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ABSTRACT

Nature provides examples of self-assemble lightweight disordered network structures with remarkable mechanical properties which are desir-
able for many application purposes but challenging to reproduce artificially. Previous experimental and computational studies investigated
the mechanical responses of random network structures focusing on topological and geometrical aspects in terms of variable connectivity or
probability to place beam elements. However, for practical purposes, an ambitious challenge is to design new materials with the possibility to
tailor their mechanical features such as stiffness. Here, we design a two dimensional disordered mechanical meta-material exhibiting uncon-
ventional stiffness-density scaling in the regime where both bending and stretching are relevant for deformation. In this regime, the mechani-
cal meta-material covers a wide interval of the Young modulus-density plane, simultaneously exhibiting high critical stress and critical strain.
Our results, supported by finite element simulations, provide the guiding principles to design on demand disordered metamaterials, bridging
the gap between artificial and naturally occurring materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083027

Lattice materials of many kinds, such as foams,1 cellular solids,2

microlattices,3 and trusses,4 which are made of connected elements,
have been intensively studied mainly due to their lightweight struc-
tures and remarkable mechanical properties.5 The high strength to
weight ratio of bone6 or balsa,7 the elastic properties of spider silk,8

and the fracture resistance of nacre9 are just few of the naturally occur-
ring structures that derive their mechanical properties from their
underlying geometry. These types of materials attract growing interest
in many fields ranging from commercial products such as those
related to food industry to architectural applications such as energy
absorption and management1 and in modern technologies where their
geometrical features are exploited to achieve myriads of performances.

In recent years, composite structures have been started to be
rationally architected with the aim of achieving targeted properties,10

and emerging significant breakthroughs11 are favoured alongside the
advances in digital manufacturing technologies, i.e., 3D printing and
automated assembly. Artificially designed materials have been recently
termed meta-materials;12–14 specifically, mechanical meta-materials
indicate a class of structures whose mechanical properties are a conse-
quence of their underlying geometry rather than their constituent

material.15 Through the prudent choice of a meta-material underlying
architecture, it is possible to create geometries whose structural perfor-
mance far exceeds that of the material from which it is made.16 These
structures can be designed to exhibit a wide range of beneficial proper-
ties, including a high strength to weight ratio,17–20 auxetic behaviour,10

energy trapping,21 and fracture resistance,22 among many others.15

Typically, artificial meta-materials are designed with a single
motif repeated periodically throughout the material,14 in contrast to
the disordered structures encountered in self-assembled natural
objects.23 Random elastic networks are widely studied,24 but there are
still large gaps between theoretical investigations and practical pur-
poses such as real solid materials. Mechanical meta-materials with the
increasing degree of disorder are just emerging.25–27 Whether disorder
is merely the price to pay for self-assembly or whether it provides
some advantage is still an open issue.

The structural behaviour of lattice based meta-materials, made
up of beams with non-hinged nodes, is generally divided into two
regimes: stretching-dominated and bending-dominated.28 Which of
these two regimes a lattice falls into is dependent on its connectivity:
when a lattice’s connectivity is less than that is required for rigidity in
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its rigid link freely hinged analogous system, the lattice will exhibit
bending dominated behaviour, and for lattices with connectivity above
this threshold, stretching dominated behaviour will be observed.28 The
two classes of lattices exhibit dissimilar mechanical properties. For
example, the relative stiffness of a two-dimensional lattice (~Y=Y) is
related to its relative density (~q=q) via the following expression:

~Y=Y � ð~q=qÞn; (1)

where, in two-dimensions, n is one or three for stretching-dominated
and bending dominated architectures, respectively29 (in d¼ 3, n takes
the values of 1 and 2 for stretching and bending dominated architec-
tures, respectively28). Due to this scaling behavior, stretching-
dominated lattices of low relative density are stiffer than their
bending-dominated counterparts. In the above expressions, Y and q
are the Young’s modulus and density of the construction material,
respectively, while ~X denotes the property X of the meta-material.
Density dependent scaling laws similar to the one reported in Eq. (1)
can also be established for other mechanical properties, such as buck-
ling or strength, or even electrical properties.28

Inspired by naturally designed disordered structures, in this letter,
we consider the linear response and elastic limit of disordered lattices,
showing that they exhibit an intermediate regime characterized by an
unconventional density scaling and many advantageous mechanical
properties. At low densities, the lattice far exceeds the bending domi-
nated lattice in terms of stiffness. At higher densities, the mixed regime
simultaneously shows a high buckling load and critical strain. With
the increasing manufacturing freedom to design structures on the
micro- and nano-scale30 and the possibility of self-assembly of com-
plex architectures,31 the theoretical work presented here is of increas-
ing technological relevance.

