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Static friction boost in edge-driven incommensurate contacts
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We present a numerical investigation of the size scaling of static friction in incommensurate two-dimensional
contacts performed for different lateral loading configurations. Results of model simulations show that both the
absolute value of the force Fs and the scaling exponent γ strongly depend on the loading configuration adopted to
drive the slider along the substrate. Under edge loading, a sharp increase of static friction is observed above a critical
size corresponding to the appearance of a localized commensurate dislocation. Noticeably, the existence of sublin-
ear scaling, which is a fingerprint of superlubricity, does not conflict with the possibility to observe shear-induced
localized commensurate regions at the contact interface. Atomistic simulations of gold islands sliding over graphite
corroborate these findings, suggesting that similar elasticity effects should be at play in real frictional contacts.
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I. INTRODUCTION

Sliding friction phenomena abound in nature, spanning, in
disparate areas, vastly different scales of length, time, and
energy [1]. However, despite their fundamental and techno-
logical importance, several key physical aspects of mechanical
dissipative dynamics are not yet fully understood. This is
mostly due to the complexity of highly out-of-equilibrium
nonlinear processes occurring across a buried sliding inter-
face [2]. Quite recently, new avenues of research are being
pursued and new discoveries are being made especially at
the microscopic scales [3,4]. In particular, dry solid/solid
contacts displaying extremely low values of static and kinetic
friction are attracting more and more attention due to their
great physical and technological interest, e.g., to significantly
reduce dissipation and wear in mechanical devices functioning
at various scales. Unlike standard lubricants, solid lubrication
arises from incommensurability of rigid interfaces causing
effective cancellation of interfacial interactions. This phe-
nomenon, often termed structural superlubricity, has been
demonstrated in a number of experiments at nanoscales and
microscales [5–19], yet its robustness and its upscale to the
macroscopic world remain a challenge. The conditions of the
persistence of superlubricity and the mechanisms of its failure
are therefore cast as key questions to be addressed at both
fundamental and technological levels.

Even in clean wearless friction experiments with perfect
atomic structures the interface elasticity itself may hinder
superlubricity by introducing new energy dissipation channels
[20–23]. Recently, elasticity effects in contact area scaleup
have shown to be critical for the breaking of ultralow frictional
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states when the contact size exceeds the core width of inter-
facial dislocations in crystalline interfaces [21]. Experimental
evidences have been provided by measuring the sliding friction
force of amorphous antimony particles on MoS2 [24]. Again
in connection to elasticity, the way that a driving local stress
is applied to a slider, as typically occurs in proximal-probe
nanomanipulation measurements, is expected to influence its
tribological response as well. Indeed, within the idealized
framework of a simple one-dimensional (1D) edge-driven
Frenkel-Kontorova (FK) model [22,23], the abrupt occurrence
of a striking boost in the dissipated energy during sliding (ki-
netic friction) has been observed above a critical contact length.

In this study, we consider two-dimensional (2D) superlubric
elastic contacts, where even in the absence of defects a static
friction arises due to finite-size edge effects [25]. In order to un-
veil the driving-induced mechanisms leading to the substantial
elimination of superlubricity in a tribologically meaningful 2D
geometry, we consider a FK-type modeling, highlighting the
frictional phenomenology, and a comparative, more realistic,
adsorbate/substrate atomistic simulation approach, mimicking
the frictional interface of gold islands deposited on graphite.
We found that the magnitude of the static friction and its scaling
with the contact area strongly depend on the external lateral
loading configuration. Large differences in the static friction
observed between edge and uniform driving are tightly linked
to the preslip strain distribution at the frictional interface. In
particular, load-induced formation of localized commensurate
regions can add to the edge contribution causing a sharp
increase of the static friction force.

