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We perform ab initio self-consistent Green’s function calculations of the closed shell nuclei 4He, 16O, and
40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at
the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-
to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder
resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of
freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the
relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total
binding energies are sensibly improved by the full account of many-body correlations. The results suggest an
interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability
appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical
value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the
pseudoscalar meson mass considered here.
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Introduction. Quantum chromodynamics (QCD) is ex-
pected to ultimately explain the structure and the interactions
of all hadronic systems, together with small corrections of
electroweak origin. At the moment, systematic and nonper-
turbative calculations of QCD can be carried out only by
lattice QCD (LQCD). Indeed, high-precision studies have
been shown to be possible, e.g., in single-hadron masses [1].
“Direct” calculations of multibaryon systems have also been
attempted on a lattice by several groups [2–6]. However, the
typical excitation energy �E for multibaryons is one to two
orders of magnitude smaller than O(�QCD). Accordingly, high
statistics data with very large Euclidean times t � h̄/�E ≈
10–100 fm/c is required. This is still far beyond reach due to
exponentially increasing errors in t and A (the atomic number),
as demonstrated theoretically and numerically in recent studies
[7–9].

In this work, we follow a different route and perform an ab
initio study for medium mass atomic nuclei directly based on
QCD by taking a two-step strategy. In the first step, we extract
the nuclear force from ab initio LQCD calculations with the
HAL QCD method. This procedure generates consistent two-,
three-, and many-nucleon forces in a systematic way [10–13].
Note that the HAL QCD interactions obtained directly from
spatiotemporal hadron-hadron correlations on the lattice are
faithful to the scattering phase shifts and binding energies by
construction. This is done systematically without the fitting
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procedures needed by phenomenological potentials. Further-
more, explorative studies of the three-nucleon potential show
that this is weaker than the corresponding nucleon-nucleon
(NN) force, in agreement with the empirically observed hierar-
chy of nuclear forces [14]. Thus, the interaction can be applied
to larger nuclei. In the second step, we calculate the properties
of nuclei with ab initio many-body methods using the LQCD
potentials as input. The advantage of the HAL QCD approach
is that one can extract the potential dictating all the elastic
scattering states below the inelastic threshold from the lattice
data for t � 1 fm/c [15]. This makes the LQCD calculation of
potentials affordable with reasonable statistics, together with
the help of advanced computational algorithms [16–19]. We
can then take the advantage of the recent developments in
nuclear many-body theories to calculate various information
on nuclei such as binding energies and spectral distributions.
Note that a similar two-step strategy has also been taken in
Refs. [20,21] where, however, effective field theories have been
used to fit the LQCD data.

Past LQCD studies in the flavor SU(3) limit by the HAL
QCD Collaboration have led to interactions in both the nucleon
and hyperon sectors with masses of the pseudoscalar meson
(which corresponds to the pion) as low as MPS = 469 MeV/c2.
In these cases, potentials have been obtained for the 1S0 and the
coupled 3S1-3D1 channels [22,23]. Exploratory calculations
based on these HAL QCD potentials were performed in the
Brueckner Hartree-Fock (BHF) approach [24,25]. This is
quantitative enough to give the essential underlying physics
for infinite matter but it is less reliable in finite systems. More
sophisticated calculations are needed in order to go beyond the
mean-field level, which is necessary to properly predict binding
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energies and to describe the truly complex structures of nuclei
at low energy. BHF becomes even more questionable for finite
nuclei due to assumptions with the unperturbed single-particle
spectrum where there is a problem in the choice between
a continuous or a gap form, neither of which is completely
satisfactory.

Ab initio theories for medium mass nuclei have advanced
greatly in the past decade and methods such as coupled cluster
and self-consistent Green’s function (SCGF) are now routinely
employed to study the structure of full isotopic chains up to
Ca and Ni [26–29], with the inclusion of three-nucleon forces
[30]. Their use with soft interactions from chiral effective field
theory have led to first-principle predictions of experimen-
tal total binding energies [31,32] and nuclear radii [33–35]
with unprecedented accuracies. Interactions like the HAL
QCD potentials pose a bigger challenge for calculations of
medium mass isotopes due to their short-distance internucleon
repulsion. However, the SCGF method has the advantage that
two-nucleon scattering (ladder) diagrams at large momenta—
needed to resolve the short-range repulsion—can be dealt with
explicitly by solving the Bethe-Goldstone equation (BGE) in
the excluded space [36–38]. This route was exploited in the
past to study spectral strength distribution but we extend it
to binding energies in the present work and find that this is
accurate enough to make statements on the performance of the
present HAL QCD potentials. Thus, this work is also a step
toward advancing many-body approaches that can handle hard
interactions for large atomic masses. This is also important
since new LQCD calculations at nearly the physical pion mass
are currently in progress [39–42].

