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Introduction

The aim of this thesis is to study the geometry of connected, complete, possibly compact, Riemannian

manifolds (M, (, )) endowed with with a (gradient) Einstein-type structure of the form

Ric? + Hess(f) — pdf @ df = A(, ) )
() = dp(V ),

where the @-Ricci tensor is defined as
Ric” := Ric — ap™(, )n (2)

for some aw € R\ {0}, ¢ : M — (N, (, )nv) a smooth map with tension field 7(¢) and target a Riemannian
manifold (N, (, )n) and f, u, A € C>(M). We often consider u, and sometimes also A, to be constant.

The structure described by ([l) generalizes some well known particular cases that have been intensively
studied by researchers in the last decade. Indeed, for © = 0, A € R and ¢ constant, @) characterizes gradient
Ricci solitons

Ric + Hess(f) = A(, ). (3)

In case in (E) we allow A € C*°(M) we obtain the Ricci almost soliton equation introduced in [PRRiS]. Note
that when A(z) = a + bS(x) for some_constants a,b € R and S(z) the scalar curvature of (M, (, }), for
x € M, the soliton corresponding to (B) is called a Ricci-Bourguignon soliton after the recent work of G.
Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [CCDMM]. For a “flow”derivation of the
gradient Ricci almost solitons equation in the general case see the work of [GWX].

In case p = 0, A € R and a > 0 the system (m) represents Ricci-harmonic solitons introduced by R.
Miiller, [M]. As expected the concept comes from the study of a combination of the Ricci and harmonic
maps flows. We refer to [M] for details and interesting analytic motivations.

For ¢ and p constants, with p = % for some 7 > 0, and A € R, ([ll) describes quasi-Einstein manifolds

1
Ric + Hess(f) — ;df ®@df = A(,) (4)
Letting pu, A € C>°(M) we obtain the generalized quasi-Einstein condition
Ric + Hess(f) — pdf @ df = A(, ). (5)

See, for instance, [Ca] and [AG]. Obviously (B) extends the quasi-Einstein requirement (H)

To approach the study mentioned above, that is the argument of of the thesis, we introduce some
new curvature tensors that take into account the curvature of a Riemannian manifold endowed with a smooth
map . Furthermore, since Ricci solitons and quasi-Einstein manifolds are usually seen as a perturbation
of Einstein manifolds (the choice of a constant potential in (E) and in () led to an Einstein metric), we
recall the concept of harmonic-Einstein manifolds so that the Einstein-type structures will be seen as a
perturbation of harmonic-Einstein manifolds.

The thesis is divided in two parts. [Part ] is not just preliminary for but it is interesting also on
its own. It is composed by the first two Chapters of the thesis.




In we introduce the new curvature tensors mentioned above, called the p-curvature tensors.
Formally almost all of them are defined in the same way as the standard curvatures using the ¢-Ricci tensor,
defined in (B), instead of the Ricci tensor. More precisely: the ¢-scalar curvature, denoted by S¥, is defined
as the trace of the ¢-Ricci tensor; the ¢-Schouten tensor is defined as

o _Riwe _ 2
A¥ = Ric 2(m—1)<’>’
where m > 2 is the dimension of M; the p-Cotton tensor C'¥ represents the obstruction to the commutation
of the covariant derivatives of the p-Schouten tensor and so on. The only tensor whose definition is different
from the one probably expected is the ¢-Bach tensor B¥.

When ¢ is a constant map all the p-curvatures reduce to the standard curvature tensors.

Their properties are almost the same as the properties of the tensors that they generalize. For instance,
the -Weyl tensor W¢ has the same symmetries of the Riemann tensor and its (1,3)-version is a conformal
invariant. The only relevant difference is that the ¢-Cotton, the ¢-Weyl and the p-Bach tensor are not,
in general, totally traceless. Their traces are related to the map ¢ and, clearly, they vanish in case ¢ is a
constant map. We can say more: the @p-Weyl, the ¢-Cotton and the ¢-Bach tensors are totally traceless if
and only if, respectively, ¢ is constant, is conservative (that is, the energy stress tensor related to the map ¢
is divergence free) and is harmonic (with the exceptional case m = 4 where ¢-Bach il always traceless). As
a consequence the role of the map ¢ is not negligible, hence in this Chapter we also recall some properties
for smooth maps, such as weakly conformality and homothety, that will be met also in the sequel.

The fact that the @-curvature are not, in general, totally traceless have consequences especially in the
computations. Even thought when ¢ is conservative we are able to recover a generalization of Schur’s identity,
that relates the divergence of ¢-Ricci to the gradient of the p-scalar curvature, the divergence of ¢-Weyl is
not related with the p-Cotton as in the case of their standard counterparts. As a consequence, in order to
have that ¢-Weyl is harmonic it is not sufficient that W% is divergence free.

In ‘Chaﬁter we also determine the transformation laws for the (p-curvatures under a conformal change
of the metric. We show that on a four-dimensional manifold the p-Bach tensor is a conformal invariant, that
is one of the motivation that justify its definition. The other motivations are contained in Chapter 2, where
we study harmonic-Einstein manifolds and their fundamental properties. A Riemannian manifold (M, (, ))
is said to be harmonic-Einstein if the traceless part of the p-Ricci tensor vanishes for some harmonic map
w: M — (N,(,)n) and if the ¢-Ricci tensor has constant trace, that is, if it carries a structure of the type

{Ric“" =A(,)

) =0, ©)

for some A € R. We shall see that when m > 3, the requirement of constant (p-scalar curvature is unnecessary,
generalizing Schur’s Lemma for Einstein manifolds. Its proof follows easily from the generalization of Schur’s
identity, since a harmonic map is conservative. The only relevant curvatures properties of harmonic-Elnstein
manifolds are encoded in W¥ and the sign of S¥, since the other p-curvatures are trivial.

System (fj) is a starting point in our investigation in the sense that it justifies, in a geometric contest,
the interest of studying a structure of the type ([l). Indeed if we perform a conformal deformation of the
metric (, ) of M, then from (§) we obtain a solution of ([ll) for m > 3 with s = ——L and viceversa, where
the function A satisfies 2

Arf+(m—2)A=(m—2)Ae” m2. (7)

Here Ay is the symmetric diffusion operator (or weighted Laplacian)
Ar=A—(Vf, V).
Thus we can think of the study of
Ric® + Hess(f) + ﬁdf df = A(,)
7(p) = dp(Vf)
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as of that of (E) under conformal deformations of the original metric (, ) of M. This parallels what happens
in the study of Einstein and conformally Einstein metrics.

Knowing the transformation laws under a conformal change of metric and the p-curvatures of harmonic-
Einstein manifolds we will be able to prove that a conformally harmonic-Einstein manifolds of dimension
m > 3 satisfy

C’Z’;k + ftWtfjk - O

—4 9)

m
(m—2)BY, + WEfofu =0

m—2
where f is related to the conformal factor in the change of the metric and fi,C;';.k, Wtfjk and B;’} are,
respectively, the components of V f, p-Cotton, the ¢-Weyl and the p-Bach tensors in a local orthonormal
coframe. In case ¢ is constant the above integrability conditions become the integrability condition for a
conformally Einstein metric, that have been proved to be sufficient, under a further mild assumption of
genericity of the metric, to guarantee the existence of a conformally Einstein metric on M by R. Gover
and P. Nurowski, [GN]. We extend this result to the case of (f) showing that, under a corresponding mild
additional assumption of genericity of the metric and on the map ¢ (related to the injectivity of a curvature
operator W%, defined in terms of ¢-Weyl, and of the singular points of @), they are sufficient conditions to
generate a conformally harmonic-Einstein structure on M.

The two integrability conditions (E) are not a special feature of the system (B) An analogous of them
holds also for the Einstein-type structure ([l). In case ¢ is a constant map the analogous for (§) of the
integrability conditions in () have been used to study the local geometry of Bach flat gradient Ricci solitons
by H.-D. Cao and Q. Chen in [CCJ]. Their results has been extended by G. Catino. P. Mastrolia, D. D.
Monticelli and M. Rigoli to gradient Einstein-type manifolds in Theorem 1.2 of [CMMR|]. The latter are
structure of the type (E) with ¢ a constant map, p € R and A(z) = pS(x)+ A for some real constants p and A.
These results suggest to study (m) from the same point of view and in we are able to characterize,
when p # ——1 (the equality case pertaining to conformally harmonic-Einstein manifolds) and a > 0, from
the adequate integrability conditions and the properness of the function f, the local geometry of a complete
Riemannian manifold with a non trivial gradient Einstein-type structure and p-Bach tensor that vanishes
along the direction of V f. Notice that for conformally harmonic-Einstein manifolds the latter requirement
is always satisfied, as one can immediately deduce contracting the second equation of () against Vf. The
main result of is that, in a neighborhood of every regular level set of f, the manifold (M, (, )) is
a warped product with (m — 1)-dimensional harmonic-Einstein fibers, given by the level sets of f. Moreover
the map is uniquely determined by its restriction on a single leave of the foliation. Assuming further a
genericity condition and the constancy of A we are able to prove that the manifold is harmonic-Einstein.
This Chapter can be seen as the core of this thesis and the problem of characterize the local structure of
Einstein-type structure as ([ll) is the one that led us to define the y-curvature and justify their definition,
especially for ¢-Bach.

A justification for the study of harmonic-Einstein manifolds is given by General Relativity. Indeed a
four dimensional Lorentzian harmonic-Einstein manifold is a solution of the Einstein field equations, for a
proper choice of the constant «, with as energy-stress tensor the one of a wave map (that is, a harmonic map
with source a Lorentzian manifold). Investigating standard static spacetimes (that are, Lorentzian manifold
given by the warped product of a three dimensional Riemannian manifold with an open real interval) that
are harmonic-Einstein manifolds with respect to a wave map that does not depend on the “time”we realize
that the spatial part supports a structure of the type (|f) and the warping factor u satisfies Au+ Au = 0, for
some A € R. As we shall see a warped product M x, F, where u = e_g, is a harmonic-Einstein manifold
with respect to a map ® given by the lifting to M x F of a smooth map ¢ : M — (N, {, )n) if and only if
F is Einstein with scalar curvature dA, where d is the dimension of F' and A € R and

Ric¥ + Hess(f) — édf @df = A(,)
() = dp(Vf),
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where the constant \ satisfies ,
Asf =d\—dAeal, (10)

In particular the study of (E) with ¢ = 1 and m = 3 has repercussions to the study of the standard static
spacetimes mentioned above. Notice that this can be seen as an extension of some results of J. Corvino, see
[Cd], that deals with the vacuum case. More generally, the study of (m) with p = é has application to the
study of warped product harmonic-Einstein manifolds. The possibility of constructing examples of Einstein
manifolds realized as warped product metrics is an old interesting question considered in A. Besse’s book,
[B], so we may expect that also the more general problem of finding harmonic-Einstein manifolds realized
as warped products can be interesting.

It is not a case that (H) and (@) holds, respectively, for conformally harmonic-Einstein manifolds and
for harmonic-Einstein warped products; this is a consequence of the validity of ([If). Indeed, it is well known,
from the work of D. S. Kim and Y. H. Kim, [KK|, that the validity of (g) on M yields, via a non-trivial
consequence of the second Bianchi identities, the validity of the equation

Apf—7A=—Be7f (11)

for some constant 5 € R. We extend the validity of this equation to the structure (m) for every u, obtaining
the so called Hamilton-type identities. It is interesting that in these equations the map ¢ and the constant
a does not appear. This observation let us extend some results for (H) that rely on (@I; to the more general
structures @1)j

We also evaluate the Laplacian of the square norm of the traceless part T of the ¢-Ricci tensor and, as
a consequence, we prove a “gap”’property that shows that whenever |T%| is sufficiently small, a stochastically
complete manifold carries a harmonic-Einstein type structure, if some necessary conditions are satisfied.
This compares and generalize some previous results, see [MMRI.

It is important to observe that in all the results discussed up to now the target manifold (N, (, )n)
can be any Riemannian manifold. We show that, when we put some restraints on the curvature of the
target manifold (and we assume that the density of energy is sufficiently small, in case of negative p-scalar
curvature), for a complete manifold the concept of being harmonic-Einstein collapse to one of being Einstein.
This result is achieved showing that ¢ is constant via the classical Bochner formula for smooth maps and the
assumption on the curvature of the target manifold is an appropriate upper bound on the largest eigenvalue of
the curvature operator. Notice that a harmonic-Einstein manifolds can be a Einstein manifold even thought
® is not a constant map: this happens if and only if ¢ is homothetic.

Einstein manifolds in low dimension have been characterized: a Riemannian manifold of dimension
m € {2,3} is Einstein if and only if it has constant sectional curvature. In higher dimension a Einstein
manifold has constant sectional curvature if and only if it is locally conformally flat.

For surfaces the Ricci tensor is always proportional to the metric hence the problem of finding a Einstein
metric on a surface reduces to the one of finding a metric of constant scalar curvature on it. The uniformiza-
tion of Riemann surfaces provides a way to select a complete metric of constant scalar curvature in every
conformal class of metrics according to the topology of the surface. Observe that choosing a conformal class
of metrics on a surface is equivalent to choose a complex structure on it. For harmonic-Einstein manifold
the situation is different. The Ricci tensor is always proportional to the metric but, in order to obtain that
the ¢-Ricci tensor is proportional to the metric the map ¢ must be weakly conformal. The fact of being
weakly conformal depends only on the complex structure, exactly as for the fact of being harmonic. A weakly
conformal and harmonic map on a Riemann surface is a minimal branched immersion. Then the problem
of finding a harmonic-Einstein metric on a Riemann surface reduces to the problem of finding a metric of
constant p-scalar curvature for a minimal branched immersion. We will not go further into this study.

In higher dimension we shall see that a harmonic-Einstein manifold has constant sectional curvature if and
only if it is Einstein, since this requirement forces the map ¢ to be homothetic. An analogous phenomenon
happens also when we consider local symmetry and harmonic curvature: for a Einstein manifold they are
equivalent to conformal local symmetry and harmonic Weyl curvature, respectively. For harmonic-Einstein
manifold the conditions above imply the same restriction on the geometry of the manifold together with
some conditions on the map ¢, that we shall investigate.
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In [Part I, together with (E), we also consider the more general Einstein-type structure

1
Ric“’+§ﬁx(,>:uX"®X"+>\<,>

() = dp(X),

(12)

for some X € X(M) and with X* denoting the 1-form dual to X via the musical isomorphism ”. Notice that
(IL2) reduces to (m) when X = Vf. Interesting results for the structure ([12) are obtained when p = 0 and X
is non-Killing.

The compact case is quite rigid once we require constancy of the ¢-scalar curvature. Indeed, when p # 0,
a>0and A, f € C®(M) with f non-constant a Riemannian manifold with constant p-scalar curvature that
supports an Einstein-type structure as in ([l]) is always isometric to a Euclidean sphere and ¢ is a constant
map. When p = 0 the same happens under the same hypothesis for the general structure (@), when X is
not a Killing vector field. Our results extend the ones of [BBR] and [BG] to the case when, a priori, ¢ is not
constant.

In proving the mentioned results we extend the well known fact, due to M. Obata, see [O], that a
compact Einstein manifold endowed with a non-Killing conformal vector field is isometric to a Euclidean
sphere, obtaining that if a compact harmonic-Einstein manifold with a > 0 is endowed with a vertical (i.e.,
annihilated by the differential of ¢), non-Killing conformal vector field then ¢ is constant and the Riemannian
manifold is isometric to the Euclidean sphere.

The study of particular vector fields on a harmonic-Einstein manifold is treated in . The moti-
vation is that dealing with harmonic-Einstein manifolds that supports a non trivial Einstein-type structure
as ([l2) is equivalent to dealing with harmonic-Einstein manifolds that posses a vector field that satisfies

SLx() X @ X = (A‘i&><’>

dp(X) =0.

The aim of is to show that, essentially, eventually under some assumptions on the critical points of
the potential function f, the only complete manifolds that supports a non-trivial (that is, with non-constant
potential) Einstein-type structure as are space forms. When p = 0 we are also able to obtain some results
in this direction in the generic case ([L2).

In the compact case we are able to obtain rigidity results also in case the p-Schouten tensor is a Codazzi
tensor field and one of its normalized higher order symmetric functions in its eigenvalues is a positive constant
(necessary conditions to have the isometry with the Euclidean sphere and the constancy of ). The ¢-scalar
curvature is constant if and only the first symmetric function of the eigenvalues of the p-Schouten tensor is
constant, hence we can see this as a generalization of the previous results obtained assuming the constancy
of the ¢-scalar curvature. The rigidity in the compact case is the subject of .

As one can expect, assuming A\ constant in (@), we are able to prove several interesting results in the
complete case; that is the aim of Chapter 7. Above all we mention the estimates on the infumum of the
p-scalar curvature S, that are obtained as a consequence of a general formula for the Laplacian of the
p-scalar curvature and the validity of the weak maximum principle for the weighted Laplacian, that, in
turns, is guaranteed by appropriate estimates on the volume growth of geodesic balls. In contrast to the
results obtained in the other Chapters we are not able to obtain the estimates on SY for every p € R, indeed
we shall restrict to the case u € [0, 1]. Moreover, if u # 0 we restrict to the gradient Einstein-type structure
(If) and we also require some additional properties for the potential function. For ¢ constant our estimates
have been obtained in Theorem 3 of [R].

Finally we also deal with some non-existence results. Firstly, if u # 0, setting v = e™*f and tracing the
first equation in ([f) we obtain

Lu := Au+ p(mA — S¥) =0. (13)

Since u > 0, by a well known result of [FCS] and [MP], the operator L is stable or, in other words, its
spectral radius A} (M) is non-negative. Thus, instability of L yields a non-existence result for ([ll) at least



in case p is non-zero constant. Toward this aim we detect appropriate conditions on the coefficient of the
linear term in ([L3).

Secondly, with the aid of a Bochner-type formula for the square norm of X for complete Einstein-type
structures as ([L2), we provide non-existence results assuming an upper bound on the ¢-scalar curvature and
for p > % In the gradient case ([ll) we are able to obtain the same result also for u < 0, assuming eventually
a suitable integrability condition. It is interesting that the only structures arising from a harmonic-Einstein
warped product, as explained above, to which we are able to apply the non-existence result is the one where
the dimension of the fibre is d = 1._As a consequence we obtain that the existence of a complete ¢-static
metric, that is a metric such that @) holds with p =1, f € C>*(M) and Ayf = —X € R, forces M to be
non-compact and A < 0.
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Notations and conventions

All the manifolds are assumed to be smooth and connected. In what follows we shall freely use the method of
the moving frame, as illustrated in Chapter 1 of [AMR], fixing two orthonormal coframes on the Riemannian
manifolds (M, (, )) and (N, (, )) of dimension, respectively, m and n. We fix the indexes ranges

1<4,5,kt,...<m, 1<a,bcd...<n.

With {e;}, {6°}, {05}, {©%} and {E.}, {0}, {wj}, {Qf} we shall respectively denote local orthonormal
frames, coframes, the respectively Levi-Civita connection forms and curvature forms on the open subsets
U of M and V on N. Throughout this thesis we adopt the Einstein summation convention over repeated
indexes. Locally the metric (, ) is given by

<, > :5ij9i®(9j,
and the dual frame {e;} is defined by the relations
67 (e;) = 0],

The Levi-Civita connection forms {9;} are characterized, from Proposition 1.1 of [AMR], from the skew-
symmetry property ‘ _
0% + 67 =0,

and the validity of the first structure equations
o' + 60 N 67 = 0.
The curvature forms {©%} are defined by the second structure equations
Y
do; + 0, N0 = O

and they are skew-symmetric, that is, ‘ '
0j + 0] =0.

The components in the basis {6 ® 67 : 1 <i < j < m} of the space of the skew-symmetric 2-forms on U are
given by the components of the Riemann curvature tensor of (M, (, )), that is,

i _Lni gk gt
where, denoting by R the (1,3) version of the curvature tensor of (M, (, )),
R=Ri,0"®0" @60’ ®e;.

Recall that, for every XY, Z € X(M), where X(M) denotes the C*°(M)-module of smooth vector fields on
M

9

R(X,Y)Z =Vx(VyZ) - Vy(VxZ) - Vixv|Z,

ix



where [, ] is the Lie bracket. The (0,4) version of the curvature tensor of (M, (, }) is denoted by Riem and
is defined by, for every X,Y, Z, W € X(M), by

Riem(W, Z, X,Y) = (R(X,Y)Z, W),

locally
Riem = Rijktei & ej & Hk ® Ht,
where
Rijkt = R;‘kr

The Ricci tensor is defined as the trace of Riemann, that is,

Ric = R;;0' ® 67  where R;; = R},
The Riemann tensor has the following symmetries
Rijre + Riju = 0,  Rijie + Rjine =0, Rijre = Ritaj
and satisfies the first Bianchi identity
Rijie + Rikej + Rigjr = 0

and the second Bianchi identity
Rijreq + Riju gk + Rijies = 0,

where, for an arbitrary tensor field of type (r, s)
T=T!"""®.. 0600 e 0. .0¢,
its covariant derivative is defined as the tensor field of type (r,s + 1)
VI =T} 0807 0.. 000 e, ®...06,

by the relation

S

T“"'i” kadT“ 7ZT“ ZT“ Zf 1hityr.. lr@;j'

Ji---Jt—1hjet1-..Js Jt
t=1

The following commutation relation holds

1. iy l cig_1higpr.iy
T kat T J tk+z kt J1 Jf 1hjt1...Js Ztht Ji---Js : (14)

The formula above can be proved in general but, for simplicity of notations, we prove it for a tensor of type
(1,1). With the same argument one can prove it for general tensor fields.

Proposition 15. Let T be a tensor of type (1,1) on the Riemannian manifold (M, (,)), locally given by
T=T¢" ®e;.

Then

T kt — ﬂ,tk + R?kthZ - R;ktTjS' (16)

7
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Proof. By definition of covariant derivative
T; 0% = dT; — T.05 + T;0..
Taking the differential of the relation above we get
AT} NOF + Tj d6* = —dTL A 05 — Tid05 + dT7 A6 + T5do?. (17)
Once again, from the definition of covariant derivative
b = T T T+ T
Inserting the relation above into (@), using the first and the second structure equation we obtain
7 k t _ miQs s\
Tl N0 =T07 —TrO.
Recalling that
i _ Lo ok gt
93 = iRjktg A 9 5
skew-symmetrizing the above we conclude the validity of (@) O

Let ¢ : M — N be a smooth map and suppose, from now on, to have chosen the local coframes so that
e (V) CU. We set
prwe = ¢fo’
so that the differential dy of ¢, a section of T*M ® ¢ 'TN, where ¢ 'TN is the pullback bundle, can be
written as
dp = ¢{0" © E,.

The energy density e(p) of the map ¢ is defined as

_ ldyf?
2 K

e(p)

where |dy|? is the square of the Hilbert-Schmidt norm of dip, that is,
|dp|* = o

Observe that
|dil* = tr(e*(, ).
The generalized second fundamental tensor of the map ¢ is given by Vdy, locally

Vdp = cp?jﬁj R0 E,,
where its coeflicient are defined according to the rule
307 = dof — QR0 + pjwy -
The tension field 7() of the map ¢ is the section of ¢ 'TN defined by
() = tr(Vdp)

and it is locally given by
7(¢) = ¢5iEa.
Let 2 C M be a relatively compact domain and let Eq be the energy functional on 2, that is,

Ealp) = / e(p)-
Q
Recall that a smooth map ¢ : (M, (, )) is harmonic if for each relatively compact domain Q@ C M it is a

stationary point of the energy functional Eq : C*°(M,N) — R with respect to variations preserving ¢ on
0. It can be verified that ¢ is harmonic if and only if its tension field vanishes.
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Part 1

p-curvatures and harmonic-Einstein
manifolds






Chapter 1

p-curvature tensors

In this Chapter we introduce some new curvature tensor fields and we describe their fundamental properties.
Those tensor fields shall be called ¢-curvatures and they take into account the geometry of a Riemannian

manifold (M equipped with a smooth map ¢ : M — (N, (, )n).

In we fix the terminology for some properties that may be satisfied from the smooth map
¢ and that appears quite frequently in the sequel. Precisely we recall the definition of (weakly) conformal,
homothetic, conservative, affine and relatively affine maps. We also define almost relatively affine maps.
Further we state some known results relating those properties, that shall be useful.

In Bection 1.2, the core of this Chapter, we define the (p-curvatures, comparing them with the classic
curvature tensors (that can be seen as the g-curvatures when ¢ is taken as a constant map). Those curvature
tensors are the @-Ricci Ric?, the ¢-scalar S¥, the p-Schouten A%, the ¢-Weyl W¥, the p-Cotton C¥, the
p-Bach B?¥ and the p-traceless part T% of p-Ricci. We also describe their symmetries and evaluate their

traces and divergences.
In we provide the transformation laws for the y-curvatures under a conformal change of the

metric. As major consequence we prove that in the four-dimensional case the ¢-Bach tensor is a conformal
invariant.

In the last Section of the Chapter, 7 we investigate the consequence on the vanishing of some
tensors related to the ¢-Weyl tensor and its derivatives on the geometry of the manifold and the smooth
map . The consequences on the geometry of (M, (, )) include and generalize the classic notions of locally

conformally flat, harmonic Weyl curvature and conformally symmetric manifolds while the consequences on
the map ¢ are related to the properties recalled in .

1.1 Smooth maps and conservation laws

Let o : (M,{,)) = (N,{, )n) be a smooth map between Riemannian manifolds of dimension, respectively,
m and n.

Definition 1.1.1. The map ¢ is weakly conformal if there exists { € C*°(M) such that

" (,)n =¢(, ) (1.1.2)
Remark 1.1.3. If ¢ is weakly conformal then, taking the trace of ()7 we get

2
‘= %. (1.1.4)

In particular ¢ > 0 on M.

Definition 1.1.5. Let ¢ be weakly conformal and = € M. If {(x) = 0 then x is called branching point of ¢,
otherwise z is called regular point of ¢.



Remark 1.1.6. Assume ¢ is weakly conformal and x € M is a regular point for ¢. Then ¢ is an immersion
(that is, dy is injective) in a neighbourhood of z. Indeed, if X € T, M, evaluating ([l.1.2) at X yields

|dp(X)|% = C(x)| X2,

and since ((z) # 0, dp(X) = 0 if and only if X =0.
As a consequence, if ¢ is weakly conformal and m > n then ¢ is constant. Indeed, assume by contradiction
that ¢ is non-constant. Then there exists © € M regular point and thus, since ¢ is an immersion in a
neighbourhood of x, m < n, that is a contradiction.

Definition 1.1.7. The map ¢ is conformal if () holds for some positive function ¢ on M, that is, ¢ is
weakly conformal with no branching points.

Remark 1.1.8. If ¢ is conformal then, by ,  is an immersion of M into N.
Definition 1.1.9. The map ¢ is homothetic if () holds for some constant ¢ € R.

Remark 1.1.10. If ¢ is homothetic, from ()7 we deduce that |dy|? is constant.

Remark 1.1.11. If ¢ is a non-constant homothety, that is, if ¢ is a positive constant, then the following is an
isometric immersion

W:(M’C<7>)—>(N7<5>N)'

Definition 1.1.12. The stress-energy tensor of ¢ is given by

S:= <P*<7 >N - 6((,0)<, >7 (1113)

where )
e(¢p) = 5ldpl?
is the density of energy of . The map ¢ is called conservative if S is divergence free.

Remark 1.1.14. The stress-energy tensor (of harmonic maps) had been first defined by Baird and Eells in
[BaE], with a different sign convention. Notice that, its vanishing and the vanishing of its divergence are
independent from the sign convention.

Remark 1.1.15. The following are some trivial examples of conservative maps:
i) Constant maps;
ii) Weakly conformal maps, if m = 2;
iii) Homothetic maps.

To prove ii) and i) let ¢ be a weakly conformal map. From (|L.1.2), () and the definition () of S
we deduce 5
m—
S = ———d¢*(, ). 1.1.16
2 lagi,) (11.16)

If m = 2 then S = 0, in particular div(S) = 0. If ¢ is homothetic then |dg|? is constant, hence S is parallel
and, in particular, div(S) = 0.

Proposition 1.1.17. Let S be the stress-energy tensor of the smooth map ¢ : (M,g) — (N,h). Then
div(S) = (7(¢), dp)n,

that is, in a local orthonormal coframe,
Sijj = #j;ei- (1.1.18)
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Proof. In a local orthonormal coframe the components of S are given by

|del?

2

Sij = ¢ief — 0ij-

Taking the divergence of the above, using the symmetry of Vdp, we get

Sijg =(9i9§); — ——

=Pi ¢ T e — 5
=Pies; T ehivT — ©hies

=¢5;Pi
that is () O

As an immediate consequence we have
Corollary 1.1.19. If ¢ is harmonic then ¢ is conservative.

As a partial converse of the above Corollary we have the following Proposition, whose proof is contained
in [BaH].

Proposition 1.1.20. If ¢ is a differentiable submersion almost everywhere and it is conservative then o is
harmonic.

Remark 1.1.21. In the Proposition above the hypothesis that ¢ is a differentiable submersion almost ev-
erywhere cannot be removed. Indeed, there are situations in which ¢ is conservative even though it is not
harmonic. For instance, let ¢ be a isometric immersion. Since 7(¢) = mH, where H is the mean curvature
field of the immersion, see (1.170) of [AMR], ¢ is harmonic if and only if it is a minimal immersion. Since
isometric immersion are clearly homothetic maps, from 4ii) of Remark 1.1.15 they are always conservative
even thought they can be not minimal.

In the next Proposition we characterize the situations where S vanishes on M, that are the critical points
of the energy for variation of the domain metric (rather then variations of the map), see [9].

Proposition 1.1.22. Let ¢ be a non-constant map, then S = 0 if and only if m = 2 and ¢ is weakly
conformal.

Proof. If S = 0 then

d 2
() = 122!

thus ¢ is weakly conformal. Taking the trace of () we deduce

() (1.1.23)

m
dof? = 2 |agP,

that is,
m — 2
= Z\|dy|? = 0.
5 ldel

Then either |[dp|?> = 0 on M _or m = 2, but since ¢ is non-constant we must have m = 2. The converse
follows immediately from () O

The next Proposition is a sort of analogous of the above Proposition when m > 3.

Proposition 1.1.24. If m > 3, ¢ is conservative and weakly conformal then ¢ is homothetic.
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Proof. Since ¢ is weakly conformal () holds, hence we may take its divergence to infer

div(S) = —”127_2d|d¢\2.
m

Since ¢ is conservative div(S) = 0 and, using m > 2, from the above we infer d|d¢|?> = 0 on M. Then, since
M is connected, |dg|? must be constant on M and thus ¢ is a homothetic map. O

The next definitions are contained in [[Y]].

Definition 1.1.25. The map ¢ is affine if dy the generalized second fundamental tensor of ¢ vanishes, that
is,

Vdg = 0. (1.1.26)

Remark 1.1.27. Affine maps are totally geodesic, that is, they maps geodesic into geodesics. Moreover, affine
maps are harmonic since the tension of a smooth map is the trace of its generalized second fundamental
tensor.

Definition 1.1.28. The map ¢ is relatively affine if p*(, )y is parallel, that is,
Remark 1.1.29. If ¢ is affine the it is also relatively affine.

Remark 1.1.30. One can see that ¢ is a relative affine map if and only if, in a local orthonormal coframe,

wee = 0. (1.1.31)
Indeed, a computation shows
(PFPf)k = Qi ef + 97 P
If () holds then, from the above, Vo*(, )y = 0. On_the other hand, if Vyo*(, )y = 0, using the
symmetry of Vdp and the above we easily conclude that () holds.

Remark 1.1.32. If ¢ is relatively affine then, summing () on ¢ and 5 and on ¢ and k, respectively, one
gets that ¢ is conservative and |dip|? is constant on M. On the other hand relatively affine maps can be not
harmonic (and, as a consequence, non affine), see page 41 of [X|] and references therein for examples.

Recall that, as defined in [P], a symmetric 2-times covariant tensor field is harmonic if it is a Codazzi
tensor, that is, his covariant derivative is totally symmetric, and it is divergence free (or equivalently, if it is
a Codazzi tensor with constant trace).

Definition 1.1.33. The map ¢ is almost relatively affine if ¢*(, )y is harmonic.

Remark 1.1.34. The author has not find in the literature the definition of smooth maps ¢ such that ¢*(, )n
is a Codazzi tensor nor such that ¢*(, ) is harmonic, but since in our study we ran into the latter situation
he find reasonable to give the definition above.

Remark 1.1.35. Relatively affine (and thus also affine) maps are almost relatively affine. It is easy to see
that ¢*(, )n is Codazzi if and only if, in a local orthonormal coframe

PR = Pk (1.1.36)

If ¢ is almost relatively affine, tracing ([L.1.36), we get
1
div(S) = §d\dap|2,

where S is the energy-stress tensor of the map ¢, defined by () As a consequence the almost relatively
affine map ¢, since |dip|? is constant, is also conservative.

The vertical distribution of ¢ is determined by the vector fields X € X(M) such that de(X) = 0. From
Proposition 2.1 of [[Y]] a relatively affine map has constant rank on M equal to ¢ and, in case 0 < ¢ < n,
the vertical distribution has dimension ¢ —n and it is parallel, that is, if X,Y are such that dp(X) = 0 and
dp(Y) =0, then dp(VxY) = 0.



1.2 Definition of ¢-curvatures and properties

Let (M, (, )) be Riemannian manifold of dimension m and ¢ : (M, (, )) — (N, (, )n) a smooth map, where
the target (N, (, )n) is a Riemannian manifold of dimension n. We fix « € C(M), a # 0 on M.