II. FK MODELING AND RESULTS

A. System and method

In our 2D FK model schematically sketched in Fig. 1(a),
pointlike particles of mass m form a square lattice of period
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FIG. 1. (a) The 2D FK model adopted in simulations: a harmonic
square lattice of identical point-mass particles interacting with a
mismatched square substrate potential of strength U0. (b) Schematics
of the edge of a circular island in the 2D FK model, showing in red the
particles to which the external force is applied during the edge-driving
pulling/pushing protocols. (c) A circular gold island deposited over a
graphene monolayer used in the atomistic simulations. (d) Detail of
the region where the external force is applied during the edge-driving
protocols (red atoms).

a. Each particle interacts with its four nearest neighbors via a
potential

V1(rij ) =
{

k1
2 (rij − a)2 if rij > Rcut,
α + β/r12

ij if rij � Rcut,
(1)

where rij = |ri − rj | is the distance between particle i and
particle j . To get a closer description of a solid-state system, we
introduced a cutoff distance Rcut, below which the interaction
turns from harmonic to purely repulsive. The latter term
models the Pauli repulsive forces between electron clouds of
real atoms. The constants α and β are chosen to ensure the
continuity of V1(r) up to its first derivative at r = Rcut. The
isostatic instability under shear forces of the square lattice is
eliminated by including a second harmonic term accounting
for the interactions between next-nearest neighbors:

V2(rij ) = k2

2
(rij − lnext)

2, (2)

where lnext = a
√

2 is the next-nearest-neighbor equilibrium
distance, and the spring constant k2 is chosen to give k1/k2 = 2,
resulting in a 2D Poisson’s ratio of σ2D = 1

3 . Values adopted
to perform the simulations are a = 1, m = 1, Rcut = 0.85,
k1 = 10, k2 = 5.

A rigid crystalline substrate is modeled as a two-
dimensional periodic potential of square symmetry, strength
U0, and periodicity λsub:

U (ri) = −U0

4

(
2 + cos

2πxi

λsub
+ cos

2πyi

λsub

)
. (3)

We used λsub = (1 + √
5)/3 ≈ 1.08, resulting in an overdense

interface, where the particle density is larger than the density
of substrate potential minima. We chose a value of U0 = 0.075
corresponding to an interfacial stiffness U0π

2/λ2
sub ≈ 0.6,

which is more than one order of magnitude smaller than the
internal stiffness k1 = 10 of the monolayer, ensuring that the

system is well within the superlubric regime. This is usually
the case in nanomanipulation experiments [11,12,26]. This
condition has been carefully checked in our model by measur-
ing the static friction force of infinite monolayers in periodic
boundary conditions, as detailed in Sec. S1 of Supplemental
Material (SM) [27]. Together with the geometrical lattice
mismatch, the ratio of the internal and interfacial stiffnesses
is directly related to the characteristic core width bcore of
interfacial edge dislocations. This parameter was introduced
to define a critical contact size above which elasticity becomes
important and leads to local locking into the commensurate
state [21]. For our 2D FK system, we estimated bcore ≈ 68 a

(see Sec. S2 of SM [27] for details).
At rest, the total energy of a system of Np particles is

E({ri}) =
Np∑
i=1

U (ri) +
∑
〈i,j〉

V1(rij ) +
∑

〈i,j〉next

V2(rij ), (4)

where 〈i,j 〉 and 〈i,j 〉next indicate summations over all distinct
nearest- and next-nearest-neighbor pairs, respectively. The
dynamics of the system is obtained assuming zero temperature
by solving the Np equations of motion

mr̈i = −∇iE({ri}) − ηvi + Fext, (5)

where η is a damping coefficient accounting for the dissipation
of kinetic energy of the particles in the island into the substrate
and Fext is the external driving force. The equations have been
solved numerically with an adaptive Runge-Kutta integrator
of the fourth order. Throughout the paper, all results obtained
within the 2D FK model are expressed in simulation units,
i.e., as obtained directly from the simulations performed at our
chosen parameters, without any further conversion. Distances
are understood to be in units of a.

