduce the observed annual cycle of the 30-day discharge, with a slight 

underestimation of the peak occurring in May. The snowpack thickness is an output of the 

CemaNeige routine; no observed data are available, and so therefore it is possible that the snowpack 

thickness and the spring snowmelt are slightly underestimated. However, considering that April and 

May observed average precipitation is similar (Figure 5), the increase in the 30-day average discharge 

occurring during these two months is due to snowmelt. This dynamic is well represented by the 

model outputs. In future periods, the average thickness of the snowpack decreases with time, with 

similar relative paths in all months. Total precipitation in January, February, and March is not 

projected to decrease much (Figure 5), meaning that the relative future partitioning into rainfall and 

snow will favor the first. This reflects in 30-day discharges generally higher in all future intervals 

than during the observation period. Conversely, the 30-day discharge peak that used to occur in late 

May will be less pronounced and anticipated. In summer, the projected decreases in 30-day discharge 

are associated to both increasing temperature and decreasing precipitation (Figure 5). The 30-day 

discharge peaks projected for the autumn period (clearly evident in p1, p2, and p4) are mainly linked 

to increasing precipitation and only secondarily to increasing temperature, which affects 

precipitation partitioning. RCP 8.5 shows a similar annual trend in comparison to RCP 4.5 but 

average 30-day discharge during late spring and summer (May-September) are lower, up to an 

average of around 1.2 m3 s−1 (Mod_1 p4). In addition, in p4 the spring peak for Mod_1 disappears and 

similar average discharges occur from late January to mid-June. Conversely, the major difference 

between RCP 4.5 and RCP 2.6 is the absence, for the latter, of the discharge peak in autumn (related 

to an absence of precipitation peak, see Figure 4). 
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Figure 9. Average monthly snowpack thickness (SPck, in snow water equivalent) and 30-day average 

discharge for the observation modelling period (Obs, 2000–2017) and four future time intervals (p1, 

2021–2040; p2, 2041–2060; p3, 2061–2080; and p4, 2081–2100) under RCP4.5. Error bars indicate 

minimum and maximum values as simulated by the ensemble members. Mod_1, Mod_2, and Mod_3 

refer to outputs related to three different RCMs (see Table 1). 

The boxplots in Figure 10 (Figure 11) show the distribution of the number of days and maximum 

number of consecutive days below the 1.32 m3 s−1 (1.52 m3 s−1) warning threshold for the rainfall-

runoff model ensemble, presented by RCP scenario, RCM, and the twenty-year period. Variability 

within the rainfall-runoff ensemble appears larger for these indices rather than for the mean 

discharge. Especially for the consecutive number of days below the warning thresholds and dry 

period, single parameterizations lead to values with differences larger than 70% between each other. 

In terms of ensemble mean, the number of days below the warning thresholds (both values) are 

projected to decrease in all cases, except for p4 under RCP8.5. Looking at single RCMs, there are few 

cases of simulations counting an increasing number of days below the warning thresholds, in 

comparison to observations, mainly related to Mod_1 and Mod_3 under RCP4.5 and RCP8.5. Under 

RCP2.6, only Mod_3 projects an increasing number of days below thresholds limited to p3. 

Conversely, in terms of ensemble mean, the maximum number of consecutive days below the 

thresholds is projected to increase after 2060 for all emission scenarios (except p3, RCP2.6), although 
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not all RCMs agree. The length of the longest period below the 1.32 m3 s−1 (1.52 m3 s−1) warning 

threshold can be as long as 36 (64) extra days. This trend is particularly evident for the 1.52 m3 s−1 

warning threshold (Figure 11). However, this trend is particularly alarming for p4 since temperature 

is projected to increase from 1.0 °C to 5.8 °C (all RCPs and RCMs considered singularly), which will 

probably cause an increase in the water demand. 