Definition 1.2.1. Indicating with Ric the usual Ricci tensor of (M, (, )) we define the y-Ricci tensor by
setting

Ric? := Ric — ap™(, )n. (1.2.2)

In a local orthonormal coframe
R = Rij — apf o
where ‘ . ‘ ‘ ‘
Ric” = R70"® 67, Ric=R;;0'®60” and dp =0 @ E,.

Remark 1.2.3. The p-Ricci curvature and the Ricci curvature coincide if and only if ¢ is locally costant on
{z € M : a(x) # 0}. Indeed, Ric* = Ric if and only if ap*(, )y = 0, that is, ¢*(, )y = 0 on the open
subset {x € M : a(z) # 0} of M. Since (, ) is a Riemannian metric on N and, for every X € T, M, where
xg € M,

(" (. )n)(X, X) = |dp(X)|3, (1.2.4)
we deduce that ¢*(, )y = 0 at a point g € M if and only if dp = 0 at . Then ¢*(, )y = 0 on
{r € M : a(z) # 0} if and only if dp = 0 on {x € M : a(z) # 0}, that is, ¢ is locally costant on
{r e M : a(zx) #0}.

Definition 1.2.5. The @-scalar curvature S¥ is defined as
S¥ = tr(Ric®).
Using () we get
S¥ =S — aldy|?, (1.2.6)
where S is the usual scalar curvature of (M, (, )) and |dip|? is the square of the Hilbert-Schmidt norm of the

section dip of the vector bundle ¢*T'N.

Remark 1.2.7. Observe that S¥ = S if and only if a|dp|? = 0, that is, |dp|?> = 0 on {x € M : a(z) # 0}.
Then the @-scalar curvature and the usual scalar curvature coincide if and only if ¢ is locally constant on
{zr e M : a(zx) #0}.

Remark 1.2.8. The ¢-Ricci tensor and the @-scalar first appeared in the work [M] of R. Miiller and the
notation adopted here have also been used by L. F. Wang in [W].

Definition 1.2.9. When m > 2 we introduce the p-Schouten tensor A¥ in analogy with the standard case

A%~ Ric? 5% 1.2.10
= 1C7 — m<, > ( N )
In a local orthonormal coframe go
AP =Rf - 25,
g Yo 2(m—1)"""

where ' ‘
A¥ = A;’}Ql ® 67,

An immediate computation using ( l .2.5) and (Il .Q.a) gives the relation of A? with the usual Schouten tensor
A, that is,

2
A@Aa(¢*<’>N2(i‘p_|1><7>>’ (1.2.11)
where S
A = Ric — m(, ).
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Remark 1.2.12. Assume m = 2. Since in this situation Ric is proportional to the metric (, ), the Schouten
tensor A vanishes. As a consequence, from ([l.2.11)) we get

A¥ = —asS.

where S is the stress-energy tensor defined by () In particular A? = A if and only if S = 0 on
{x € M : o(z) # 0}, that is equivalent in case ¢ is non-constant on {z € M : «a(z) # 0}, in view of
Proposition 1.1.22, to the fact that ¢ is weakly conformal on {r e M :a(z) #0}.
Assume m > 3. Observe that A¥ = A if and only if

|dpf?

" (, )N = m@ ) on{zeM:a(x)#0} (1.2.13)

In particular ¢ is weakly conformal, when restricted to {x € M : a(x) # 0}. By taking the trace of ()

we infer
m

m=2
2(m—1)
In conclusion, when m > 3, A¥ = A if and only if ¢ is locally constant on {z € M : a(x) # 0}.

ldp|> =0 on {z € M:a(z)#0}.

Remark 1.2.14. An easy computation shows

m—2

PY= —— — Q¥
tr(A%) Sm— 1) S¥. (1.2.15)
Indeed, using (IlQld) and (124-}]) we infer
oy _ oy m o _Mm— 2 ”
tr(A¥) = tr(Ric?) 3 — 1)S 3 — 1)5' .

We recall the Kulkarni-Nomizu product, that we shall indicate with the “parrot”operator (®, of two
symmetric 2-covariant tensors. It gives rise to a 4-covariant tensor with the same symmetries of Riem, the
Riemann curvature tensor. In components, with respect to a local orthonormal coframe, given the 2-covariant
symmetric tensors T' and V we have

VOT)ijit = VarTje — VieTin + Vi T, — Vi T (1.2.16)

Definition 1.2.17. For m > 3, the p-Weyl tensor is defined by
1
W*¢ .= Ri — —— A% 1.2.18
fom — A2 @), (1.2.15)

where Riem is the Riemann tensor of (M, (, )).
In a local orthonormal coframe
1
Wiig = Reigre = —— (A58 — Af i + AQdey — Afou),
where _ ' _ _
We=Wg, 000 @6’ 0" and Riem = Ry;0' @ 0" @ 67 @ 0%,

From the standard decomposition of the Riemann curvature tensor we know that, for m > 3,
1
Riem =W + ——AQ(, ),
m — 2

where W is the standard Weyl tensor of (M, (,)). From the distributivity of ®® with respect to sums,
together with ()7 we deduce the expression of W% in terms of W:

We =W+ 2 (0 - (1) B (1.2.19)

m— 2
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Remark 1.2.20. Notice that W% = W if and only if () holds, this is due to the fact that -@® (, ) is
injective. Then, since m > 3, W% coincide with W if and only if ¢ is locally constant on {x € M : a(x) # 0}

on M, as seen in Remark 1.2.1§.

If a four times covariant tensor field K has the same symmetries of Riem then all his traces can be
determined by Kj;x;, hence it is convenient to denote

tr(K)ij := Kikj-

Observe that tr(K) is a two times covariant tensor field and tr(Riem) = Ric.
Proposition 1.2.21. The @-Weyl tensor field has the same symmetries of Riem and
tr(W%) = ap™(, )n. (1.2.22)

Proof. The p-Weyl tensor field has the same symmetries of Riem because, as mentioned above, the Kulkarni-
Nomizu product of two times covariant tensor fields have the same symmetries of Riem. Observe that, using

(L.2.1d), (L.2.1d), (.2.13) and (1.2.9),

1

Wik =Rjise — —— (AJ; = AJdij + Aj055 — AGose)
1
=Ry, — AY, — mA}Oj(;ik
S¥ 1 m—2
=R, —RY + — 5, ——— " G¥§.
R = R, + 2(m — 1)5““ m—22(m— 1)5 ik

=ap; i,
that is, () O

Remark 1.2.23. Combining the above Proposition with Remark 1.2.2(, the ¢-Weyl tensor field is totally
traceless if and only if it coincide with the Weyl tensor.

Remark 1.2.24. Assume m = 3. Is well known that W = 0, hence from (),

we=a (o tow - 20 @)

For the rest of the section we consider « to be a non-null constant. The next result, analogous to Schur’s
identity, typically shows how the geometry of ¢ enters into the picture.

Proposition 1.2.25. In a local orthonormal coframe

RY

1 a a
i = 55 —avies (1.2.26)
where p% are the components of the tension field T(¢) of the map ¢.

Proof. By taking the covariant derivative of () we get
1

1 a a
§Sj = 553'0 +ap;;ei

and by the usual Schur’s identity we obtain

1 a a
Riji = 55;) T app; - (1.2.27)

Using ([L.2.2) we infer
RY ;= Riji — apfof — apf ;.
Therefore, from the symmetries of Vdyp,
Rf ;= Riji — apl;of — apgef
and, using ()7 from the above we conclude the validity of ([L.2.26). O
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Remark 1.2.28. In global notation () becomes
1
div(Ric?) = idS“‘J — adiv(S),

where S is the stress-energy tensor of the map ¢, defined in () Since « is constant it can also be
written as

div(Ric? + aS) = %dS‘P. (1.2.29)

A trivial computation, similar to the one performed in the proof of the above Proposition, shows that ()
holds even in case we consider « to be a non-constant differentiable function. We stated the Proposition
above with o constant because in that case, using (), the following analogous of the usual Schur’s
identity holds

1
© _ Loy
Ry = 551'
if ¢ is conservative (actually, also the converse implication holds). When dealing with harmonic-Einstein
manifolds in a key fact will be the validity of the formula above.

Definition 1.2.30. Analogously to the standard case, when m > 2, we define the ¢-Cotton tensor C¥ as the
obstruction to the commutativity of the covariant derivative of A¥, that is, in a local orthonormal coframe,

— A%

ik,j"

c?, =AY

ijk ij,k

(1.2.31)

Using definition () of A% we compute the indicated covariant derivatives in () to obtain C¥
expressed in terms of the usual Cotton tensor C of (M, (, )) in the following

Proposition 1.2.32. If « is constant then the p-Cotton tensor field and the Cotton tensor field C of
(M, (,)) are related by

a

a a a a (p a a
Clir = Cijk — o |:90ik90j — olen — miil(wtkéij - %ﬁm)] : (1.2.33)

Proof. An easy computation using (h.Q.B]J), (h.2.1d), (th) and(h.Z.d) shows that

P AP »
Cfy =A7, — A

i ik,j
@
:Rfj,k - 2(75;;1)517' - Rﬁc,j + 2(7:j_1)5ik
=Rk — a(g@?(p‘;)k - Mgk_l)&j + am&j
= Rij + alpier); + 2(77;9].—1)6” - amdik
=Aijk — Ainj — {w?w? + il — ﬁfg’{ 8ij — i Pk — @ik T :ff?i dik | »

that is, since Cjj, = Aij,k — Aik,j7 () L]
The relations in the Proposition below are obtained by computation.

Proposition 1.2.34. The @-Cotton tensor field satisfies the following properties:

Ch;j = —Chy  and therefore  CF, = 0; (1.2.35)
Chii = avjyei = =Cliy (1.2.36)
Chin + Ciri + CLy = 0. (1.2.37)
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Proof._We prove only () because ([1.2.35) and ([L.2.37) are trivially satisfied. Using ()7 ()
and () we deduce

7

P AP AP
Ciik _Aii,k Aik,i

m—2 S¥

= — = g¥ _RY 4k

(2<m— ) >k i T 5lm — 1)

m — 2 S7 1
= % g¥_(ZE _ a a - g¥

2(m7 1) k ( P Oé(,D“QDk) + Q(m* 1) k
=05 P

that is, ([L.2.36). O

Remark 1.2.38. Observe that, since a # 0, C¥ = C if and only if the tensor field

|de]?

o =T) () (1.2.39)

@*< ) >N -
is a Codazzi tensor. Natural examples of situations in which () is a Codazzi tensor are when m = 2
and ¢ is weakly conformal or when m > 3 and ¢ is homothetic. Indeed, in both cases,

2 m —
¢*<7>N—2(|7i¢_1)<,>:_21)|d¢2<, ). (1.2.40)

2m(m

If m = 2 the right hand side of () vanishes while, if m > 3 and |dp|? is constant, then the right hand
side of 1.2.40) is parallel. Another situation in which C¥ = C is when ¢ is almost relatively affine, see
Definition 1.1.33. Notice that in all the examples above the map ¢ is conservative, as one can expected since
C is totally traceless.

Remark 1.2.41. For a three times covariant tensor field C' on M that is skew symmetric in the last two
indices, that is Cjr; = —Cj, all its traces are determined by Cj;;, hence it is convenient to denote:

tf(C)l = Cijj~
Then tr(C) is a 1-form on M. Observe that () gives
tr(C¥) = adiv(S).

Explicitating () in terms of R;’} » We obtain the commutation relations

— R¥

ik,j

RY

ij,k

1
+ Ok + m(&f‘sij — SF0ir), (1.2.42)

that shall be useful later on.

Remark 1.2.43. If m = 2, from the symmetries of C¥, the only non-vanishing components of C'¥ can be
determined by Cf, (no sum on i) for {i,k} = {1,2}. It is immediate to see that (no sum on )

Cr, = adiv(S)s,

indeed using (|

@)
~

OédiV(S)k = tr(Cl’D)k = C;k + lekk = szk
Then C¥ = 0 if and only if ¢ is conservative, for m = 2.

In the next Proposition we evaluate the divergence of W*¥ in terms of C¥.

11



Proposition 1.2.44. For m > 3, in a local orthonormal coframe,

we m-

tijk, t =

CLP

Proof. Observe that from () we can express W,/

11j5 componentwise in the form

Wik = Waiji + 5 (PO — PR + ikt — i ¢ 0uk)

«
ikj T O‘(‘P?j@z - SﬁngO?) + m@?t@?@k — ©0iz)-

(1.2.45)

(1.2.46)

2
|dpl?
— 0t50ik — 0tk 0ij).
T = 1) (m = 2) 0%k — Ouwdis)
Taking covariant derivatives, tracing, using the well known formula (see for instance equation (1.87) of
[AMR])
m—3
Wtijk,t - _7_2Cijk7

and () we obtain

Wik s =Whijk,t + o (PO + 0G0 — Pk — P Pkidi)

2

2
205 Gyt~ bty

<P?k§0?]

« a a a a «

+ o (Piek + @ik — eI — i) T

m 3 « a a a a a a a a
2Czk1 + P [Sﬁtt(%‘ ik, — P10is) + 97 (952045 — Predij) + 50k —
« [ 2 a a a

R _—m%(%ﬂik - ‘pskdij)]

m—3 m—3 a a  _a ¢ a a

= 0T —— [cmjsak — Pl — —— 7 (50K — @tkéij):|
o [ a a a -3 a/, a a a a a  a
9 ‘Ptt(‘ﬁj ik — Rij) + — & (¥5:0i5 — Pitdig) + 05508 — PPy
_m—

«
C;‘Lj +alpliok — ine) + ek (] 0 — ¢idis),

that is, ()
The following proposition contains the ‘fake Bianchi identity”for W¢.

Proposition 1.2.47. In a local orthonormal frame

1
Weia ¥ Wi Wi = (Ct]k(s” + Chadis + Cf;0u, — CF

ijk

(;tl - Cﬁd(st]

Ccy

ilj 5tk)

Proof. Tt follows from a computation using the decomposition (), the second Bianchi identity for Riem

and the definition () of C%.

O

Remark 1.2.48. Formula () can also be deduced taking the trace of the fake Bianchi identity above,

using ([1.2.22) and ( .2.3a).

Definition 1.2.49. We introduce, for m > 3, the ¢-Bach tensor B¥ by setting, in a local orthonormal

coframe

(m —2)Bf; = Cf, \ + RE (Wi, — apieidn) +a (%sﬁik — i —

12
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Remark 1.2.51. If ¢ is a constant map then the ¢-Bach tensor reduces to the usual Bach tensor B, whose
components in a local orthonormal coframe are given by

(m —2)Bjj = Cijir + RusWiikj-
Proposition 1.2.52. Let m > 3, the @-Bach tensor is symmetric and

m _;‘)2 17 ()] (1.2.53)

(m —

tr(B?) =«
Proof. We rewrite B¥ in the form
(m—-2)BY =V +Z

where:

(6%
Vij = Cf}k,k - aRfj@Z@? - a‘ﬂ%kj@?, Zij = Rfkwtfkj + a@?j@ik I |7'(<P)|25ij-

2

Since Z is symmetric it remains to show that V' shares the same property. To verify this fact, in other words
that Vj; = Vj;, we see that, explicitating both sides of the equality, it turns out to be equivalent to show
that

alpf (R0 — RE08) + it — Pt = Chipw — O = —(Cli, — Clip )

By using () and () we have

~(Ct =,

i k= —(Ch +Ch)e = Cfi s

3
hence the above equality is equivalent to

leij,k = Oé[w‘;i(wa? - Rfj@?) + Rk — @ij@?]- (1.2.54)
It remains to compute Cf} , to verify () From the general formula (@) we get

Afe = Al + Rij A7 + R Af (1.2.55)

Using (h23]]) and (h2551) twice we have

Cliin = Abijn — Aljan = (AL + Rig AL + R AL — (Af; ki + BuiAf + RELAT).
Hence, with the aid of (), we deduce

Sé@
Clin =R, — =i Ri; AL, + RE, AT
kig,k ( ki k 2(m71) k>j+ kj kz+ ijk*tkt

SW
- (Rfj,k T m-1) . )5kj) — Ry Af; — R AL

m—1 ;
From ([L.2.2G) and the symmetries of Riem we obtain
oo = L g @ % Sf A% toA®
Ckz’j,k - 551' S T m 4 + Rij A + RijiAgy
J

- (25'}0 — QPP — 2<mj_1)> - RkiAfj - szkAft

m—2

m— 2 a a a a

K2
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Since Hess(S%) is symmetric we deduce
leij,k = 0‘(90%1&0?)2' —a(pppi)i + Rijfi - RkiA;ﬁj'
Using once again () and the symmetry of Vdp

Clik =Pl + Pl — PPt — Pinely)

. g% ; 5%
R A T VR B (e Ty L
a a a a %2} SSD ® SLP
=i — Pk i) + Rij R — Wm—1) 1)Rij — Ry Ry + Am—1) l)Rjz'~

By plugging (|L.2.9) into the above we finally conclude
Clijx =] — rnypi) + (BRY; + apppf)RE; — (RY, + apiel ) RE;
=P — P P7) + i RY — awloi RY
=a|piri?] — P P8 + eR(RE G — R 01)],

and this proves the validity of ( .
We now compute tr(B¥). From () we have

a, .a a a m
(m—2)Bf = Czk,k + REWG, — aRf i +a (T(<P)|2 — Prki¥i m_2|T(<P)2> .

Then with the aid of (123a) and (122a) we infer

IT(0)]? — it

(m —2) B}, =a(¢f08)k + aR o v — aRL 0hpf —a

m— 2
a a 2 2 2 a a
=agiinek +alT(@)]" —a—|7(9)|” — avipig]
m—4 9
—a (o),

which is equivalent to () O
We conclude with

Deﬁnltlon 1.2.56. V\/e (18““6 'lle t7 aceless pmt Of the (p—]iZCCZ t6n507 by
5 I ) S ;
1¢7 — E< ’ > ( )

Denoting by T the traceless part of the Ricci tensor, using (Il 23) and ( .Z.a),

Tw:T_a<¢*<,>N_W<,>). (1.2.58)

m

Remark 1.2.59. Using () it is immediate to obtain that the traceless part of the ¢-Ricci tensor coincide
with the traceless part of Ricci if and only ¢ is weakly conformal (on {z € M : a(x) # 0}, when « is assumed
to be a function)

Remark 1.2.60. If m = 2 then

and thus, form Remark 1.2.12;



Remark 1.2.61. All the p-curvatures Ric?, S¥, A¥, W¥ C%¥, B¥ and T% agrees with the original curvatures
in case either « = 0 on M or ¢ is a constant map. The case where ¢ is constant will be referred in the sequel
as the standard case.

Remark 1.2.62. In low dimension some standard curvature tensor are trivial. On the contrary their modified
counterparts detect the geometry not only of (M, (,, )) but of v : (M,{,,)) = (N,{, )n) and thus they can
be non trivial.

1.3 Transformation laws under a conformal change of the metric

Let (M, (, )) be a Riemannian manifold of dimension m > 3, let f € C>°(M) and let

(,)=emal(,). (1.3.1)

Let {e;} be a local orthonormal frame for (M, (, )) defined on an open set U C M. Let {6}, {#%} and {©}}
be, respectively, the dual coframe, the Levi-Civita connection forms and the curvature forms associated to
{0%}. In the next well known Proposition we collect the transformation laws under the conformal change of
the metric ([L.3.1)) for these objects, and as a consequence, also for the Riemann tensor.

Proposition 1.3.2. Set
—~ 1
g =em2le, (1.3.3)

then {€;} is a orthonormal frame for (M, m) onlU. Denote by {6}, {5;} and {éz} the associated coframe,
Levi-Civita connection forms and curvature forms on U. Then

0 =e w2ty (1.3.4)
5 _ pi 1 j i
0 =05 + ——5 (fit" = f;6"), (1.3.5)
~ , 1 1
0 =0j+ P [fikfstj — fikdi + m(fifkétj — frfidit — |Vf|25ik5tj)] 0" N 6", (1.3.6)

Moreover, denoting by Riem the Riemann tensor of (M, <A7/>),

% = Riem +

m— 2 2

e+ - (o ar - TR o),

that is,
2 s i 1
e m*Qijkt =R + P Q(fik5jt — fitjn + fjebir — findir)
1
T m—ae (fifuGje = fife0jn + f5fedin — f5frbit) (1.3.7)
V£|?
where

Riem = Riy,0" © 0" © 69 @ ¢;, Riem= Riy,0" 2 6' 067 @&,

Proof. Clearly () is a local orthonormal frame for (M, (f,v>), indeed

(€i,€5) = dij-

Clearly, using (133) and (I3:}]),

0'(3) = 3,

VR
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hence {6} is the dual coframe corresponding to {¢;}. The Levi-Civita connection forms are given by ()
Indeed they are skew symmetric and they satisfy the first structure equation and those properties characterize
them. Using () and the first structure equations

do" = —9;. N (1.3.8)
we obtain

At =d(e~ 72797

1 , _
= e maldf NG+ el dp
m— 2

e Ldf ANO 0L NG .
m—2 J
From (i.3.a) and (Ii.3.4-}|) we get

ANt <9?— i giy i 29j> N

Joom -2 m —

ot (pinpi TP gi g
e <9J/\9 — 29A9>

. <1df NG+ 6 A 9j> .
m—2 J
By comparing with the above we obtain the validity of the structure equations
0 = G A,
as claimed. Recall the second structure equations

gy = —0; N OY + O} (1.3.9)

From the second structure equations with respect to the metric (, ), using ([L.3.5) we obtain
Qi 0t 1 pt A ok
O} =db; + 0, N 0]

= U ) (ot e ) A [+ e - 10

m—2

) ) 1 . . ) )
=db’ + 0}, N O} + m(dfi NG+ f;d07 — df; AO" — f;dO")

L (65— ) A (o — [36).

+ ﬁ[(ﬂﬂk — fub") N O + 0, A (fub7 — £;6%)] + m=2)

From the above, using (l3§) and ( 35) we deduce

. . 1 ) . ) )
) =0 + —— (dfi A0 — fi04 NO¥ —df; AO" + £;60}, 1 0)

1 ) . ) )
+ (0" AOT = fu0 AOT + fibl A0 — [0, A O"]

1
w22

that is, using the skew-symmetry of the Levi Civita connection forms and the alternating property of the
wedge product

+ Fifi0F AOT — £ £i0% NOF — frfx0" A 67 + fi ;00 A OF),

&) =0} + L [(dfs— fub) A0 — (df; — ) A0

1

G el A = VPO N+ fif 07 1 0°),

16



From the definition of covariant derivative
fi6” = dfi — f;0],

by plugging into the above we get

0! =0} + m[fikek AT — Fi0% A O+ ——— (fefi0" AN O7 + frf;0° N OF — |V 207 A 67),

1
(m —2)?
that is () Recall

i Loi ok ot
hence, from () we get
1~ ~ ~ 1.
§R;kt9’“ Nk :§R;kt9k A B!

1

1
t— [fik5jt — firdit + m(fifk(sjt — frfi0i — |V fP6ix050) | 6% A 6"

By skew-symmetrizing the above we obtain

1

2 g ;
el Ry =Rl + )

(fir0je — firdjn + fijedin — findir)

1 .
o)z Sikdse = fuuds & fif0u = Jifidie) = (r|n—|2)2
that is (L.3.7). ]

Remark 1.3.10. Recall that the Weyl tensor W is a conformal invariant, when we consider its (1, 3)-version
(see for instance Section 1.4 of [AMRI)), that is, in a local orthonormal coframe,

(005t — 0it k),

e—%fﬁ;’kt = Wi, (1.3.11)

Let (N, (, )n) be a Riemannian manifold of dimension n, we denote by {E,}, {w®} and {wg} the local
orthonormal frame, coframe and the corresponding Levi-Civita connection forms on an open set V such that
0 H(V) CU. Clearly dy is independent on the choice of the metric on M, it means,

7t =emal 0, (1.3.12)
where ' _
P @ B, =dp = 970" ® E,.
As an immediate consequence we get
2
do|” = em27|dpl. (1.3.13)

By definition ‘ ‘ . '

Vdp = ¢f;6! ©6' @ Ea, 38" = dpf — 056] + pluwp
and _ L _ _

Vdip = §30" @ 0" ® B, G507 = df — 3507 + Glwi.
We denote by 7(¢) the tension of the map

(p:(M7<,>)—>(N,<7>N)7

in components

T(p)* = &ii-
In the next Proposition we determine the transformation laws for the quantities of our interest related to
the smooth map ¢, under the conformal change of the metric ([L.3.1]).

17



Proposition 1.3.14. In a local orthonormal coframe
~ _2 1
ot = em—! [@?j + Wil @kaéij)] : (1.3.15)

in particular
(@) = em 2! [r(p) — do(V )] (1.3.16)

Moreover, in a local orthonormal coframe,
~ 3 2
Gl = ema7 |:<P§Lik —wifi =i fiw + 5 (@S — ‘P;‘lfifk):| : (1.3.17)

Proof. The validity of () follows easily using (), the definition of ¢f;, (IL.3.12), ([L.3.5) and the
definition of ¢f; as follows:

By 0] =560
— gt — 500 +
. 1 , .
—a(em ) - e o] 4 L0 10| e ol
-

) 1
em-=t pdf —
m—2 m —

=em=2/ (dpf — 9307 + wp) + sem2 g8 (0"~ fi6)
_ st a 1 a a ar s ej
=em=- @ij+m(<pifj+¢jfi_<pkfk ij)| ¢’
Taking the trace of () we immediately get () For convenience we denote
a a 1 a a a
Tij = @i + m(% [i+ @jfi — Pt ft5ij)7

then, with the aid of ()7
Bey1, 0" =dpy; — 31,0F — Pk + By
=d(em=Tf) — em==Ty, [95 F (- fi9k)}
—emalTE [of + ﬁ(ﬁﬁj - fjak)} +em 2 Thup.

Thus, using also () and the definition of T,

1
m—2

7m%f~a k _ 2 a k a pk
e 2l ol0 *mTi'fk@ + T55,0" —

J Ty (f10" = fi6") — — Ti(fid? = f;0%)

2 1
= { ikt mT%fk + 72(Tl?jfi = T febin + T f5 — T k) 0,

m —

that is,

— 3 ~a a 2 a 1 a a a a
e ""zf%‘jk =T, + mTijfk + m(Tk,jfi = T fedir + Tk £ — Ty fi0jk)-

Summing on ¢ = j and using the relations
Ti = wii = ¢ifis - Thir = Pl — $infi = @5 firs

18



(the first follows immediately from the definition of T' while the second is obtained taking covariant derivative
of the first), we get from the above

__3 _f~q 2 a a a
e 2 Bl =T JF T3 fx + (Tmfz T fi + T fi — Ty fi)

2 i
2
Ezk + 77 ufk

2
=gk — Pixfi — oi fik +—— (soufk o fifr),

that is ([L.3.17). 0

Our aim is to determine the transformation laws of the (p-curvatures under the conformal change of
the metric () We fix o € R\ {0} and we denote by Ric” the ¢-Ricci tensor related to the map
@ (M, (1)) = (N,(, J), that is,

Ric” = Ric — ap™(, )n. (1.3.18)

We denote by S% the p-scalar curvature associated to ¢ : (M, (, )) = (N, (, )n), that is, S* = § — a|d<p|2.
The same applies for all the other @-curvatures. In the following Proposition we deal with the transformation
laws for the ¢-Ricci curvature, the p-scalar curvature and, as a consequence, for the p-Schouten tensor. We
denote by

Aff =A - <Vf7v>
the f-Laplacian.

Proposition 1.3.19. In the notations above

f%?cw:Ric“’—kHess(f)+ﬁ(df®df+Aff<, ), (1.3.20)
that is, in local orthonormal coframe,
e"m 2/ RY, = RY, + fu +—— . 5 (Fifk + Agfoue). (1.3.21)
Moreover
e mal g9 = gv 4 %(ZAf — V] (1.3.22)
and

g“’:A“"—i—Hess(f)—&-; (df@df— \V2f\2<’ >>

hold. The latter in local orthonrmal coframe is given by
eI AG = A+ fy (flf] |Vf|25”.) . (1.3.23)
Proof. To obtain (), that is,
™72 (Riy — a@i@h) = Rir — ol + fir + ﬁ(fifk + Ag foir),
since () holds, it is sufficient to take the trace of () Indeed
e‘ﬁfﬁik :e_ﬁfﬁ;kj
=Rig; + ——[0m — 2)fox + Aol

2
+ %[(m —2)fifi + V0] — (mV—f|2)2

(m — 2) (m — 1)5zk
—Rk+fzk+ [fsz+ (Af =V fI?)dir]-
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To obtain () it is sufficient to take the trace of the above. Indeed

V£I? m

e~ mezl g = S+Af+ 2+—Af s+—(2Af IV f[%),

so that, using also (),
m—1 m—1
"2l 5¢ = =7 (S - aldyl ) S+ ——5QAf - IVFI?) - aldp|* = §% + 5 (2Af - IVF[?).

Now ([1.3.23) follows from the definition () of the ¢-Schouten tensor and the formulas () and
1.3.29)

(IL.3.29), indeed

—wzsf G
e LY A R
€ 2 AZ; =€ 2 R,Z — 2(7_1)6”
fzf 1 m—1
_R¥ J © _ 2
=R+ fij + — +7Aff5” 7(m—1) S +7m_2(2Af IVfIF)| 6
AL fy b Ty LAy - LAyt g VI
it -2 Tom -2 7 2(m—2) /
\v4 2
=A? +fm+<f,fj | f| 62J>. O
Remark 1.3.24. If we set ;
u=e 2, (1.3.25)
an immediate computation using () implies the validity of the Yamabe equation
Am=1) Ny geu 4 GeutS o, (1.3.26)
m—2

Then the problem of finding metrics in a fixed conformal class with prescribed ¢-scalar curvature can be
tackled with the same techniques used in the standard case (where ¢ is constant). See, for instance, Section
2.1 of [MaMR].

In the next Proposition we deal with the transformation laws for the p-Cotton tensor.

Proposition 1.3.27. In a local orthonormal coframe
e ™ 2fC”k =CEL+ Wi T (1.3.28)

Proof. For simplicity of notation we set

\V4 2
A% = em2 Ty, Ty =AY +fu+7 (fzf] | f' 51]). (1.3.29)

To obtain the transformation law for the ¢-Cotton tensor we first need the transformation law for the
covariant derivative of A%. First of all we express the coefficients of VA% in terms of T and VT. The
formula is the following:

1
e m- 2fAf; P szfk + Tijk t—— (Tk:jfz Tyj feOri + Tir f5 — Tit fe ) (1.3.30)

To obtain the above we use the definition of covariant derivative and () to get
AP ok —dA A ok _ Av gk
Afjﬁ _dAZ. — AfjHi — A%0;
2 2 ; .
=d mei' _ me . ek_ fl ek fk i
(6 j) € kj ( i m— 2 + m—29

2 k f k fk j
e (9]' Tt —26”)’
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that is,

2
e m— QfAtp 9k *mn]df+dﬂj

ij,k

m— 2 m—2 —2 m—2

2 1 : 4
=———Tdf + (dT;; — Tii0f — Tib) + — [Thj (fi0" — fu0") + Tu(f;6% — fu67)].

Using () and the definition of T;; ; we infer

2 1 ; ,
e~ w2l AL 0F =T fi0" + Ty 0" + —— [T (£i0" = f10") + T (f;0" — fu0)]

2 1
= [m_2Tijfk +Tige + ——— (Tj fi = Toj fedni + Tinfj — Titft5jk)] 0",

that implies () Now, using the definition of the p-Cotton tensor, () twice and the symmetry of
T we get

e m- 2fC“‘J =e  m- 2f(A“9 fﬁfkﬂ,)

ij,k
2 1
:m ngfk +T1Jk + (Tk:jfz thft(skz"_ﬂkfj _Etft(sjk)

2 1
= ikfi — Tik,j — m_Q(Tjkfi*Ttkft(Sji+Tijfk — Tt f10n5)
2 1
=Tij = Ting + ——5 (Tijfo = Twf) + ——5 [Tinfs = Tig fre + (Tendji — Tj0ni) fol,

that is,
. 1
€7ﬁf€;§-k =Tijr — Tin,j + m(Tiﬁkt — Tii6jt + Tii0ji — T10k3) fe. (1.3.31)

To express the right hand side of the above in terms of C'¥ we first observe that, from the definition ()
of T,

TlLk - zg k +fl]k + (fzkfj + flf]k ftftk(sij)7

so that, using the commutation rule (see (@))
figk = finj + jokfta
we get
Tijk — Tik,g =AT;  + fijr + ﬁ(fikfj + fifjk — fefidij)
- [Afkyj + fikj + ;(fijfk + fifwj — fefejdin)
=Cf) + Rijfe + [fzkfj fij i + fe(fe0ik — firdij)]-
Moreover an easy computation using () shows that

(TijOre — Tindjt + Tundji — Tyjoni) fr =AL; fr — AL fi + Al fedji — Af [0
+ fijfe — finf5 + ftkft ji — ftj fiOni,
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indeed

(T3j0kt—Tik05t + Tiibji — Ty0ks) fr
=(Af; 0k — A0 + Af 050 — AL 0ki) fr + (figOne — furdje + findji — fejori) fe
1 \V4 2

bl it fofidss — ol D
(m —2)

=AL i — AL T+ AL Tedji — AL fedni + figfr — farfy + fon fe0ji — frj feOni

\V4 2

b (fuf i fulily + 19 1 i~ 19 12 000) 2('mf')<5wfk Saf; + Fibyi — f0%)
=AL i — AL T+ AL Tedji — AL fedni + figfr — farfy + fon fedji — frj feOni

2 2
|Vf| (fk J fjékl) ‘Vf‘ (fk Ji f]5k2>

(050Kt — OinOjt + O4r0js — 010ki) fi

Plugging the two relations above into () we finally conclude

e T2/ Cf =CF) + Ry fo + —— s = Fig fi + fol fogOin = Findiy)]
1
+ (A fi — A;i J AL i85 — AL fi6ks)
+ m(fijfk — fikfj + fue fidji — fij frOki)

=Cf) + Rijfi — (A‘p Ori — Afdij + Afo; — Af0uk) fr-
Thus follows (), in view of the decomposition () O

Remark_1.3.32. Using (| - 1.3.12) and - from the relation between the ¢-Weyl and the Weyl
tensor () we deduce that the (1, 3) version of the p-Weyl tensor is a conformal invariant, that is,

WSD

s Y
e m=—2/ W, ikt

Pt = (1.3.33)

The last transformation law we are going to illustrate is the one for the p-Bach tensor BY and is the
hardest to obtain. In order to determine it we first need to evaluate the transformation law for the tensor

Vij = Cly = (R0 + )5 (1.3.34)
that is the content of

Lemma 1.3.35. In the above notations, in a local orthonormal coframe,

__4_grs m—>5
€ m72fV;J ‘/1]+ftkWtz]k m — thfk tzgk (kaz Cﬁﬁ)‘f
(1.3.36)

a a 1 a a a a a a a, a
+a {%jwkfk + 5 (ki — wkn) (01 fi + 95 fi) = Vi fudiy — Arfo soj}}
Proof. We procede exactly as in the proof of the Proposition above. We set

OF  — oI >
Cl]k} € 2 ﬂﬂ“ TUk_ zgk:+ft tzgk:
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From the definition of covariant derivative and using ()

Cfy, 00 =dCEy — CF,0; — CF,05 — CF 07
=d(em I Tyj)
s (s i fs i
e zTSJk<9Z 0 +m_29>
it (gs— _Ji g fs i
em2 sk | 7 m—2 +m—2
-3 fk s fs
—em—2ITy;, <0k— ——0"+ m_29k>,
hence
2fC‘P 0° = 3 d, T; 0°
e m— ijks? =5 ik + Tijk,s
1 ,
— sik(—fi0° + fs0")
1 _
T m_2 isk(_fj98 + f567)
1
= 5 Tijs (= 10" + £:0%).