B. Simulation protocols

We considered circular islands of increasing radius R =
15–350, containing up to Np � 3.8 × 105 particles. The start-
ing configurations were generated adopting the following
protocol. For each size we considered a set of starting angular
orientations θ between the crystalline axis of the island and
of the substrate. We explored values between 0 and 5◦, which
include the Novaco-McTague orientation θNM (≈2.5◦, within
the chosen parametrization) predicted to be energetically favor-
able in the limit of an infinite monolayer [28]. The positions
of all particles in the islands were fully relaxed via damped
dynamics described by the equations of motion (5) in the
absence of external force. At each size we selected the relaxed
configuration corresponding to the minimum value of the total
energy. During relaxation, the islands tended to rotate from
the initial orientation towards the optimal misalignment θopt

that minimizes the energy. For the largest sizes considered,
where edge effects are minimized, we observed θopt ≈ θNM, as
predicted by linear response theory [28].

The optimized configurations were used as starting points
for the measurement of the static friction force Fs . The latter
has been calculated using three different lateral loading con-
figurations: edge loading, which mimics the sideway pushing
and pulling by a tip of atomic force microscope (AFM), and
a uniform driving, which can be realized when the slider is
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FIG. 2. (a) Size scaling of the static friction force. (b) A linear fit of
the data in a log-log scale (dashed lines) yielded the scaling exponents
γ reported beside each curve. Blue, black, and red lines are results
obtained under pulling, pushing, and uniform driving, respectively.
Arrows indicate the critical size N∗

p for the nucleation of a local
commensurate dislocation in the case of pulling.

attached to a sufficiently rigid moving stage or subject to
inertial forces as in quartz crystal microbalance experiments.
To model the edge loading, we selected a small region at the
edge of our islands comprising ∼70 particles, to which we ap-
ply the external force Fext [see Fig. 1(b)]. A uniform driving is
achieved applying Fext to all particles. The static friction force
is evaluated using an adiabatic protocol during which Fext is
increased in steps of 
F = 0.0001–0.005, much smaller than
the single-particle depinning force Fs1 = πU0/2λsub � 0.11.
For each value of Fext, the positions of all particles are relaxed
via damped dynamics, using a damping η = 0.5. Depinning
was detected by monitoring the displacement of the island’s
center of mass. We note that, as long as inertial effects are neg-
ligible during relaxation, the value of the static friction force is
independent of the choice of the damping coefficient. To check
the reliability of our protocol, we repeated some relaxations
with the more sophisticated FIRE optimization algorithm [29],
which yielded the same results. The data presented here were
obtained applying the external force in the direction defined by
θopt, corresponding to a high-symmetry lattice direction of the
slider. We checked that the main results are qualitatively inde-
pendent of the direction of application of the external force.

The applied external force induces strain deformations
within the slider. These distortions occur mainly in the di-
rection of the external force Fext, while the Poisson effect
accounts for relatively smaller deformations in the perpendic-
ular direction. We focus on the first, and we quantify them by

FIG. 3. (a)–(h) Colored maps showing the local mismatch δloc of
the circular islands in the 2D FK model simulations. Values of δloc = 1
indicate local commensuration to the substrate. Panels (a)–(d) show
results for a size of Np � 3.8 × 103 particles, while panels (e)–(h)
correspond to Np � 2.4 × 104. (i)–(l) Color maps of the substrate
potential force (projected along the direction opposite to that of
the external force) in the island of size Np � 2.4 × 104. Positive
values correspond to regions resisting the motion. Within the bulk,
the substrate forces alternate in sign, summing up to nearly zero, and
pinning originates mainly at the edges. From left to right, snapshots are
shown obtained at rest [Fext = 0, panels (a), (e), (i)], and at an applied
external force just below the static friction force value Fext � Fs under
edge pulling [panels (b), (f), (j)], edge pushing [panels (c), (g), (k)],
and uniform driving [panels (d), (h), (l)]. Arrows indicate the direction
of Fext in the three protocols.

computing the local average distance δloc(ri) of each particle i

from its nearest neighbors lying along the direction of the ap-
plied force. Two-dimensional color maps of δloc are produced
to gain insights on the driving-induced strain distribution.
One-dimensional plots are extracted by averaging δloc in the
direction perpendicular to Fext, δ(x) = 〈δloc(ri)〉⊥. Both δloc

and δ are expressed in units of the substrate periodicity λsub,
so to easily detect local commensuration when δloc/λsub = 1.