 

Figure 10. Boxplots representing the distribution of the number of days (left) and maximum number 

of consecutive days (right) below the 1.32 m3 s−1 warning threshold obtained from the rainfall-runoff 

ensemble when run with time series obtained from different RCMs (Mod_1, Mod_2, Mod_3, see Table 

1), for four twenty-year periods (p1, 2021–2040; p2, 2041–2060; p3, 2061–2080; and p4, 2081-2100), 

under different emission scenarios a, b) RCP2.6, c, d) RCP4.5 and e, f) RCP8.5. The 1227 and 71 lines 

represent the observed (1998–2017) values. 
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Figure 11. Boxplots representing the distribution of the number of days (left) and maximum number 

of consecutive days (right) below the 1.52 m3 s−1 warning threshold obtained from the rainfall-runoff 

ensemble when run with time series obtained from different RCMs (Mod_1, Mod_2, Mod_3, see Table 

1), for four twenty-year periods (p1, 2021–2040; p2, 2041–2060; p3, 2061–2080; and p4, 2081–2100), 

under different emission scenarios a, b) RCP2.6, c, d) RCP4.5 and e, f) RCP8.5. The 1670 and 74 lines 

represent the observed (1998–2017) values. 

6. Discussion 

Groppelli et al. [94,95] produced five future climate scenarios by statistical downscaling of three 

GCMs (2010–2060), forced under the A2 IPCC emission scenario [96], over the Oglio basin, the main 

valley east of the Seriana Valley. The A2 emission scenario, derived in the framework of 4th IPCC 

report [96], is somewhat comparable to RCP8.5, derived in the framework of the 5th IPCC report [2]. 

For the ten years around 2050 (in comparison to 1990–1999), they found an increase in mean annual 

temperature at 2000 m a.s.l. in the range 1.6–4.8 °C. At a lower elevation (around 600 m a.s.l.), for a 

comparable period (2041–2060) and scenario (RCP8.5), in this study a temperature increase in the 

range 1.8–2.8 °C was found. Larger increases could be expected only toward the end of the century 

(up to 5.8 °C). In terms of mean annual precipitation, Groppelli et al. [94,95] found variations between 

−15% and 40%, while in this study results suggest more limited changes (from −7% to 15%). The 18.5% 

decrease was obtained for the period 2041–2060, but under RCP4.5. 

It is recognized that the selection of a rainfall-runoff modeling approach implies the assumption 

that the karst system will not undergo profound changes in the next 80 years, as pointed out by 

Hartmann et al. [16]. Specifically on the utilized rainfall-runoff model (GR4J with CemaNeige as snow 

accounting routing), it was found that the CemaNeige snow routine including hysteresis did not 

increase the performance of the model in terms of simulated discharge. This is in agreement with 
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Riboust et al. [80], who found that accounting for hysteresis improved model simulations limited to 

snow cover area. 

Gattinoni and Francani [60] calibrated a distributed equivalent porous media model 

(MODFLOW) for the simulation of Nossana Spring discharges and applied it to build spring 

depletion curves under variable recharge. The calibrated model and the depletion curves were then 

used to assess changes in spring behavior according to expected regional changes in temperature and 

precipitation, for the period 2080–2099 in comparison to 1980–1999, according to GCM forced under 

the A1B emission scenario [96]. All the models considered in their study suggested a decrease in 

mean annual precipitation (from 4% to 27%) and an increase in temperature (from 2.2 to 5.1 °C), 

which is in contrast with the results of this study obtained for the comparable RCP4.5 scenario 

(precipitation changes between −8% and 10%; temperature changes between 2.0 and 2.6 °C). 

However, due to the maximum expected precipitation decrease and evapotranspiration increase, 

they suggested a possible decrease in the spring discharge up to 40%, which is similar to the 39% 

decrease calculated in this study for the period 2041-2060 (Mod_2, see Figure 8b) for a precipitation 

decrease of 18.5% (Table 5) and a temperature increase of 2.1 °C. Gattinoni and Francani [60] also 

suggested that changes of the precipitation regime during the recharge season (March to November) 

are expected to have the largest influence on spring discharge. This is proven by the results of this 

study, which showed how the changes in precipitation partitioning between January and May will 

change the 30-day average discharge, anticipating and decreasing the observed late spring high 

flows. In addition, the projected rainfall decreases affecting the summer period (June to September) 

will reduce Nossana Spring discharges during this season. Higher recharge, in comparison to the 

recent past, can be expected in October, November, and December. 