Then we deduce

__4_r~ 3 1
e m—2f0;§-k)s =1ijk,s + mTijkfs + m(fiTsjk + ijisk + fkTijs)

ft
= (Tij0is + Titrdjs + TijiOrs)-
Summing on s = k an easy calculation shows that
m—4 1
e m ZfCUk = Tk = ——5 Tijk fr t— (Tk]kfl + Tikr f5) — mff Q(Tkji + Tikj)- (1.3.37)

Using (), that we report here for the reader convenience,

a a a a « a a a
Wtfjk t T Cﬁw + a(@ij‘ﬁk - %‘k%@j) + m%t(@j@k - <Pk5z'j)7

we infer
m— 3 a a « a a a
Tijik = Clp e + fuxWiiin Li— 5 Conilfie + @i fi — @i fuel) + PP fi = Pk fudiy). (1.3.38)
Indeed, by taking the divergence of the relation that defines T,

Tij]f7k _( ijk + ft tzgk)
Cz]k k + ftk tzgk + ft tzgk k

ngk k + ftk 1]k + fk t]zk t

m—3

=Chn + faWiin + =5 Ol + al@fipifi = e fupi) + o1 (05 fi — P frji)-

e
-2

Clearly
Tijife = Chpfre + fefeWihj).- (1.3.39)
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The traces of T" are given by, using (), () and the symmetries of tensors involved,
Tijk = Oy + FiWie = —apip] + apies fr = alei fi — vin)e§
and
Tikk = 0,
then we easily get
Tijifi + Tinr f5 = al@ifr — Pir) 5 fi- (1.3.40)
Using the definition of T, the skew symmetry in the first two indices of W% and the identity () for C¥
we evaluate
FeTwji + fuTing =Fe(Clp + Wiggofe) + fo(Cliy + Wi fo)
f (le]z zk]) + ftkatzk:]
- fk jik + ftkatikj
_fk jk1+ftfk nkj

Plugging the above together with ()7 () and (h34d) in ([1.3.37) we finally get

e M2f0£kk C;;k,kJrftkWtfjk m— ftfk tz]k (Cfm Cﬁw)f

1
+a {so%@ka — O fef + m[wik(w?fj — i fi) + e fre] fi — w?m%fkéij]} :

To conclude the proof notice that, with the aid of (hSQ]J) and (h.3.17|),

1 a a
e ‘Qf(R¢ PRPy + P Pi) = [Rfj + o+ 5 (fufi + Affékj)} Vot

+ [@%kj — @i fr — Prfik t (Pt — ‘P%fkfj)} ®

-2

1
=REoiel + g il + 5 (Gififiel + Apfeie])

2
a a a a a a 2 a a a a
+ Gy 07— Pri el — ifinei + = (P fi — RS i),

that is,
e (REGP! + Py B8) =Rijoet + oyt
— Ol s (A — GRSy + 20l ).
Inserting the relation obtained so far into definition () of V' we obtain the validity of () O

Now we are ready to prove

Theorem 1.3.41. In the above notations, we have

4 ~ m—4
e m—2f(m — Z)BZ. =(m— 2)32’; - 2fk(C;§k + ftWtfjk kal) (1.3.42)
Proof. From the definition of ¢-Bach (125(]) and (13321)
1
(m — 2) 5= Vij + ka]Rso + apyy (‘P?j - M‘P%k(gzj) (1.3.43)
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Using (), () and () we obtain

e~ Wi RE =Wy, (Rfk + fue +

+

fefr Arf 5tk>

tikj m—2 m-—2
=W R + Wiy foe + mwtfkjftfk ta— TS e p;
Aff 4 a
=W Ri. — Wit foe — mwtfjkftfk ta oY

Using () three times a computation yields

4 g ~ I 1
€ ’”‘Qf@?t (@% - ,m_290kk6ij> =0 <<P§lj - M‘ngéij)

1 1
+ m@?t@ﬁfk‘sij — Prfrei; + m(@Zk — e fe) (@i i + 5 1i)-

Combining these two relations with () and () we deduce the validity of () O

Remark 1.3.44. If ¢ is a constant map then () reduces to the well known (see, for instance, equation
(3.36) of [CMMR 1))

m

__a_ ~ —4
e~ w2l (m = 2)Bi; = (m - 2)By; - o f6(Cige + feWeije = Cina)-

As a consequence, for m = 4, the Bach tensor is a conformal invariant.

As an immediate consequence of the transformation law for ¢p-Bach we generalize the conformal invariance
in the four dimensional case.

Corollary 1.3.45. If m = 4 then B¥ is a conformal invariant, that is,

—2f >
e fB;.'; =B,

1.4 Vanishing conditions on p-Weyl and its derivatives

Let (M, (, )) be a Riemannian manifold of dimension m > 4. Recall the following classic definitions:

(i) The Riemannian manifold (M, (, )) is locally conformally flat if
W =0.

(ii) The Riemannian manifold (M, (, )) has harmonic Weyl curvature if W is divergence free, that is, in a
local orthonormal coframe

Wiijk,e = 0.
(iii) The Riemannian manifold (M, (, )) is called conformally symmetric if

VW = 0.

Recall that a 4-times covariant tensor K that has the same symmetries of the Riemann tensor is harmonic
if the induced two forms on A?M is harmonic, that is, K satisfies the second Bianchi identity and is divergence
free. Observe that Riem and W are harmonic if and only if they are divergence free. Indeed, Riem always
satisfies the second Bianchi identity while, in case W is divergence free, C' = 0 and thus W satisfies also the
second Bianchi identity (see Lemma 1.2 of [AMR], that is, IProposition 1.2.47| with ¢ constant). For W% the
situation is different, we need to require both the conditions above and not just that it is divergence free to
obtain that it is harmonic.

We give the following
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Definition 1.4.1. Let ¢ : (M, (,)) = (N, (, )nv) be a smooth map, where m > 4, and o € R\ {0}.

(i) The Riemannian manifold (M, (, )) has harmonic @-Weyl curvature if W% is harmonic, that is, W% is
divergence free

Wtfjk,t =0 (1.4.2)
and satisfies the second Bianchi identity
Witika T Weakrg + Wi = 0- (1.4.3)

(ii) The Riemannian manifold (M, (, )) is called @-conformally symmetric if

VW? = 0. (1.4.4)

Remark 1.4.5. Since W is totally traceless, if W is proportional to (, Y @® (, ), that is,

for some £ € C*° (M), then it is easy to see that £ = 0 and thus W = 0, that is, (M, (, )) is locally conformally
flat. It is not unusual that when a tensor with the same symmetries of Riem is proportional to (, ) ® (, )
we get some strong rigidity results. For instance, if Riem is proportional to (, ) ® (, ) then (M, (, )) has
constant sectional curvature.

When dealing with the ¢-Weyl curvature instead of the usual Weyl curvature we have

Proposition 1.4.6. Let ¢ : (M, (,)) = (N,{, )n) be a smooth map, where m > 4, and o € R\ {0}. Assume
that, for some £ € C*°(M),

W“’z%(ﬁ@(,). (1.4.7)
Then do?
ajap
= =— 1.4.
¢ m(m —1)’ (148)
@ is weakly conformal, that is,
: _ ldg]?
¥ <7 >N - <7 >7

m
and (M, {,)) is locally conformally flat. Moreover, if £ € R, then ¢ is a homothetic map and, if £ =0, then
@ 1s a constant map.

As a consequence,

W¢ =0 (1.4.9)
if and only if v is weakly conformal and (M, (,)) is locally conformally flat, where
We = Wk%<,>@<,> (1.4.10)
is the traceless part of W¢#.
Proof. Locally () reads
Wtfjk = &(8¢50i — 0tx0ij). (1.4.11)

Summing () on ¢t = j, using (), we obtain

apior = (m — 1),
that is, since a # 0,
90*<7 >N = 7() >



Taking the trace of the above we get () and that ¢ is weakly conformal. Then, from () we have

aldp|?

LP:
W W+2m(m—1)

(O

But then, using (1.4.7) and ([L.4.§), W = 0, that is, (M, (, )) is locally conformally flat. If £ € R then, from
(), |de|? is constant and thus ¢ is a homothetic map.

If ¢ is weakly conformal and (M, (, )) is locally conformally flat then () holds trivially, using ()
O

The Proposition above shows that a vanishing condition on ¢-Weyl affects both the geometry of (M, (, ))
and of the smooth map ¢ : M — (N, (, )n). In the next two Propositions we deal with the cases where
(M,(,)) is ¢-conformally symmetric and the ¢-Weyl curvature is harmonic, obtaining the same twofold
effect.

Proposition 1.4.12. Let ¢ : (M,(,)) = (N,{, )n) be a smooth map, where m > 4, and o € R\ {0}.
Then (M, (,)) is w-conformally symmetric if and only if ¢ is relatively affine and (M, {,)) is conformally
symmetric.

Proof. Assume that (M, (, }) is ¢-conformally symmetric, that is, () holds. By setting

) |dep|?
= - 14.1
we get, using (ll44l) and (h.2.1£i),
o
Wiijka + m(Utj,l(Sik — U165 + Uir, 1045 — Uij10u,) = 0. (1.4.14)

Summing the above for ¢ = j, using the traceless property of the Weyl tensor, we deduce

@
— s (Ujji0ik — Uiy + mUig — Uig 1) = 0,
that is, since o # 0,

(m — 2)Uik,l + Ujj,10: = 0.

Recalling the definition of U, from the above we conclude
|dpl? m-2
-2 Sop — 0; dplidik =0,
(m ) (%Wk 2<m_1) k [+ 2(m_1)| (p|l k 0

that is. ¢* is parallel. Then ¢ is relatively affine, by Definition 1.1.2§, and |dip|? is constant on M, by
Remark 1.1.30, hence also U is parallel. As a consequence ([l.4.14) immediately gives VW = 0.
Assume that ¢ is relatively affine and that (M, (, )) is conformally symmetric. Since ¢ is relatively affine

then ¢*(, ) is parallel and |dy|? is constant, hence also U defined in () is parallel. Then, taking the
covariant derivative of ([l.2.19) and using also that W is parallel, we obtain that W% is parallel. O

During the proof of the proof second Proposition we need the following

Lemma 1.4.15. If m > 4 then A¥ is Codazzi if and only if
Wiine = a9l — 05p)- (1.4.16)
Proof. 1f A¥ is Codazzi then C¥ = 0. In particular it is traceless, that is,
0= Cﬁj = 0480?190?
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Then, using ()7 we immediately get ([L.4.16). Conversely, if () holds, summing on k = ¢ we obtain
Wtfjm = O‘(‘P?j‘ﬂ? - @Z‘P?)
On the other hand, using (),
Wi = al@fef + ot o).
Then, comparing with the above
alpijel = viipj) = alvne] + et eh),

that implies,
i =0

Then, using (h41d) and (h24d)

(o — Pirey) :Wtfjk,t
m—3

e
:mcﬁcj + (e — Pine;) + m‘ﬁ?t(%@?&k — ¢0ij)
m—3
= ZC'ﬁcj + a(@?j@% - ‘P?kSO?)a
that implies C¥ = 0, that is, A¥ is a Codazzi tensor. O

Proposition 1.4.17. Let ¢ : (M,{,)) = (N, {(, )n) be a smooth map, where m > 4, and o € R\ {0}.

i) If W¢ is divergence free, that is, () holds, then ©*(, )N is divergence free, ¢ is conservative and
|de|? is constant. Moreover
«@
Whijkt = m(@?k%l — P3P (1.4.18)

it) If W satisfies the second Bianchi identity, that is, () holds, then
Wi = alefoh — ¢ief) (1.4.19)
and C% = 0.

As a consequence, (M, (,)) has harmonic o-Weyl curvature if and only if ¢ is almost relatively affine and
(M, (,)) has harmonic Weyl curvature.

Proof. Assume that () holds. From () we have

m—3 «
——Cf = alpi;el — Pine]) + 9

m_2 0 (05 0ik — ©0i). (1.4.20)

Summing the above on j = 7 and using () we obtain

m—3 «
Civk = alelpr — irei) + ———= et (vk — meg),

am—? m— 2

that is,
a(pi ek + i) = 0.
Since a # 0 we conclude
(#i'ei)i = 0.
Taking the divergence of (), using that W¥ is divergence free, we deduce

a
Wiijkt + m(Utj,tdik — Ui 1035 + Ui ; — Usji) =0,
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where U is defined as in (), that is, since ©*(, )y is divergence free

o |del|? d
Wik, + ——L ik + 4|
m — 2 m—1

2
p- _’“1 bij + ik — @?W?) =0. (1.4.21)
Summing the above on k = i, using the traceless property of W, we get

«o 1
p— (—2|ds0|j2 - @?iso?) =0,

that implies
1
el = ldel].

Observe that, since ¢*(, )y is divergence free,

1
i = —eieh = —5ldelj.

Combining it with the above we conclude that |dip|? is constant and then, once again from the above, ¢ is
conservative. Now_from () we deduce, since |dy|? is constant, the validity of ([L.4.1§).
Assume that () holds. Then, using [Proposition 1.2.47,

Cfirdu + Ciydij + Cfii0ik — CFy

Summing the above on t = [ and using () we get
(m = 3)CY, = avly(¢§dir — ©idij)- (1.4.22)

From (), using the above we obtain () From the Lemma abov) is equivalent to C¥ = 0.
f!!E)

Assume that (M, (,)) has harmonic p-Weyl curvature. Combining ( with the fact that W% is
divergence free and a # 0 we get

(515[ - Cﬁglétj - Cﬁ](stk == O

PPk = iy
that is, ¢*(, )n is a Codazzi tensor. Inserting the above into () we conclude that also W is divergence
free.

Assume that ¢ is almost relatively affine and that (M, (, )) has harmonic Weyl curvature. Since (M, (, ))
has harmonic Weyl curvature then (M, (, )) is Cotton flat, that is, the Schouten tensor is a Codazzi tensor.
Since ©*(, ) is harmonic then ¢*(, )x is a Codazzi tensor with constant trace, hence also U defined in
() is a Codazzi tensor. As a consequence also

AY =A+aU

is a Codazzi tensor, that is, (M, (, )) is ¢-Cotton flat. Then ¢ is conservative and from () we obtain
that W*¥ is divergence free while from tProposition 1.2.47| we get that ¥ satisfies the second Bianchi identity.
In conclusion, W¥ is harmonic. O

Remark 1.4.23. If m = 3 the vanishing conditions of p-Weyl considered above have repercussions only the
map ¢ and not on the geometry of (M, (,)). Indeed it is immediate, using () and that W = 0, to
deduce

_ ldgl®

e =a (v - 20 ) o0,
where W¢ is defined as in () Since o # 0 and - @® (, ) is injective, we obtain that W = 0 if and only

if ¢ is weakly conformal. Similarly one can prove that W% is harmonic or parallel if and only if, respectively,
©*(, Yn is harmonic or parallel.
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Chapter 2

Harmonic-Einstein manifolds

In this Chapter we define harmonic-Einstein manifolds and we prove some results regarding them, general-
izing some classic and also some new results on Einstein manifolds.

In we give the definition of harmonic-Einstein manifolds and we generalize the classic Schur’s
lemma for Einstein manifolds. Then we show that to determine the geometry of a harmonic-Einstein manifold
the only ¢-curvature needed are the p-Weyl and the sign of the p-scalar curvature. Finally we characterize the
harmonic-Einstein manifolds that are also Einstein in terms of ¢, it must be a homothetic map. In Subsectio
we relate the condition of harmonic curvature and local symmetry of a harmonic-Einstein manifold to
the concept introduced in above. Moreover we characterize harmonic-Einstein manifolds with
constant sectional curvature, they are locally conformally flat and Einstein. In we consider
Riemann surfaces that are harmonic-Einstein manifolds. As for the Einstein manifolds, the bidimensional
case presents some remarkable differences with respect to the higher dimensional case. This Section is just
a beginning for the study of such surfaces, we will not proceed further in this direction in this thesis.

In we prove that under some restrictions on the curvature of the target manifold (and an
upper bound for the density of energy of ¢, in case of negative @-scalar curvature) the map ¢ is constant and
thus the concept of harmonic-Einstein manifold collapse to the concept of Einstein manifold. The restriction
is on the largest eigenvalue of the curvature operator of the pullback bundle ¢ 'TN, it must be lower than
the constant o.

In we define conformally harmonic-Einstein manifolds, that are manifolds which are harmonic-
Einstein after a conformal change of the metric. We characterize them in [Theorem 2.3.5, providing the first
important motivation for the study of Einstein-type structures. Further we prove that conformally harmonic-
Einstein manifolds satisfy two integrability conditions and, in , we show that the validity
of these two integrability conditions is also a sufficient condition for being conformally harmonic-Einstein
manifold, if we assume a genericity condition on the metric, that is related to the injectivity of a curvature
operator, denoted by W%, and on the smooth map ¢.

In we compute the Laplacian of square norm of the traceless part of the ¢-Ricci tensor and,
as a consequence, we prove that a stochastically complete Riemannian manifold is harmonic-Einstein in case
some necessary conditions hold, provided the norm of the traceless part of the ¢-Ricci tensor is sufficiently
small. To give a quantitative estimate on the threshold for the norm of the traceless part of the ¢-Ricci
tensor we state and prove an estimate on the biggest eigenvalue of the curvature operator W%, the same
operator appearing in Subsection 2.3.1].

In the last Section of the Chapter, Eection 2.§, we prove with the formalism of the moving frame the
classic formulas for the Riemann curvature of a warped product Riemannian manifold and we apply them in
order to characterize warped product harmonic-Einstein manifolds with respect to a map that is constant on
the leaves of the canonical fibration of the warped product. This is the subject of providing
the second important motication for the study of Einstein-type structures. Finally, in
we discuss some applications in General Relativity. We show that four dimensional Lorentzian harmonic-
Einstein warped products, for an appropriate constant «, are solutions of the Einstein field equations and
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as energy stress tensor the one of the harmonic-map. Furthermore, we introduce p-static metric in order to
characterize the standard static spacetimes that are harmonic-Einstein, when the map that is constant on
the leaves of the canonical fibration.

2.1 Definition and properties

Next definition is analogous to that of an Einstein manifold.

Definition 2.1.1. A harmonic-Einstein structure on a smooth manifold M of dimension m > 2 is the data
of:

(i) A Riemannian metric (, ) on M;
(ii) A smooth map ¢ : M — (N, (, )n), where the target (N, (, )n) is a Riemannian manifold;
(iii) A constant @ € R\ {0}

such that, for some A € C*(M),

Ric? = A(, )
{T(@) o, (2.1.2)

where Ric? is defined by () For brevity in the following we say that (M, (, )) is a harmonic-FEinstein
manifold (with respect to ¢ and a, if it is not clear from the context). Further, if A = 0 we say that (M, (, ))
is harmonic-Ricci flat (with respect to ¢ and «) or also ¢-Ricci flat.

To have a strict parallelism with the notion of Einstein manifold, in case m = 2 we require in addiction
A to be constant. Note that for m > 3 this is automatic because of the following version of Schur’s lemma.

Proposition 2.1.3. Let (M, (,)) be a Riemannian manifold of dimension m > 2, o € R\ {0}, A € C>(M)
and suppose that for some ¢ : M — (N, {, )n)

Ric® = \(, ). (2.1.4)

Then 5
mT_d)\ = adin(S),

where S is the energy-stress tensor of the map , in a local orthonormal coframe

m — 2 o a
T)\j = apip]. (2.1.5)

In particular, if m > 3 and ¢ is conservative then A is constant.
Proof. We trace () to obtain S¥ = mA and then
52 =m;. (2.1.6)
On the other hand, taking covariant derivative of () we have
Ri’}’k = Aiij.

Tracing with respect to ¢ and k
RY . =\

1],

We then use () to obtain () O
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It is well known that, essentially, the only non trivial curvature on an Einstein manifold is the Weyl
tensor. Indeed, if (M, (, )) is an Einstein manifold then S is constant,

.S . _ __m=—2
RIC—E<,> that implies T =0 and Afm&ﬁ'

If the dimension m > 3 then C =0, B =0 and

Riem = W,
where g
Riem := Riem — m<v YD, ).

In the present setting the analogous results are given by the following

Proposition 2.1.7. Let (M,{,)) be a harmonic-FEinstein manifold for some ¢ : M — (N,{, )n) and
a € R\ {0}. Then S¥ is constant,

Ric? = ﬁ( ) that implies T¥ =0 and A¥= m7_25“’( ).
m "’ 2m(m —1)
If the dimension m > 3 then C¥ =0, BY =0 and
Riem = W, (2.1.8)

where all the p-curvatures are defined in .

Proof. We already proved above the constancy of S¥. Observe that the validity of the first equation of
( ) is equivalent to
¢ =0,

where T'% is the traceless part of the y-Ricci tensor and is defined by () Using the definition ()
of harmonic-Einstein manifold we deduce

S m—2

AP =R = o =3 0 = 5o

S?(, ).

Inserting the above into the decomposition () we immediately get

Riem = W + 5o () B (),

that is equivalent to, using the definition of p-scalar curvature,

S do|?
Riem<,>®<,>W“’2n§[(|m¢_1)

that is (R.1.§). Furthermore, since S¥ is constant it follows that A¥ is parallel, hence is a Codazzi tensor
field, and then C¥ = 0. Using () and once again (R.1.2) we have

a, a SSO a, . a
Rfk(Wtfkj — apipidjK) = E(le’;kj —apip]) =0.

From the above, C¥ = 0 and the fact that ¢ is harmonic, we deduce

a, . a a a a a 1
(m —2)Bf, = CF, . + RO (Wi, — apieidn) +a (%‘j‘ﬁkk B LA I— |T(80)25ij> =0

thus (M, (, )) is p-Bach flat. O
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Clearly when ¢ is constant a harmonic-Einstein manifold is an Einstein manifold. This is not the only
situation in which these two notions collapse, as shown in the next

Proposition 2.1.9. Let (M, (, )) be a harmonic-Einstein manifold of dimension m > 2 for some o € R\ {0}
and ¢ : (M, (,)) = (N,{, )n), that is, the following system holds:

L 5¥
Rie? = 240) (2.1.10)
7(p) = 0.

Then (M, (,)) is Einstein if and only if ¢ is homothetic.
Proof. Assume (M, (, )) is Einstein, that is,

S
Ric = =(, ).
ic m< )
Plugging the above into the first equation of () and using ([L.2.) we deduce

o (v ton - 2E0)) o

Since a # 0 the above implies that ¢ is weakly conformal. Moreover, since both S and S¥ are constant, from
the definition of ¢-scalar curvature () and « # 0, we infer that |dip|? is constant. Then ¢ is homothetic.
The converse is trivial. O

Remark 2.1.11. Let (M, (, )) be a harmonic-Einstein manifold for some o € R\ {0} and a non-constant
smooth map ¢ : (M, {,)) = (N, {(, )n), that is, the following system holds

{Rm@ZA“> (2.1.12)

T(p) = 0.

for some A € R. Assume (M, (, )) is Einstein. Then, from the Proposition above ¢ is homothetic and,
since it is also non-constant, from Remark 1.1.11f we have that ¢ : (M,{(,)) — (I, {, )n) is an isometric
immersion, where ¢ = |dp|> € R. We set

(=<
Then (M, (A,/>) is an Einstein manifold minimally immersed in (/N ) via @ : (M,(f,v>) = (N, (,)n).
Indeed, using () (with f constant) and the first equation of (2.1.12) we immediately get

A
Z(’ >a

- ()

The fact that ¢ : (M,¢(,)) = (N,{, )n) is a minimal immersion is due to the fact that ¢ : (M,(f,v>) —
(N, (, )n) is a isometric immersion such that 7(¢) = 0 (it can be easily seen using ([L.3.16) with f constant).

Notice that
S=m (/\ + a>
¢

Remark 2.1.13. The Remark above shows why it can be interesting the study of harmonic-Einstein manifold
when ¢ is an isometric immersion, that is, the study of Einstein manifolds minimally immersed. Another
interesting study may be the one when ¢ is a Riemannian submersion (that probably will have some interest-
ing applications in Physics for non-linear o-models). A Riemannian submersion ¢ : (M, (,)) = (N,{, )n)
is horizontaly homothetic and the following are equivalent: ¢ is harmonic; ¢ is a harmonic morphism; the
foliation of M consisting of the fibres of ¢ is minimal, that is, every fiber of ¢ is a minimal submanifold of
(M, (,)). For the definitions and more details see [BW] and [FPI].

—
Ric =

that is, since ¢ is homothetic,

does not have necessary the same sign of A.
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2.1.1 Symmetries and sectional curvatures

Let (M, (, )) be a harmonic-Einstein manifold of dimension m > 3. From Proposition 2.1.7 we have

Riem = W%
that is equivalent to, using the definition of y-scalar curvature,

Riem:W¢+2Tn(;7g1¢1)<7>@<,>’ (2.1.14)

Notice that Riem vanishes if and only if (M, (,)) has constant sectional curvature. If m > 4, W%
vanishes if and only (M, (. })) is locally conformally flat and ¢ is weakly conformal, see tProposition 1.4.d (if

= 3, from Remark 1.4.23, W vanishes if and only if ¢ is weakly conformal). Recall that, if m > 3, from
Proposition 1.1.24, a harmonic map that is also weakly conformal is homothetic. Recall moreover that, from
Proposition 2.1.9, a harmonic-Einstein manifold is Einstein if and only if  is a homothetic map.

The discussion above implies the validity of

Proposition 2.1.15. Let (M, (,)) be a harmonic-Finstein manifold of dimension m > 3. The following
are equivalent:

(i) (M, {,)) has constant sectional curvature;

(ii) @ is homothetic and, if m >4, (M, (,)) is locally conformally flat.
(iii) (M,{,)) is Einstein and, if m > 4, locally conformally flat.
(i) (M, (,)) is Finstein and it has constant sectional curvature.

Another interesting feature of the p-Weyl curvature of harmonic-Einstein manifold of dimension m > 3
is that, since S¥ is constant, from (), we have

VRiem = VW¥. (2.1.16)
Since Riem satisfies the second Bianchi identity then also W% does (this can also be easily seen combining

roposition 1.2.47 with C¥ = 0, that is given by tProposition 2.1.7|).
Recall the following classic definitions:

(i) A Riemannian manifold of dimension m > 3 has harmonic curvature tensor if Riem is divergence free,
or equivalently, Ric is Codazzi (and it has constant sectional curvature), or equivalently it has harmonic
Weyl curvature and Ric is harmonic (that is, is Codazzi with constant trace);

(ii) A Riemannian manifold of dimension m > 3 is locally symmetric if the Riemann tensor if parallel.
Locally symmetric Riemannian manifolds have parallel Ricci tensor.

We then have, combining (b.l.ld) with lProposition 1.4.1j7 lProposition 1.4.17| and IRemark 1.4.23|,

Proposition 2.1.17. Let (M,{,)) be a harmonic-Einstein manifold of dimension m > 3. Then:

(i) (M,{,)) has harmonic curvature if and only if ¢ is almost relatively affine and, if m > 4, (M,(,))
has harmonic Weyl curvature. If is this the case, then Ric and ©*(, )N are both harmonic tensor.

(i) (M, (,)) is locally symmetric if and only if ¢ is relatively affine and, if m >4, (M, (,)) is conformally
symmetric. If is this the case, then Ric and ¢*(, )n are both parallel tensor with constant trace.
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2.1.2 Some remarks for Riemann surfaces

Let M be a surface, that is, a smooth manifold of dimension 2. By fixing a Riemannian metric (, ) on M
then

. S
Riem = —(, ) @ (. ).

As a consequence the Ricci tensor Ric of (M, (,)) is always proportional to the metric tensor (, ). In
particular (M, (, )) is Einstein if S is constant, that is, if and only if (M, (, )) has constant sectional curvature.

Recall that a Riemann surface (M, J) is given by a complex manifold M of dimension 1 with complex
structure J, or equivalently, a oriented smooth manifold M of dimension 2 endowed with an almost complex
structure J. In the two dimensional case giving a complex structure is equivalent to choose a conformal class
of metric on M, where the conformal class of a Riemannian metric (, ) on M is defined as

()] ={e7(,): fec=(M)}.

The famous uniformization theorem states that on a surface M, in any fixed conformal class of metrics
[(, )] there exists a complete Riemannian metric of constant curvature. In particular, every Riemann surface
(M, J) can be endowed with a Riemannian metric (, ) such that (M, (, )) is Einstein and J is determined
by [(, )]. In case M is compact, the sign of the curvature depends on the topology of the surface, indeed
when S is positive the universal covering of M is given by a sphere immersed in R3, when S = 0 by the
Eucludean plane and when S < 0 by the hyperbolic plane.

Let (M, J) be a Riemann surface and let ¢ : M — (N, (, )n) be a smooth map. We fix a Riemannian
metric (, ) on M such that J is determined by [(, }]. Then ¢ : (M, (, )) = (IV,(, )~) is weakly conformal if

_ ldef?
m

<P*<7>N <a>

Observe that conformality of ¢ depends on [(, )], that is, on the complex structure induced by (, ), and
not on the choice of (, ). Hence we can say that ¢ : (M,J) — (N, (, )n) is conformal, without fixing a
Riemannian metric on M. The same applies for the harmonicity of ¢, see Section 10 of the first report in
[EL].
Fix a Riemannian metric (, ) on M. Since Ric is always proportional to (, ) and a # 0 we immediately
deduce that
Ric? = Ric — a*(, )n

is proportional to (, ) if and only if ¢ : (M,J) — (N,(, )n) is weakly conformal. As a consequence, if
(M, (,)) is harmonic-Einstein then ¢ : (M, J) — (N, (, )n) is weakly-conformal and harmonic. In [BW], see
Section 3.5, the weakly-conformal and harmonic maps from a surface are called minimal branched immersions.

Observe that, if ¢ : (M, J) — (N, (, )n) is a minimal branched immersion then there exists a Riemannian
metric (, ) on M such that (M, (, }) is harmonic-Einstein if and only if

59 =S — aldp|?
is constant. If [(, )] corresponds to J, to find such a metric it is sufficient to find a solution f € C*(M) of

IAf + 59 — S¥e 2 =0, (2.1.18)

if we denote by 5% the p-scalar curvature of the metric m = ¢ 2/(,) and the map ¢ : (M,(,)) —
(N, {,)n), that is,
S¥ =5 — a62f|d<p|2.

It follows from (2.11) of [?] with the choice of u = —f, and the fact that
[del? = e |dpf
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With the following Proposition we show that, independently on the topology of the surface, when we are
given a compact non-constant minimal immersion from a Riemann surface we can always find a Riemannian
metric inducing the complex structure with vanishing (-scalar curvature, by choosing « adequately. This
is in contrast with the standard case, where the only compact Riemannian surfaces that admits a metric of
zero sectional curvature are the one with genus ¢ = 1. The topology of M is relevant for the sign of the
constant «.

Proposition 2.1.19. Let (M,J) be a compact Riemann surface and let ¢ : M — (N,{, )n) be a non-
constant minimal branched immersion. Set

(2.1.20)

where x(M) is the Euler characteristic of M and E(p) is the energy of ¢. Then there exists a metric in the
conformal class [(, )] corresponding to J with vanishing p-scalar curvature.

Proof. As seen above, to find a metric m in the conformal class [(, )] with ¢-scalar 5¢ = 0, from (P
it is sufficient to find f € C*°(M) such that

Q0
=

©
ar+ > =0

Since M is compact the equation above, that is a Poisson equation, admits a solution f € C*(M) if and
only if

/ 59 =0. (2.1.21)
M

Recall that, from Gauss-Bonnet formula,

/M S =2mx(M),

where x(M) is the Euler characteristic of M. Moreover, by definition,

B(e) =5 | lagl.