C. Results: Size scaling and driving-induced elasticity effects

Figure 2, the main result of this study, reports the size
dependencies of the static friction force calculated for three
different lateral loading configurations: edge pulling, uniform
driving, and edge pushing. We extract three main observations:
(i) Static friction obeys a sublinear size scaling law, Fs ∝ N

γ
p

with γ < 1, independent of the driving protocol [see Fig. 2(b)].
(ii) At all sizes we consistently observe F

pull
s > F uniform

s >

F
push
s . The effect of nonuniform driving is indeed quite large:

the static friction force measured for edge pulling being more
than twice that obtained under uniform shearing, and almost
one order of magnitude larger than the value measured for
edge pushing. (iii) More surprisingly, the scaling exponent
itself is found to depend significantly on the adopted lateral
loading, and shows the same trend, γ

pull
FK > γ uniform

FK > γ
push
FK ,

of the corresponding static friction force values.
To understand the physical origin of this behavior, we

analyzed the preslip strain distribution at the interface. Fig-
ures 3(a)–3(h) report the colored maps of δloc for two sizes,
comparing the configurations at rest [Fext = 0, see Figs. 3(a)
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and 3(e)] with the ones relaxed in presence of an external
force just below the static friction threshold Fext � Fs [see
Figs. 3(b)–3(d) and 3(f)–3(h)]. At all sizes, the strain distri-
bution is strongly dependent on the lateral loading. For the
overdense case considered, pulling induces elongations of the
interparticle distances in the direction of the applied external
force, while pushing tends to reduce the bond lengths. In
both cases, the largest distortions are localized near the edge
region to which the external force is applied [see Figs. 3(b),
3(c), 3(f), and 3(g)]. A uniform shearing generally yielded
mild compressions at the leading edge and somewhat larger
elongations at the trailing edge [see Figs. 3(d), 3(h), and the
full nearest-neighbor distances distributions reported in Fig.
S2 of SM [27]]. Elasticity effects are particularly large for the
edge-pulling protocol. There, as the size of the slider increases,
the local bond length approaches values that grow closer and
closer to the substrate periodicity δloc/λsub → 1 [see Figs. 3(b)
and 3(f)].

In finite 2D superlubric contacts, locking to the substrate
originates from lower-coordinated atoms that soften the slider
at its border, hence, the static friction scaling is expected to
increase at most as γmax = 1

2 . In our system, evidences of
this behavior can be observed from the colored maps of the
substrate forces acting on the slider [see Figs. 3(i)–3(l)]. In
agreement with previous work [25] we actually found values
of γ < 1

2 [see Fig. 2(b)], indicating that pinning originates
from a subset of points that grow sublinearly even with respect
to the edge. Defining F ∗ as the force needed to nucleate
a localized commensurate dislocation, there must exist a
corresponding threshold size N∗

p above which F ∗ � Fs(Np)
and local matching, namely, δloc(r)/λsub = 1 for some r, should
occur before the onset of motion. We found that this is indeed
the case, as demonstrated in Fig. 4. There, we show the average
nearest-neighbor distance δ(x) measured along the direction of
the external force, for two distinct island sizes. For Np = 3.8 ×
103 < N∗

p ≈ 104, the island is incommensurate everywhere,
independent of the driving protocol. AtNp = 2.4 × 104 > N∗

p ,
a localized commensurate dislocation is formed close to the
pulling region. The same behavior was observed at each value
of Np > N∗

p , up to the largest size investigated. On the other
hand, for edge pushing and uniform lateral loading, we found
no evidence of nucleation of a commensurate dislocation,
up to the largest value of R = 350 (∼5 bcore) considered.
The emergence of commensurability is expected to affect the
measured value of the static friction force, and indeed, for
edge pulling we found a sharp increase just above Np ≈ N∗

p

[see arrow in Fig. 2(a)].
Coming to the scaling exponents, in Fig. 2(b) we report the

results of a fit of the simulations’ data. In our overdense contact,
pushing promotes incommensurability by compressing the
slider lattice spacing a. Correspondingly, we observed the
smallest value of γ

