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Elementary plastic events in amorphous silica
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Plastic instabilities in amorphous materials are often studied using idealized models of binary mixtures that
do not capture accurately molecular interactions and bonding present in real glasses. Here we study atomic-scale
plastic instabilities in a three-dimensional molecular dynamics model of silica glass under quasistatic shear. We
identify two distinct types of elementary plastic events, one is a standard quasilocalized atomic rearrangement
while the second is a bond-breaking event that is absent in simplified models of fragile glass formers. Our results
show that both plastic events can be predicted by a drop of the lowest nonzero eigenvalue of the Hessian matrix
that vanishes at a critical strain. Remarkably, we find very high correlation between the associated eigenvectors
and the nonaffine displacement fields accompanying the bond-breaking event, predicting the locus of structural
failure. Both eigenvectors and nonaffine displacement fields display an Eshelby-like quadrupolar structure for
both failure modes, rearrangement, and bond breaking. Our results thus clarify the nature of atomic-scale
plastic instabilities in silica glasses, providing useful information for the development of mesoscale models
of amorphous plasticity.
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Introduction. Amorphous solids under applied shear defor-
mation undergo localized plastic instabilities associated with
the rearrangement of a subset of particles and an associated
energy release. These particle reorganization induces struc-
tural deformation patterns that have been identified exper-
imentally and numerically in amorphous materials such as
silica glasses [1–3], metallic glasses [4], colloidal glasses [5],
foams [6], bubble rafts [4], and emulsions [7,8]. The initial
destabilization can give rise to a progression of additional
deformation events in some other areas of the sample, up to
the global material failure. The ability to predict the plastic
instabilities and characterize their spatial features is of funda-
mental importance to understanding the mechanical response
of amorphous solids and to devise mesoscale model focusing
on the evolution of localized plastic events [9–12].

A useful theoretical framework for analyzing elementary
plastic events is the limit of temperature T = 0 and of qua-
sistatic strain where the real space structure can be easily
related with a potential energy landscape description [13]. To
this end, many computational studies on amorphous solids
have been performed with athermal quasistatic (AQS) pro-
tocol [14–18]: A glass sample initially quenched down to
zero temperature is deformed by a quasistatic shear procedure
consisting of the relaxation of the system after each strain step.
Within the AQS conditions, the elastic and plastic features of
amorphous solids can be understood by analyzing the Hessian
matrix

Hi j ≡ ∂2U (r1, . . . , rN )

∂ri∂r j
≡ −∂ f i(r1, . . . , rN )

∂r j
, (1)

where U (r1, r2, . . . rN ) is the total potential energy of the
system, f i is the force vector on particle i, and {ri}N

i=1 are the

coordinates of the particles. The explicit H element expres-
sion is reported in Ref. [19]. When the system is mechanically
stable, the eigenvalues λ of the Hessian are semipositive,
with zero values for the Goldstone modes and all the rest
positive. Elementary plastic instabilities are signaled by the
lowest eigenvalue λmin going to zero and an eigenfunction
getting quasilocalized on a pattern correlated with real space
nonaffine displacements. Typically observed quadrupole-like
structure can be described as an ellipsoidal inclusion in an
elastic medium [20], following the classic work of Eshelby
[21]. This kind of analysis always gives rise to a similar
phenomenology, independent of the detailed microscopic in-
teractions between the constituents [17], but to the best of our
knowledge it has only be applied to idealized model of fragile
glasses [22] such as metallic glasses [17,23,24] or frictional
disks whose packing structure is isotropic [25,26].

Experimental evidences of atomic rearrangements for two-
dimensional silica glass have been reported in Ref. [3], while
numerically the plastic rearrangements in strained silica at
zero temperature have been investigated in Ref. [27]. We
are lacking, however, numerical studies of normal modes in
realistic strong glass formers such as silica that are charac-
terized by a strong chemical structural order with tetrahedral
networks made by covalent bonds. Indeed, silica glass is
appealing not only for technological and commercial appli-
cations but also for its intriguing and anomalous behavior
that is still not fully understood. In particular, we mention
here the peaks in the specific heat, the diffusion constant,
the density maximum [28], and so on, that differentiates
silica from all other fragile glasses. Therefore, a priori,
the nature of plastic instabilities in silica glasses is not
clear, especially considering the relevance of anisotropic
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FIG. 1. (a) Typical dependence of potential energy per particle U/N on strain in the AQS0 protocol for the three-dimensional (3D) silica
glass. The insets are a blowup of two events emphasized by the circles on the main curve, the first being a localized rearrangement (top) and
the second (bottom) reporting the first observed bond breaking (Si–O bond). Blue and light blue curves are obtained by decreasing strain step
size, AQS1 and AQS2 respectively. The energy zero has been set to the maximum value before the drop, which is larger in the bond-breaking
event. [(b), (c)] A 3D perspective view of the atomic positions before (left) and after (right) the energy drop for the corresponding events of
panel (a). Large and small spheres represent Si and O atoms, respectively. Color and arrows report the magnitude of the occurred nonaffine
atomic displacements. Arrows have been rescaled by a factor of 2. The corresponding movies are available in the Supplemental Material [19].

bonds which are absent in other well-studied amorphous
systems.