Combining the two equations above we conclude with the definition of S¥ we conclude
1
3 /M S =nx(M) — aE(p).
As a consequence, in order to obtain () we must have
X (M) = aE(p).
Since ¢ is non-constant the above amounts requiring () O
Remark 2.1.22. If M is a compact oriented surface then
X(M) =2 —2g,
where g is the genus of M. In particular «, given by (), is positive if and only if g = 0.
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2.2 The role of the curvature of the target manifold

Let (M, (, )) be a Riemannian manifold and ¢ : M — (N, (, )n) a smooth map. Recall the definition of the
curvature operator R acting on S?(p~!TN), the space of symmetric 2-covariant tensor fields on o~ !TN:
let ¥ R,epq denote the components of the curvature tensor of N in a local orthonormal coframe {w®}, for
1 <a,b,... <n, where n is the dimension of N, let 8 = Bupw® @ w® be an element of S?(o~'TN) and define

9‘{(5) = NRacbdﬂcdwa ® wb~

It is not difficult to see that, introduced in S%(¢~!TN) the natural inner product (, ), induced by (, ),
the operator R : S?(p 'TN) — S%(p~1TN) is self-adjoint and thus diagonalizable. We let A(x) to denote
its largest eigenvalue at x € M. We have

Theorem 2.2.1. Let (M, (, )) be a complete m-dimensional manifold with m > 2 which is hamonic-Einstein,
that is, such that

5%
Ric? = —(, )
m (2.2.2)
() =0
for some o : M — (N,{, )n) and o € R\ {0}. Assume that
A" :=supA < a, (2.2.3)
M
and, if a <0,
e(p)* == supe(yp) < +o0, (2.2.4)
M

where e(p) is the density of energy of w. Depending on the sign of the constant S¥, we have
i) if S >0, then ¢ is constant and (M, (, )) is Finstein with scalar curvature S = S¥;

i1) if S¥ < 0, then

< * < 5

Remark 2.2.5. If (M, (, )) is harmonic-Einstein with o > 0 then, since ¢*(, )y > 0, we have

g%
ic > — .
Ric > m(,)

If S¥ > 0 then, by Myers’ theorem, M is compact and thus A* and e(¢)* are both finite. This shows how
for a, S¥ > 0 request () is not needed. It is interesting that, even though M is non necessarily compact
when o > 0 and S¥ = 0, we do not need () the same. This is pointed out in

Corollary 2.2.6. In the assumption of the Theorem above suppose that the manifold is harmonic-Ricci flat.
Then ¢ is constant and (M, (, )) is Ricci flat.

Remark 2.2.7. Since a > 0, Ric¥ = 0 immediately implies that Ric > 0 on the complete manifold (M, (, )).
In case the harmonic map ¢ has bounded image and N is simply connected with non-positive sectional

curvature by a Theorem of S. Y. Cheng [Ch] we know that ¢ is constant and as a consequence (M, (, )) is
Ricci flat. The setting of Corollary 2.2.6 is more general and, in any case, different.
Proof (of Theorem 2.2.1). Since ¢ is harmonic Weitzenbéck-Bochner formula reads

1 a C a, a

S Aldel” = [Vdpl® + ¥ Ravcapiojiesoy + Rigpi e (2.2.8)
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for a proof of the above see Proposition 1.5 of [] Having set

a, b a

B = ¢iplu ®u’,

we have
N Rapeaspi 050508 = —(R(B), B) = —A|B[}- (2.2.9)
Plugging into () and using () we conclude

1
5A‘d@|2 > |Vd¢|2 A|6|N+RU<P1‘PJ +a‘5|%\77
that is, since (M, (, )) is harmonic-Einstein and, by () A* < 400,
A|d<P|2 (0 = AM)IBI% + *\dv?lQ (2.2.10)

Notice that
1BI% = le*(, )nl?

and from Newton’s inequality

dpl*
* 2> ‘
|(p <7>N| =" ’

hence the above implies

\dcpl
8% =
Plugging into (), since () holds, we get
1 a— A* S¥
5 Aldel* > |dg|* + —|dep|*
m m
By setting
= |di|”
the above yields
%Au > (a — A*)u? + S%u, (2.2.11)

where the constant o — A* is strictly positive because of ()
We observe that the first equation of () in case a > 0 imply
g%
Ric > —(, )
m

where S% is constant and therefore completeness of (M, (, )) yields the validity of the Omori-Yau maximum
principle for the Laplace-Beltrami operator A. In case av < 0 we obtain the same result, since the fact that
©*(, ) > 0 implies

and thus, using ()7

o (, ) < ldel*(,)

©*(,) < 2e(p)*(, ).

Hence
S
Ric > (m + 2ae(<p)*> (,).
We then apply Theorem 3.6 of [] to deduce

u* = supu < +00
M

and the Omori-Yau maximum principle again to conclude, from ()7 that

u (o — A")u™ + 5% < 0. (2.2.12)
From () and the definition of u we immediately deduce conclusions ¢) and 4i). O
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2.3 Conformally harmonic-Einstein manifolds

Next result is one of the important motivations for the general structure we shall introduce in .
We begin with the following

Definition 2.3.1. A Riemannian manifold (M, (, )) of dimension m > 3 is said to be conformally harmonic-
Finstein if there exists ¢ € C*°(M), ¢ > 0 on M such that, having defined

the Riemannian manifold (M, m) is harmonic-Einstein.

Proposition 2.3.2. Let (M, (, )) be a Riemannian manifold of dimension m > 3 such that, by setting

(,)=em2l(,)

for some f € C°(M), we have that (M, m) is harmonic-FEinstein. Then

Clp+ Wi =0 (2.3.3)

and
(m —2)BE + "W fufie =0 (2.3.4)

hold.

quence. C¥ = 0 and B¥ = 0. Using ( and C¥ = 0 we immediately get ( ). Using ([L.3.49), B¥ =0

Proof. A harmonic-Einstein manifold is ¢-Cotton flat and p-Bach flat, see [Proposition 2.1.7. As a conse-
1
and () twice we infer the validity of (’h) O

Theorem 2.3.5. Let (M,(,)) be a Riemannian manifold of dimension m > 3, let ¢ : M — (N, {(, }n) be
a smooth map and let o« € R\ {0}. Then there exists 1 € C°(M), ¥ >0 on M and A € C>°(M) such that,

having defined {, ) :=¥?(, ),

Ric—ap*(, )n = A(,)
{?(@ 0. (2.3.6)

if and only if for some f,\ € C>(M)

Ric - ag*(, )n + Hess(f) + ——df @.df = X, )

(2.3.7)
() = dp(V ).
In this case f and 1 are related by
Y=emr (2.3.8)
while A and X\ satisfy
Apf+ (m—2)A= (m—2)Aen 2. (2.3.9)

Here Ay is the symmetric diffusion operator A — (V f, V).

Remark 2.3.10. Note that, since m > 3, A is constant by [Proposition 2.1.31.

Remark 2.3.11. We shall see later, see Remark 6.1.17, that the system (53() satisfies the integrability
conditio). Using the Theorem above we get as a consequence of Remark 6.1.17 a different
proof of Proposition 2.3.9, a proof that does not rely on the transformation laws (|L.3.2§) and (]L.3.42).
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Remark 2.3.12. Tt is worth to observe that () implies that if (M, (, )) is a four dimensional conformally
harmonic-Einstein manifold then it is ¢-Bach flat. This partly motivates the definition of B¥ given in
([L.2.50). Indeed, in this way the situation parallels that of four dimensional conformally Einstein manifolds
that are always Bach flat (another way to see that a four dimensional conformally harmonic-Einstein manifold
is Bach flat is to combine E;orollary 1.3. 4a with [Proposition 2.1.7).

In order to prove the Theorem above we shall need (Il 3. 2(1 and ( L. 3. 1a) that we report here for the sake
of the reader:
Asf

-2
7(§) = 77 (r(p) — dp(V ). (2:3.14)
Proof (of Thereom 2.3.5). By () we deduce that 7(¢) = dp(Vf) if and only if 7(¢) = 0. Suppose

() holds, for some A € R, where (, ) =?(, ) with ¢ given by () Using () we obtain

Ric — ap*(, >N+Hess(f)+—df®df+ ff2<,> AL,

Ric” = Ric? + Hess(f) + —df ®df + L5 (), (2.3.13)

that is,
1 2 A
Ric + Hess(f) + mdf & df — OCQO*<, >N = (6 7”*2fA — ff) <, >,

that gives the first equation of () once we define A as in () Conversely suppose that () holds
for some f,\ € C*°(M). Define ¢ as in () and ( ) = . From (E 3. 13 and (E /) we obtain

Brf ()\+ Aff2>< )

m—2
that is the first equation of () with A given by () O

ﬁ\i/c_a@*<7>N:)‘<a>+ <7>:e

2.3.1 A sufficient condition for being conformally harmonic-Einstein

From [Proposition 2.3.9 a_conformally harmonic-Einstein manifold (M, (, )) satisfies the two integrability
conditions (| ) and () Suppose now_we are given f € C*(M), « € R\ {0} and a smooth map
@ : M — (N,{, )n) such that (2.3.3) and (M) are satisfied. Does it follow that (M, (, )) is conformally
harmonic-Einstein? To answer the question we need to introduce the next genericity condition.

Definition 2.3.15. Let (M,(, )) be a Riemannian manifold of dimension m > 3 and denote by S3(M)
the bundle of the 2-times covariant, symmetric, traceless tensor fields on M. We define, for a smooth map
QOZM_> (N7<7 >N)7

W?: S§(M) — S3(M)

by setting for 8 € SZ(M), B = B;;0' @ 7,
« A .
W#(B) = [Wtfk] — 5%t (Pi0ks + 9 0ki) | Bt @ 6. (2.3.16)

It is easy using the properties of p-Weyl to verify that W¢ is well defined, that is, W¥(8) is 2-times
covariant, symmetric and traceless for every 8 € SZ(M), and that it is self-adjoint with respect to the
standard extension of (, ) to S3(M), that we denote with the same symbol. Thus W¥ is diagonalizable.

Definition 2.3.17. Let M be a smooth manifold. We say that the pair ({, ), ) is generic, where (, ) is
a Riemannian metric and ¢ : M — (M, (, )n) a smooth map, if ¢ is possibly singular (that is, dep is zero)
only at isolated points and if W¥ is injective, in other words if all its eigenvalues are non null everywhere on
M.
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We are now ready to state the following Proposition, that extends a result of A. R. Gover and P. Nurowski
[GN], Section 2.4, that deals with the conformally Einstein case and that we can consider as the degenerate
case dyp = 0.

Proposition 2.3.18. Let (M,(,)) be a Riemannian manifold of dimension m > 3, a_€ R\ {0} _and
©: M — (N,{,)n). Suppose that ({, ), ) is generic and that the integrability conditions (533) and (2.3.4)
are satisfied for some f € C>°(M). Then, defining

the Riemannian manifold (M, m) is harmonic-Einstein, that is, (M, (,)) is conformally harmonic-Einstein.

Proof. We trace () with respect to ¢ and j and we use (h.Q.Qj) and (h23d) to obtain, for each k =
1,...,m,

agi(pi — i fi) = 0.
Fix € M. If there exists k such that ¢f(x) # 0 then we have the validity of the following equality at a:

() = de(V f). (2.3.19)

Otherwise the same holds by continuity, because by assumption the points where ¢f = 0 for every k are
isolated. In conclusion () holds on M. Next, taking the covariant derivative of (), using ()
and () we obtain

© _ ®
Ciijc == (ftWtijk)k
_ % %
- ftka‘jk - ftWtz’jk,k
_ % ®
== ftka‘jk - katjik,t

m—3 a,  a a  a « a a a
= ftkWtfjk — Jr (m — Qkai + a(‘PijSOk - @jk%‘) + m—29 2<Ptt(90i Ojk — @k%‘))
m—3 a a a a o a a a
== Wi — fkm — 20;91“‘ + (=9 ek + Eiifeel) + P 29%:(—%' fibjk + i fedij)

m—3

:ftkWtfkj - mfkcfki + a(@?kfk@? - ‘P?j‘sz) +

« a a
m— 2(|T(S")‘25ij — 58 fi)-

The last formula enables us to express (m — 2) Bf;, defined in (), in the form

m—3 a a a , .a « a, a
(m— 2)32’} :ftkWtfkj - mfkcfm + (@5 frei — eiyPin) + m(h(@ﬁ%‘ — 598 1)

a 1
+ Rkatfkj - aRfj%‘P? ta (‘P?j%@%k - ‘pzkj@? - m2|T(<P)|25ij>
(0%

m—3
=Ry, + Jud)Weigs — = feClli + ¢l fupl — ——

and using once again ()
m

-3 «
(m =2)Bj =(Rj, + fu )Wy — ——5 i — ——5 i fi — aRgoiel — avifujei

P [; — aRE 0ol — apln; el

a,.a m—3 o a, .a
=(Rf, + ftk)(Wtﬁkj — i 0je) — mfkcfki - msﬁtt% fi-
Thus the second integrability condition () can be expressed as
o a m—3 a 4o m—4
(R, + ftk)(Wtf'kj — i die) — mfkcfm - mﬁptt% fi+ mwtfjkftfk =0.

42



Inserting () and () into the above we get

=(Rfp + fu) (Wi — agipidse) +

fkft tj]“ SOt ft@z f] m— tl]}cftfk
( .+ fik + ftfk) W, tzk] — appidje).
Next we define

A= <S“’+Af+ Vf2>,
m 2

so that the symmetric 2-times covariant tensor field
1
B := Ric® + Hess(f) + mdf ®df — /\(, >

is traceless. From the above identity and from () we then have

1
(Wi — a0 dje) Be =W, — apipidje) (Rfk + fue + p— 2ftfk - )\5tk)

a, a 1
:(Wtfkj — apip;djt) (Rfk + fir + —

5hef) = MWy, ~ agt) =o.
Interchanging the role of ¢ and j in the above equation we get

0= (Wi — apieidn)Bu = (Wi, — apieidin)Bu

Summing up the last two formulas

0 (Wtfk] o P k) B + (W, tzk] — api oy dik) Bek
:[2Wtikj Py (Soz (;k] + P 6k2)]ﬁtk
1
=2 <Wt'Lk‘j 20((,0?(@?6kj + (P?(Skl)) Btk%
Hence,

We(5) = (W;fkj -

Thus, since W¥ is injective, 8 = 0, that is,

1 ) .
502t (970 + <P}’5ki)> B’ @67 = 0.

Ric® + Hess(f) + ﬁdf Qdf = A(, ).

The latter together with (2.3.19) and [Theorem 2.3.5 show that (M, m) is harmonic-Einstein. O

2.4 A gap result for harmonic-Einstein manifolds

Let (M, (,)) be a Riemannian manifold of dimension m, ¢ : M — (N, {, )x) a smooth map, a € R\ {0}
h‘? 5

and set 7% to denote the traceless part of the p-Ricci tensor, defined as in ([L.2.57), that is,
T¥ = Ric¥ 57 2.4.1
= Ric? — 2 (), (2.4.1)
Let the operator W¥ be defined as in () Notice that for every 8 € S3(M)
W?(B), B) = W, B Bij — api o Bik Brj, (2.4.2)
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where 8 = ﬁijﬁi ® 67. We also set

le(Cw) Cﬁk kel ® 0] (243)
and .
t0(C¥) = CF, 6. (2.4.4)
Observe that, from (I q),
tr(C¥)i,; = alpirei); = alPiri P + Prneiy)- (24.5)

Next result is computational but not trivial.
Theorem 2.4.6. In the above setting and for m > 3 we have

m— 2 m S¢¥
- - [ %4 ©w\3 M e|2
2m = 1) tr(T? o Hess(S%¥)) + _2t7"[(T )l + —— 1|T | (2.47)

+ tr(div(C¥) o T¥) — WP (T¥), T?) — tr(T¥ o Vir(C?))

1
FAIT? =[VTe[? +

Proof. A simple calculation shows the validity of
A|1ﬁ¢|2 ‘VTLP|2 +7 ij, kkTw

From (),

" AS¥
Tij,kk :Rij,kk T T dij,

and since T'¢ is traceless the formula above can be rewritten as
2 2
A|T“’\ IVT? | + RY 1 T4 (2.4.8)
Now we want to evaluate R;’; wx- First we derive the following commutation relation, alternative to (),

R%’

g,k T Rfk J + R?,kj t + o‘(‘ﬁzg@k ¢?k¢?)~ (249)

To prove it we use the second Bianchi identity and the definition () of the y-Ricci tensor
jok,t == R;?kt,j - Rgtj,k = Rig,j — Rijx
=Rj ; +aleier); — R — alei o))k
=R}, i — RE .+ aled;on + oiei;) — aefp] + i efk)
=R}, ; — R ), + alel ok — 9ie)-
To compute the coefficients of ARic? we then use (), together with (@), (h22d) and (hQﬂ) to get:

RY o =R+ Rl + alelioh — 5otk
=Ry ik + Rinje + (@5 0h + 0500, — Pine] — Pieie)
=R, kT Rzgkak + RijRﬁ + ngj,tk + a(PfPr + 05 PRE — PikkP] — PikPir)

1 a a a a a a
= <2Sf - a@kk%‘) + R'L]kR + Ry RY, + Rzk; tk T a(PiRPk T PijPrE — PikkP] — PikPik)
j

1
2555 a(Phr; P8 + PrLely) + kaR + RSD R} 4 aRj pipf + ngj,tk
+ (@l eh + 08Pk — PikkPi — Pikei)

7550 + R RY, + R{Rf + aRS ohof + Riyiin + a(—0h08 + 050k — 0l — Ohein)-
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Exploiting () and the commutation relation ()

ngj,tk :[R;‘?,k - Rfk,j + (@i — Pii i)k

1
{O;ik Am—1) (S¢i; — Sf&k)] + a(Pin§ + CinPir — PiikPh — PijPir)
k
1
=l & g 1) (25705 = 85) + alelue] + Pleli — eliuel — eljeln).
and inserting into the above we obtain
m—2 ASY

R i =554 + RijnRi + RERE + Clhy i + 570
Ukk T — 1) k kil o(m — 1) (2.4.10)

+ a(REPRPT — P P — P Phr)-
Indeed,

Ry = 5 + Ry RY + RY R + aRA 0105 + (=008 + 00k — Pl — 05 @ii)

+Clpn t (A58, — SE) + a(phret + Oieh — Oiineh — of o)

2(m—1)

75% + Rz]kak Rfj Rﬁc + aRszOk(pj a@ij(p?

1 a a
+ Cjk kT m(ASMz‘j — 87) — apiivi
m— ASS& a a a a a a
:2(m )Sw + Rtij + Rq) RW + Czyk T 2(m 1)5ij + a(Rﬁc%’k% — PrkiPi — ‘Pij@klc)'
Using the decomposition (), that in components reads
1 ¢
Rtijk- = thjk + (Rtp(s Rfk;(slj + R 6t] R,f]atk) - m((gt‘yézk - (stkéij),
we obtain
1
R”thk Wtfijtk + (R“"é — R}.0ij + Ri.0vj — R;’}étk)Rfk
S*" "
- m@tﬁik — 0udij) Ry
1 .
=W7. RS+ m(R;‘;R; — [Ric?*0;; + R R, — RES7)
— 5% (R%’ — 5968:;)
(m—1)(m—2)" % *J
=Wg R, L _(2R? R? — [Ric?|%5,, — R?.5% 57 RY. — 596,
D — ( 1l — [Ric”[76;; — R )*m( 4 — 5%0i5)

2 1 )
Wtf]k:Rtk + R;p]quj m|R1CW|2(5i_j
(S‘P) m
nDm -2 " - D(m D)

Inserting the last formula in () we obtain

p 2 MT2 gp M pp M gepe
Rij,kk 2(m— 1) Sz] + m — Rij +Cjkk +Wt1ij (m_ 1)(m_2)s Rz]
+ a(RE PR — Phai P — ©ijPkk) (2.4.11)
n (59)? N 1
(m—-1)(m-2) 2(m-—1)

=+ S“"R;’}.

1
ASLP — m|RiC¢|2 1)
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Using the fact that T is traceless, from ()7 we infer

© o m — 2 © ap m Y DPY PP PO¥ ¥ ®
R 1 T3 —mTz‘jSij + mTinijik + Tijcijle,k + Wi T 1, (2.4.12)
- 4.
_ mﬁﬁ;}%ﬁ + aT5(REPRPT — Phnj P — PijPhoks)-

The following relations can be easily deduced from (54 l) (and (I22a) for the last one)

R? RETS = TETPTS + 27
kittint iy = Liglacte; T ==

7

TP,

SSO
REekef T = Treiwi T + ——T5ei ],

SLP a a
E?Rfkwtﬁjk = E?Ttiwtfjk - O‘ET;?% Py
Using them all in () we conclude that
® o M=2 s M e o e 1 2 © P
Rij,kkjjij _meSz] mTkJT’szm + ﬁSﬂTﬂ + T‘ijcijk,k

+ TETE W, + oL ehei T — o1 (P 07 + €15k

Inserting the last formula in () we finally obtain

1 m— 2 m 1
ZA|IT?)? =|VTP)? + ———T9S8%Y + ——TPTTY

2 7 = |+2(m—1) " Zj+m—2 kg™ ik le‘_m—l
+ TST Wi, + oL ehei T — oL (0 01 + ©55%%)s

that is (.4.1), using () with 8 =T% and () O

We let n(z) denote the largest eigenvalue of W¥ : S2(M) — S3(M) at x € M and we set

SPIT?)? + Tiﬁcg‘k,k

n* :=supn.
M

We are now ready to prove the following

Theorem 2.4.13. Let (M, (, )) be a stochastically complete Riemannian manifold of dimension m > 3 and
let o : M — (N,{(, )n) be a smooth map, « € R, a > 0. Assume

i) S¥ is constant.
i1) @ is harmonic.
iti) div(C¥) = 0.

Then, either (M, (,)) is harmonic-Finstein or

—1/ §¢
sup |T%| > m-- ( - 77*) . (2.4.14)
M m m—1

Remark 2.4.15. Note that by tProposition 2.1.31, tDeﬁnition 2.1.]] and [Pﬂaosition 2.1.7, conditions ), i) and
iii) are necessary for (M, (, )) to be harmonic-Einstein. Furthermore (R.4.14)) is not empty only if |T%] is
bounded and

59 > (m —1)n*. (2.4.16)
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Proof. First of all note that if n* = 400 then () holds true. Thus we can suppose n* < +oo. In the
assumptions of the Theorem div(C¥) = 0 and, since ¢ is harmonic, by (R.4.4) and (1.2.3a)7 tr(C¥) = 0.
Thus equation () becomes

m

(%}
%A\T“’F = |VT?]? + 2tr[(T“’)3] + S : |T¢)? — (W#(T%),T?). (2.4.17)

m— m—
Since T is traceless, Okumura’s inequality, [Ok], (see also Lemma 6.2 of [AMR]]) gives the validity of

(7)) > -2

7|T”|3.
m(m — 1)

Furthermore, from the estimates on the largest eigenvalue of W¢¥

(W#(T%),T%) < 0| T,
Inserting these informations in () and setting u := |T¥|?> we deduce the validity of the differential
inequality

1 S m
“Au> | e . 4.
2Au_< — n m(m_l)\/ﬂ>u (2.4.18)

If w* := supp; v = +oo then () is obviously satisfied. Thus let u* < +oo. Since stochastically
completeness is equivalent to the validity of the weak maximum principle for the Laplace-Beltrami operator,
see [PRS03], applying the latter to () we obtain

©
02<‘9 ﬂ’n¢m>m.

m—1 m(m — 1)
Thus either u* = 0, that is, 7% = 0 on M and (M, (, )) is harmonic-Einstein or

S% . mu*
—nf -

<0.

m—1 m—1

The latter inequality implies () O
As a consequence we obtain the following “gap”result for |T%|2.

Corollary 2.4.19. Under the assumptions of [Theorem 2.4.19 let

m—1

g¥
sup |[T?| </ —— ( - 77*) ) (2.4.20)
M m m—1

then (M, {,)) is harmonic-Einstein.

Remark 2.4.21. Notice that () implies n* < 400, otherwise we would have a contradiction, and (P q).

To conclude this Section we provide an estimate, even though is non sharp, for n*.

Proposition 2.4.22. Let (M, (,)) be a Riemannian manifold of dimension m >3, ¢ : M — (N,{, )n) a
smooth map and o > 0. Assume

e(p)* = supe(yp) < +o0, (2.4.23)
M

where e(p) is the density of energy of ¢, and, for m > 4,

|[W*|* := sup [W?| < 4o0. (2.4.24)
M

Then, if m =3

n* < ae(p)” (2.4.25)
and if m > 4
m— 2 2a

* — W . 2.4.26
7S\ e W+ 2 ) (2420
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Proof. We set: for every 8 € S3(M), 8 = f3;;0' @ 67,
W(ﬁ) = Wtikjﬁtkei X 67,

Then W : S2(M) — S2(M) is well defined and self-adjoint with respect to the standard extension of () to
S2(M) (it can be seen as W¥ for ¢ constant). Moreover from Huisken’s inequality (see Lemma 2.9 in [H] or
also Proposition 8.8 in [AMR], whose proof can be extended to the case where T' € SZ(M))

|(W(B), B)| < Q(mT__21)|W|2\B|2. (2.4.27)
From (M) and (I21a) we get
) _ 2 2 « 21212

where, in local coordinates,

From () we deduce

de(B) = ¢} Bi;0" ® E.

Ww#(B), B) < W(B),8) + mW‘PFW\Q
and using () we have
" m—2 o
(W#(B),B)| < < m\WPJF (m—l)(m—2)|d90|2> 1812 (2.4.29)

If m = 3 the above reads, since W = 0,
@
oV (8), )] < 5 ldg I8P,

that is, using (), () To obtain () for m > 4 we need the following relation between |W|?
and |[W#|2:

402 9 202

D) l*(, Inl™ = m

To prove () we use () and the symmetries of W% to get

We)2 = W2+ |dip|*. (2.4.30)

2
|W</7| Wtfk] tzk]

a a a a a a a a a a
=Wk, {Wtikj + 5 (PR — i @G0k + i @0 — ¢l Pioey) — m—Dm=2 |dep|? (Su1 05 — 5tj5ik)}

4o 2a
=Wy Weikj + Wtfk#’t P — mldeQWi’;kp

and we conclude using (), the fact that W is totally trace free and () From () we obtain

2 2
W2 < [W# + 2

muﬂ )

so that

\/ IWI2 \/ IW 2+ (|d<p|2 \/ IW“DIJrildwl2 (2.4.31)




Plugging the above into () we get

m — 2
2(m—1)

and then () holds, using () and () O

Remark 2.4.32. The estimate above is non sharp, indeed assume We = 0, that is, via tProposition 1.4.d, %)
is weakly conformal and (M, (, )) is locally conformally flat. Then it is easy to see that

«
|(W#(8), B)| < ( W#|+ m_2|d<ﬁ|2> 1812,

|del?

e —

Indeed, using (2.4.2),
o aldel?
ki m(m — 1)

and that ¢ is weakly conformal, for every 3 € SZ(M), B = B3;;0"' ® 67

(00i5 — 0150ik)

. B Sy S S N .- 0 S P RO . GNPV B . P e
<W (6)75> m(mf 1) (6tk61j 675]6%19)6151661] «Q m 61]61kﬁk] m(mi 1)|6| « m |ﬁ| )
that is,
do|?
W#(8).8) = —a 2L g2
Notice that in this case, since
|W<p|2 _ 2a2|d(&0|4
m(m—1)’
we can equivalently say that
m
- _ 2
n 5m—1) Wl

2.5 Harmonic-Einstein warped products

Let (M, (, ) and (F, (, )r) be two Riemannian manifolds of dimension m and d respectively. Let u € C*°(M),
u >0 on M.

Definition 2.5.1. we denote by M = M x F the product manifold, by

<a > ::7T7\4<,>+(UO7TM)27T;<, >Fa

where mp; : M — M and wp : M — F are the canonical projections, and by

Mx, F:=(M,{(,))
the warped product with base (M, (, )), fibre (F,(, )r) and warping function u.
We are going to identify T(M x F) with TM ® TF, so that

<7>E<7>+u2<a>F'

We use the following indexes conventions

1<4,j,...<m, 1<a,8,...<d, 1<AB,...<m+d.
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Let {e;}, {6"}, {03}, {©"} be, respectively, a local orthonormal frame, the dual coframe, the relative connec-
tion and curvature forms on an open subset ¢ of M and let {.}, {¢*}, {¢§}, {¥5} be the same quantities
on an open subset W of F.

In the next well known Proposition we determine the local orthonormal frame, the dual coframe, the
relative connection and curvature forms on U := U x W induced by the choices above, that we denote by

{ea}, {?A}, {52}, {@2}, respectively.

Proposition 2.5.2. In the notations above

1 1
€; = 3 i) = €4, Cmta = 7 a) = —€a, 2.5.3
=T () S e Pt = T (ea) = e (2.5.3)
0 =r,00) =0, 0" =womy T = uwp®, (2.5.4)
i Fm+ta —m—+a o —i
0 9 ) 9m+ﬁ - 1/)[37 01 = Uﬂ;b = _0m+o¢7 (255)

%
m+ta*

— i —m-ta o —m-+a ; « oy
©; =0) ©,.5="5—|Vu’y*AyP, O] " =u;6! Np* =—-0 (2.5.6)

The non-vanishing components of Riem are determined by

i i A Uij mta 1 \Vu|2
Rjkt = Rjktv Rim+tajmtp = _f(saﬁ, Rmiﬂm+ym+5 zFngm; 2 (0ay085 — 0as0py), (2.5.7)

where R;kt and FRgW; are the components of the Riemann tensors of (M,(,)) and (F,{, )r), respectively.

Proof. Tt is clear that {€4} defined as in () is a local orthonormal frame, indeed
(€i,€5) = (eisej) = dijs  (€is€mta) =0

and

— — e g
(Emiar €mip) = u? <£ £

uw’u
The relations () follows immediately from ()

To show the validity of ( ) recall that the first structure equation on M x,, F are given by

= as :504 .
>F (€ar€p)F 3

" = a5 nE".

For A =i we obtain, using (),
a0’ = -, NG
:—5;/\§j 0m+am9
— 0N — by A
and since, from the first structure equation on M,

40’ =do' = —6; A 67,

we conclude from the above

(@, — 02) A6 + bl 0 AU =0, (25.8)
For A = m + « we obtain, using (),
dg" e = - 9;”““ ng"

—m-ta

RN A SN

—m—+a

—— 0 NG — b AU
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and since, from the first structure equation for F,
40" =d(uyp®)
=du AN Y* + udyp®
=w;0" A p™ — up§ AP
= —up® A — up§ AP
we conclude from the above

—m-+a

ullm g —¥3) AP + (0] —up®) A 0T =0, (2.5.9)

—A —A —~B
It is immediate to verify that {#5} given by () are skew-symmetric, that is, 65 = —0 4, and satisfies

A
() and (), hence they are the connection forms associated to the coframe {6 }.
The second structure equation reads as

A0l = —0 NS, + O
For A =i and B = j, using ()7
—i —  —C i
—1 —k —1 —m4a —1
= — 02 /\9;C +uiujz/JO‘ A +@;
=—0 N0 + @;.
From the second structure equation on M we have
a9t gpi . pi k i

hence from the above we infer

6, =06l (2.5.10)
For A=m+ o and B = m + f3, using (),
G = =T A O
—-m+a =i —-m-+ta = —=m+y —m-+ta
=—0; Niig = Omiy N + Oy
a a —m-+ta
=uup® AP — S AL+ O, 1
a a —m—+ta
=Vl AP — 2 AT+ 8,15
From the second structure equation on F' we have
By = A = —9S AP + UG
m+s = AP = —P5 Ay + U,
hence from the above we obtain .
O = UG — |Vul>p™ AP (2.5.11)
For A=m+ « and B =i, using ()7
a8 = g A et

AT AT e

=0 A — up§ AP+,
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From the definition of the Hessian of u we have

Uijgj = dul — ujﬂf.,

thus we infer, using (),

4o, =d(up®)

=du; NP~ + u;dp®

=ui07 AP +ui0) A — wf AP,
Comparing it with the above we obtain

m-+a

0, " =u07 Ay°. (2.5.12)

Combining ()7 () and () we deduce the validity of ()

By definition of Riem, the Riemann tensor of M X, F, we have
o, B = fR BC DG N

For A= m + a and B = i, with the aid of ()7

o = R ng”
fRZ‘,j“O NG Z"Jf@mﬂémw ARt Rgmﬁe ng™ Rrgfﬁjemw nE
fRZ‘,j‘XOJ NOF + Rjj,jfﬁ a7 AT —uRIE S 07 AP,
and using () we obtain
Rytaijk =0, Rimtam+smir =0, Rimtajmep = —%&w- (2.5.13)
For A =1 and B = j, using ()7 () and the symmetries of Riem,
y zléé(,DaC "
jktok not 4+ 2 R’ mtamegl® AV R 08 Ay
= Rjkto’“ - R’  tamig® AP,
but since, from () and the definition of Riem
ot PR S R
6, = 0} = SR, 0" A0
we obtain
Ry =Ry, Roiamis=0. (2.5.14)

For A=m+ «a and B =m + 3, using (b54|), (}2.5.13') and (b.5.14|),

—m+a + —C 7D
Omyp = 2RZ+gCD9 NG Rm+gm+ym+5¢ AY°,
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inserting () we deduce

1

§(FRg'y§ ZRzingrv m+5)¢7 A ¢6 = |vu‘2¢a A 7/’5'
Skew-symmetrizing the above we obtain

PRE s —wP RS, s = [VUl* (60085 — 0as05y),
that is, ,

RS miymts = u12 "R - Wu‘ (007085 — OasOpy)-

Hence () holds. O
Since u > 0 on M there exists f € C*°(M) such that

u==e

=

As a consequence of the above Proposition we have

Corollary 2.5.16. In the notations above, the non-vanishing components of Ric, the Ricci tensor of (M, m),
are given by

U; _ Au Vul|? 1
Rij = Rij — d 9 Rtamip = — (u +(d— 1)|u2|) Sap + EFRW, (2.5.17)

where R;; and " Rap are the components of the Ricci tensors of (M,(,)) and (F,{,)r), respectively.
Equivalently, in terms of [, where f is defined by (),

Arf 2 p

_ 1 _
Rij = Rij+ fij = 5 fifiy Bmtamis = = "0ap + 7" Rag. (2.5.18)

Proof. Tracing the relations () we obtain

_ _ u” ulj
Rij = Riaja = Rigji + Rimtajmta = Rij — daa = Rij —d—

Rm+o¢ m+f :Rera Am+p A
:Rm+a im+Bi + Rm+a m+y m+B m+y
|VU|2

uZ’L

= — féaﬁ + FRag — (d — 1) 5@5

AU |Vu|2 I
= (== -1 -
< u +(d-1) u? Oap + u2 Rap

and
Ri m+a :RiA m+a A — Rij m+taj + Ri m+Bm+am+B — 0.
Hence (2.5.17) holds. From the definition (.5.19) of f
i, (2.5.19)

in particular

2
u
[Vul? = §|Vf|2,
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and also

U 1
Ui == (fij - dfifj) ;

in particular
Au=-2(ay-Lvpp
- d d '

By plugging the above relations into () we conclude the validity of (P

Q0
=

Let p: (M,(,)) = (N,{, )n) be a smooth map and denote
®:=pomy: M — (N,(,)n).