7. Conclusions 

Climate change directly impacts the water cycle and consequently groundwater resources. 

Therefore, planning their management is essential for their protection and responsible use. In this 

study, a comprehensive methodological approach for the evaluation of future climate and discharge 

variations (up to 2100, in four twenty-year intervals) at Nossana karst spring was presented. The 

method is based on the statistical downscaling of three bias-corrected EURO-CORDEX RCMs forced 

by three different emission scenarios (RCP2.6, RCP4.5, RCP8.5) and the implementation of a rainfall-

runoff model (GR4J) extended with a snow accounting routine (CemaNeige). Today, Nossana Spring 

is exploited by UniAcque S.p.A. for the supply of drinking water to 300,000 people (including the 

town of Bergamo). Simulated discharges were evaluated in terms of mean flow and in comparison to 

actual water demands (expressed as discharge warning thresholds), to provide projections that can 

be operationally useful to the service company. 

Based on the presented results, the following can be concluded: 

• The considered bias-corrected EURO-CORDEX RCMs have very good skills in reproducing 

observed temperature climatology (NSE > 0.95 and relative MAE < 10%) over the study area, 

while larger errors persist regarding precipitation (NSE between 0.25 and 0.65, relative MAE 

between 10% and 20%); 

• According to the downscaled RCMs data, in comparison to 1998–2017, mean temperature will 

likely increase throughout the rest of the XXI century, from 0.7 °C in 2021–2040 (RCP4.5, Mod_2) 

to 5.8 °C in 2081–2100 (RCP8.5, Mod_1); 

• Downscaled RCMs data do not show a clear trend in precipitation. For all twenty-year periods 

and RCP scenarios, there are single RCMs projecting increasing and decreasing rainfall (except 

2021–2040, RCP2.6, all increasing). Variations in mean annual rainfall varies between −18.5% 

(2041–2060, RCP4.5, Mod_2) and 15.1% (2041–2060, RCP8.5, Mod_2); 

• A pronounced decrease of precipitation is expected in the summer period after 2060, as most 

RCM-RCP combinations show; 

• Mean discharges are generally projected to decrease in comparison to observed flow (3.77 m3 s−1) 

since changes in mean annual precipitation usually do not balance increases in 

evapotranspiration rates due to higher temperatures; 
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• Variability in the projected mean discharges is mainly linked to the meteorological input rather 

than the rainfall-runoff model parameterization; 

• The maximum number of consecutive days below the warning thresholds was recognized as the 

best index to evaluate the spring low flow conditions; 

• After 2060, the length of the periods with discharge lower than the warning thresholds is 

expected to increase. These periods could last up to 64 days (86%) longer than in 1998–2017. 

The present study indicates that additional water resources might be needed to satisfy the 

population water demand in the Nossana Spring area, especially after 2060. Therefore, the presented 

approach can be considered useful to provide indications regarding the management of the resource 

in the mid- long-term period. In fact, UniAcque S.p.A. will soon start to investigate possible 

alternative sources for water supply. However, it is evident that the results include large uncertainties 

derived from the climate input variability, especially precipitation, and as new emission scenarios 

are produced, the study should be updated. 

Furthermore, the study focused on the quantitative aspects of the spring behavior; however, it 

is possible that a change in the discharge regime could also influence the chemical-physical 

characteristics of the water and its quality. A chemical-isotopic monitoring of the spring could 

improve the conceptual model of the aquifer system and the knowledge of the system response. This 

would allow a refinement of the method, raising it to a qualitative and quantitative prevision of the 

resource behavior. 
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