The BHF study of Ref. [24] showed that the HAL QCD
interactions in the SU(3) limit do not bind at very large
pion masses except for the lowest available value MPS = 469
MeV/c2. The saturation of nuclear matter in this case is also
confirmed by later SCGF calculations [43]. Thus, this is a
suitable choice to investigate possible self-bound nuclei at
large pion masses. In this work, we will focus on this potential
and refer to it as the HAL469SU(3) interaction, or HAL469 for
simplicity.

Formalism. We follow closely the approach of Ref. [38] and
focus on the single-particle propagator given by [45,46]

gαβ(ω) =
∑

n

(X n
α

)∗X n
β

ω − ε+
n + iη

+
∑

k

Yk
α

(Yk
β

)∗

ω − ε−
k − iη

, (1)
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k ) are their quasiparticle energies, and c†α (cα) are the
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of the (A ± 1)-nucleon system, while EA+1
n and EA−1

k are
the corresponding energies. We perform calculations within a
spherical harmonic oscillator model space, indicated as P , and
use Greek indices α, β, . . . to label its basis functions. Within
this space, the one-body propagator is obtained by solving the
Dyson equation with an irreducible self-energy given by
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FIG. 1. Diagrammatic content of the ADC(3) approximation.
(a) The self-energy splits into a static mean-field part and an energy-
dependent contribution according to Eq. (2). (b) The dynamic contri-
butions are obtained as infinite resummations of ladder (pp/hh) and
ring (ph) diagrams. The ADC(3) approach includes static corrections
to the coupling of nucleons to intermediate excitations [matrix D in
Eq. (2)], an example of which is shown by the top portion of the last
Goldstone diagram [44].

This expression is the sum of a mean-field (MF) term, 
(∞),
and the contributions from dynamical correlations. The cou-
pling (D) and interactions matrices (K and C) are computed in
the third-order algebraic diagrammatic construction [ADC(3)]
approximation that generates nonperturbative all-order sum-
mations of 2p1h and 2h1p configurations, as shown in Fig. 1
[44,47,48]. We follow the sc0 approximation of Refs. [38,49],
in which 
(∞) is calculated exactly from the fully dressed
propagator g(ω) while D, K, and C are written in terms of a
simplified MF reference propagator, gref (ω), which is chosen
to best approximate g(ω) through its first two moments at the
Fermi energy (see Ref. [38] for details).

For forces with a sizable short-range repulsion, like the HAL
QCD interactions, usual truncations of the oscillator space (of
up to 12 shells in this case) are not sufficient and a resummation
of ladder diagrams in the excluded Hilbert space, Q ≡ 1 − P ,
is required. We do this by solving the BGE in Q according to
Refs. [50,51] and add the corresponding diagrams to the MF
self-energy, which becomes energy dependent [38]:
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αβ (ω) =

∑
γ δ
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2πi
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where T BGE
αγ, βδ(ω) are the elements of the scattering t matrix in

the excluded space. We then extract a static effective interaction
that we use to calculate the ADC(3) self-energy [the last term
of Eq. (2)] within the model space P . To do this, we solve the
Hartree-Fock (HF) equations with the MF potential of Eq. (3)

∑
β

{
〈α| p2

2mN

|β〉 + 

(∞)
αβ

(
ω = εHF

r

)}
ψr

β = εHF
r ψr

α, (4)

where latin indices label HF states, and define a static interac-
tion in this HF basis similar to Refs. [38,52]:

Vrs,pq = 1
2

[
T BGE

rs,pq

(
εHF
r + εHF

s

) + T BGE
rs,pq

(
εHF
p + εHF

q

)]
. (5)

The Vrs,pq matrix elements are then transformed back to the
harmonic oscillator space to be used in the computations.
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FIG. 2. Ground-state energy of 4He, 16O, and 40Ca as a function of the harmonic oscillator frequency h̄� and the model space size Nmax.
Symbols mark the results for the HAL469 potential from full self-consistent calculations in the T BGE(ω) plus ADC(3) approach.