We use the indexes convention
1<a,b,... <n,

(2.5.20)

where n is the dimension of N. Let {E.}, {w}, {wi}, {Q2;} be, respectively, an orthonormal frame,
orthonormal coframe, connection forms and curvatures form on a open subset V of N such that =1 (V) C U.

Proposition 2.5.21. In the assumptions and the notations above

7(®) = 7(p) — de(V ),
where T(®) is the tension of ® : M x, F — (N, (, }n).

Proof. Let d be the differential on M. Then, using (),
d® = 047" @ B, = 3%0' @ B, + ud®,, .4 ® E,.
Due to the definition () of ® we have
d® = mydp = dp = 910’ ® E,,

hence, by comparison with the above,
S

i Phga=0.
In particular
48] = ®434 = gt = |dpP.
Moreover 5 5
Gl = doYy — %0, + Oy,

that is, using (),

—-m-ta

GO ud, 0 = DY — B — DL B+ B,
For A =i we obtain, using (5523) and (5.5.5),

a pnj a a a apj b ,a a gi
Q607 + ud; Y = dy; —90]-9? + piwy = o8,

Tm-—ta

hence
a a a
<I>ij = ¥ P

1m—+a
For A =m + /8 we obtain using () and (.5.5),

(I)gn—&-ﬂjej + Ul gmia ¥ = ujgo?l/)ﬁ,

=0.
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hence, for f € C*°(M) given by ()7 using (),

a a (lul 1 a
Prras; =0, Prtamrs = @5 0as = =05 fi0ap. (2.5.25)

Then, using (|2524) and (I2.5.251), we infer

7—_((1))11 = ?414 = ‘bzaz + (b;ln-‘rozm-‘roc = T(‘)D)a - @?f]ﬁ
that is, () O

We are now able to prove the following theorem, the main result of this Section. This result is another
imﬁortant motivation for the introduction of the general structure of , together with [Theore

Theorem 2.5.26. Let (M, (, )) and (F,(, )r) be Riemannian manifolds of dimension m and d respectively.
Let f € C°(M) and ¢ : M — (N, {, )n) smooth. Setu asin () and ®: M — (N,{, )n) as in (
Then M X, F is harmonic-Einstein, that is, satisfies, for some A € R and o € R\ {0},

Ric—a®*(,)n = A(, ) (2.5.27)
7(®)=0
if and only if (M, {,)) satisfies
. X 1
Ric— ayp <,>N+Hess(f)—8df®df=)\<,> (2.5.28)
() = dp(V )
and (F, (, )r) satisfies
FRic=A(,)r, (2.5.29)
where A is constant and is given by
1 2
A= S(dA - Asfe= . (2.5.30)
Proof. Assume that M x, F' satisfies () From (Corollary 2.5.16 we infer
1
Rij + fij — Efifj = apip] + Adij, (2.5.31)
and .
"Rag = 2 (dA = Ay f) e 6,5. (2.5.32)
From IProposition 2.5.2]] we deduce
7(p) = de(Vf). (2.5.33)

Combining (2.5.3 |) and (R.5.33) we obtain () As we shall see in IProposition 7.1.5‘, with the choice of
ﬁ q)

uw= é, the validity of ( implies the existence of some constant A such that
Apf—dX\=—dAe
that is, () Plugging () into () we deduce the validity of ( .
Conversely, suppose that (M. (,)) and (F,(, )r) satisfy, respectivel J) and (), where A is
defined by (R.5.30). Since () holds then, using once again [Proposition 7.1.5, we deduce that A is
constant. From [Corollary 2.5.16, using the first equation of (), we infer

1 a a
Rij = Rij + fij — Efifj = apie] + Aij,

55



and from () and (),

_ A 2d

Rm+am+,8 = %f(sa,g +e7 FRaﬁ e )\50‘5.
Combining it with the above and recalling the validity of (), since from the second equation of ()
and [Proposition 2.5.21 the map ® : M — (N, (, )n) is harmonic, we conclude that () holds. O

Now we deal the “dual "case. Let v : (F,{, )r) = (N, {, )n) be a smooth map and denote

Di=n~omp: M — (N,{,)n). (2.5.34)
Proposition 2.5.35. In the assumptions and the notations above
_ 1
7(I) = EFT(«Y). (2.5.36)

Proof. Using (R.5.4),
a0 =T%0" ® B, =T%0' ® E, +ul'®,, .4 ® E,.
Due to the definition () of T we have
dl = 1hdy = dy = Y29 ® E,,
hence "
re=o0, 19, =22 (2.5.37)
u
In particular
T2 aTa 1 a.a 1 2
ldl'| =T%0% = @% Vi = $|d7|F'
Moreover 5 .
450" = dU% — D505 + Thot,
that is, using (),
a i a a JTa Ly a Fmt a
907 Ul o™ = d0% — 190 — T2, 04 " +Thuf,
For A = i we obtain, using (5.5.33) and (E.5.a),

F?jaj + urgm+awa = —%’quﬁaa

u
hence w
TG =0, Thia =370 (2.5.38)
For A =m + 8 we obtain using (E52}) and (E.E).a),
a ] a o ’ya 7(1 « ,yg a
m4p 0+ Ul gm0V =d (5) — L VBt W

1 a a,) o a 1 a j
=4 (dvG —vav +’ngb) - ﬁ’}/ﬁujeja

hence, from the definition of covariant derivative of d-,

a 1 a a 1 a
m+pj 7ﬁ’yﬁuj’ Fm+[3m+a = ?’Yﬁ(y (2539)
Then, using (b.5.3d) and (l2.5.3E1), we infer
= a a a a 1 a 1 F a
T(F) —LtAA— Fii + Fm+a mta = 9 Vaa T T3 T('Y) )
u u
that is, (R.5.30). O
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Assume M =T 3 0 is an open interval on R with the Euclidean metric, « € R\ {0} and v : (F,{(, }r) —
(N, (, )n) is a smooth map. We set I" as in () From () we get that I is harmonic if and only if
« is harmonic. In our setting () yields

_ u// _ u// (u/)Q 1
Riy=—-d—, Rijoi4p=—|—+(@d-1 6ag + —=L Rag.
1 o Birares <u+( )= 2 st 5 Rap

Using () we get, from the above

_ o _ u (u/)2
R{l = _d?a R{.t,_a 148 — — <u + (d — 1)

1
= ) Sap + ;FRZw- (2.5.40)

Assume [ x, F' is harmonic-Einstein with respect to I' and «, that is,

ﬁ_ar*<’>N:)‘<7>
#(I) = 0.

Then + is harmonic and from ( ) we obtain

u' = —=u (2.5.41)

2
P u u' 9
(A +Zr@-1n (L .
Ros ()\ " (d )(u> )uéaﬂ

By plugging () into the above we get

FRus=(d—1) <(u’)2 + 2u2> Sop- (2.5.42)

and

Observe that

is constant on I, indeed

AL\ A
((U/)Q + du2> = 2’lLl (UN + du) 5
hence we conclude using () Hence can be rewritten as (assuming 0 € )
A
PRy = (d—1) (u’(O)2 + du(O)Q) Sap-
In conclusion the following hold

FRic" = (d— 1) <u’(0)2 + 2u(0)2> (r

Fr(y) =0,

hence (F, (, )r) is harmonic-Einstein with respect to v and « and moreover u solves () Observe that
the solutions of (R.5.41]) are given by

(2.5.43)

u=1'(0)sny +u(0)ena, (2.5.44)
where .
W sinh(v/—kt) for k <0
sn,(t) ==t for k =0  for every t € R.
1
— sin(y/kt) for k >0

Jr
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and
/

cny = sn,.

We obtained, since also the converse implication holds,
Proposition 2.5.45. Let I 5 0 be an open interval on R with the Euclidean metric, o € R\ {0} and
v (Fy(,)r) = (N,(,)n) be a smooth map. Let u € C*(I) and set ' as in () Then I x,, F is

harmonic-Einstein with respect to T' and « if and only if (F,(, )r) is harmonic-Finstein with respect to
and o« and u is given by () In this case the following relation holds:

Ql’
FSv = m(d—1) <u’(0)2 + d(nf+1)“(0)2) .

Remark 2.5.46. In particular, in the assumption of the Proposition above, in case u is constant (that is the
case where the warped product is a Riemannian product), we get from (), since u > 0, that A = 0. As
a consequence the following are equivalent:

(i) I x, F is harmonic-Einstein with respect to I' and «;
(ii) I x, F is T-Ricci flat for a;
(i) (F,(, )r) is y-Ricci flat for a.

2.5.1 Lorentzian setting

Remark 2.5.47. We say that a Lorentzian manifold (M, {,)) of dimension m, for m > 3, is harmonic-Einstein
if there exists ® : M — (N, (, )n), where (N, (, )n) is a Riemannian manifold, and o € R\ {0} such that

Ric —a®*(, )y = A(,) (2.5.48)
7(®) =0, a

for some constant A. The situation when a Lorentzian manifold is harmonic-Einstein, as one can expects

due to the analogy with Lorentzian Einstein manifolds, is interesting in view of applications to General
Relativity. Indeed, taking the trace of the first equation of (), we infer, since m > 2,

Ricg<,>+A<,>O¢<@*<a >qu)|m>,

2
where 5
A= D 25%
2m
Hence, for m = 4 and
381G
= — 2.5.49
= A ( )

where G is Newton’s gravitational constant and c is the speed of light in vacuum, the above yields
—®
S

ﬁ—7<,>+Am

837G =
= 07487

where S is the stress energy tensor of the wave map (harmonic map, with as source a Lorentzian manifold)

®, as defined in (), and it is divergence free because ® is wave map. Hence the spacetime (M, (, )) is
a solution of the Einstein field equations with zero constant

P
A:

o[
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Now let (M, (, )) be a m-dimensional Riemannian manifold, with m > 2. Denote
M:=MxI,

where I C R is an open interval. Let f € C*°(M) and

we consider on M the Lorentzian metric

()= {(,) —u?dt ®dt,

where t denotes the coordinate on I, and we denote by M x,, I := (M, (,)) the Lorentzian warped_product.

Let ¢ : M — (N, (. )n) be a smooth map, set ® as in () One can prove the analogous of
D.5.16 and [Proposition 2.5.21] also in the Lorentzian setting. We have, see Corollary 43 of [@], for every
X,Y tangent vector to the base M and V, W tangent vector to the fibre F,

Ric(X,Y) = Ric(X,Y) — %Hess(u)(X, Y)
Ric(X,V)=0

Moreover, since ® := ¢ o myy,

and using © = e~ the above relations imply
(m - O‘(I)*<7 >N)(X’ Y) = (Ric - Oé(p*<, >N)(X7Y) + Hess(f)(X, Y) - df ® df(X’ Y)
(Ric — a®*(, )n)(X,V)® =0 (2.5.50)
(Ric —a®*(, )N)(V.W) = Ap f(V,W).

It is also easy to prove the validity of
_ 1
T(®) = 7(p) + _dp(Vu),

that is,
T(®) =7(p) — dp(Vf). (2.5.51)
Assume M x,, I is harmonic-Einstein for some constant v € R\ {0} and ® as above, that is, (P.5.48)
holds for some A € R. Using (E.5.5 ) and the first equation of (R.5.48) we deduce the validity of

Ric — ap™(, )n + Hess(f) —df @ df = A(, )

with
Apf =), (2.5.52)

or equivalently
Au+ du=0.

Furthermore, from () we immediately get
7(p) = de(V f).

In conclusion:
Ric — ap"(, ) + Hess(f) — df © df = A(, )
7(p) = dp(Vf) (2.5.53)
Arf=2A
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Oun_the other hand, assume () holds. From () we immediately get 7(®) = 0. Moreover, using
() we deduce

that is, using (),

Ric — a®*(, )n = Asf(, ),

Ric — a®*(, )y = A(, ).

Definition 2.5.54. Let (M, (, )) be a Riemannian manifold of dimension m and let ¢ : M — (N, {, )n) a
smooth map. If there exists @ € R\ {0}, f € C*°(M) and X € R such that () holds we say that the

Riemannian metric (, ) on M is ¢-static.
We summarize the discussion above in the next

Proposition 2.5.55. Let (M, {,)) be a m-dimensional Riemannian manifold and let I C R_be_an open
interval. Let o € R\ {0}, ¢ : M — (N, (, Y)n) a smooth map and f € C°(M). We set ® as in () The
Lorentzian warped product manifold M X .-¢ I is harmonic-Einstein for some constant « € R\ {0} and ® as
above if and only if the Riemannian metric {, ) on M is @-static.

Remark 2.5.56. In case ¢ is constant we recover Proposition 2.7 of [@] and the classic concept of static
metrics.
Remark 2.5.57. Assume the Lorentzian warped product is harmonic-Einstein, that is () holds for some
constant & € R\ {0}, ® as above and A € R. Clearly, tracing the harmonic-Einstein equation,
g
S om+ 1

Moreover, as showed above, () holds. Taking the trace of the first equation of () and using also
the third equation of it we infer

S =(m—1)\.
Combining with the above we conclude
m—1
52 =(m-1)A=—-_8%
(m ) m+1

Notice that, if M is compact, then the third equation of () easily implies A = 0 and f constant,
in particular M X, I is a Riemannian product. Then to obtain examples of non-trivial warped products we
need to consider M to be non-compact (and also S® < 0, as we shall see later on in )

The situation when the Lorentzian warped product M x, I is harmonic-Einstein (for some constant
a_€ R\ {0} and ® as above) is interesting in view of , especially for m = 3 and « given by
(R.5.49). Indeed in this case the Lorentzian warped product M x,, I is a standard static spacetime that is a

solution of the Einstein equation (with zero cosmological constant) where the stress-energy tensor is given
by

S=o"(, v —&@)(,),
where €(®) is the density of energy of ®. Since ® = y o 7wy we have &(®) = e(y) and thus,
S =7S +e(p)e H dt @ dt, (2.5.58)

where S is the energy-stress tensor of ¢, that is,

S=¢"(,) —elp)(, ).
We summarize in the next

Proposition 2.5.59. Let M x I be a four dimensional Lorentzian warped product that is harmonic-Einstein

with respect o given by () and ® given by (E.S.ZQ), for a smooth map ¢ : M — (N, {, )n). Then M x, I
is a solution of the Finstein field equations with cosmological constant A = S—; and with as stress-energy
- )

tensor the one of the wave map ®, that is given by (
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Part 11

Einstein-type structures
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Chapter 3

Definition of Einstein-type structures
and basic formulas

In what follow X(M) will denote the C°°(M)-module of the vector fields on M.

Definition 3.0.1. We say that the Riemannian manifold (M, (,)) carries an FEinstein-type structure if
there exist X € X(M), ¢ : M — (N,(, )n) for some Riemannian manifold (N, (, )n), and functions
a, A\, € C (M) such that
1
Ric+ 5 Lx(, ) —uX" @ X" —ag™(, )y = A(,)

() = dp(X),

(3.0.2)

where ” : X(M) — A'(M) is the musical isomorphism and Lx (, ) denotes the Lie derivative of the metric
along the vector field X.

In case X = Vf for some f € C°(M) we say that (M, (, )) carries a gradient Einstein-type structure. In
case the Einstein-type structure is gradient () takes the form

{Ric—i—Hess(f) — pdf @ df —ap™(, )n = A(,) (3.0.3)

() = dp(V ).

Remark 3.0.4. The gradient Einstein-type structures as () for p = —ﬁ7 in view of 7
coincide with conformally harmonic-Einstein manifolds, while, for 4 = = for some positive integer d, are
the base for some harmonic-Einstein warped product, see for the precise statement. These
situations motivate the study of gradient Einstein-type structures. Furthermore, the structure described by

( ) generalizes some well known particular cases that have been intensively studied by researchers in the
last decade. Indeed, () characterizes:

i) Ricci solitons for ¢ constant, p = 0 and A € R, that is,
. 1
Ric + 5Lx(,) = A(, ).

Letting A € C*°(M) we obtain Almost Ricci solitons, whose gradient version has been introduced in
[PRRiS]. Note that when A = a+bS for some constants a,b € R and S the scalar curvature of (M, (, )),
the corresponding soliton is called a Ricci-Bourguignon soliton after the recent work of G. Catino, L.
Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [CCDMM)|. For a flow derivation of the gradient

Ricci almost soliton equation in the general case see the work [GWX[;
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ii) Quasi-Einstein manifold for X = V f, ¢ constant, p = é for some positive integer d and A € R, that is,

Ric + Hess(f) — %df ®@df = A(, ).

In case X is not necessarily a gradient vector field we have generalized n-quasi Einstein manifolds,
introduced in [BR]. In literature the generalized quasi-Einstein condition is given by

Ric + Hess(f) — pdf @ df = A(, )
with p, A € C*°(M). See, for instance, [C] and [AG].

iii) Ricci-harmonic solitons for = 0, A € R and « > 0, whose gradient version has been introduced by
R. Miiller in [M]. As expected the concept comes from the study of a combination of the Ricci and
harmonic maps flows. We refer to [M] for details and interesting analytic motivations.

iv) 7-quasi Ricci-harmonic metrics for X = Vf and p = %, where 7 is a positive constant, introduced in

(W

In what follows the term Ric—ap* will be simply written as Ric¥, when there is no risk of confusion,
following the notation introduced in Eéhagter 1.

In Bection 3.1 we compute the gradient and the Laplacian of the y-scalar curvature for Riemannian
manifolds supporting an Einstein-type structure, these formulas shall be used frequently in the following
Chapters.

In we present a general non-existence result, related to the existence of a first positive zero
for the solution of a Cauchy problem, for gradient Einstein-type structure with p constant and different from
Zero.

3.1 Basic formulas

The following commutation relations, valid for every Y € X(M), follows from the general commutation
relation ([14): 4 '
Vi = Vi, = Y Ry, (3.1.1)

inkl - jilk =Y/ Reint + YtiRﬁ-m- (3.1.2)

We shall need them in the proof of the following

Proposition 3.1.3. Let (M, (,)) be a Riemannian manifold of dimension m with an Einstein-type structure
as in (), with a € R\ {0}, X e X(M), A e C¥(M), peR and ¢ : M — (N, (, )n) smooth. Then in a
local orthonormal coframe the following hold,

RY.

ij,k

1 j i v i i j
+Rf,; — Ruji X" + §(X,g — XF)i = plXi X7 — XEXF 4+ XU(X] — XD 4 Akbij — Ao, (3.1.4)

1 . 1 . 1 : .3 . ) .
55;: - REXT+ 5 (Xi - XMi=u {Q(X,g + XHX+ 5 (Xi - XHxt - X}X’“} +(m =1\,  (3.1.5)

1 ~Du+1
382 S? + (L= (TP + alre)) + | RS2 — = 1] (57— )
m (3.1.6)
= (m — 1)A2I»LX)‘ + %D,
where _ _ _ _
D :=2[(X} — XP)X|, + (X — XF)XL. (3.1.7)

Here Ay, for'Y € X(M), stands for the operator A — (Y, V ).
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Proof. In a local orthonormal coframe () is given by

1 ] . .
Rf + = (X:+ X)) = uX' X7 + Aoy,
it y D= g (3.1.8)
pii = 9 X

Taking the covariant derivative of the first equation in () yields

1, . ; o o
Rix+ §(X;k + X)) = p(Xp X7 + X'X5) + Adij-
Inverting the role of j and k& and by subtraction we obtain

— R¥

©
R; ik,j

Loy i j i i i iy i
ijk + 5 (X = Xiy + X — XE) = n(X[X7 = XX+ XTX] — X'XF) 4+ \edij — Ay
Using three times () and the first Bianchi identity we deduce

Lo i j L5
§(Xjk = Xy + X}y — X55) = Rugn X' + i(lec - X7

Plugging into the above we have

-
Rij,k

that is () Summing on ¢ = j in () we get

1 . L ) )
SE = Rii — R X'+ (X — XF) = p2Xi X" — XX — XTXF) + (m — 1)\

1, L ) o
R+ Ruje X' + 5 (Xt - XF)i = plXi X7 — XIXF 4+ XUX] — XP)]+ Medij — A,

Using (), the second equation of (B.1.§) and the definition () of Ric¥ we infer
o1 1 )
Ry, + R X' = 55}: —aphot + R X' = §S1f + RL X"

and inserting into the above we obtain ()
Tracing the first equation of () we deduce

S+ X! = pu|X[* +m, (3.1.9)
using it together with the first equation of () in () we get

1 o1, , ,
is,f - REXT+ 5 (Xi - XE)i =p [(—RE, + pX XF + X0i) X'+ (S¥ — p| X2 — mA) X*]

3 _
15 (X = XOXT 4 (m = D,

or equivalently

1 1 ) . 3 . .
SSE+ 5 (XE = XE)i = (1= mREXT + (8% = (m = DAX* + S (XE = XX + (m— DA, (3.1.10)

2
Contracting () against X we obtain

1 1, . .

is,fX’“ + i(X,Q — XF)XF = (1 - pREXIXE + u(S? — (m — DA)|X)? + (m — DA XF,
thus

(1 — p)pREXIXY = %S,ka + %(X,i — XF)XP — u(S? — (m — DM p|X 2 — (m — Dp X" (3.1.11)
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From () easily follows

Xiir = Xikika
then taking the divergence of () and inserting the commutation relation above we get
1 i i
5860 =(1= ) (RG, X" + REXD) + u(SE = (m = DAR)X" + (87 = (m — )X Xf

5 5 (3.1.12)
g (Xp = XX+ g (X = X7) X+ (m = 1)

Contracting the first equation of () against Ric” we infer

Ric?|? + RS X} = pREXIXF + 057,

ij
that using the definition () it is equivalent to
2, (5%)? : ok
792 4 225 4 RE X = pREXX +ASY,
m
that is,

; S ,
REX) = —|T?]? - E(S“’ —mA) + LLR@X’X’“.

7,
Using the above and () we deduce
i i L op i a ayi
(1= p)(RY X"+ RLX)) = ( - > SEXT— (1 — p)agippi X' — (1 — )| T#[?

2 2
SLP © © vivyvk
— (- )2 - m) b - W REXX

and from the second equation of () and () it follows
i iy _ 1 i 5%
(1= W) (RE X' + REXE) =2 SEX* — (1= (TP +alr(9)?) — (1= 102 (57 —m2)
+ SO0 = XDXY = u(S% = (m = DAuIX] = (m = DurXE.

Inserting the above into () we obtain

1 142 ; 5%
55 =5 SEX = (L= (T# + alr(@)?) = (1= 1) Z=(S% = m))

2
+ SO0 = XDXF = u(S7 = (m = DA(=XE + plX[?) = 2(m = Dur X+
3, , 3 . )
+ Mi(Xi - XPX'+ M§(Xi — X)X+ (m = 1) A,

that, using (), can be written as

1 1+2 . S¥
555 = SEXS = (1= (Y 4 alr(@)) = (1= )2+ 8% — plm = D] (87 = m)
_ 3 3 .
2 = Xt 0 - X000 - XX+ (m = 1) — 200X,
that is,

(m—1p+1

1
582 S? + (1= (T + alr(o)f) + | =)

SY — p(m — 1))\} (8% —mA)
= (m = 1) Agux A+ SI(XE = X)X + 3(X, - XX+ 3(X] - XF)X{].
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We then conclude the validity of (), since

(Xi = XF)XF 4+ 3(X] — XPX'+3(X] — X)) Xp =2(X], — X)) X' +3(X} — X)X,
=2((X} — XF) X + (X} - XB)X]
=D. O

Remark 3.1.13. In case p = 0 equation () can be rewritten as
1 2 2, S¥
iAXS“”JrOAT(ga)\ + T + E(S“"fm)\) =(m—1)AA\ (3.1.14)

Observe that in case X = Vf (or, more generally, in case VX is symmetric), equation (Elzﬁl) and (Ela)
become, respectively,

RY . — Rb ;= Rugife = p(fin fj — Figfi) + Aedij — A, (3.1.15)

1
358 = Bifi = n(ffi = Affi) + (m = DA (3.1.16)
Moreover D defined in () vanishes identically and thus () takes the form

1
FAa+20 8% + (1~ (TP + alr(0)?)

N {(m—2u+1

(3.1.17)
S — p(m — 1))\} (S¥ —mA) = (m —1)Agur A

Remark 3.1.18. Formula () when X is constant reduces to (2.1) of [W].

3.2 A non-existence result

The results of this Section are part of a joint work with Marco Rigoli. We now present a general non-existence
result for gradient Einstein-type structure with p # 0.

Proposition 3.2.1. Let (M, (,)) be a complete Riemannian manifold of dimension m. For r € RT, let

=0 P = 2 mA\ — S¥
o) = vol0B), A=t [ ma—s9)

where B, is the geodesic ball of radius r with centre in o € M. Let z € Liploc(Rar) be a solution of the
Cauchy problem

2(0) =2 >0, (v2)(0F) =0. (3.2.2)

{(vz’)’ +Avz=0 onR*
Suppose that z admits a first zero Ry € RT. Then there exist no f,\ € C*°(M) and o, u € R\ {0}, such that
Ric? + Hess(f) — pdf @ df = A(, ). (3.2.3)

Proof. By contradiction assume the existence of f,\ € C*°(M) and a,u € R\ {0}, such that () holds.
Since p # 0 the positive function u := e~*/ satisfies

H
Hess(f) — pudf @ df = — 250
pu
and () can be rewritten as
Hess
Ric? — Hes() _ 50y
pu
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Taking the trace of the above we obtain Lu = 0, where
Lu = Au+ q(x)u, q:= p(m\—S¥).

Since u > 0, by a well known result of [FCS] and [MP], the operator L is stable or, in other words, its
spectral radius A\¥'(M) is non-negative.

Now we prove that under our assumptions A} (M) < 0, obtaining the desired contradiction. Observe that
v € L (RS), v>0on R and vt € L2 )(RT) by (iii) of Proposition 1.6 of [BMR]. By Proposition 3.2

loc loc
and Proposition 3.6 of [BMRI]] there exists a solution of () is in Lipjoc(RY) and its possible zeroes are
isolated. Suppose that z admits a first zero Ry € RT. We define
Pi=zor,

where 7 is the distance function from the fixed origin o € M. We consider the Rayleigh quotient

-1
Q(w):</3 W) /B(\wsz?)-

From the co-area formula and Gauss lemma we get

Q) = ( / " ) ) / Pl - av?],

Integrating by parts and using () we obtain

Ro R Ro Ry
/ (z') v = 22v|,° —/ z(v2') = / Avz?,
0 0 0

so that Q(v) = 0. Then by the min-max characterization A(Bpg,) < 0 and by monotonicity of the eigenvalues
of L we infer \Xl(M) < 0. O

Remark 3.2.4. Tt remains to determine some sufficient conditions under which a solution z of ( ), always
existing by Proposition 3.2 of [BMR], admits a first zero. From Corollary 5.2 of [BMR], if A > 0 on RT,
A # 0 and either g~ ¢ L!(+00) or otherwise there exist r > R > 0 such that A # 0 on [0, R] and

/RT(\/Z VXg) > f% <10g /OR Av+log/+oo ;) , (3.2.5)

R

z has a first zero. Here g € L (R{) is such that ¢! € L2 (RT) and 0 < v < g on R{, while y, is the

loc loc

critical curve relative to g defined by
+o0 1 -2
o ={20) [

o0 1
u(mA — S¥) + log/ g) .

R

Note that () can be rewritten as
" 1
/ (VA - /xg) > -3 <log/
R

Br
Observe that the existence of a first zero can be guarantee from an oscillatory condition. For instance,
from Corollary 2.9 of [MaMR], if for some ry € Rt
@ lim (mA — S%) = +oo, (3.2.6)
r——4o00 Br\Bro

then every solution of () is oscillatory.

68



By way of example, we have

Proposition 3.2.7. Suppose u(S¥ —mM) <0 on M,
v(r) < Cr?, (3.2.8)

for some constants C > 0 and 0 € R and, in case 0 > 1, that for some R € RT and for some constant
D> %1
2

D2
/ p(mA = 8%) > —wv(r)  forr >R, (3.2.9)
0B, r
Then a solution z of () admits a first zero.
Proof. From () we can choose
g(r) =Cr?.

Clearly g=! ¢ L!(+00) if and only if § < 1. In case 6 > 1
0—1\
Xg(r) = ( o > .

0—1 1
3 (10gr—10gR)>—§10g/
Br

Hence () can be rewritten as
s

J, -
R

/\f—9_110gr>llogC-i-}lOg(e_l)_llOg/ p(mA — 5%).
R 2 2 2 2 Br

Rl—@
cO—-1)

u(mA — S¥) — %log

that is,

From () and the definition of A we immediately see that
D
A(r)> — forr > R. (3.2.10)
r

Using (), to obtain the validity of (B.2.5) for some r > R it is sufficient that

L [ds 01
R S 2

1 1 1
logr > —logC 4+ = log(6 — 1) — flog/ p(mA — S%),
2 2 2 %/,

that is,
0—1
D (logr —log R) —

log r > log( C(G—l))—%log/ u(mi — S%),

Br
or equivalently,

<D - 91) logr > log(RP\/C(0 — 1)) — llog/ p(mA — S%). (3.2.11)
2 2%/,

R

Since D > 02;1 there exists r large enough such that () holds. Then, from , we can

conclude the proof. Observe that A # 0 on [0, R] is guaranteed by the fact that, since by assumption
u(S¥ —mA) <0on M on M, S # mA on Bpr that, in turns, is guaranteed by (@) O

Remark 3.2.12. We consider, in case § > 1, the limiting case v(r) = Cr?. Inserting this information into
(B.2.9) we obtain

/ p(mA — S¢) > CD?*r%=2  forr > R.
aB,
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An immediate computation and the fact that 6 > 1, shows that

2
/ ’u(m)\ _ Stp) > Ci
B.\Bn 01

and therefore the integral diverges as r — +00. This means that condition () is satisfied and the solution
is even oscillatory.
Observe that instead of () we may have assumed the strongest condition

(ra—-‘rl _ RQ—I)

/ p(mA — S8%) > CD*?% 2 forr>R. (3.2.13)
OB,
Indeed, using (B.2.§),
D? D?
/ p(m — S¥) > CD*rf~2 = cr6—2 > —v(r) forr >R,
B, T T

hence () implies () But () implies also () for rg = R, so not only admits a zero but is

even oscillatory. Indeed

T T D2
/ u(mA — S¥) = / (/ u(mA — S“’)) ds > CDQ/ §972ds = ¢ (r?=1 — RO71)
BT‘\BR R OB R 0 - 1

so that, since 6 > 1,

lim p(mA — S¥) = 400 (3.2.14)
r——4o00 BT‘\BR

Notice that, in general, () does not imply (), hence this condition guarantee the existence of a
first zero and not the oscillation for the solution z. For instance, assume for some constant v < 1 and B > 0,

v(r) = Br” for every r > R.

Then, from (),

BD?
/ w(imA — 8%) > = for r > R. (3.2.15)
o8, e
Since v < 1
" ds BD? 1 1 BD?
A —S¥) > BD? = - N for 1 —
/BT\BR ulm )2 /R s277Y  1—+v (Rl—v rl—"/) (1—~)R'— or 1 = +00,
hence
lim w(imh — S%)
r—4o00 BT‘\BR
is not forced to be infinite.
As another example we give
Proposition 3.2.16. Suppose S¥ > mA on M,
v(r) < Aexp{ar®log’ r}, (3.2.17)
for some constants A,a,a >0 and 8 >0 and
9a 2. 2(a—1) 1. 2(f—1)
p(mA — S%) > T(alogr + pr)°r log ro(r). (3.2.18)
dB,

Then a solution z of () admits a first zero.
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Proof. The proof is similar to that of Proposition 3.2.7. From () we can choose

g(r) = Aexp{ar®log” r}.