To investigate the density scaling of disordered meta-materials,
we consider a disordered triangular lattice: this lattice is generated by
taking a perfect triangular lattice and removing links at random such
that each linkage has a probability of 1 – p being removed. Each link-
age element is constructed of a slender beam of thickness t and length
L, made of a linear elastic material with Young’s modulus Y and
Poisson’s ratio �. We define the aspect ratio of the beam to be a¼ L/t.
From the resultant architecture, we take the elements of the lattice
which make up the largest connected component (the largest sub-
lattice in which any pair of nodes is connected by a path along a
sequence of beam elements32) and investigate the mechanical proper-
ties of the resultant meta-material. The system size is such that the
entire lattice measures NxL horizontally and

ffiffiffi

3
p

LNy=2 vertically (see
supplementary material). The designed geometries are subsequently
deformed under a strain in the negative y direction (in all cases, the
imposed strain is less than the critical strain). The thickness of the
beams was varied in order to vary the relative density.

All simulations presented here have been performed using
COMSOL Multiphysics33 and COMSOL with MATLAB33 in 2-
dimensions using a plane strain approximation through the use of the
structural mechanics module. All studies assume a linear elastic mate-
rial with Young’s modulus of 50MPa and Poisson’s ratio of 0.3; the
length of the beams used was 0.01 m. Mesh refinement studies were
undertaken to ensure convergence of results. The results pertaining to
stiffness have been obtained using Euler-Bernoulli beam elements
using the in-built “stationary studies” (a quasi-static solver). Here, a
small displacement was applied to the upper boundary, while the

lower boundary was fixed in place inducing a reduction in the total
height of the structure, the remaining boundaries were left free; the
reaction force required to induce this displacement was then calcu-
lated, and from this, an effective Young’s modulus was calculated. For
studies on buckling strength and critical strain, the lower boundary
was again fixed, while the upper boundary had an applied force or dis-
placement imposed (for buckling stress and strain, respectively), the
remaining boundaries were left free. For these studies, the solid
mechanics module used alongside the in-built linear buckling solvers
(linear eigenvalue solver). For studies using the solid mechanics mod-
ule, mesh density required was highly dependent on the aspect ratio of
the beams; approximately 200–1500 elements were used per unit cell.

Figure 1(a), 1(b), and 1(c) shows an example of three geometries
for p¼ 0.4, 0.642, 0.95, respectively, deformed along the negative y
direction. Beams are colored according to the proportion of bending
energy with respect to the total.34 Increasing p, the designed random
meta-materials cover different ranges from bending to stretching
behavior. Figure 1(b) shows that for a dilute triangular lattice, close to
the transition from the stretching dominated in the bending domi-
nated regime (p¼ pT, in this work pT is taken to be 0.642 in line with
previous estimates35), an intermediate scaling regime is observed
where contributions to stiffness from both stretching and bending can-
not be ignored. This results in a new exponent n ’ 2 that lies between
the value n¼ 1 expected for stretching dominated elasticity and n¼ 3
for bending dominated elasticity.

To obtain a theoretical estimate of the density scaling of a disor-
dered lattice, we can use effective-medium theory (EMT),36 which
considers in a self-consistent manner the interaction of one element

FIG. 1. Different scaling regimes of stiffness vs relative density. Representative
examples of the various regimes for a small system of size 20� 20 with a small
strain imposed in the y direction. The colors show the proportion of the local strain
energy that is stored as bending energy with red indicating bending energy that
dominates and yellow showing mixed and green indicating stretching behaviour.
(d) Stretching (n¼ 1), mixed (n¼ 2), and bending (n¼ 3) dominated lattices are
characterised by power law behaviours, and fitting of the data shown gives scal-
ing of n¼ 2.976 0.02, 2.16 0.05, and 1.006 0.01 for bending, mixed, and
stretching, respectively. Data refer to 128� 128 node networks reported in the
supplementary material.
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with the average of the others. Under the EMT approximation, the
contribution to stiffness will follow37 ~Y � lð1�xÞjx , where l and j are
the stretching and bending stiffness of the lattice elements, respec-
tively. EMT predicts that x¼ 0.5 in d¼ 2 and x¼ 0.4 in d¼ 3, where d
is the dimensionality of the system.37 For a lattice made up of beam
elements of thickness t and length L, we note that l� (t/L)q and
j � ðt=LÞr , where for d¼ 2, q¼ 1 and r¼ 3, while for d¼ 3, q¼ 2
and r¼ 4. Since ~q=q / ðt=LÞ in d¼ 2 and ~q=q / ðt=LÞ2 in d¼ 3
within the intermediate regime, we expect to observe the scaling,
~Y=Y � ð~q=qÞn; with n¼ 2 in d¼ 2 and n¼ 1.4 in d¼ 3. This scaling
is plotted against the results of simulation for probabilities close to the
critical probability pT in Fig. 1(d). This intermediate scaling close to
the isostatic point is reminiscent observed in stochastic fibre networks
where stretching and bending energies can be varied arbitrarily. In
contrast, in this work, the geometric parameters of the beam elements
set the ratio of bending to stretching energies in the beam elements,38