In this paper, we study three-dimensional silica glass under
AQS shear conditions. Previous numerical work [29] has
shown that bond breaking is mainly responsible for damage
accumulation and failure of silica at zero temperature. In this
paper, we focus on the initial single events acting as fracture
precursors and analyze the softest modes.

Models and methods. We perform simulations on a silica
glass sample in a cubic box. The system is formed by a total
of N = 8250 atoms, composed of NSi = 2750 silicon atoms
and NO = 5500 oxygen atoms. Silica glasses are simulated
using Watanabe’s potential [30] with a similar sample prepa-
ration strategy. The advantage of this potential is that the
usual Coulomb interaction term is implicitly replaced by a
coordination-based bond softening function for Si-O atoms
that accounts for the environmental dependence; therefore,
we perform simulations in open boundary conditions to study
surface effects. The general form of the potential consists of
two terms: a two-body interaction that depends on distance
and a three-body interaction that describe rotational and trans-
lational symmetry. The Hessian matrix [Eq. (1)] is computed
numerically from the first-order derivatives of interparticle
forces. To this extent, each element Hi j is obtained by calculat-
ing the force acting on particle i following a displacement of
particle j by a small amount, δ = 10−7 Å along positive and
negative directions and by applying the difference quotient.
All the simulations have been performed using the LAMMPS

simulator package [31] and visualized with the OVITO package
[32].

To generate the sample, we have started from randomly
positioned Si,O atoms, with density ρin = 2.196 g/cm3 in a
box size of 5×5×5 nm3. We then have applied the following
annealing procedure: (i) After an initial 2 ps of Newtonian
dynamics, with Lennard-Jones interatomic interactions vis-

cously damped with a rate of 1/ps and atomic velocities
limited to 1 Å/ps, we switch to our reference Watanabe’s
potential for silica [30] and (ii) we perform subsequent 8 ps of
damped Newtonian dynamics. (iii) We then heat up the system
up to 6000 K in 30 ps; (iv) thermalize at 6000 K for 80 ps; (v)
reduce the temperature to 4000 K in 30 ps, (vi) then to 0.01 K
in 50 ps, and (vii) then to 0.001 K in 100 ps; and (viii) finally
we perform a pressure minimization—cell relaxation—for
50 ps. After such procedure, we get a final density ρ f in =
2.2439 g/cm3 and box size 4.948×4.996×4.948 nm3. Anal-
ysis on such initial sample compares well with experimen-
tally observed density [33] and with previous calculations of
atomic coordination [34].

The so-produced configuration is then used to start the
AQS protocol. At each AQS step [14], we strain the sample
along z and compress it along x and y according to a Poisson
ratio ν = 0.17. We have adopted three different increments of
strain δγ , namely δγ = 5×10−4 (AQS0), δγ = (5×10−4)/50
(AQS1), δγ = (5×10−4)/50/50 (AQS2). In order to reduce
the computational burden, once a rearrangement event is
identified in the faster AQS0 simulation, we used the more
refined AQS1 and then AQS2 simulations only in the vicinity
of such event. After the imposed δγ strain, an energy min-
imization through the fast inertial relaxation engine (FIRE)
[35] scheme is performed until a maximum force of 10−10

eV/Å is reached.
Two types of events. In Fig. 1(a), the energy versus strain

curve is reported. There we identify two events—marked by
circles and magnified in the insets—which are of different
nature, one associated to a typical quasilocalized rearrange-
ment without any change in the atomic coordination, the other
resulting from the first observed bond breaking. Thanks to
these rearrangements, some of the internal stress is released,
and a consequent drop in the energy occurs. As shown in
the insets using the smaller δγ values, both events manifest
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FIG. 2. Lowest eigenvalues and potential energy trend compari-
son for AQS2 strain steps for (a) localized atomic rearrangement and
(b) bond-breaking events. The lowest eigenvalue is reported in red
squares and approaches zero at the critical strain γc � 9.02862%
and �11.36827%, respectively. Black curve reports the fit λmin ∝√

γc − γ . The energy drops are reported in blue dots.

a drop in the total energy, which results in about 0.9 and
5.4 eV for rearrangement and bond breaking, respectively, in
line with previous works [27]. The nonaffine atomic displace-
ments corresponding to the energy drops are represented in
Figs. 1(b) and 1(c) (the corresponding movies are available
in the Supplemental Material [19]). We note that while the
rearrangement event consists in displacements along multiple
directions, the bond breaking produces displacements mainly
along the principal strain direction z. Specifically, the rear-
rangement involves changem in angle in two undercoordi-
nated silicon atoms, and the bond breaking occurs between a
Si and a O atom. Therefore, both events appear in the presence
of a structural defect.