Clearly g~ ¢ L'(+00). We claim that the validity of, for some r and R large enough,

" 1 1 3
/R VA —ar®log? r > 3 log/B p(mA — S¥) + 5~ ?aR“ log” R (3.2.19)
R

implies the validity of () Indeed, if we define

%) = (299((?))2

\/Xg(t) ~ 1/ xg(t) fort — +o0,

see (4.4) of [] In particular, if R is large enough, for every t > R,

Vxolt) < 2/%y(0).

then

Then we deduce

/ VXg < 2/ V' Xg =1ogg(r) —log g(R) = ar® logﬁ r—aR® logﬁ R,
R R

so that

/ VA - / VXg > / VA — ar®log” r + aR* log” R. (3.2.20)
R R R

Moreover

1 teeq
—flog/ fw—gto‘logﬁt for t — +o0,
2 ‘ g 2

hence for R large enough we have

N

1 ter 1 ot B
— —log - < =(1—-aR%log” R). (3.2.21)
2 R 9

Using (B.2.20) and (BQQII) we deduce the validity of the claim.
Clearly () implies

VAt > %a(alogt + Byt tog’ it = %a(t“ log” t)’.

Using the above, the validity of (| ) is implied by the validity of

1 1
3—aro‘ log? r > -2 log/ p(mA —S%) 4+ -. (3.2.22)
2 2% |, 2

The right hand side of () the above is monotone decreasing in R, then it is sufficient that ()
holds for some R = Ry to obtain that it holds also for all R > R;. Then we may fix R such that A Z 0 on
[0, R]. clearly for r large enough we obtain the validity of () Then we can conclude the proof, as in
[Proposition 3.2.7|. O
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Chapter 4

Non trivial Einstein-type structures
on harmonic-Einstein manifolds

Let (M, (,)) be a Riemannian manifold of dimension m > 2 that supports a Einstein-type structure, that
is,

Ric“"+%ﬁx(, Y — X @ X" = A(,)
7(p) = dp(X),
for some aw € R\ {0}, A\, p € C®°(M) and X € X(M) \ {0}.

(4.0.1)

Definition 4.0.2. We say that the Einstein-type structure () is non-trivial if X # 0.

Remark 4.0.3. If () is trivial then
Ric? = A(, )
T(p) = 0.
In particular
5%

m

A

and, assuming A constant in case m = 2 (if m > 3 it is automatic in view of lProposition 2.1.Eb7 (M, (,))is
harmonic-Einstein.

We shall see that the converse is not true, that is, there exists harmonic-Einstein manifolds that supports
non trivial Einstein-type structures.

Definition 4.0.4. We say that the Einstein-type structure () reduces to a harmonic-FEinstein structure
if (M, (, )) is harmonic-Einstein with respect to the map ¢ and «, that is, if

S
i (p:7
Ric m<’>

m(p) =0

(4.0.5)

holds and further S¥ is constant if m = 2.

Notice that the Einstein-type structure () reduces to a harmonic-Einstein structure if and only if

;£X<,>—qu®Xb—<)\—i:><>> (4.0.6)
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with S¥ constant if m = 2. In literature the first equation of the above is called the almost quasi-Yamabe
soliton equation. In the following we say that the vector field X is wvertical in case the second equation of
the above holds, that is, in case X is annihilated by the differential of ¢. This terminology is motivated by
the case of of submersions.

The aim of this Chapter is to study complete Riemannian manifolds that admits a non-trivial Einstein-
type structure that reduces to a harmonic-Einstein type structure. For this purpose we study harmonic-
Einstein manifolds endowed with a vector field X such that () holds, for some A € C*°(M) and p € R.
When ¢ = 0 we are able to study the generic case, sometimes requiring the compactness of M and that X
is non-Killing, while when p # 0 our results deal only with the gradient case.

In we the consequence of the presence of a conformal vertical vector field on the geometry
of a harmonic-Einstein manifolds. We begin by generalize the classical result of M. Obata, that says that a
compact Einstein manifold that admits a conformal non-homothetic vector fields must be isometric to the
sphere, see |Proposition 4.1.14, where we assume « > 0. Then we investigate the remaining cases, that is,
when X is Killing and when X is homothetic non-Killing. In the latter we are able to study the complete
case.

In , applying the result obtained in , we shows triviality results for generic
Einstein-type structures. We show that if a compact Riemannian manifold supports a Einstein-type structure
with X non Killing and o > 0 that reduces to a harmonic-Einstein structure then it is isometric to the sphere,
the map ¢ is constant and X is non-constant, see . Moreover we prove that if a complete
Riemannian manifold of dimension supports a Einstein-type structure with A constant and X non-Killing
that reduces to a harmonic-Einstein structure is flat and ¢ is constant, see tProposition 4.1.33.

In we study non-trivial gradient Einstein-type structures that reduces to harmonic-Einstein
structures. Our main results are when ¢ = 0 and when g # 0. Those results
shows that (eventually assuming that the potential function f has exactly one the critical point), essentially,
the only complete Riemannian manifolds admitting a non-trivial gradient Einstein-trype structure that
reduces to a harmonic-Einstein structure are space forms. We conclude with Fiorollary 4.2.35 and Corollar
, showing that the only compact harmonic-Einstein manifold that supports a non-trivial Einstein-type
structure is the sphere.

4.1 Harmonic-Einstein manifolds and vertical conformal vector
fields

In the next Lemma we provide a formula for the Laplacian of the conformal factor of a vertical conformal
vector field.

Lemma 4.1.1. Let ¢ : (M, {(,)) = (N, {(, )n) be a smooth map. Let X € X(M) be a vertical vector field
that is conformal, that is,

1
or -
dp(X) =0,
for some n € C>(M). Then
S¥ 1
14 =
An+m_1n+2(m_1)<vs LX) =0. (4.1.3)

Proof. We rewrite the first equation of () in local form with respect to an orthonormal coframe as
X5+ X] = 2m6;;. (4.1.4)
Observe that, contracting () against Ric? we get
R;‘;X; + R;’}Xf = 25%n,
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that is, since Ric” is symmetric ‘
R;’}X; =nS?. (4.1.5)

Moreover from Schur’s identity (| ) and the second equation of (), that in local form is given by
PiXt =0,
. 1 .
® T __ Yy
R% X" = §Si X (4.1.6)
Observe that, from the second equation of () and the definition ([1.2.9) we have
Ri; X7 = REXY.

Using the commutation relation (8.1.1)) and the above we get

A(div(X)) =(X);; = (X§;); = (Xj; + Rrii; X*);

:X;ij - (Rini)j
:X;‘ij - (R;ijl)j
:(X;)ij — R;’}JXZ — R;’;-X;.

With the aid of (|414]), (|41d) and (|4151) the latter can be rewritten in the form

, 1 ,
A(div(X)) =(=X] +2ndi5)ij — 557 X" = 5

= _ X

g

1 )
+2An — iSfX’ — 5%n.
Using the commutation relation () we obtain

X} = Xl + Rigjij Xi7 + Ry X = X,

+ RuXF — Ry X) = X/

i i iji)

and inserting into the last above we infer

: j 1 i
A(div(X)) = —(X;)i + 247 - ist — S¥n.

Using once again (t}i.l.]])7 (|4.1.4|)7 (|41d) and (M) and proceeding as above

A(div(X)) = — (X}, + Ruji; X*); + 280 %Sin — 5%
== X]Jn - (RkiXk)i + 2An — %S’in — S%p
=~ X};; — (REXY)i + 200 — %Sin — S%n
= — Adiv(X) — Rf, ;X" — R{, X} +2An — %sfxi — §%p
=~ Adiv(X) - %SZ’Xi — S+ 240 — %Sfxi — 5%
= — Adiv(X) — 57 X" — 25%n 4 2An,

that is,
A(div(X)) = Anp — %Sin — 5.

Observe that, taking the trace of the first equation of ()7
div(X) = mn,
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so that from the above we obtain

1 1
Anp=— (An — (VS X) — S“’n) )
m 2
that immediately gives (4.1.3). O

Our aim now is to extend the well known fact, due to M. Obata, that a compact Einstein manifold that
admits a non-Killing conformal vector field is isometric to a Euclidean sphere. To do so we first recall and
prove the next, well known,

Theorem 4.1.7 (Licherowicz-Obata). Let (M, (,)) be a compact Riemannian manifold of dimension m
satisfying for some Kk € R

Ric> (m — 1)k(, ). (4.1.8)
Let uw € C*°(M) be a non-constant eigenfunction of —A relative to the eigenvalue A € R, that is,
Au+ I = 0. (4.1.9)
Then
A > mek, (4.1.10)

equality holding if and only if (M, (,)) is isometric to a Euclidean sphere S™ of R™™L of constant sectional
curvature k > 0 (hence the equality holds in ())

Proof. From Newton’s inequality and ()

[Hess(u)|? > —(Au)? = —%uAu,

1
m
the equality holds on M if and only if Hess(u) = n(, ) for some n € C*°(M). Recall Bochner formula
1

§A(|Vu|2) = [Hess(u)|* 4+ (V(Au), Vu) + Ric(Vu, Vu),

so that, using the above, (Ela) and (Elé) we get

1 A
5A(|Vu\2) > fEuAu — MVaul? + (m — 1)&|Vul?.

Observe that
div(uVu) = uAu + |Vul?, (4.1.11)

hence from the above we conclude the validity of
1A(|Vu\2) > Ay (uVu) + (m—1) (s A |Vul? (4.1.12)
= ——div — - — . 1.
2 - m m

Integrating the above on M, using the divergence theorem,
A 2
0>(m—-1)(k—— [Vul
m M

Kk—— <0,

and since u is non constant we infer

that is, ()
Suppose that the equality holds in (), then from () we get

1
SAVUP) 2 —rdiv(uVu) = —gA(u2).
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Thus the function
|Vul? + xu?

is subharmonic on M so that, since M is compact, is constant. In particular

%A(WUF) = ng(qu) = —rdiv(uVu),

and by plugging into Bochner formula, using () with A = mk, (Ela) and (lzl.l.l ), we conclude

1
|Hess(u)|? :§A(|Vu|2) — (V(Au), Vu) — Ric(Vu, Vu)
= — rdiv(uVu) + mk|Vu|? — Ric(Vu, Vu)
< — wdiv(uVu) + mk|Vul? — (m — 1)k|Vu|?
= — kulu.

But Newton’s inequality is given by, since A = mkx,
9 A
[Hess(u)|* > —uAu = —kuAu,
m

thus it is saturated on M as a consequence of the above inequality. Then

Hess(u) = n(, )
for some n € C*°(M). Since Au = —mku, taking the trace of the above we obtain
n = —Ku.
But then u is a solution of
Hess(u) + xu{, ) = 0.

Since M is compact k£ > 0, Riemannian manifolds that admits non trivial solutions to this equation has been
characterized by Obata in [O]: (M, (,)) is isometric to the sphere immersed in R™*! of constant sectional
curvature given by k. As a consequence the equality holds in () O

Remark 4.1.13. On the m-dimensional sphere of constant sectional curvature x functions n (except the
identically zero function) such that
An+mkn =0

are called first order spherical harmonics. Together with the zero function they form the eigenspace relative
to the first positive eigenvalue of —A, which has dimension m + 1.

With the aid of formula () and Lichnerowicz-Obata Theorem we are able to prove

Proposition 4.1.14. Let (M, {,)) be a compact, harmonic-Einstein manifold of dimension m > 2 with
respect to some o >0 and ¢ : M — (N, (, )n), that is,

Ric? 5
ief =) (4.1.15)
T(p) = 0.
If there exists a conformal and non-Killing, vector field X € X(M) such that
dp(X) =0, (4.1.16)
then o is constant and (M, (, )) is isometric to a Euclidean sphere S™ in R™ 1 of constant sectional curvature
S
= —-=>0. 4.1.17
" m(m — 1) ( )

Moreover, the conformal factor n of X is a first order spherical harmonic.
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Proof. Let X € X(M) be a non-Killing conformal vector field with conformal factor n € C*(M), n # 0, that
is,

Lx(,)=2n(,). (4.1.18)

Since S¥ is constant, by lProposition 2.1.21 for m > 3 and by definition of harmonic-Einstein manifold for
m = 2, formula (4.1.3) becomes

g%
An+ ——n=0. (4.1.19)
m—1

Multiplying by 1 the above and integrating by parts we obtain

S
[ o=
M m—1Jy

and thus, since 7 is non-constant, S¥ > 0. Suppose by contradiction that S¥ = 0, then 7 is harmonic on the
compact Riemannian manifold (M, (, )), hence it is constant. Taking the trace of () we get

div(X) = mn

and since 7 is constant, integrating over M, with the aid of the divergence theorem, we deduce also that
1 = 0, contradiction. We have therefore proved that S¥ > 0. From the first equation in ()7 a>0and
the fact that (, ) is a Riemannian metric on N we obtain

Ric > — . .
¢ m<’> ( O)

Since X is not Killing, 7 does not vanigh identically on M and from () and S¥ > 0 we deduce that n
cannot be a constant. The validity of ({.1.19) and (.1.20) allows us to apply Lichnerowicz-Obata Theorem
(see [Theorem 4.1.7) to deduce that (M, (,)) is isometric to a Euclidean sphere S™ of R™! of constant
sectional curvature k given by ( . We now observe that, from the first equation in (E.l.li) and the
fact that we have now equality in ( ), because of (E~1-17.) and the isometry, we have

S . . S
E<’>:RIC¢:RIC_CMP*<7>N:H<v>_a§0*<7>1\’7

and since a # 0
Thus ¢ is constant. Notice that now () can be rewritten as
An+ mrn =0,
hence 7 is a first order spherical harmonic. O

Now we deal with harmonic-Einstein manifolds admitting a vertical Killing vector field. The connection
between vertical Killing vector fields and the sign of ¢-Ricci is, essentially, the same as the one between
Killing vector fields and the sign of Ricci. To motivate our assertion, in the next Proposition we extend the
classic result of Bochner that a compact Riemannian manifold with negative Ricci curvature does not admit
a non-trivial Killing vector field.

Proposition 4.1.21. Let (M, (,)) be a compact Riemannian manifold, ¢ : M — (N, {(, )n) be a smooth
map and o € R\ {0}. Let X be a vertical Killing vector field, that is, () holds. If Ric? <0 then X is
parallel. Further, if Ric? is strictly negative at a point xqg € M, then X = 0.

Proof. The proof is a trivial application of the Bochner formula for vector fields
1
§A|X|2 = |[VX|? +div(Lx (, ))(X) — (Vdiv(X), X) — Ric(X, X), (4.1.22)
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see for instance Lemma 8.1 of [AMR]. Since X is Killing it is also divergence free. Moreover
Ric(X, X) = Ric? (X, X) + a|dp(X)|?,
using also that X is vertical from the Bochner formula above we get
%A|X|2 = |VX]? - Ric?(X, X). (4.1.23)

Integrating on M, using the divergence theorem we obtain

/ IVX|* = / Ric? (X, X).
M M
Since Ric” < 0 we deduce that X is parallel. As a consequence |X|? is constant. Then () reads
Ric? (X, X) = 0. (4.1.24)
Assume Ric¥ < 0 at xq, then X =0 at zg. Since |X|? is constant then X =0 on M. O

Remark 4.1.25. The thesis of the Proposition above holds also if either X is a vertical homothetic vector
field or, in case m = 2, X is a vertical conformal vector field. Indeed, let X € X(M) be such that

1
§£X< ) > = 77< ) >
dp(X) =0
for some n € C*°(M). Then, using the Bochner formula () we obtain

1
FAIX? = [VX]? = (m = 2)(Vn, X) - Ric?(X, X),

that is () under the assumptions above.
From tProposition 4.1.2]] we immediately get

Corollary 4.1.26. Let (M, (, )) be a compact, harmonic-Finstein manifold of dimension m > 2 with respect
toa € R\ {0} and ¢ : M — (N, {, Yn), that is, () holds. If there exists a vertical Killing vector field
X € X(M) \ {0} then S¥ > 0. If S¥ =0 then X is parallel.

Proof. Assume by contradiction S¥ < 0. From lProposition 4.1.2]] if S¥ < 0 then X = 0, that is a contra-
diction. If §¥ =0, tProposition 4.1.2]], then X is parallel. O

4.1.1 Generic Einstein-type structures

In this subsection we apply the results on vertical conformal vector fields obtained above in to
study non trivial Einstein-type structures that reduces to harmonic-Einstein structures.

Let (M,(,)) be a complete Riemannian manifold of dimension m > 2 that supports a non trivial
Einstein-type structure as (for some A € C*(M), ueR, X € X(M), ¢ : M — (N, (, )n) smooth and
a € R\ {0}. Recall that, if (4.0.1]) reduces to a harmonic-Einstein structure, then (M, (, )) is a harmonic-
Einstein manifold and X satisfies (1.0.6). In order to produce interesting results we shall restrict to the case
1 = 0. The motivation is illustrated in the next Remark.

Remark 4.1.27. Let (M, {(, )) be a Riemannian manifold that supports a non trivial Einstein-type structure
as () for some o € R\ {0}, A, € C*°(M) and X € X(M) \ {0}. Assume that the structure (40[)
reduces to a harmonic-Einstein structure. If X is conformal then

X=0 on{zxeM:ux)=#0} (4.1.28)

79



Indeed, since () reduces to a harmonic-Einstein structure, () holds and combining its first equation
with the fact that, since X is conformal, there exists n € C°°(M) such that

SEx(s)=nl),
we get
—pX’ @ X’ = (A—n—ij> (). (4.1.29)
Taking the trace of the above we have
— p| X[ =mA —mn— S¥. (4.1.30)

From () we also get

Se
—pX’ ® X' (X, X) = (A —n— m) (X, X),

that is,
g%
= (A== 50
m
Combining the above with () we conclude
(m — DulX[* =0,

that implies () Notice that, if p is constant then p = 0, since the Einstein-type structure is non trivial.
Assume then that g = 0. Hence () reduces to

N
Y
>

I
Y
>
\

‘Co

AY)

S~
—~

m (4.1.31)
dp(X) =0,
that is, X is a vertical conformal vector field.
Remark 4.1.32. In the assumptions above, X is a vertical Killing vector field, that is,
1
—Lx(,)=0
pEx() (4.1.33)
dp(X) =0.
if and only if
S
A= —. (4.1.34)
m

This may happen. since (M, (, )) has constant @-scalar curvature, only if A is constant and, if M is compact,
using Corollar§ 4.1.267 only in case A > 0.

When A is constant and X is non-Killing we have that X is a vertical homothetic vector field. In the
complete case, we have

Proposition 4.1.35. Let (M. (, )) be a complete Riemannian manifold of dimension m > 2 that supports a
Einstein-type structure as v or some A € R, p =0, X € X(M) non-Killing, where p : M — (N, (, )n)
and o € R\ {0}. Assume that () reduces to a harmonic-Einstein structure. Then (M, (,)) is flat, ¢ is
constant and

A# % (4.1.36)
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Proof. Our hypothesis implies that () holds. Since X is non-Killing we have, from the first equation
of (4.1.31]), the validity of (4.1.36). Then X is a vertical homothetic, non-Killing vector field. By a result
known to Tashiro, Theorem 4.1 of [T]], if a complete Riemannian manifold (M, (, )) admits a homothetic
non-Killing vector field then (M, (, )) is flat. Then (M, (, )) is flat and thus, since (M, (, )) is harmonic-
Einstein, ¢ is a weakly conformal map. The ¢-scalar curvature of (M, (, )) is constant, because (M, (, ))
harmonic-Einstein, but since (M, (, )) is flat S = 0 and thus S¥ = —a|dy|?. In conclusion |dp|? and thus
 is homothetic. Assume by contradiction that ¢ is non-constant. Then, since ¢ is homothetic, there exists
a € R such that
90*<v > =

Evaluating the above along X we get
a
dp(X)? = 2| x?
m

and from the second equation of () we obtain that |X|? = 0 and thus X = 0, that is a contradiction,
since X is not Killing. O

When ) is a generic function, as an easy application of tProposition 4.1.14], we can deal with the compact
case.

Corollary 4.1.37. Let (M ) be a compact Riemannian manifold of dimension m > 2 that supports a
FEinstein-type structure as () for some A € C*(M), p =0, X € X(M) non-Killing, ¢ : M — (N, {(, )n)
smooth and oo > 0. Assume that () reduces to a harmonic-FEinstein structure. Then ¢ is constant and
(M, {,)) is isometric to the sphere of constant sectional curvature

S

" mim—1)

immersed in R™TL. Moreover, up to a translation, X is a first order spherical harmonic (in particular, X is
non-constant).

Proof. Our hypothesis implies X is a vertical conformal, non-Killing vector field, that is, () holds. As
l;roposition 4.1.14-1]

we seen in , if a compact harmonic-Einstein manifold of dimension m > 2 with a@ > 0
supports a vertical conformal, non-Killing vector field then it is isometric to a sphere immersed in R™*! and
 is constant. As a consequence S¥ = S is a positive constant. Moreover the conformal factor

n=A-—
m

of X is a first order spherical harmonic. O

4.2 Gradient Einstein-type structures

In the gradient case the Einstein-type structure () is given by

Ric? + Hess(f) — pdf @ df = A(, )
() = dp(Vf),

where ¢ : M — (N, (, )n) is smooth, f,A € C*(M), p € R and o € R\ {0}. We know that the structure
() reduces to a harmonic-Einstein structure if and only if () holds, that in our setting is given by,

(4.2.1)

Hess(f) — pdf @ df = (/\—i:> (,)
dp(Vf) =0,

Moreover, the structure is non trivial provided f non-constant.

(4.2.2)
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Remark 4.2.3. For pn =0 (4.2.9) reads

tess() = (A= 20 10)

m (4.2.4)
de(V f) =0,
that is, V f is a vertical conformal vector field. For u # 0 we set
wi=e M (4.2.5)
Clearly v > 0 on M,
Vu = —puVf,
Hess(u) = —pu(Hess(f) — udf © df),
and f is non-constant if and only if u is non-constant. Then () is equivalent to
H ) A 57
ess(u) = —pu (A —— | (,
( . ( m ) G (4.2.6)

dp(Vu) =0,

that is, Vu is a vertical conformal vector field.

In both the cases above we have the existence of a function v € C*°(M) such that Vv is vertical and
conformal. In the following Proposition we show that the conformal factor of a gradient vertical conformal
vector field on a harmonic-Einstein manifold assumes a particular form.

Proposition 4.2.7. Let (M,(,)) be a Riemannian manifold of dimension m > 2 such that T is zero,
where T is the traceless part of the p-Ricci tensor, and S¥ is constant. Let v € C*°(M) be such that Vv is
a vertical conformal vector field, that is,

{j;(s;(gg ~ @28)
for some ) € C®(M). Then there exists ¢ € R such that
o
Hess(v) + o sols ) = ¢4, (4.2.9)
If S¢ 0 then
v = m(’gi;l)(g —n). (4.2.10)

As a consequence if Vv is homothetic and non-Killing, that is, if n € R\ {0}, then S¥ = 0. If M is compact
and v is non-constant then S¥ > 0.

Proof. Tracing the first equation of (4.2.§) we deduce

Av
m

Taking the divergence of the first equation of () and using () we deduce

=1, (4.2.11)

m

Av
vijj = (ndij); =i = () K (4.2.12)
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On the other hand, commutating the last two indexes of v;;;, using the definition of Ric?, the second equation
of (.2.8), that T% = 0 and that S¥ is constant we get

vji; =vjji + Ry
=(Av); + Rijv;
=(Av); + R vj + apipfv;
S
:(A’U)Z + —U;
m

©
:(AU+SU) ,
m-J;

Comparing it with () we deduce, since M is connected, there exists ( € R such that

Vg

S% A
Av—l——v:—v—i—(m—l)g,
m m
or equivalently,
A ®
Qv _,__ %
m m(m —1)

Since the first equation of () can be written as

Hess(v) = av

from the above we deduce the validity of ({.2.9).

If we suppose that S¥ = 0 then we can define
m(m — 1)¢
S '

Vi=U—

Notice that, using (),

¥
m(m —1)
Moreover, from the first equation of () and the above,

Hess() + o(,)=0. (4.2.13)

S
n(, ) = Hess(v) = Hess(v) = —mf’(’ ),
that implies
Se
m(m—1) v
Hence, recalling the definition of v,
po M —1C_ o mim =1y
S S

that is ()

Suppose that 7 is constant. Assume by contradiction S¥ # 0. From (), v is constant, that is a
contradiction since Vv is non-Killing.

Assume M is compact and v is non-constant. If, by contradiction, S¥ = 0 by tracing ( we_obtain
Av = m(, hence v is constant, that is a contradiction. Then S¥ # 0. Taking the trace of () and
multiplying it by v, integrating and using the divergence theorem we get

©
/ |Vo|? = 57 / w2
M m—1Jy

Since v is non-constant also 7 is non constant and thus S¥ > 0. O
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Complete Riemannian manifolds that admits a non trivial solution v € C*°(M) of
Hess(v) + ro(, ) = ¢(, ), (4.2.14)

for some k € R and some ¢ € R\ {0}, have been studied from the Japanese school between the 60’s and the
80’s. Notice that, if k # 0, by setting
v=0v+ E,
K

then v solves
Hess(v) + k9(, ) = 0.

Unifying in a single statement the results of M. Obata, Y. Tashiro and M. Kanai obtained, respectively, in
[O], [T and [K] (see also Theorem 2.10 of [MRS] and Theorem 8.5 of [AMR] for more modern and readable
proof), we obtain

Theorem 4.2.15. Let (M, (, )) be a complete Riemannian manifold of dimension m. There exists a non-
trivial solution v € C*°(M) of (4.2.14) for some k € R and some ¢ € R\ {0} if and only if, according to the
sign of K,

i) (M, {,)) is isometric to the sphere of constant sectional curvature k immersed in R™T1 in case k > 0.
Moreover, up to a translation, v is a first order spherical harmonic.

it) (M, (,)) is isometric to the Euclidean space of dimension m, in case k = 0. Moreover

¢

= Slal + (o) + ¢

v(x)
for some b € R™ and c € R.

i) (M, (,)) is isometric to the hyperbolic space of constant sectional curvature k and of dimension m, in
case k < 0 and v has precisely one critical point. Moreover, up to a translation, v solves Av+mrv = 0.

In order to obtain a complete viewpoint on gradient vertical conformal vector fields the only remaining
case to deal is the one where the vector field is Killing.

Remark 4.2.16. Let (M, (, )) be a complete Riemannian manifold and ¢ : (M, (, )) = (N, (, )n) a smooth
map. Assume f € C*°(M) is a non-trivial affine function such that V f is vertical, that is, f is non constant
and satisfies
Hess(f) =0
dp(V f) = 0.

The first equation of (), via the Innami splitting theorem [l], yields that (M, (, )) splits as a Riemannian
product R x 3, where ¥ is any level set of f, that is a totally geodesic hypersurface of (M, (, )) when endowed
with the induced metric (, )x :=*(, ), where ¢+ : ¥ — M is the inclusion.

Moreover, identifying M with R x ¥, the second equation of ({.2.17) implies that

o =1pormsy, (4.2.18)

(4.2.17)

where ¢ := ¢|s. = p o1 and 75, : R x ¥ — X is the canonical projection.

In order to obtain () we quickly review how the isometry of the Innami splitting theorem is con-
structed. From the first equation of () we have that |V f|? is constant on M, and since f is non-constant,
|IVfl =a>0. Weset X := f~1({b}) for some b € R (such that 3 # @). Since Vf # 0 on X, then ¥ is a
smooth hypersurface of M. We set v

Y: ,
a

then Y is a complete vector field defined on ¥ that is normal to ¥ and that defines an orientation. Moreover,
the flow of the vector field Y
o:RxXY—-M
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coincide with the normal exponential map to ¥ and is bijective. Finally, the signed distance function from
3 is given by
/

)

a

hence identifying M with R x 3 we get
flt,x) =at+b.

To obtain that ¢ is an isometry is sufficient to endow ¥ with the induced metric (, )5, R with the Euclidean
metric dt ® dt (so that the gradient of f has norm a) and consider the product metric on R x X.
Finally, identifying M with R x ¥ we have, via the second equation of (), that

d
adp <dt> =0,

hence ¢ is independent from ¢ € R, that is, () holds. This means that the value of ¢ is conserved along
the flow of Y.

In conclusion, up to isometry, the only complete Riemannian manifolds (M, (, )) endowed with a smooth
map ¢ : M — (N, (, )n) and a non constant function f € C*°(M) such that () holds are given by
Riemannian products R x ¥ and ¢ corresponds to ¢ o my, where ¢ : ¥ — (N, (, )x) is a smooth map and
7wy : R X ¥ — ¥ is the canonical projection.

In the next Theorem we deal with the complete case, when p = 0.

Theorem 4.2.19. Let (M, {(,)) be a complete Riemannian manifold of dimension m > 2 that supports a
non-trivial gradient Einstein-type structure as () foru=20,9: M — (N,(,)n) smooth, a € R\ {0}
and some f, A € C*®(M). Assume that () reduces to a harmonic-Einstein structure. We set

K= m(:f_l) (4.2.20)

Then k is constant and

i) if kK > 0 then ¢ is constant and (M, (,)) is isometric to the sphere of constant sectional curvature Kk
immersed in R™tL. Moreover, up to a translation, f is a first order spherical harmonic and A + K f s
constant. In particular X is non constant;

it) if k < 0 then @ is constant (M, {,)) is isometric to the hyperbolic space of constant sectional curvature
k and of dimension m, in case [ has precisely one critical point. Moreover, up to a translation, f
solves Af + mrf =0 and A+ kf is constant. In particular X is non constant;

iit) if kK =0 then A is constant and

a) if X\ # 0 then ¢ is constant and (M, {, )) is isometric to the Euclidean space R™ and
A 2 m
flz) = §|x| + (z,b) +c  for every x € R™, (4.2.21)

for some b € R™ and c € R;

b) If \ =0 then (M, (,)) splits as the Riemannian product of R with a totally geodesic 1-Ricci flat
hypersurface 3, where 1 := ¢|s,. Moreover ¢ is given by poms, on R x X, where 7, : Rx ¥ — X
is the canonical projection and the function f can be expressed on R x 3 as

ft,x)=at+b foreveryt €eR and x € X, (4.2.22)

for some a >0 and b € R such that ¥ = f~1({b}).
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Proof. First of all, notice that to prove that @ is constant it is sufficient to show that (M, (, )) has constant
sectional curvature equal to x given by () Indeed, if this is the case. we easily get S =S¥ and thus ¢
is constant. Our assumptions implies the validity of () From lProposition 4.2.7|, we deduce that

Hess(f) + ——f(,) = (. ) (12.23)

m(m —1)
for some constant (. If S¥ # 0 the isometry and the fact that f = f — % solves

Af+mrf=0 (4.2.24)
follow from , using () Moreover, from ()7 we immediately deduce

S%’
A rf =2 4.

If S¥ = 0. combining (|Z22§) and (EQZ}I), we deduce A = ( is constant. If A # 0 we conclude, once again, by
. If A\ =0 then f is a non trivial affine function, hence we conclude that (M, (, )) splits b
I' emark

(M, (,)) is ¢-Ricci flat and ¢ is given by 1) o 7s,. O

The next Theorem deals with the case u # 0. We sketch the main points of the proof because, essentially,
is the same as the proof of the Theorem above.

Theorem 4.2.25. Let (M,(, )) be a complete_Riemannian manifold of dimension m > 2 that supports a
non trivial gradient Einstein-type structure as (@) forp #0, o : M — (N,(, )n), « € R\ {0} and some
fiA e C(M). Assume that (1.2.1]) reduces to a harmonic-Einstein structure. We set k as in () and
U as in () Then k s constant and there exists a constant ¢ such that

3 H(m —Dp+1 _
uu ()\ T ) +¢=0. (4.2.26)

i) If K > 0 then ¢ is constant and (M, (,)) is isometric to the sphere of constant sectional curvature Kk
immersed in R™*. We set ¢

u:=u—=. (4.2.27)

K

Then 4 is a first order spherical harmonic. Moreover, { # 0, that is, A is non-constant.

it) If K < 0 then @ is constant (M, (, )) is isometric to the hyperbolic space of constant sectional curvature
K and of dimension m, in case f has precisely one critical point. We set

dimu—S. (4.2.28)

K

Then @ solves Au+mru = 0. Moreover, A is constant if and only if ( = 0 and, if this is the case, then

-1 1
o glm=Dp+1 (4.2.29)
1
1) If K =0 then (M, (,)) is isometric to the Euclidean space R™ and
1 C 2 m
f(z)=——log §|x| + (z,b) + ¢ for every x € R™, (4.2.30)
7
m . . ¢ .
for some b € R™ and c € R. In particular, A = — 4 s non-constant.
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Proof. Our assumptions and easily gives the validity of (4.2.G). From tProposition 4.2.7‘7 we

deduce the validity of

Se

Hess(u) + oy

u{, ) =¢(,) (4.2.31)

for some constant {. If S¥ # 0 we proceed as in the proof of the Theorem above, with the difference that
from () we get

]
nuz(—!—uu(/\—S),
m

that is, () Observe that if A is constant, since u is non-constant, from () we infer ¢ = 0 and
() holds. The converse is trivial. hence A is constant if and only if ¢ = 0 and, in this case, ()
holds. From the first equation of () we infer

tess(1) = a9 = (3= 52 (),

that is, using (),
K
Hess(f) — pdf @ df = ;<a ).

If k > 0 then, since we already know that (M, (, )) is isometric to the sphere, M is compact and the above
gives a contradiction at the points of maximum of f if x> 0 and at the point of minimum of f if u < 0. To
conclude the proof of the cases where S¥ # 0 notice also that the critical points of f and w coincides.