and thus, here, we observe a dependence of the stiffness of the meta-
material on its relative density.

In contrast to the behaviour of fibre networks which exhibit a
“bending rigidity percolation” probability which can be calculated
through Maxwell counting and mean field arguments,39 here, we
observe that the connectivity of the upper and lower boundaries is suffi-
cient to yield a non-zero stiffness in a stochastic meta-material con-
structed from beam elements. Thus, we see non-zero effective Young’s
modulus for probabilities greater than the geometric percolation proba-
bility pc which for the triangular lattice is given by40 pc ¼ 2 sin ðp=18Þ.

For p� pc � 1, we find that the Young’s modulus obeys stan-
dard finite size scaling expected for percolation

~Y � N�s=�x f ððp� pcÞN1=�
x Þ; (2)

where � ¼ 4/3 is the correlation length exponent, while s is the elastic-
ity exponent that can be expressed in terms of the conductivity expo-
nent t ’ 0.98�41 as s ¼ t þ 2� ’ 4.42 Equation (2) is verified by the
data collapse reported in Fig. 2 for three different lattice sizes with
Nx¼ 64, 128, 256.

We summarize these findings in Fig. 3 where we show the onset
of non-zero stiffness at pc and the region of (p, a)-space for which the
bending, stretching, and mixed regimes are observed. With decreasing
slenderness of beams (high relative densities), a wider range of p values
lead to lattices where both stretching and bending energies must be
considered.

In the stochastic metamaterial made up of slender beam ele-
ments, elastic instability will occur when the loading reaches a critical
value. Here, we investigate the dependence of this critical stress/strain
on relative density and the connectivity of the lattice through analytical
and computational techniques. To investigate this phenomenon com-
putationally, we use COMSOL Multiphysics33 utilising the solid
mechanics module with a built-in linear buckling (eigenvalue) solver.
This requires a finer mesh for convergence, and thus, only small sys-
tem sizes can be simulated. It is expected that when d¼ 2 or d¼ 3, the
critical value will scale as rc � Fc=Ld�1 � YI=Ldþ1, where rc is the
critical stress, Fc is the Euler buckling force of a slender beam, I and L

FIG. 2. (a) The Young modulus ~Y as a function of p – pc for different values of Nx.
The data shown are for beams with an aspect ratio of 16. Each data point shown is
an average over a number of simulations Ns such that the product of Ns and the
number of elements in the perfect system is greater than 106. (b) Rescaling of the
data in (a) according to Eq. (2).

FIG. 3. (a) The parameter space (p, a) and the observed regime of stretching and
bending dominated alongside a mixed regime. (b) The transition from bending (low p)
to stretching (high p) dominated regimes for system size Nx¼ 128 for systems made
up of beams with aspect ratios of 32 and 104; a sharper transition is seen for the higher
aspect ratio of beams. The inset shows the variation of the bending energy as a func-
tion of three system sizes, Nx¼ 32, 64, 128. The main panel shows averages over a
number of simulations Ns chosen in such a way that the product of the total number of
elements in the perfect system (p¼ 1) and Ns is greater than 2� 105.
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are the second moment of area and length of the component beams,
respectively, and Y is the Young’s modulus of the construction mate-
rial. Thus, through variation of the aspect ratio of the component
beams with a fixed p, we expect a scaling relationship between critical
stress and density given by

rc � ð~q=qÞm; (3)

where m¼ 3 when d¼ 2 and m¼ 2 when d¼ 3.28 This is confirmed
in Fig. 4 where the scaling of m¼ 3 is found to be irrespective of the
regime (stretching, bending, or mixed) to which the lattice belongs.
The critical strain (the imposed strain that will induce buckling, Dc)
can also be calculated from simulation, and for the meta-material

considered, it will obey rc ¼ ~YDc. For a given material, therefore,
combining Eqs. (1) and (3), we can calculate the dependence of critical
strain on the relative density of the lattice. It is predicted here that Dc

will follow the scaling:

Dc � ð~q=qÞðm�nÞ; (4)

where when d¼ 2, m¼ 3 irrespective of the regime and n, as in Eq.
(1), takes the values of 1, 2, or 3 when the lattice is stretching domi-
nated, mixed, or bending dominated, respectively (in d¼ 3,m¼ 2 irre-
spective of the regime, and n is expected to take the value of 1, 1.4, or 2
for stretching dominated, mixed, or bending dominated, respectively);
this prediction for d¼ 2 is confirmed in Fig. 4. We thus find that both
high relative stiffness and high relative strength are achieved through
the use of the mixed deformation mode, that is, p � pT, which is
shown in Fig. 4. We note that for lattices with p¼ 1 (all lattice ele-
ments present), the lattices exhibit a global failure mode,43 this is in
marked contrast to the cases for p< 1 where local buckling is observed
in the regions with least strength. In both cases however (p¼ 1 and
p< 1), it is observed that a plateau in the stress-strain curve is
observed in the vicinity of the buckling load, with the transition to pla-
teau in stress becoming more localised for higher p (see supplementary
material).

Lattice based meta-materials, made up of beam elements, have
been traditionally classified as either bending or stretching dominated
depending on their connectivity.28 It is notable that recent experimen-
tal work has established that some 3 dimensional lightweight nanolat-
tices exhibit density scaling that is inconsistent with these
classifications.44 Here, we have established, through theory and simu-
lation, the existence of a third class of lattice architecture where both
bending and stretching energies must be considered, leading to meta-
materials with high critical stress and critical strain. This third class of
lattice is expected to be present regardless of the geometry of the lattice
investigated: When the connectivity makes the transition from stretch-
ing to bending dominated lattice through the random removal of
bonds, it is expected that this intermediate regime is present. Whether
randomness of bond removal is a requirement to create this regime
remains an open question. Stochastic design is not the only strategy to
obtain unconventional density scaling, as shown in the past using hier-
archical lattices.18–20,34,45

Better understanding of stochastic lattice based structures has
importance for a range of applications from the performance of light-
weight structures to early diagnosis of diseases. For example, osteopo-
rosis, a disease with major socio-economic consequence, is linked with
changes both in bone mineral density (BMD) and in the connectivity
of the trabecular bone latticework.46 Understanding the implications
of density and connectivity in stochastic lattices is thus a key step for
the early diagnosis of this disease.46

It is notable that this stochastic methodology generates structures
that are closer in design to their naturally occurring counterparts.
These naturally occurring structures exhibit high flaw tolerance and
insensitivity to perturbations.23 Although this flaw tolerance is linked
with optimisation of the material geometry and hierarchy,23 it is plau-
sible that disorder could play a role. Such a link between randomness
and robustness has been previously found in machine resilience,47

algorithm design,48 and interdependent lattice networks.49 Extending
this link to structural mechanics has huge potential for the design of
functional robust structures.

FIG. 4. (a) The critical stress for lattices in the bending, mixed, and stretching
regimes. All regimes show the same scaling of rc vs relative density as predicted
using Eq. (3). (b) The critical strain for the stochastic metamaterial for the different
regimes; here, the scaling is dependent on the regime and is predicted using Eq.
(4). (c) Stretching dominated regimes lead to high critical stress with low critical
strain, and bending dominated lattices exhibit high critical strain but low critical
stress; Lattices with significant energy contributions from both bending and stretch-
ing simultaneously exhibit both high stress and strain at failure. The data shown are
for a system size of Nx¼Ny¼ 20. The various phases shown in (c) are established
through simulation: we establish the critical strain and critical stress of a given
architecture for a given p varying the aspect ratio of the constituent beams. The dot-
ted contour lines show lines of constant beam aspect ratio, while lines of constant p
are solid lines. Each regime is established from the scaling of critical strain against
relative density.
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See supplementary material for additional details on the geome-
try of the lattice, details on buckling, and additional configurations
(supplementing Fig. 1).
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