The number of particles involved in such fundamental
nonaffine events can be estimated by the participation num-
ber Pn = ∑N

i=1 (ui/umax)2, with ui being the displacement
modulus of atom i and umax being the maximum ui. Such
calculation for rearrangement and bond-breaking events gives
PRR

n = 3.73 and PBB
n = 6.11, respectively, revealing that the

more energetic event involves, as expected, a larger effective
number of particles. Furthermore, the participation ratio Pr =
∑N

i=1 (ei · ei )2/[
∑N

i=1 (ei · ei )]2, calculated using the Hessian
eigenvectors ei right before the critical strain, results in PRR

r =
0.31 and PBB

r = 0.20.
Analytical investigation of the rearrangement events in-

duced by external stress can be performed by computing
the H matrix and by following the direction of the softest
mode. The results of this investigation are reported in Fig. 2,
showing that for both selected events the smallest eigenvalue
λmin progressively decreases following a square-root trend and
vanishes at the critical strain value γc, marking a saddle point
in the energy configuration space. As in the case of metallic
glasses, governed by isotropic interactions, in which stress
release is associated to a irreversible plastic event, we have
verified that the same irreversibility occurs in the covalently
bonded system under consideration. The application of a
negative strain rate after a rearrangement does not follow the
configurational path that led the system to that rearrangement.

Further information can be obtained by analyzing the
eigenvectors associated with the lowest eigenvalue λmin, to be
compared with the nonaffine displacement fields, calculated
between the frame after the energy drop and the one before.

FIG. 3. Comparison between normalized nonaffine displace-
ments (left) and eigenvectors (right) of the configuration before the
bond breaking or energy drop (AQS2 steps). Arrows are colored with
respect to the modulus of the vectors. Arrows have been rescaled by a
factor of 50, and the view is orthogonal. Panels (b) and (d) are related
to Figs. 1(b) and 1(c), right panels.

In Fig. 3 we present such comparison for the selected
plastic events showing an almost exact matching, especially
in the case of bond breaking: The scalar products, s =∑N

i=1 (ui · ei ), of the normalized eigenvectors ei and nonaffine
displacements ui are sRR � 0.74 and sBB � 0.91 respectively.
The higher correlation in the latter case is likely due to the fact
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FIG. 4. Eigenvectors vs nonaffine displacement comparison for
the rearrangement (squares) and bond-breaking (circles) events,
compared to the ideal correlation line (dotted line).
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that bond breaking occurs along the strain direction, while
the rearrangement occurs through a local rotation of bonds,
i.e., not connected to the strain direction. In any case, both
mechanical events show a high correlation between the eigen-
vectors and displacements. This evidence is also supported
by Fig. 4 in which the individual ei versus ui moduli are
compared.

Concluding remarks and prospects. In summary, we have
analyzed, using Hessian methods, the nature of nonaffine
responses to mechanical shear strain in a model of silica. The
difference from other examples of similar studies is that in
silica we have directional chemical bonds between atoms,
and these can be broken. In most models of glass formers,
one cannot assign actual bonds, and one can even discuss
glass physics with repulsive interaction only. The presence
of bonds enriches that discussion of nonaffine responses to
strain, offering plastic events that do not exist in most of the
studied models of glass formers. We could therefore identify
two distinctly different nonaffine responses in silica, one that
corresponds to other models with so-called T1 processes that
involves particles moving out and particles moving in on a
quadrupolar quasilocalized structure, but also an elementary

event of bond breaking. Both events are accompanied by an
eigenvalue of the Hessian approaching zero with a square-root
singularity and are associated with a stress and energy drop.
Even in the case of bond breaking, the system response is
again quadrupolar. This result is important for theoretical
modeling of failure in real amorphous materials since our
understanding of amorphous plasticity has often relied on
mesoscale models assuming that plastic deformation can be
decomposed into a series of discrete localized plastic instabil-
ities [12]. While this assumption was supported by atomistic
simulations in simplified isotropic models for glasses [17], the
present study shows that the same description holds for more
realistic anisotropic models. Finally, an important aspect of
our findings is that by using the eigenfunction associated with
the lowest eigenvalue one can predict the locus of the non-
affine response [36] even in realistic anisotropic conditions
such as those simulated here.
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