Assume S¥Y = 0. Observe that ¢ # 0. Indeed, if by contradiction { = 0, from () u is an affine
function. On a complete Riemannian manifold there are no non-constant and positive affine function, see
. Moreover u is constant if and only if f is constant, hence we get a contradiction. Then, from
(11.2.31)), we deduce the isometry with the Euclidean space and that

u(z) = g|x|2 + (z,b) + ¢ for every x € R™,

that implies () Moreover, from (4.2.26) we get pdu = —C. O

In the compact case we get the following results, that shall be useful later. To prove them is sufficient to
show that S¥ > 0 and then apply iheorem 4.2.1a and I heorem 4.2.25, respectively. Notice that S% > 0 is
a consequence of lProposition 4.2.7|.

Corollary 4.2.32. Let (M,{(,)) be a compact Riemannian manifold of dimension m > 2 that supports a
non trivial gradient Einstein-type structure as () for u =20 and some f,A € C*(M), p: M — (N,(, )n)
smooth and o € R\ {0}. Assume that (4.2.1]) reduces to a harmonic-Einstein structure. Then ¢ is constant
and (M, (, )) is isometric to the sphere of constant sectional curvature

S
K= ———
m(m — 1)
immersed in R™TL. Moreover, up to a translation, X is a first order spherical harmonic (in particular, X is
non-constant).

Corollary 4.2.33. Let (M,{,)) be a compact Riemannian manifold of dimension m > 2 that support a
gradient Einstein-type structure as in ( for u#0 and some f, A € C*°(M) with f non-constant, where
o: M — (N.(,)n) and o € R\ {0}. Assume that () reduces to a harmonic-Einstein structure. We set
K as in () and u as in (1.2.5). Then ¢ is constant and (M, (,)) is isometric to the sphere of constant
sectional curvature k immersed in R™ Y. Moreover, up to a translation, u is a first order spherical harmonic
and () holds for some ¢ € R\ {0}. In particular, X is non-constant.
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Chapter 5

Rigidity results in the compact case

In this Chapter we provide rigidity results for compact non-trivial Einstein-type structures. The general
procedure is to show that in case the yp-scalar curvature is constant the Einstein-type structure reduces to
a harmonic-Einstein structure. As a consequence of the results of we conclude the isometry with
the sphere and the constancy of ¢, that is the rigidity mentioned above. This procedure can be adapted also
in case one of the higher order symmetric function of the eigenvalues of the ¢-Schouten tensor is a positive
constant, assuming that the Riemannian manifold is ¢-Cotton flat (or equivalently, that the ¢-Schouten
tensor is Codazzi). Observe that the constancy of the ¢-scalar curvature is equivalent to the constancy of
the first order symmetric function of the eigenvalues of the p-Schouten tensor of, see Remark 5.2.33, hence
this assumption generalize the previous one tp higher order curvatures.

In we prove rigidity in case the p-scalar curvature is constant. When py = 0 we deal with
the generic case, obtaining rigidity when X is non-Killing, while when p # 0 we deal only with the gradient
case.

We begin bection 5.ﬂ with bubsection 5.2.]], recalling the fundamental properties of Codazzi tensors, such
as Newton’s and Garding’s inequalities, and where we define the Newton endomorphisms and the higher order
curvatures. Those properties shall be useful in , where we prove rigidity results in case one
of the higher order symmetric function of the eigenvalues of the p-Schouten tensor is a positive constant
and the Riemannian manifold is ¢-Cotton flat (when p = 0 we deal with the generic case, obtaining rigidity
when X is non-Killing, while when p # 0 we deal only with the gradient case, as in )

5.1 Rigidity with constant p-scalar curvature

We prove two rigidity results, that distinguish between the cases ;= 0 and p # 0. We begin with the case
1 = 0 where we are able to study a generic Einstein-type structure.

Theorem 5.1.1. Let (M, (, )) be a compact Riemannian manifold of dimension m > 2 with an Einstein-type
structure of the form

Ric“’—i—%EX(, )= AL)
7(p) = do(X),

for some X € X(M), A € C*°(M), a € R 5 éO} and ¢ : M — (N,{, )n) smooth. Assume that o > 0 and

that S¥ is constant. Then the structure ( ) reduces to a harmonic-Einstein structure, that s,

(5.1.2)

S%
= 2
Ric m(,)

7(p) = 0.
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Proof. Recall that we have the validity of (), that is,
1 ® 2 |2 ® 5%
§AXS = —alr(p)|* = |T?|* — (S¥ — mA)E + (m—1)AM\
where T is the traceless ¢-Ricci tensor, defined in (2.4.1)). Tracing the first equation of (5.1.2) we obtain
S¥ —mA = —=div(X), (5.1.4)
thus inserting into the above we get
1 1 ) ,  S°
§AS‘9 = §<X, VS —alr(p)|* = |T?|* + Edlv(X) + (m—1)AM\
Integrating over M, using the divergence theorem and integrating by parts we infer
m—2
T [ eevse) = [ (1op s alro)P)
2m M M

Since o« > 0 and S¥ is constant we get T%9 = 0 and 7(p) = 0, hence () holds. Then (M, (,)) is

harmonic-Einstein. O

Combining the above Theorem with borollary 4.1.37| and k]orollary 4.2.32| we easily obtain

Corollary 5.1.5. Let (M, be a compact Riemannian manifold of dimension m > 2 with an Finstein-
type structure of the form (&), for some X € X(M), A € C*(M), a« € R\ {0} and ¢ : M — (N,{, )n)
smooth. Assume that S¥ is constant. Then ¢ is constant and (M, (, )) is isometric to the sphere of constant
sectional curvature k immersed in R™YL where &k is given by

S»

ST

(5.1.6)

provided one of the following holds:
i) X is non-Killing and oo > 0.
it) X = V[ for some non-constant f € C>(M).

Moreover, up to a translation, X\ is a first order spherical harmonic.

The following Theorem is the result analogous to for gradient Einstein-type structures
n (8.1.17)

with u # 0. However its proof is not based on equatio , as probably expected, but on the powerful
identity () below.

Theorem 5.1.7. Let (M,{,)) be a compact manifold of dimension m > 2 with a gradient Einstein-type
structure of the form

Ric? + Hess(f) — pdf @ df = A(,) (5.1.8)
7(p) = dp(Vf), -
for some f, A € C®(M), a,u € R\ {0} and ¢ : M — (N,{, )n) smooth. Assume that S® is constant and

a > 0. Then the structure (@) reduces to a harmonic-Einstein structure, that is, () holds.

Proof. Let
u=e (5.1.9)
We compute div(T%?(Vu,-)?). Exploiting the definition of T, in a local orthonormal coframe, we have
©

Si
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Using () a computation yields
up = —pufi,  ui; = —pulfi; — pfif;), (5.1.11)

so that, using the first equation of (p.1.§)

U5 = MU(R;P] — )\62]) (5.1.12)
Moreover from (), the first equation of () and the second equation of ()
© 1 © a  _a 1 ] a  .a 1 %] a a
Wi = 551- u; — apfipiug = isi ui + puop§;of fi = ESi Ui + puopl;pj;. (5.1.13)

Inserting () and (Elli) into (E.l.ld), since T is traceless, we obtain

1 a a S’ZP
(,TZUZ)J :isfui + puep; o — Euz + Mﬂ?(RZ@' — Adij)u

m—2 0 a
:stui + plapl; g + Ti?ﬂ?)ua
that is, in global notation
-2
div(T# (Vau, -)f) = szWSW’ V) + plalr ()2 + [T?]?)u. (5.1.14)

Since S¥ is constant, integrating over M and using the divergence theorem we deduce
u/M(a|T(<P)|2 +[T?*)u = 0.

From p # 0, @ > 0 and v > 0 on_M we obtain T% = 0, that is the first equation of (), and 7(¢) = 0,
that is the second equation of (513) O

Combining the Theorem above with [Corollary 4.2.33 we immediately get

Corollary 5.1.15. Let (M,{(,)) be_a compact manifold of dimension m > 2 with a non trivial gradient
FEinstein-type structure of the form () for some f,A € C®(M), a,p € R\ {0} and ¢ : M — (N, {, )n)
smooth. Assume that S¥ is constant and o > 0. Then ¢ is constant and (M., )) is isometric to the sphere
of constant sectional curvature x immersed in R™Y, where k 4s_given by (m) Finally, up to a translation,
u s a first order spherical harmonic, where u is defined by (@), and for some ¢ € R\ {0},

1 —
A= S rEm-Dp
pu Iz

In particular A is non constant.

5.2 Rigidity for po-Cotton flat manifolds

Next we present two more rigidity results, again distinguishing between the cases u = 0 and p # 0. In both
the results we assume that the manifold is ¢-Cotton flat. We begin with some remarks on Codazzi tensor
fields, since a manifold is ¢-Cotton flat if and only if the ¢-Schouten tensor is a Codazzi tensor field.
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5.2.1 Codazzi tensor fields and useful formulas

In this section we present a general formula for a 2-times covariant, symmetric tensor field T on a Riemannian
manifold (M, (, }) of dimension m. For z € M fixed, we set

A< S A,

to denote the (possibly coinciding) eigenvalues of T' at « and we consider the elementary symmetric functions
of the eigenvalues of T

Sp:=1, Sp:= Z i oA, for 1<k <m. (5.2.1)

1<ii<...<ip<m

In other words the Si’s are the coefficients of the polynomial expansion
det(I +AT) = > SiAt, (5.2.2)
k=0

where [ is the identity. As usual we normalize the Si’s by setting

Sk = (Z) Ok,

obtaining the normalized symmetric function of the eigenvalues of T. In this way we obtain the validity of
Newton’s inequalities in the form

Ok—10k+1 < 0,3 for1<k<m-—1. (5.2.3)

Furthermore, if 051 # 0 at x, equality holds in () if and only if all the eigenvalues of T at x are equal.
The o}’s give rise to continuous functions on M and, from the classic results of [G], we deduce that if for
some k, 1 < k < m, we have o > 0 everywhere on M then, for 1 < i <k, 0; > 0 on M and furthermore,
Garding’s inequalities hold, )

1 1
o120 >...>0F, (5.2.4)

with equality at a point z € M at some stage of the chain if and only if 7" has equal eigenvalues at x. The
next Lemma follows directly by () and will be used later.

Lemma 5.2.5. In the notations above suppose that o, > 0 on M for some 2 < k < m — 1, where m > 3 is
the dimension of M. Then
010k — 011 >0 (5.2.6)

with equality holding at a point x € M if and only if T is proportional to the metric at x.
Proof. Since o, > 0 on M, by Garding’s inequalities
1
o1 >...>0; ] >0f >0.

From of_1 > 0 on M and Newton’s inequalities (p.2.3)

2
o 0k+10k71< 0L o Ok
k+1 = = =0k .
Ok—1 Ok—1 Ok—1
We claim
Ok
So-h
Ok—1

and since o, > 0, from the above we obtain

Ok+1 < 0RO,
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that is () It remains to prove the claim. We use Garding’s inequalities twice and o1, 0, > 0 to deduce

1 k-1 k—1
op =op0," <o0," <ok

Since oj_1 > 0 this implies the claim. Observe that the equality in () holds at a point if and only if T
is proportional to the metric at that point since this forces Newton’s inequality and Garding’s inequalities,
used to prove the validity of (), to be equalities at that point. O

Associated with T' one considers the Newton endomorphisms
P, =P(T) : X(M) —» X(M) for 0 <k <m,

inductively defined by
Py:=1, P,:=8S,]—toP,_; for1<k<m, (5.2.7)

where t : X(M) — X(M) is the endomorphism induced by T. Notice that
. m
— 1 i
P, = i_g 0(—1) (k B z) op_1t"

and, from Cayley-Hamilton theorem and (), P,, =0 on M. Moreover, having set

= (m— k) <’;:> (5.2.8)

we have
tI‘(Pk) = (m - k)Sk = CxO0k, tI‘(t o Pk—l) = kS, = cp_10%. (529)

The Newton’s endomorphisms give rise to a family of second order differential operators Ly defined as follows.
Setting hess(u) for the endomorphism induced by Hess(u), where u € C2(M),

Ly := tr(Py o hess(u)). (5.2.10)
A computation shows that L can be written in the form:
Liu = div(Py(Vu)) — (div(Py), Vu). (5.2.11)

Obviously,
div(Py) = 0 = div(P,,). (5.2.12)

To compute div(Py) for the remaining values of k we introduce the 3-times covariant tensor field C' of
components
Ciji =T — Tin ;- (5.2.13)

Using the definition of Py, for 1 <k <m — 1,
div(Py); = —div(Pe—1)iTi; — Cijs(Pr)is- (5.2.14)

In particular when T is a_Codazzi tensor field all the Newton’s endomorphisms are divergence free. Hence
if T is Codazzi equation () becomes

tr( Py, o hess(u)) = Liyu = div(Pr(Vu)), (5.2.15)
We remark that, having fixed the 2-times covariant tensor field 7', we can define an operator
Ly : X(M) — X(M) for 0 <k <m,
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by setting, for every Z € X(M)
~ 1
Lk(Z) = itr(Pk 9 lz), (5216)

where Iz : X(M) — X(M) is the endomorphism associated to the Lie derivative of the metric in the direction
of Z

Lz{,).

A computation yields B
Li(Z) = div(Py(Z)) — (div(Py), Z),

hence if T is Codazzi B
Lu(2) = div(P(2)).

We then obtain the following generalization of ()

div(Py(Z)) = %tr(Pk olyz). (5.2.17)

5.2.2 Rigidity with constant higher order (p-scalar curvature
In order to obtain the next rigidity results we shall make use of

Lemma 5.2.18. Let (M, (,)) and (N,{, )n) be Riemannian manifolds, ¢ : M — (N,{, )n), X € X(M),
a € R\ {0} and suppose that the following compatibility condition holds

T(p) = dp(X). (5.2.19)
Let tr(C?) be the 1-form defined in (), then
tr(C?)(X) = al7(p)[*. (5.2.20)

In particular if the p-Schouten tensor, defined in (), is a Codazzi tensor then ¢ must be harmonic.
Proof. In a local orthonormal coframe () reads
v =@ X ‘
and from (Jl.2.36)
tI‘(Cﬂp)i = a‘szSO?v

hence we easily conclude

tr(C¥)(X) = tr(C%); X" = apippf X' = apipel = alt(p)|?,

i

that is, () Observe that, by definition ()7 if A¥ is a Codazzi tensor then C¥ = 0. If this is the
case, from o # 0 and () we deduce T(p) = 0. O

In the following we will denote by of and P} the normalized k" symmetric function of the eigenvalues of
the p-Schouten tensor, for brevity, the k™ p-scalar curvature and the Newton endomorphism corresponding
to the ¢-Schouten tensor, respectively.

Theorem 5.2.21. Let (M ) be a compact Riemannian manifold of dimension m > 3 with an Einstein-
type structure of the form ( ) with X € X(M), A € C®(M), a e R\ {0} and ¢ : M — (N, (, )n) smooth.
Suppose that (M, (, }) is p-Cotton flat, that is,

C? =0 (5.2.22)

and that o} is a positive constant for some k =2,...,m —1. Then () reduces to a harmonic-Einstein
structure.
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Remark 5.2.23. If m = 2 then A¥ = T, hence of = 0 and thus, from Newton’s inequality o3 < 0. This
motivates the hypothesis m > 3.

Proof. Since () holds the ¢-Schouten tensor A¥ is a Codazzi tensor. Then () holds T' = A%, that
is, for Z = X,

div(P? (X)) = %tr(P,f olx). (5.2.24)
Expressing the first equation of () in terms of A¥ we obtain
1 S¥
- == _A®
so that ) g
Tl — 2 \T_g¥
2lX ()\ S = 1)) I—a”, (5.2.25)

where Ix and a¥ denotes the endomorphisms of X(M) induced by Lx(, ) and A?®, respectively. Inserting
(5.2.25) in (5.2.24-}1) a computation using () yields

div(PF(X)) = [()\ - 2@52)) oF — o—,fﬂ} , (5.2.26)

where ¢y, is defined in () Since we are assuming that o > 0, from we deduce the validity
of
ofof —op >0, (5.2.27)

equality holding at a point if and only if at that point A?, and therefore Ric?, is proportional to the metric.
Since M is compact by the Hodge-de Rham decomposition (see, for instance, [AB E]])

X =Vh+Y,

for some h € C*(M) and Y € X(M) with div(Y") = 0. Thus, div(X) = Ah and tracing the first equation of
(e

S? + Ah =m),
that can be rewritten in the following way:
Ah S¥
® N —
ot 2(m — 1)’
where we used that, tracing (),
tr(A¥) S% S¥
7= =— 0. 5.2.28
71 m m  2(m—1) ( )

Plugging into () we have

e

div(P?)(X) = ¢ <Jf0,f —opq+ kAh) .

m

Integrating on M, since o is constant, we infer:
/ (ofo) — 01f+1) =0.
M

By () and the above we deduce that the actually equality holds in () all on M. It follows that A%
is a trivial Codazzi tensor field, that is, is a constant multiple of the metric . In particular S% is constant
and also Ric?” is proportional to the metric on all M. Combining it with we conclude that
(M, (,)) is harmonic-Einstein. O
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Combining the above Theorem with borollary 4.1.37| and borollary 4.2.3j we easily obtain

Corollary 5.2.29. Let (M ) be a compact Riemannian manifold of dimension m > 3 with an FEinstein-
type structure of the form ( ) with X € X(M), A € C®(M), a € R\ {0} and ¢ : M — (N, (, )n) smooth.
Suppose that (M, (,)) is p-Cotton flat and that o} is a positive constant for some k =2,...,m — 1. Then
@ is constant and (M, (,)) is isometric to the sphere of constant sectional curvature k immersed in R™+1
where K s given by

', (5.2.30)

provided one of the following holds:
i) X is non-Killing and o > 0.
it) X =V [ for some non-constant f € C*(M).
Moreover, up to a translation, X\ is a first order spherical harmonic.

Proof. The only thing we need to prove is the validity of () Notice that, since A¥ is proportional to
the metric, using (5.2.25) and the constancy of ¢

m— 2 1 1
Thus we have )
o S _20,“:)%
Cmm—1)  m-—-2’

as in () O
In [Theorem 5.2.21 we dealt with the case u = 0 with a general vector field X. Now we consider the case

1 # 0 but we restrict ourselves to the gradient case, X = V f for some f € C>°(M). We have

Theorem 5.2.31. Let (M, (,)) be a compact Riemannian manifold of dimension m > 3 with a non trivial
gradient Einstein-type structure of the form (), with ¢ : M_— (N, (, Yn) smooth, f,A € C*(M) and
w, € R\ {0}. Suppose that (M, {(,)) is o-Cotton flat, that is ) holds, that f is non-constant and that
of is a positive constant for some k =2,...,m —1. Then (p.1.§) reduces to a harmonic-Einstein structure.

Proof. We set

wi=e M,
Then 1
Ric¥ — —H =\
07 = —Hess(u) = ().

that is equivalent, using the definition of A%, to

Hess(u) = [A“" _ <)\— 2(75“11)@ >)] .

Then, as in the proof of [Theorem 5.2.21) but using (), we obtain

) oy
AN(PEV) = e [uloEy — ofof) + Tl

Using constancy of o and integrating on M we get
uck/ u(of, , —ofof)=0
M

and since v > 0 and p # 0,

@ P _
oj41—0j0;, =0, onM.

We now conclude as in [Theorem 5.2.21|. O
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Combining the Theorem above with [Corollary 4.2.33 we obtain

Corollary 5.2.32. Let (M, {,)) be a_co

pact Riemannian manifold of dimension m > 3 with a non trivial

gradient Einstein-type structure as () with f,A € C*°(M)., ¢ : M — (N,{,)n), @« € R\ {0} and
w € R\ {0}. Suppose that (M, (, }) is @-Cotton flat, that is () holds, and that of is a positive constant
for somek=2,...,m—1. Then @ is constant and (M, (,)) is isometric to a Euclidean sphere S™ in R™*+1

of constant sectional curvature K given by ()

Remark 5.2.33. Observe that, since

are unnecessary.

W:L_Q ®
N o

Theorem 5.1.1] and [Theorem 5.1.7 can be interpreted as the case £k = 1 of ITheorem 5.2.2]] and ITheorerrI
5.2.3i|,

respectively. In those Theorems the assumptions of p-Cotton flatness and on the sign of the curvature
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Chapter 6

Gradient Einstein-type structures
with vanishing conditions on p-Bach

In this Chapter we shall consider a Riemannian manifold (M, (, )) with a non trivial gradient Einstein-type
structure of the form

{Ric“’—i—Hess(f) —pdf @df =X(,) (6.0.1)

() = de(V f),

for some @« € R\ {0}, p € R, A\, f € C*°(M) and ¢ : M — (N, {, )n). Our aim is to prove the structure
below, generalizing Theorem 1.2 of [CMMR], and , that is new even in the
standard case where ¢ is constant.

We begin with , defining the tensor D¥ and computing the first two integrability conditions
related to the system (p.0.1]), see (6.1.11) and (6.1.16). In case u = fﬁ, as we seen in Eection 2.3,
the Riemannjan manifold is conformally-Einstein and in the two integrability conditions, that are given by

».3.3) and )7 does not appear the tensor D¥. This is justify from the fact that, as we shall see in
, the vanishing of the tensor D¥ is related to the fact that the ¢-Schouten tensor is Codazzi
in a conformal metric.

In we show that D¥ = 0 and ¢ is harmonic provided that a > 0, p # ——L=, the potential
function f is proper and non constant and the ¢-Bach tensor vanishes in the direction of Vf. See

for more details on those assumptions.

In Eection 6.3, we draw the consequences on the local structure of (M, (, )) of the vanishing of D¥ and
7(¢). We show in lProposition 6.3.1d and [Proposition 6.3.45 that the level set corresponding to a regular
value of f is a totally umbilical hypersurface with constant mean curvature that is harmonic-Eistein with
respect to the induced metric, @ and the restriction of ¢. Then in tProposition 6.3.2d we prove that C¥ =0
on {x € M :Vf(zx)#0}.

In the last Section of the Chapter, that is Section 6.4. we combine the results of the previous Sections in
order to state and prove [heorem 6.4.1 and [Theorem 6.4.9. In both those theorems we assume that ()
satisfies the hypothesis mentioned above. In the first we prove that in a neighbourghood of every regular
level set of f, the manifold (M, (,, )) is isometric to a warped product with (m — 1)-dimensional totally
umbilical and with constant mean curvature harmonic-Einstein leaves (with respect to the induced metric, «
and the restriction of ¢) and that ¢ can be recovered by its value on a single leaf. In the latter one we prove
that not only D¥ and 7(¢) must vanish but also C¥ and B¥, when X is constant of the foliation. Moreover
we prove that the traceless part of the ¢-Ricci tensor T belongs to the kernel of the curvature operator W%,
introduced in in ‘. Assuming thus a genericity condition we get that (M, (, )) is harmonic-Einstein.
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6.1 The tensor D¥ and the first two integrability conditions

In the following we shall use (Blld) and (b.l.ld), which we report here for the reader’s convenience

RY . — Rb 5 = feRuing + p(finfj — fi f) + Medij — A, (6.1.1)

1
5520 = Ry fr + p(frifi — Affi) + (m — DA (6.1.2)
We now come to the definition of the tensor D¥ that shall reveal essential in our study.
Definition 6.1.3. Let m > 3. In a local orthonormal coframe we let the components of D¥ be given by

1 1 S¥
We observe that if ¢ is a constant map then D¥ coincides with the tensor D defined in [CC], with a
different sign convention. The following properties are easily verified by computation.

Proposition 6.1.5. The tensor D¥ is skew-symmetric in the last two indices and it is totally trace free,
that is, in a local orthonormal coframe,

D} = =D, (6.1.6)
DY, = D%, = Df, =0, (6.1.7)

An essential feature of D¥ is that it can be expressed purely in terms of the potential function f. Indeed,
we have the following

Proposition 6.1.8. In the present setting, with m > 3, in a local orthonormal coframe we have

Af

m—1

Dfy = ﬁ |:fikfj — fijfe + 1_ 1ft(ftj5ik — ferbij) — (fi0ir — fk5ij)] . (6.1.9)

m
Proof. The proof is computational, using the first equation of () Taking its trace

S+ Af = p|V 2 +m,
hence using the above in the definition (), together with the first equation of (), we obtain

Df, :ﬁ (= fij + pfify + Noig) fr — (= fir + pfifio + Adir) £;]
1

T =D =gy o i 20000 = (=g + el A0)dul
—Af 4 p[ VI +mA
 (m—=1)(m—2) (frdij — [i0ir)
1 Af

:ﬁ [fikfj — fijfx + fi(ftj0ie — fenbij) — m(fjfsm — fxdi) |,

m—1

that is () O
Now we prove the first integrability condition of the system ()

Proposition 6.1.10. In the present setting, with m > 3, in a local orthonormal coframe we have
Cly + [Wiy = [L+ (m = 2)uDJ,. (6.1.11)
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Proof. Using () in () we obtain

1
Ot g 1y (S0 = S70) + fiRige — ulfif = Fig i) = My + X0 = 0. (6.1.12)

We claim the validity of

Tt
m—1

jokft = Wtfjkft - Dz(/;k - (Rfk(sz] - R;’;élk) (6113)

We postpone its proof and we complete the proof of () Inserting (blli) in (bllﬂ) we obtain

1
0=C¥p + Wit — Dfjy + m(&f@j — S¥01,)
- ,u(fikfj - fijfk) - )\kaij + )\j(sik — mfi 1(Rf]c5ij — RE(SU@)

Using () we deduce

1
m(szf&j - S;-O(Sik) :m(Rfkft + 1 fenfe — Affr) + (m — 1)A)di;

1

- m(Rf}ft + p(fejfe — Aff) + (m—1)X;)0i

/ f
:mi 1(Rfk5z‘j — Rf0u) + umiil(ftk(sij — fiidu)

Af

+ Mm(fjém — fibij) + Medij — Njdik,

and by plugging into the above equality we infer

0=Cr

® _ ¥
zjk+Wtijkft Dijk

AF

1 (fudij — fjéik):| ;
that implies ()7 using () It remains to prove () Explicitating (h21d) in (h21d) we obtain

1
Ruje = Wiijn = ——

then, using (), we deduce

— i |:filcfj — fijfr + Ji (fej0ir — ferdij) fr +

m—1

S
|:Rfj(5ik: = R{.0ij + RS.615 — Ri0u, — m(%@k - 5tk5ij)] ,

R fr — Wi fe Zﬁ [ft(RZ}(Sik — R}0i) + RY fi — RE [ — %(@kfj - 5ijflc):|
=— ﬁ |:R2’;‘fk — RS [+ %(Rfk% — Rf6ix) — %(%fk - 5ikfj):|
- - <1 - 1) fo(RE 555 — BE6i)
=-Df; - mfi T (R0 — Rijdir)

that is () O
Remark 6.1.14. Notice that, combining the first integrability condition () with (),
[L+ (m —2)u]D7, = e~ w2l C¥

ijk?
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where C“;k are the components of C*? in the local coframe {6} determined by the metric (, ,) = e_ﬁf(, ).
That implies, using ()7

C¥ =[1+ (m —2)u)D¥.
Then D¥ is the description of the tensor C*¥ in terms of the metric (, ), up to constant multiplicative factor.

The second integrability condition follows by taking the divergence of () Indeed we have the
following

Proposition 6.1.15. In the present setting, with m > 3, in a local orthonormal coframe we have

m—3

«
(m —2)Bf + pWi fefe — _]lk;fk =[1+(m—2)y <D2§-k,k - m_zsozk@?fj) : (6.1.16)

Proof. We take the divergence of () and we use () and ()7 together with (), to obtain

1+ (m— 2):“’]D;3'k,k =(CF Tkt tzjk)
ngkk + fei tzyk+ft tzykk
=Cl T (SR A pfefr + M)W + Wi,
=Clpn T REWi; + W fefe + AW,

m a a a « a a a
+ 720321 +alwjigh — ipel) + 5 eh (i 0k — wk%)] T

i), )

=(m = 2)Bf, + aR{ pppf — (w?jwik — PrkjPi —
+ ﬂWtfjkftfk - Oé)“PlilSp?

m—3

«
o Ol + @i, — @i fuel) + ——= @i (¢l fi — indii)

a a 1
=(m — 2)32’} + a <R,fj<pk + kg — APF — Pk + 2<Pkkfy>

m —
+thfjkftfk Jr J;mfk

Observe that from () we deduce the validity of
RE ok + Finel = e fi + A5,
and by plugging it the above, together with (), we obtain

[L+ (m —2)u]DFy  =(m —2)Bf + (—fjwi + i+ (Pfe)y = Pife+ — ! ‘Pkkf])

W o+ — 2 Ch ot

=(m —2)Bf; + m[l + (m = 2)plph [

m —
JF!LWtfjkftfk JF J;“fkv

and thus () follows. O
Remark 6.1.17. In case p = ——— from ( and () we respectively obtain () an.
R ]7

Furthermore, when ¢ is constant (E 1. 1l| and (6.1.16) extend, respectively, (4-5) and (4-6) of |
with o = = 1. Observe, however, that the normalization « = 8 = 1 that we adopt here is inessential.
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6.2 Vanishing of D¥ and 7(p)

In what follows we shall assume the following vanishing condition on -Bach

B?(Vf,:) =0, (6.2.1)

the non-degeneracy condition
1

w# R (6.2.2)

and that f is proper, that is, the_preimage of compact subsets is compact, and non constant. We shall
comment on these assumptions in Remark 6.2.13. Our aim is now to prove the following

Proposition 6.2.3. In the present setting, with m > 3, assume () and define the vector fieldY € X(M)
of components

Then, if () holds, we have

(07

M2 pep 4 IV = din(). (6.2.5)

Proof. Observe that () componentwise reads
Bf fi = 0. (6.2.6)
Contracting () against V[ and using the symmetries of W% and C¥ we deduce
(m =285 = 1+ (m - 2 (Dffi — 5510
Since () and () hold, we infer from the above
Dfyfi = 5 lr (@S = 0.
Contracting once again against V f we get

5T IV =0. (6.2.7)

z]k kufJ

To proceed we first prove the identity

2
|D?)? = —=— DI R i (6.2.8)

It can be proved using the definition () of D? and its properties (Ela) and (Blﬂ) as follows:

D?P? =D%, DF,

ijk
1 ; 1 ; ; 5%
=D |Bhfe = BiSi + = [e(B0i5 — Bf0i) — —— (fudij — fi0ir)
L © (pY ® 1 © pe ¢ pe 5%
:m Dijk(Rijfk - Rik j) + m— 1ft(Diithk Dl]lR ) m—1 (kai fJ Uz)
Dz]ka fk - Dﬁijw fk
2
Zme}ka}fk-
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To obtain () from () notice that, using (k‘).l.d)7 (k‘)O]J) and (bl?I)
Dfy il cndifi)e — D finfi — DYy fifik
Gndifi)e — Doy finf
Gfifi)e + Diy fij fi
)
)

”kfifj k+ Dwk( Q‘p‘ + ufifj + Aij) fr
wkfif] k — DZ;kafk+MDkaflfJfk+)\Dukfk’
zgkfzfj)k ijlcRijfk7

and thus we conclude using (522}]) and (EQQ) O

We are now ready to prove the first important result of this Section.

=(D
(D
(D
(D
(D
(D

Theorem 6.2.9. Let (M,(,)) be a complete Riemannian manifold of dimension m with an Einstein-type
structure as in () Suppose that m > 3, that o > 0, that (6.2.9) and (EQII) hold and that f is proper

and non constant. Then D¥ =0 and ¢ is harmonic.

Proof. Let ¢ be a regular value of f and let 3. and €. be its corresponding sublevel hypersurface and set,
that is
Qe={xeM: flz)<c}, Z.:={zeM: flx)=c}=00. (6.2.10)

Integrating () on M, that holds since we are assuming the validity of (), and applying the divergence

theorem )
m— «
—= D¥|? + /T(pQVf2:/ Y, v),
ARy MUGIELE R

c

where v is the outward unit normal to ¥, and Y_is the vector field with components defined by () Since
v is in the direction of V f and since, using ()

(Y,Vf)=Y*fi =D, fififr =0,

m—2 «a
02 2 2 _
[ Do L [ e =o

Since ¢ is an arbitrary regular point of f we easily conclude, letting ¢ — 400,

m—2 «
e P12 2 2 _
ol ey MU CIEZIE

and since a > 0 and, using the second equation in (), the vanishing of |7()|?|V f|? is equivalent to the
harmonicity of ¢, the thesis follows at once. O

we obtain

Remark 6.2.11. Note that we can give the vector field Y the following remarkable form:
(m —1)Y = Ric?(Vf, VIV — |[Vf|*Ric?(Vf, )% (6.2.12)
Indeed, from the definition () of D¥

Diwfi=—— ! {Rﬁfsz R fifs + —— fe(Rif5 = R fi) = 5 —— efi = fife)

m
ﬁ |:<1_7n1> fsz_ <1_Tn1_> Zkflf]:|

1
_ﬁfi(Rf}fk — RIf5)-
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Therefore we have )
Y* =D, fify = m(Rf}fifjfk — RE LIV,

that is ()

Remark 6.2.13. Observe that in the degenerate case where y = ——L that is, when (M, (, )) is a confor-
mally harmonic-Einstein manifold by , the condition () is always satisfied. It follows by
contracting the second integrability condition (R.3.4) against Vf, using the skew symmetry of W% in the
first two indexes. Observe that a sufficient condition to guarantee (6.2.1)) is that (M. (. )) is p-Bach flat,
that is, BY = 0. In case m # 4 this requirement is quite strong, since from tProposition 1.2.Sj it implies ¢
is a harmonic map. On the contrary in case m = 4 it seems a reasonable assumption, since B¥ is trace-
less. Notice that if M is compact then f is always proper, then the only requirement is that the gradient
Einstein-type structure is non trivial (that is, f is non constant), while, if M is noncompact and proper then
f must be automatically non constant. Finally, one can prove that if g = 0 and X is constant in the gradient
Einstein-type structure then the potential function f is proper, proceeding as in Proposition 8.12 of [AMRI.