Note that the BGE used to generate T BGE(ω) resums
scattering states where at least one nucleon is outside the
whole model space. Hence, it does not depend on the iso-
tope being computed, neither does it suffer from ambiguities
with the choice of the single-particle spectrum at the Fermi
surface that are encountered with the usual G matrix in BHF
calculations. Instead, our approach is very similar to the
Bloch-Horowitz method of Ref. [53], of which our T BGE(ω)
is also a first approximation. The ADC(3) computation ac-
counts for all types of correlations inside the model space,
including all remaining ladder diagrams. This ensures a com-
plete many-body calculation that accounts for short-distance
repulsion.

It is well known that short-range repulsion, which is
accounted for by Eq. (3), has the double effect of reducing
the spectral strength for dominant quasiparticle peaks and of
relocating it to large momenta and large quasiparticle energies
[29]. Since we cannot currently calculate the location of
strength at high momenta, it is not possible to quantify the
magnitude of these two effects. However, they contribute to
the Koltun sum rule for total binding energy with opposite
signs and must cancel to a large extent. Thus, we choose to
neglect both contributions and maintain a static 
(∞) to solve
the Dyson equation. This is currently the major approximation
in our calculations and its uncertainty is best estimated from
the benchmark on 4He below. Resolving this requires a proper
extension of the present SCGF formalism and it will be the
subject of future work.

Infrared convergence. The one-body propagators of 4He,
16O, and 40Ca are calculated in spherical harmonic oscillator
spaces of different frequencies, h̄�, and increasing sizes up
to Nmax = max{2n + �} = 11 (and Nmax � 9 for 40Ca). The
scattering matrix T BGE(ω) is calculated for each frequency and
model space and then used to derive the interactions of Eq. (5).
We subtract the kinetic energy of the center of mass according
to Ref. [54] and calculate the intrinsic ground-state energy from
g(ω) using the Koltun sum rule. The same lattice simulation
setup used to generate the HAL469 interaction gives a nucleon
mass of mN = 1161.1 MeV/c2 in addition to the pseudoscalar
mass of MPS = 469 MeV/c2. Thus, we employ this value of
mN in all the kinetic energy terms.

Figure 2 displays the ground-state energies obtained with
our T BGE(ω) plus ADC(3) method. As expected, the complete
resummation of ladder diagrams outside the model space tames

the ultraviolet corrections and results in a rather flat behavior of
the total energies for h̄� ≈ 5–20 MeV. Still, there remain some
hints of oscillations with respect to h̄� that could be linked to
the HO truncation and to the neglect of spectral strength at high
momenta as explained above.

The effectiveness of the ladder resummation is better
recognized by considering the infrared (IR) convergence of the
total binding energies, from where one can also extrapolate to
a complete set. More et al. [55] established that a harmonic
oscillator model space, of frequency h̄� and truncated to the
first Nmax + 1 shells, behaves as a hard wall spherical box of
radius

L2 =
√

2(Nmax + 3/2 + 2) b, (6)

where b ≡
√

h̄c2/mN� is the oscillator length. Given a soft
interaction that is independent of the model space, if the
frequency is large enough (i.e., b is small) then ultraviolet (UV)
degrees of freedom are converged. In this case, the calculated
ground-state energies are expected to converge exponentially
when increasing the effective radius L2:

EA
0 [Nmax,h̄�] = E∞ + C e−2 k∞ L2 . (7)

For the bare HAL469 interaction, if we use the SCGF without
ladder sums outside the model space, the extrapolation ac-
cording to Eq. (7) will fail because the short-distance repulsion
requires extremely largeNmax (
20) to reach UV convergence,
while our many-body space P is limited to Nmax = 11. This
is shown by the left panel of Fig. 3. However, our complete
calculations use the BGE to resum all missing ladder diagrams
within Q. Adding these to the two-particle ladders that are
generated by the ADC(3) leads to a complete diagonalization of
short-distance degrees of freedom, independently of the choice
of P . The resulting dependence of the ground-state energy on
L2 is shown by the middle panel and it now follows the behavior
dictated by Eq. (7). Note that single-particle energies are still
needed to calculate T BGE(ω) but these can be identified with
the free particle spectrum in the space Q, at large momenta.
Accordingly, the flat region in Fig. 3 becomes broader as we
increase Nmax (that is, when the boundary between the P and
Q spaces moves away from the Fermi surface).