push
FK = 0.32 ± 0.01. The uniform shearing

yielded an intermediate value γ uniform
FK = 0.42 ± 0.01, in agree-

ment with the observation of more enhanced bond elongations,
compared to compressions, taking place at the interface (see
Fig. S2 of SM [27]). We note that a similar value of γ uniform ≈
0.4 was previously reported in atomistic simulations of circular
Kr islands sliding on Pb(111) [25]. Finally, the largest value
γ

pull
FK = 0.49 ± 0.02 is obtained for edge pulling, reflecting

FIG. 4. The averaged local mismatch δ(x) inside the circular
islands of the 2D FK model simulations. Values of δ(x) = 1 indicate
local commensuration to the substrate. Panels (a) and (b) show
results for two islands’ sizes of Np � 3.8 × 103 and Np = 2.4 × 104

particles, corresponding to radii of R = 35 and 88, respectively.
Blue, red, and black lines are obtained from the analysis of the
configurations relaxed at an external force just below the static
friction forceFext � Fs under edge pushing, edge pulling, and uniform
driving, respectively.

the pinning effect of the localized commensurate dislocation,
that adds to the edge contribution [see also the force map of
Fig. 3(j)].

It is worth stressing that despite the presence of a com-
mensurate dislocation, Fs obeys a sublinear scaling law even
under edge pulling, indicating that the commensurate area does
not grow linearly with the contact size. Thus, our simulations
demonstrate that the emergence of a localized commensurate
region is not incompatible with the observation of a static
friction sublinear scaling, which is usually considered a fin-
gerprint of superlubricity. This conclusion differs from that
of the work by Sharp et al. [21], where, within a similar
simplified elastic model under the uniform loading, a transition
from a sublinear scaling to a linear scaling of Fs has been
predicted for the contact size corresponding to the appearance
of commensurate dislocations. In that case, the linear scaling of
Fs is determined by the increase of the number of dislocations
that can be stabilized at the (quasistatically) sliding interface
[30]. It should be noted that, at least for some set of parameters,
the results of simulations in Ref. [21] show the presence of
localized commensurate dislocations already in the starting
configurations at rest, suggesting that the contacts were not in
the superlubric regime (see discussion in Sec. S1 of SM [27]).
In our case, an externally applied nonuniform driving force is
necessary for the appearance of a commensurate dislocation.
Moreover, during sliding the dislocation remains localized near
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the edge, and no others are nucleated across the contact (see
Fig. S3 of SM [27]).

III. ATOMISTIC MD SIMULATIONS

A. Model: Au(111) over graphite

The comparative atomistic MD investigation deals with
gold islands deposited on a graphitic substrate. We have
considered Au(111) islands of circular shape [see Figs. 1(c)
and 1(d)], fully described atomistically by embedded atom
method (EAM) potential [31], with a spacing parameter a =
4.63 Å, and deposited on a graphene monolayer kept rigid
in its bulk configuration, corresponding to a lattice constant
λsub = 4.26 Å. Au-C interaction has been mimicked by a 12-6
Lennard-Jones potential, with ε = 44 meV, σ = 2.74 Å, and
a cutoff radius of 7Å. In order to reduce the critical island size
at which its elasticity affects friction, we have used the same
σ but ε twice that of Lewis et al. [32]. We have considered
Au island sizes with radii in the range R = 6–40 nm, the
largest corresponding to about 8 × 104 Au atoms, adsorbed
on a graphene sheet of 88 × 88 nm2 (∼3 × 105 C atoms) with
applied periodic boundary conditions. The characteristic core
width of interfacial edge dislocations for this system is of the
order of bcore ≈ 18 nm = 39 a (see Sec. S2 of SM [27]).
After damped-dynamics relaxation we obtain an optimum
alignment angle θopt � 1.7◦, as similarly observed in earlier
work [33]. Dynamics was simulated using a velocity-Verlet
integrator with a time step of 1 fs, and a viscous damping of
η = 0.1 ps−1. The protocols adopted for the initial relaxation
and the subsequent measurement of the static friction force are
the same as outlined in Sec. II B.