The binding energy of 4He for HAL469 was found to be
−5.09 MeV with the exact stochastic variational calculations
[56], which we will use to benchmark our approach. The solid
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FIG. 3. Calculated ground-state energies of 4He and 40Ca for the HAL469 potential as a function of the effective box radius L2. Left:
Solution for the bare interaction at Nmax = 9 and 11 and varying oscillator frequencies without ladders from the excluded space Q. Middle:
Full calculation, including all ladder diagrams in Q. Different colors and broken lines are a guide to the eye connecting results of the same
Nmax. The data points included in the fit are marked with crosses and are also shown separately in the inset. Right: Same as the middle
panel but for 40Ca. For all panels, the full black line is the result of the IR extrapolation, with the inclusion of the T BGE ladder, according to
Eq. (7).

lines in Fig. 3 are the result of a nonlinear least-squares fit to
Eq. (7). The points diverging from the exponential behavior
at large L2 are assumed not to be UV converged due to the
above-mentioned approximations and are excluded from the
fit but are still shown in the figure. From calculations up
to h̄� = 50 MeV and the IR extrapolation, we estimate a
converged binding energy of 4.80(3) MeV for 4He, where
the error corresponds to the uncertainties in the extrapolation.
The calculations for the other isotopes converge similarly to
4He, and we show the IR extrapolation of 40Ca in the right
panel of Fig. 3, for completeness. The figure is also indicative
that this methodology can be successfully applied to heavier
nuclei. These results clearly show that SCGF can handle
relatively hard potentials by resumming of ladders through
the Bethe-Goldstone equation and they give confidence
that the short-range repulsion of HAL469 is accounted for
accurately.

Results. The calculated ground-state energies of 4He, 16O,
and 40Ca are summarized in Table I, together with BHF results
obtained with the same gap choice and methods of Ref. [25].
For 4He, the complete T BGE(ω)+ADC(3) result deviates from
the exact solution for 4He by less than 10%. Since the SCGF
approach resums linked diagrams, and thus it is size extensive,
one should expect that similar errors will apply for larger
isotopes [57]. Thus, Table I shows both the uncertainties in

TABLE I. Ground-state energies of 4He, 16O, and 40Ca at
MPS = 469 MeV/c2 obtained from the HAL469 interaction. The
T BGE(ω)+ADC(3) results of the present work are compared to BHF
and to the exact solution. The last line is the breakup energy for split-
ting the system into 4He clusters (of total energy A/4 × 5.09 MeV).

EA
0 (MeV) 4He 16O 40Ca

BHF [25] −8.2 −34.7 −112.7
T BGE(ω)+ADC(3) −4.80(0.03) −17.9 (0.3) (1.8) −75.4 (6.7) (7.5)
Exact calc. [56] −5.09
Experiment −28.3 −127.7 −342.0
Separation into 4He clusters: −2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

the IR extrapolation [55] and an error for the many-body
truncations, for we which we take a conservative estimate
of 10% based on our finding for 4He. The SCGF results are
sensibly less bound than our previous BHF results [25] and we
interpret this as a limitation of BHF theory.