B. Results: Interface strain distribution and size scaling

Contrary to the FK system, the existent mismatched ratio
between gold and graphene defines an underdense contact
geometry with λsub < a. Thus, adsorbate/substrate commen-
suration is expected to be favored by a sideways pushing
instead of pulling. Figure 5 reports the colored strain maps
for two island sizes and the different driving protocols pre-
viously considered, where close commensurate regions with
the underneath substrate are highlighted by brighter tones.

FIG. 5. Local mismatch maps for the gold-graphene system at
two different island sizes R = 16 nm (a)–(d) and R = 40 nm (e)–(h).
Aside from the resting (no external force) case, configurations for
pulling, pushing, and uniform driving are reported with an applied
force just below the depinning threshold. Local commensuration is
achieved in the white region.

FIG. 6. Size scaling of the static friction force Fs in the gold-
graphene system. Blue, black, and red lines are results obtained during
the pulling, uniform, and pushing protocols, respectively. The inset
shows the scaling of the maximum bond compression during pushing.
A linear extrapolation is used to obtain an approximate estimation
of the critical size for the appearance of a local commensurate
dislocation.

While the smaller adsorbate (top panels) does not exhibit
significant strain deformations regardless of the type of applied
shearing, the larger slider (bottom panels) starts to develop,
under sideways pushing, the nucleation of a localized nearly
commensurate zone.

Figure 6 reports the corresponding size scaling of the
static friction force. We observe F

pull
s < F

push
s ≈ F uniform

s ,
indicating again that pinning to the substrate can be reduced
by adopting lateral loading configurations that promote in-
commensurability. Under edge pushing and uniform driving,
up to the largest size investigated, local commensuration is
approached but never reached. Correspondingly, we measured
comparable values of the static friction force, as similarly
observed in the FK model well below N∗

p [see Fig. 2(b)].
A tentative fit of the simulations’ data (see Sec. S5 of SM
[27]) yielded γ

pull
gold = 0.33 ± 0.06, γ uniform

gold = 0.39 ± 0.05, and

γ
push
gold = 0.38 ± 0.06. In analogy with the FK model, we note

that the scaling exponents follow qualitatively the same trend
displayed by the corresponding values of the static friction
force. Moreover, we found agreement between the values of
γ

pull
gold ≈ γ

push
FK and of γ uniform

gold ≈ γ uniform
FK . On the other hand,

since local commensuration is never reached in the gold-
graphene system under sideways pushing, we observe γ

push
gold <

γ
pull
FK . A rough estimate of the critical size for the appearance

of a commensurate dislocation in the gold islands is given in
the inset of Fig. 6. There we show the size dependence of
the minimum distance from achieving local commensuration,
min[δ(x) − 1], measured for the pushing protocol. A linear
extrapolation indicates that commensurate dislocations should
nucleate above a critical island size of R � 75 nm. The numer-
ical inspection of such computationally demanding limit goes
beyond the scope of the study. Nevertheless, the close similarity
of the strain maps of Fig. 5 with those of Fig. 3, and the differ-
ences between the values of the static friction force highlighted
in Fig. 6 suggest that a similar boost in the static friction is to
be expected in sufficiently large real contacts as well.
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IV. DISCUSSION AND CONCLUSIONS

We carried out a detailed numerical investigation of the
static friction force Fs arising in crystalline nanocontacts for
three different lateral loading configurations. We focused on
incommensurate superlubric interfaces, for which a sublinear
scaling of Fs ∝ Aγ<1 with respect to the contact area A has
been predicted theoretically [25,34], and observed experimen-
tally [11,12]. Results obtained within the framework of a
two-dimensional Frenkel-Kontorova model [35] demonstrate
that both the absolute value Fs and the scaling exponent γ

depend on the lateral loading configuration adopted to drive the
slider along the substrate. Specifically, we observed variations
of nearly one order of magnitude in the measured value of
Fs upon changing the direction of the applied shearing force
during sideways pushing/pulling of circular islands. On top of
that, the scaling exponent γ itself was found to vary by ∼50%.

This behavior is tightly linked to the preslip strain distribu-
tion induced at the frictional interface. Larger (smaller) values
of (Fs,γ ) are observed in concomitance of lateral loading
configurations that stretch (compress) the slider lattice spacing
a towards (away from) matching with the periodicity λsub of the
underlying crystalline substrate. A large boost of static friction
is observed when the contact area exceeds a critical value above
which the static friction force becomes larger than the force F ∗
needed to nucleate a localized commensurate dislocation near
the driven edge. Remarkably, independent of the presence or
absence of commensurate dislocations, the scaling law remains
sublinear, indicating that the commensurate area does not
increase proportionally to A. This result further demonstrates
that a sublinear scaling, usually considered a fingerprint of
superlubricity, does not conflict with the possibility to ob-
serve shear-induced localized commensurate regions at the
contact interface. Comparative atomistic simulations of gold
nanosliders deposited over a graphitic substrate corroborated
these findings, thus suggesting that similar effects should be
at play in sufficiently large real contacts that can be probed in
nanomanipulation experiments [12].

We mention here that previous works [22,23] dealing with
an edge-driven one-dimensional FK model reported the occur-
rence of a boost of energy dissipation above a critical length
corresponding to the nucleation of a localized commensurate
region. In that case, the threshold value was determined by the
linear increase with contact size of the viscouslike kinetic fric-
tion force needed for attaining steady sliding at a given constant
velocity. In superlubric one-dimensional contacts of increasing
size, static friction instead oscillates around a constant value
[36], hence, the creation of a commensurate dislocation before
the onset of motion is hindered if Fs < F ∗, which is generally
the case. Again in connection with elasticity, in a recent
work by Sharp et al. [21], a transition from a sublinear to
linear scaling of Fs has been predicted for the contact size
corresponding to the appearance of interfacial commensurate
dislocations characterized by a core width bcore. However,
in that case the transition was observed only for the case
of soft sliders, corresponding to small values of bcore/a � 2.

Moreover, local commensuration was reported even in the ab-
sence of external shearing forces, suggesting that the contacts
were not genuinely superlubric. On the contrary, the results of
our simulations fall in the regime of stiff sliders and a large
bcore/a  1, where local commensuration is observed only
under the action of a nonuniform lateral loading. The present
investigation therefore highlights a mechanism for nucleation
of edge-driving-induced commensurate dislocations which
lead to a signicant increase of the static friction force, while
remaining in a regime of sublinear scaling.

In our simulations, the external force Fext was applied to
Ndriven ∼ 70 particles at the edge of the slider. More generally,
the frictional response of the system will depend on the fraction
fd = Ndriven/Np of driven particles. For a fixed size Np of
the slider, under sideways pushing/pulling, the static friction
force will tend to the uniform driving value, Fs → F uniform

s for
fd → 1, even though not necessarily in a continuous fashion.
We can expect a similar scenario also for the scaling exponent.
Increasing the fraction fd of driven particles will lead to a
crossover of the scaling exponent γ (fd ), from the nonuniform
value at small fractions, to the uniform value at larger fractions,
where the stress distribution becomes homogeneous. The way
the uniform value is approached will depend on the details of
the definition of the driven region.

Summarizing, while it has been shown that the static friction
force scaling exponent γ of incommensurate crystalline inter-
faces depends on the geometrical properties of the contact, in-
cluding the shape of the slider and the mismatch and symmetry
of the contacting lattices [25,34], our results prove that γ can
vary significantly due to elasticity effects. These, in turn, can
be characterized in terms of the interfacial strain distribution
induced by the externally applied shear stress. In particular,
in sufficiently large contact geometry, the possibility that the
edge-driving-induced nucleation of localized commensurate
dislocations leads to the breaking of superlubric sublinear
scalings cannot be excluded, and certainly deserves further
investigation. Interestingly, variations of the static friction
with the loading configuration has been found previously for
elastic macroscopic contacts [37,38], where this effect results
from changes in the rupture dynamics at the rough frictional
interface.
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