A key feature of our calculations is the use of a harmonic
oscillator space, which effectively confines all nucleons. The
last line of Table I reports the deduced breakup energies for
separating the computed ground states into infinitely distant
4He clusters. The 16O is unstable with respect to the 4-α
breakup, by ≈2.5 MeV. Allowing an error in our binding
energies of more than 10% could make oxygen bound but only
very weakly. This is in contrast to the experimental results, at
the physical quarks masses, where the 4-α breakup requires
14.4 MeV. On the other hand, 40Ca is stable with respect to
breakup in α particles by ≈24 MeV. We expect that these
observations are rather robust even when we consider the
(LQCD) statistical errors in the HAL469 interaction. While
such statistical fluctuations introduce additional ∼10% errors
on binding energies [25], they are expected to be strongly
correlated among 4He, 16O, and 40Ca. Hence, for QCD in the
SU(3) limit at MPS = 469 MeV/c2, we find that the deuteron is
unbound [23] and 16O is only just slightly above the threshold
for α breakup, while 4He and 40Ca are instead bound. The
HAL469 interaction has the lowest MPS value among those
considered in Refs. [22,23], while from Ref. [24] we know that
it is the only one saturating nuclear matter (although not at the
physical saturation point). Moreover, we have tested that SCGF
attempts at calculating asymmetric isotopes, like 28O, predict
strongly unbound systems even for HAL469. All these results
together suggest that when lowering of the pion mass toward
its physical value, closed shell isotopes are created at first
around the traditional magic numbers. This hypothesis should
also be seen in light of the limitations in the present HAL469
Hamiltonian, which was built to include only the 1S0, 3S1,
and 3D1 partial waves and therefore neglects the three-body
forces and spin-orbit interactions. The missing P waves and
Coulomb force are repulsive but could be compensated for by
an attracting three-body force.
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Figure 4 demonstrates the spectral strength distribution of
16O obtained for Nmax = 11 and h̄� = 11 MeV. Quasiparticle
fragments corresponding to spin-orbit partners do not split due
to the absence of a spin-orbit term in HAL469. Otherwise, all
the remaining qualitative features of the experimental spectral
distribution are seen also for the MPS = 469 MeV/c2. The rms
radii are given Table II for the same model space and oscillator
frequency. Although the total binding energies are 15–20% of
the experimental value (Table I), the computed charge radii are
about the same as the experiment. This is due to the fact that the
heavy nucleon mass (mN=1161.1 MeV/c2) used here reduces
the motion of the nucleons inside the nuclei and counterbal-
ances the effect of weak attraction of the HAL469 potential.
We have also checked the dependence of the computed radii
on the effective model space size, Eq. (6), and found a rather
flat converged region for all three isotopes, although the values
still oscillate by about 0.05 fm with changing L2. The values
in Table II are all calculated in the middle of this plateau. The
HF approach of Eq. (4) and the standard BHF give similar
radii even though they predict very different binding energies.
The final radii are then increased by many-body correlations
and, for all nuclei, the full T BGE(ω) plus ADC(3) calculation
pushes the matter distribution to larger distances. However,

TABLE II. Computed matter and charge radii of 16O and 40Ca
using MPS = 469 MeV for Nmax = 11 and h̄� = 11 MeV. Results
are given for different levels of approximation and the charge radii
from the full T BGE(ω) plus ADC(3) are compared to the experimental
values. For charge radii, we assumed the physical charge distributions
of the protons and neutrons (see Ref. [60] for details).

4He 16O 40Ca

rpt−matter (fm): BHF [25] 2.09 2.35 2.78
HF 1.62 2.39 2.78

T BGE(ω) + ADC(3) 1.67 2.64 2.97
rcharge (fm): T BGE(ω) + ADC(3) 1.89 2.79 3.10

Experiment [58,59] 1.67 2.73 3.48

we note that accounting for the neglected high-momentum
components—as discussed below Eq. (5)—tends to enhance
the central density and would slightly reduce the calculated
radii [61].

Summary. We investigated the use of the BGE in an ab initio
approach and used it to resum missing two-nucleon scattering
diagrams outside the usual truncations of the many-body space,
while the full ADC(3) method has been retained within the
model space itself. A benchmark on 4He shows that the
present implementation works relatively well and it allows
us to solve the self-consistent Green’s function for the HAL
QCD potentials derived from lattice QCD. An investigation of
the IR convergence of the ground-state energies, following the
work of Ref. [55], indicates that SCGF can handle relatively
hard potentials such as the HAL469, even for masses as large
as A = 40. This opens a new path that allows full ab initio
calculations of large nuclei even with hard nuclear interactions.

The present accuracy is sufficient to make quantitative state-
ments on doubly magic nuclei, which are less bound compared
to earlier BHF estimates for the HAL QCD potentials. Here,
we have found that the behavior when lowering the pion
mass toward its physical value is consistent with the idea
that nuclei near the traditional magic numbers are formed at
first. At MPS = 469 MeV/c2, in the SU(3) limit of QCD, both
4He and 40Ca have bound ground states while the deuteron
is unbound and 16O is likely to decay into four separate α
particles. However, 16O is already close to becoming bound.
This suggests that the region of MPS ∼ 500 MeV/c2 marks a
transition between an unbound nuclear chart and the emergence
of bound isotopes. Further studies at lower pion masses will be
pivotal to testing these findings and should be possible in the
near future since LQCD simulations for nuclear and hyperon
forces down to physical quark masses are currently underway
[39–41].

Important future work will also be the inclusion of the spin-
orbit as well as three-nucleon forces. Proof-of-principle LQCD
calculations for these interactions are available [14,62] and
follow the hierarchy of nuclear forces with three-nucleon terms
smaller than the NN contributions.
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