6.3 The geometry of the level sets of f

Our aim is now to analize the consequences of , that is, the two simultaneous conditions
1) D¥ =0, i) 7(v) =0,

on the geometry of the level hypersurface Y. = 99, defined as in (), for a regular value of f. We fix
the indexes ranges
1<4,j,...<m, 1<a,b,...<m-1, 1<ADB,...<n.

With respect to a local orthonormal coframe on M we have, combining ) and iz) above with (),

RE + fij = nfifj + Aoy,
eii = 0=l fi, (6.3.1)
Df, = 0.

The following Proposition provides the relation between the norm of D?¥ and the curvature of the level
hypersurfaces of f, it uses only the first and the last equation of ()

Proposition_6.3.2. Let (M, (,)) be a Riemannian manifold of dimension m > 3 that satisfies the first
equation of () Let ¢ be a reqular value of f and let . be the corresponding level hypersurface. For
p € X, choose a local first order frame along f, that is a local orthonormal frame {e;} such that ey, ..., em_1
are tangent to X. and

e _ VS
"V
Then, at p,
(m —2)? 2 712 2, M—2
———|D¥* = |h ——R? RY 6.3.3
S D7 = RIS+ R, R (633)

where h is the traceless part of h, the second fundamental form of X..

Proof. Let ¢ be a regular value of f, p € 3. and {e;} a local first order frame along f, then
Ja=0, fm= |Vf‘ (6'34)
Let h be the second fundamental form of ., then (see proof of Proposition 6.1 of [CMMR])

h=hut* 200w,
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where

v= VI e
v
and P
hap = —07(ep) = — =22, 6.3.5
() =~ (635)
Using the first equation of (), that holds by hypothesis,
1 1
hab = = Rf — ,Ll,fafb — )\(5(11, = = Rf — >\§ab . 6.3.6
The mean curvature h is defined as L
h:=—2 6.3.7
— (6.3.7)
Tracing () we deduce the validity of
1 S¥ — RY,
h= mn o\ . 6.3.8
o (T ) (03
We denote by h the traceless part of h, that is,
iLab = hgp — héab~
Using (BSa) and (BSQ) we obtain
B =[h|* = (m — 1)h?
1 m 2
= Ric?|” — 2R?, R, — ——(Rf,,)? — ——(5¥)* + ——=S*RY,,.| ,
that is,
VP12 = [Ric?|? — 2R, R?, — —" (R?, )> — —(5¥)2 + —2_S¥Re. . (6.3.9)
am am m — 1 mm m — 1 m — 1 mm

Then we compute |D¥|? on M. A long and tedius computation yields the validity, where V f # 0, of the
following

(m — 2)?

w2:~w2,mww,mw2

- —(8%)* + LS@R;ﬁm. (6.3.10)
m—1 m—1

Indeed, using the definition () of D? we obtain, simplifying and rearranging the terms,
(m —2)? 2 . 2 m 2 1 2 2 2
T|D¢| =[Ric?||[Vf|* = m(Rso)ijfifj - m(S“") IVIIF+ mSg)R;’}fifj,
where
(R¢)?j = Rfkak-
Using () we deduce immediately
(Rw)?gflfj = [Rtmefm + (szm)2]|vf‘2a RZfoJ = R;’;Lm|vf|2’

so that, from the above, we_conclude the validity of ()
By plugging () in () we deduce the validity of () O
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Remark 6.3.11. In the assumptions of tProposition 6.3.j7 using also the third equation of (), that is,

D?¥ =0 then X is totally umbilical, that is

h=0,
or equivalently
1 S% — R?
ha = T — ) 5(1 ;
"IV < m—1 ) '
and for everya=1,...,m—1
R?  =0.

Then, by plugging () in () we obtain

1 1 (S%—Rg
(R, — Nap) <S Rinm /\> Sabs

IV f] VAN m—1
that is,
S® — R®
RY, = —— 650,
ab m—1 b

In the following Proposition also the second equation of (f.3.1)) comes into play.

(6.3.12)

(6.3.13)

(6.3.14)

Proposition 6.3.15. In the assumptions and the notations above, that is all the equations of () are
satisfied and ¢ is a regular value of f, the quantities |V f|, S¥ and X and the mean curvature h are constants
on 3. In particular X, is totally umbilical hypersurface of (M, {, )) with constant mean curvature. Moreover

Y S¥ s constant on X, where

B9 =B — aldv,

is the -scalar curvature of the Riemannian manifold (., (, )x.), where (, )x_ is the metric induced on 3.

c

and P = |y, .
Proof. We use the notations of lProposition 6.3.1 Clearly, using (),
i
2
hence from the first equation of () we obtain

w—(—R“’ + AS — (—R?
9 - ma :u’fmfa+ ma)|vf|_( Rma+ﬂfmfa)|vf|'

Using in it once again (), together with () we deduce

IVfIz=0.

fiafi = fma‘v.ﬂ:

Hence |V f] is a positive constant on X, (it is positive because ¢ is a regular value for f).

The fact that dp(V f) = 0 implies the validity

P =0,

indeed, using (),
0 fi = emlV 11,

and since |V f| is positive we conclude that () holds.
The fact that the immersion is totally umbilical gives

(m — 2)hb = Rmb~
Indeed, by Codazzi equation (see, for instance, (1.145) of [])

hab,c = hac,b - RZ(L;c;
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hence summing on a = ¢ we get
m
hab,a = haa,b - R

aba>

that is, using (),
hab,a = (m - 1)hb - Rmb

Since the immersion is totally umbilical
hab,a = hba

hence the above relation reads
hb = (m — ].)hb — Rmb;

that is (6.3.1§).

Using the definition ([L.2.9), () and ()7
Rup = RY, + apit it = 0. (6.3.20)

hence from (5.3.18) we get that ¥, has constant mean curvature h.
Using (.1.9) with ¢ = b and (.3.4) we get

1

so that, using () and the first equation of (.3.1) we conclude
1
388 = W(=RE, + ufofm + Ao [V f[ + (m = DA,
that is, using once again () and (),
oo
§Sb = (m — ].))\b

It follows that

1
557 = (m—1)A (6.3.21)
is constant on .. In particular, if we show that S¥ is constant on X. we can conclude also that A is constant
on X.. To show that S¥ is constant on X, we first observe that ( ) can be rewritten as
S¥ — R¥
Vflh= = = A, (6.3.22)

or equivalently
1 1
(m=1)|Vfh=5SY—-R?  —(m—-1)\= (QS‘P —(m — 1))\> + 55“’ —R? ..,

and since both |V f|h and () are constants on ¥, we can conclude that also

1
—_49¥Y _ R¥
55 = Ri

is constant on .. Then it is sufficient to show that Ry, is constant to obtain that S¥ is constant and then
conclude. For this purpose, observe that using the first equation of (bS]J), (b.3.4), (b314|) and (5321)

SY _ R¥
faa = _Rfa + /J’fafa + )\6aa = — (Tn—inm> (m - 1) + (m — 1))\ = —(m — 1)‘Vf|h,
that is,
faa = _(m - 1)|Vf|h, (6.3.23)
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hence f,, is constant on X.. Using () with ¢ = m and () we can conclude

%S’I’fl :Rfmfk + ,u(fkmfk - Affm) + (m — I)Am

=RE, fo+ RV + il famfa + frum| VI = AfIVF]) 4+ (m = 1)An,
=RE, IVl + i1 frm — AS) IV + (m — 1A,

:erlm‘vﬂ — pifaal VI + (m = 1) A,

hence

1
555 = RE,9 1 = (m = )

is constant on ¥.. Then, using once again that |V f| and () are constants on X,
1
0= (55% = R IV11 - (m = DA )

— (;S“’ — (m — 1)A> — Ry ol VI

am

= R%m,a|vf|7

so that R¥

mm

We denote by v the restriction of ¢ on Y., that is,
Y=po
where ¢ : . — M is the inclusion. By definition
dip = 0" © Ea,

where
Vrwh = o,
Observe that
P = of,
indeed, using () and p*w? = A0, we get

Yrwt = ptot =0 (0f0) = ol = 0,

where we used the standard identification
1F0% = 0°

and the fact that
170" = 0.

Notice that, from (b.3.25|) and (b.3.17|),

A A
|dv[%, = vivd = il = ldel.
As a consequence, the 1-scalar curvature of X, endowed with the metric +*(, ) :

Beg¥ = %8 — aldyl?,

where *<S is the scalar curvature of (2, (, )s,).

The Gauss equations (see, for instance, (1.6139) of []) are given by

EC}%abcd = Rabcd + hachbd - hadhbm

109

is constant on . and the proof of the constancy of S¥ on X, is concluded.

(6.3.24)

(6.3.25)

(, )s., is given by
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and since the immersion is totally umbilical, the above reads
EC-Razbcd = Rabcd + h2(5ac5bd - 6ad6bc)-

Then, summing on a = ¢

E¢ Rya = Rpa — Rnpma + (m — 2)h%8pq. (6.3.27)

Summing the above on b = d
¥eS =8 —2Rm + (m —2)(m — 1)h?. (6.3.28)

Using (), () and the definition of ¢-scalar curvature of (M, (, )) we obtain
EeS¥ = 8 — 2R,m + (m — 2)(m — 1)h%.

Moreover, using the definition (ll2j) and (b.S.l?b,

Rﬁlm = Rmm - a@ﬁ(pﬁ = Rmma

and since we already showed that R?, , S? and h are constants on Y. we get from the above that =S¥ is

constant too, concluding the proof. O

Our aim now it to show that (X, (, )s.) is harmonic-Einstein with respect to « and 1, for a regular
value c of f. In order to prove it we need the following result.

Proposition 6.3.29. In the assumptions above C? =0 on {x € M : V f(x) # 0}.

Remark 6.3.30. In the assumptions of lProposition 6.3.2d, if the potential function f is real analytic in
harmonic coordinates, then (M, (,)) is ¢-Cotton flat. Indeed, since C¥ = 0 on {x € M : Vf(zx) # 0},
if {x € M : Vf(z) # 0} is dense on M we get C¥ = 0 on M, by continuity. Assume by contradiction
{x € M : Vf(z) # 0} is not dense on M, then there exists an open subset of M such that f is constant on
it. Then, since f is real analytic in harmonic coordinates, f is constant on all M. Contradiction.

Remark 6.3.31. Following the argument in Proposition 2.4 of [HPW] (inspired by Theorem 5.26 of [B], that
relies on the work of De Turk and Kazdan), it is easy to get that, for a general structure (@), g, f and dy
are real analytic in harmonic coordinates, at least when A is constant. Indeed, when p # 0, rewriting (-;
in terms of u := e"f we get

puRic? — app™(, ) v — Hess(u) — pAu(, ) =0

1 6.3.32
ut(p) + —dp(Vu). ( )
]
Since A is constant, the Hamilton equation () holds, that in terms of u is given by
1 _
ulAu + 7'”|Vu|2 +Au? — A =0, (6.3.33)
L

where A is a real constant. Coupling (5331) and (53314) we obtain the following system, in harmonic
coordinates (z!,...,2™),

pu gy 0%gis 0%u
— —— +...=0
29 Gkt + OxtOxd +
0%u
Kt
—— +...=0
Y9 ekt +
ot
kt %
.=0
Y9 ekt ’
where the dots denote lower order terms and, on the domain of (z!,...,2™),
qg= gwdl‘z ® dl‘j, d(p = (p?dl‘z ® 5
oy®
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where (y!,...,y") are local coordinates on M. Proceeding as in the proof of tProposition 6.3.2‘4 we_conclude
that g;;,u and ¢ are real analytic on the domain of (z',...,2™). When yu = 0 we couple () with
(‘), we set u = —f and we proceed as above.

Proof (of Proposition 6.3.29). We fix x € M such that V f(z) # 0 and we set ¢ := f(x). Since c is a regular
value we may take a local first order frame {e;} along f. By the first integrability condition (), since
we are assuming the validity of the third equation of () we deduce

Cf = — W

tijk-

(6.3.34)
Hence, contracting the above against V f, by the symmetries of W¥ and using ()

0=—fifWiiy = fiCF

ijk — Crf],jklvfl‘

Then C;ijk = 0. Since ¥, is totally umbilical with constant mean curvature h is parallel, that is hgp . = 0.
Then, from Codazzi’s equation () we get

Rmabc = Oa (6335)

But then, explicitating the decomposition (| g)

Se

Rmabc = Ww 7_1(

mabc

1
+ m [szb(sac - R'{fq,céab + Rfc5mb - beémc - 6mb6ac - 6mc(5ab) )

and since () holds we conclude from the above equality and () that
744

mabc

Therefore, from (), using (b34|) and (b33d) we obtain

0. (6.3.36)

C:zpbc = _ftWt[ibc = _de:lizbc - |vf|W1iabc =0.
By the symmetries of C¥ it remains only to prove
cr ., =0 (6.3.37)
First of all observe that 5o Re
Ry, 0" = 7;7_1 T (6.3.38)
in fact from the definition of covariant derivative, since () holds,
0 =dR?,,
:Rfmgs + Rfkeﬁ’b + Rfm kek
=R{, 00+ REu00 + RE05 + REO0 + RE,, 400
=R{,, 00 + R0, + Rfm,kgk
and thus, using also () from the above equality we obtain
Rfm kek == Rﬁ.mez’rzn - Ra@bglrjn
.. S¥—R?
=—Ry,.00 — T;Lmaabefn
m S¥ — Ry a
:_R'rfzmea - m_inmem
_S¥Y—mRY om
 om—1 @’
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that is () Now we are going to prove
R? =0. (6.3.39)

am,m

Observe that, by taking ¢ = @ and j = m in the first equation of () we obtain
Rim + fam = ,ufafmv
and thus, using (5313) and (B3Z}I), we deduce

Jam = 0. (6.3.40)
Moreover, taking the covariant derivative of the first equation of () we infer
R+ figke = nfarfy + wfifin + Mdij
that for i = m =k and j = a reads as

Rfm,m + fonam = Wfmmfa + 0 fm fam-

Using (p.3.40) and (p.3.4) into the above we immediately get ()
From () and () we infer

S¥ —mR¥
Rf 0" =RE 08 = ————mmgr,
am,b am,k m—1 a
Using () in the above equality we deduce the validity of
S¥ —mRY¥, 1 mR?,, —S¥
o _ T gm (o) — imm - 3.41
Then we finally obtain, using (h.2.4j), (6.3.14) and (534]1)
1
ct =R’ —R’ , ————_S%§,
abm ab,m am,b 2(m o 1) mUYab
S¥ — R . 1 S¥—mR¢ 1
— (s g, - o
( m—1 “”>m+ IV m—1 Ja 2(m —1)" ™7
S¢ — RY, 1 1 S¥Y—-—mRY?
_m mm,m 50, . S 5a mm .
m—1 P m =0 TN m—1 fab
1 1 1 SY—-—mRY?
:75‘9(5@ - —_ R¥ 6a mm b
2m—1) 0 "y tmmab T g T fa
Moreover, since ¢ is harmonic, from (Jl.2.26),
1
§S7fl = Rfm,i = Rfm,c + Rﬁtm,m
By inserting it in the above equality we deduce the validity of
1 1 SY—mR¢
CY =——R? 4 UL 6.3.42
abm m — 1 cmc b+|Vf| m—1 fb ( )
Taking the trace of () and using () we have
Rf, .= —(mR$,, — S?)h. (6.3.43)

On the other hand, using () and the fact that the immersion is totally umbilical we obtain

1 S¥—-mR¢ S¥ —mRY, mRy,., — S¥
mm e 27 T Mgy M im0 6 6.3.44
IVl m-—1 fav m—1 b m—1 b ( )

Using (b343|) and (5.3.441) in (b342|) we conclude the validity of (), then the proof is completed. [J
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We are now able to prove the following Proposition, as announced before.

Proposition 6.3.45. In the assumptions above, for every reqular value c of f, 3. is harmonic Einstein with
respect the induced metric (, )y, o and the restriction ¥ of ¢ on X, that is,

c?

] . e Qb
Y Ric— oy (, v = {5 )=

m—1
Zor() = 0.

Proof. First of all we prove that ¢ : (2., (, )u.) = (IV,(, )n) is harmonic. Taking the covariant derivative
of dp(Vf) =0 we get

(6.3.46)

o fi + @i fij = 0.
Using (531-1]) and (531() into the above we get
Spfmj|vf| + (P;‘faj =0.
By choosing j = m, since fqn, = 0 (see ()), we get

CmmlV I =0,
that implies
Crnm = 0- (6.3.47)
Now, by definition of covariant derivative,
G = dvgt — vl + YPwp (6.3.48)

and
Qoazaz = dwa — ¥ Hl + 90(1 wB'
Using () into the above and we get

Pt + Camf™ = dy — 05 + 0w,
restricting it to X, recalling (), yields
Pal” = Ay — U0 + Y wp. (6.3.49)
Comparing (M) with (M) we deduce

Vb = Pa-
Using the above, that ¢ is harmonic and () we conclude that also ¢ is harmonic, indeed
A A_ A
Sﬁaa ©ii = Pmm = 0.

Equivalently one can prove that ¢ is harmonic using formula (1.180) of [], that is,
Fer(¥) = Vdp(di(ea), difeq)) + dip(T(2))-
Indeed, since ¢ is harmonic and Vdp(V f,Vf) = 0 (that is ()),

Vdp(di(eq),di(eq)) = Vdp(eq, eq) = 7(p) — == Vdp(Vf,Vf) =0,

IVfI2

and since ¢ is an isometric immersion

T(1) = e :( Lh
(1) = haatm vl V/f,
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hence, using do(Vf) = 0 and that |V f| and h are constants on 3,

(m—1)h
IV f]

It only remains to prove that the traceless part of -Ricci vanishes. Recall that C¥ = 0 on X, from
ll;roposition 6.3.2&. Hence using also the third equation () the first integrability condition )

implies

de(7(2)) = de(Vf) = 0.

0=Cfp+ W = IVFIWE
thus

W, =0. (6.3.50)

From the decomposition (), using () we obtain

1 »
Rmamb = (Rgb + R;’;Lméab - 5 5ab) y (6351)
m— 2 m —

indeed

1

Rnamb =W,h s + —

(Afimdab — A7 p0am + Agy — Afu0om)

1 S¥ S%
- - ® - e -
m—2 <Rmm5ab 2(m —1) Oab + Rqy 2(m —1) 5‘“’)
_ 1 ® @ 5%
_m (Rab + Rmmdab Tn_l(sab> .

By plugging (53141) into (b35]]) we obtain

1 S¥Y — R¥ S RY¢
Rmamb = m—2 ( m— inm 5ab + Rﬁmméab - Tn_léab) = mriml ab-

By Gauss formula ()7 using the above and (),

REm
e Rpa = RE, + api ol — p— 15bd + (m — 2)h%6pq.

By plugging () into the above and using ()7

2RY¥,

Sy —
2e Rypg — apiieps = (mmm + (m — 2)h2> Sbd-

-1

that implies the validity of the first equation of () O

6.4 Main results

We are now ready to prove the most important results of this section.

Theorem 6.4.1. Let (M,(,)) be a_complete Riemannian manifold of dimension m > 3 endowed with a
gradient Finstein-type structure as () for some a >0, p: M = (N, {, )n) smooth, u € R with ()
and A\, f € C®(M) with f proper and non-constant. Assume that () holds.

For every regular level set &3 of f there exists a connected neighbourghood U of 3, an open interval I 30
and an isometry ¢ : I X —2n 3 — U. Moreover g o ¢ =1poms, onU, where ¢ := ¢y, and s : I x X — X is
the canonical projection. Furthermore, U is foliated by totally umbilical hypersurfaces ¥, with constant mean
curvature H'(r) with leaves that are harmonic-Einstein with respect to the induced metric, o and v, == ¢l ,
where r € I and X9 = 2.
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Proof. Our assumptions permits to apply to deduce that ¢ must be harmonic and D¥ must
vanish on M. Let ¥ be a regular level set of f, that is [V f| # 0 on ¥ (it exists by Sard’s theorem, since

f is non-constant). In a connected neighborhood U of ¥ which does not contain any critical point of f the
potential function f only depends on the signed distance r to the hypersurface 3. Hence, by a suitable
change of variable, we can express the metric tensor (, ) as

dr @ dr + gap0® @ 6°,

where gup = gap(r,x) and r € I := (r,,r*) for some maximal r, € [—00,0) and r* € (0,400], where
6t,...,0™ ! is the local coframe on ¥ induced by a local first order frame along f.
The change of variable is performed in the following way: the integral curves of vector field YV := %

are unit speed geodesic orthogonal to ¥ and the flow of Y gives rise to a smooth map ¢ : I x ¥ — U, that
coincide with the normal exponential map of ¥. The map ¢ is an isometry when we endow I x ¥ with the
metric

¢*<’ > =dr®@dr+ (¢T)*<7 >E7

where ¢, : ¥ — M is defined by ¢,(z) = ¢(r, x).
In particular, since ¢q is the inclusion of ¥ in M,

gab(07')9a ® eb = <¢0)*<7 >E = <7 >Z7
that is,
9ab(0,-) = dap.

By definition of Lie derivative, using (B?)a) and that every ¥, := ¢({r} x X) is totally umbilical with
constant mean curvature h(r), since, as proved in tProposition 6.3.15‘, it is a level set with respect to a regular
value of f, we obtain

agab
or

fab = _2hab = _2hgab7

= (Lvr(, ))(eq,ea) = 2Hess(r)(e,, €q) = 2|Vf| =

that is,

99a
S (r,6) = ~2h(r)gun (1, 0)-

Thus we deduce the validity of
Jap(r,*) = eiQH(T)gab(O, ), where H(r)= / h.
0

This proves that on U the metric (, ) takes the form of a warped product metric
dr@dr+e 2H( s,

where H is a function on (r.,7*).
Moreover, since dp(V f) = 0 then ¢ o ¢ does not depend on r (using that U is connected). Hence ¢ o ¢
is the lifting to I x ¥ of the map ¢ = |, that is, ¢ = ¢ o 7y;.
Notice, finally, that (2., (, )x,) is harmonic-Einstein with respect to 1, by lProposition 6.3.45 for every

r

rel. O

Remark 6.4.2. Notice that the vanishing of D¥ implies that the ¢-Schouten tensor is a Codazzi tensor in
the conformal metric - ,
<’ > :e_mf<7 >

Moreover, it is easy to see that in this conformal metric the ¢-Schouten tensor has at most two eigenvalues
one of multiplicity 1 and the other of multiplicity m — 1. Indeed, proceeding as in the proof of

Ric” = (u+le)df®df+emQ2f (Aff+>\) oo,

1’

m—2
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hence
~ 1 ——
m— 2

where 7 is an appropriate smooth function on M.

The presence of a Codazzi tensor with two eigenvalues of multiplicity 1 and m — 1 with constant trace
forces the manifold to be locally a warped product of an m — 1-dimensional Riemannian manifolds on an
interval of R, this is a classical result by A. Derdzinski. In our situation we did not rely on this general result
because the trace of the ¢-Schouten tensor is not constant, in general (but one can rely on the generalization
obtained in [@] by G. Merton to obtain the local structure of a warped product).

When X is constant we have
Theorem 6.4.3. Let (M,(,)) be a_complete Riemannian manifold of dimension m > 3 endowed wit

a
gradient Einstein-type structure as () for some >0, o : M — (N, {, )n) smooth, pi, A € R with ()
and f € C=®(M) with f non-constant and, in case p # 0, proper. Assume that () holds. Then

C¥=0, 7(p)=0, BY=0
and
W#(T#) = 0, (6.4.4)
where W¥ is the endomorphism of S3(M) defined by (R.3.16). In particular, if W¥ is injective, then the
{s

gradient Einstein-type structure ) reduces to a harmonic-Einstein structure.

Proof. From Theorem 6.2.& we have D? = 0 and 7(¢) = 0. Notice that, when p = 0. f is proper from
Remark 6.2.13. Then, from [Proposition 6.3.29, combined with [Remark 6.3.3d and Remark 6.3.31], we have
C? =0 on M. Then the first integrability (6.1.11) yields

Wik fe = 0. (6.4.5)

Moreover, from (p.1.16) we get that (M, (, )) is p-Bach flat. Then, from the definition of ¢-Bach ()
we get, using that ¢ is harmonic, C'¥ = 0,

0=(m-— 2)35 = Wtfijfk - O‘sz‘»o[lé@?'

Using the symmetries of B?, Ric¥ and W% we also have
0=(m~— 2)Bﬁ = Wt?kink - ozRfi@Zga? =W,

» $ a a
thk — aRy, 095,

so that, summing with the above

QW5 R, — awi(RE 07 + Rf05) = 0. (6.4.6)

Then we conclude the validity of () Indeed, from (I‘Z.3.1d) and (b4d), using the definition of 7% and

(2.29),

«
Ww(TSD)ij :Wtﬁijti - 5‘)024(90;46@ + @ftskl)Tti
S¥ e
RY — —W?* = — —
tk m kikj 9

:Wtfkj
_1L (ZW"? RY — ap (0 RY + goARP)> +2
2 tikj~ “tk t i Tty J 2

O (P T + 0] Tf)
SLP A a A SS" ©
i (10 95 0u) — Wiy,
a «
=— 8% ] — —8%plp] =0.
If W¥ is injective then T% = 0, that is, since ¢ is harmonic, (M, (, )) is harmonic-Einstein. O
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Remark 6.4.7. Notice that in the assumption of the Proposition above we only required that W¥ is injective.
Assuming that ¢ is non-constant one may ask, equivalently, that the pair ({, ), ) is generic in the sense
of . This is due to the fact that, since ¢ is harmonic, by unique continuation it cannot be
constant on an open set unless it is constant on the whole M. Hence the zeros of dp can be located only at
isolated points (and they are not of infinite order).

As an application of and the results of we obtain

Corollary 6.4.8. Let (M, (,)) be a_Riemannian manifold of dimension m > 3 endowed with a non trivial
gradient Einstein-type structure as (8.0.1)) for some a« >0, p : M — (N, {, Yn) smooth, pu, A € R with ()
and f € C®(M). Assume that (p.2.1) holds and that W¥ is injective. Then M is non-compact.

Assume moreover that (M, (,)) is complete and that [ has exactly one critical point.

i) If w =0 then A #£0, ¢ is constant and (M, (, )) is isometric to the Fuclidean space R™. Moreover f
is given by () for some b € R™ and c € R.

it) If u # 0 and that f is proper then ¢ is constant, (M,(,)) is isometric to the hyperbolic space of

. » . . . .
constant sectional curvature kK = % and of dimension m and X\ is given by

(m—-1)p+1
T

A=K

Proof. Assume by contradiction that M is compact. From [heorem 643 we get that (M, (, )) is harmonic-
Einstein. Then, using [Corollary 4.2.32 if ;4 = 0 and [Corollary 4.2.33 if u # 0, we conclude, among the other
things, that A is non-constant. Contradiction. Now assume that (M, (, )) is complete and, in case u # 0,

that f is proper. Then. once again using , (M, {,)) is harmonic-Einstein. If g = 0 we get the
validity of #i7) a) of [Cheorem 4.2.1§. Indeed, since A is non-constant, i) and ¢) cannot hold and, since f has

exactly one critical point, i) b) cannot hold too. If u # 0, since A is constant, we get the validity of i) of
heorem 4.2.25. O

117



118



Chapter 7

Einstein-type structures with A
constant

In the following we consider a complete Riemannian manifold (M, (, )) with a gradient Einstein-type struc-
ture of the form
{Ric“’ + Hess(f) — pdf @ df = A(, ) (70.1)

7(p) = dp(V f),

where ¢ : M — (N. ) is a smooth map, a € R\ {0}, u, A € R and f € C>®(M).

We begin with in which we generalize the classical Hamilton-type identities, a very important
tool in_the study of Ricci solitons, to Einstein-type structures.

In we deduce from the presence of a complete Einstein-type structure, that in turns imply
a lower bound on the generalized Bakry-Emery Ricci tensor, some restrictions on the volume growth of
geodesic balls. As a consequence, assuming eventually that the density energy of ¢ and |V f|? are bounded,
we obtain the validity of the maximum principle at infinity for the operator Ay and also compactness or
f-parabolicity, under some additional assumptions on the parameters involved.

In , by applying the weak maximum principle, we provide estimates on the infimum of the
p-scalar curvature in the complete case, when o > 0. We are to obtain those estimates only for 0 < p <1
and, if p # 0, eventually assuming that the potential (or the smallest eigenvalue of its hessian) is bounded
from above. In case = 0 we are able also to study also the generic case.

In the final Section, Section 7.4, we obtain a Bochner-type formula, dealing once again with the generic
case. Using this formula we prove that, under some assumptions on the parameters involved, the ¢-scalar
curvature and eventually some integrability conditions, the Einstein-type structure reduces to a harmonic-
Einstein structure.

Some of the results of this Chapter are part of a joint work with Marco Rigoli.

7.1 Hamilton-type identities
In case = 0 and ¢ is constant () yields the Ricci soliton system
Ric + Hess(f) = A(, ). (7.1.1)
In this situation we have the well known identity due to Hamilton,
VS = 2Ric(Vf,-)*. (7.1.2)
The latter, in turns, gives rise to the celebrated Hamilton identity

S+|VFI*—20f = A, (7.1.3)
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for some constant A € R. Note that in case A # 0 one can add a constant to f to obtain A = 0. We shall
generalize (m) and () to the Einstein-type structure ([7.0.1). The equation corresponding to ([7.1.2),
with A non-constant, is given in a local orthonormal coframe by (3.1.1d), which we report here for the sake
of convenience

1
5S;" =R fr — pAf [+ pfifrg + (m = 1)A;. (7.1.4)
Observe that for © = 0 and for X\ and ¢ constants () reduces to () Next we extend () in the

following

Proposition 7.1.5. Let (M, {,)) be a Riemannian manifold with an Einstein-type structure as in ()
fora e R\ {0}, p, A€R, f €C®(M) and ¢ : M — (N, (, )n) smooth. Then there exists A € R such that,

if p#0:

1 A
S¢ — (n—1)|Vf]?+ ( — m) A= —e2f, (7.1.6)
M Iz
and if p=0:
S? + |V f|? —2\f = mA — A. (7.1.7)
As a consequence we have the validity of the following equations, if pu # 0:
AA
Arf =52 -2, 7.1.8
= (7.1.8)
and if p=0:
Arf=A—-2\f. (7.1.9)

Remark 7.1.10. Observe that in () and () the map ¢ : M — (N, (, )n) and the constant o do not
appear. This observation enables us to extends some results on quasi-Einstein manifolds that relies on the
validity of generalized Hamilton-type identities to gradient Einstein-type structures.

Proof. In the assumptions above, but with A € C°>°(M), we claim the validity of the following equation
(Apf + (m —2)); — 2/ (s f — A) = 0. (7.1.11)
Towards this aim we trace the first equation of () to obtain
mA =8¢+ Af — ulVfJ> (7.1.12)

Taking the covariant derivative and inserting into () we deduce

1
357 = Bijfe = nAffi+ ufifig = Ay + (8% + Af — u|VF2);,
that is,
1
553'0 +(Af)j + R fi = uAffi + ufigfi + Ay
Contracting the first equation of () against V f we infer
REfi4 figfi = nIVFPfi + A5,
and replacing into the above yields
1
55}0 +(AS)j = fisfi + WV FP S+ N = nAF i+ wfig fi + Aj,

that is,

S§ = =2AAF); + 201+ w)fisfi — 2V 25 — 205 + 2B f; + 2 (7.113)
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The covariant derivative of () yields

ST+ (Af); = 2ufifij +mA;, (7.1.14)

and by plugging ('7113) in (t7114l) we obtain

—2(Af); + 21+ p) figfi = 20|V FI2 5 = 20 f5 4+ 2uf f5 42X + (Af); = 2ufifij + mA,

that implies ()
Now, assuming A constant () can be rewritten as

(Arf); — 26 (ud g f = X) = 0. (7.1.15)

o If u# 0 from () we deduce
A A
(arF=2) —2uss (a7-2) =o.
K/ 12

V= (Aff — A) e =2l
1

It follows that the function

is a constant, say f%, where A € R, on M. Indeed, using the above

A A
(Aff - u)j —2uf, (Aff - M)] e = 0,

Observe that since v = —2 we have the validity of () To deduce the validity of () it is

M

sufficient to plug (), that is,

Uj:

Apf=—89+ (u—1)|VF2+m\, (7.1.16)
into ()
o If 4 =0 then () becomes

(Asf)j+2Af; =0,

and thus, since A is constant,

(Aff+2Xf); =0.
Then the function

vi=Apf +2A\f
is constant on M, say it is equal to A for some A € R. Hence () holds. By plugging ([7.1.16) into
(/19) we get the validity of ([7.1.7). O

Remark 7.1.17. It is worth to observe that when m > 3 and

1
m—2’

or equivalently when (M is conformally harmonic-Einstein, equations ( ;la) and (l/la) holds for
A€ C®(M), see . This can also be seen directly, in fact from the proof of the Proposition
above, in case () holds, equation () becomes

= - (7.1.18)

1
m— 2

(@rf+ =2, = 26, (=g 8rf = A) =0,
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that is,

(B 4+ (m =20 + 2 [ (AT + (m = 2)X) = 0.

Then, setting
2
vi= (Apf + (m — 2\ )ems,
it is easy to see that v is constant on M.

Remark 7.1.19. During the proof of the Proposition above, in case u # 0 _the choice of the constant A
may seems unpleasant. The motivation the choice we made is contained in [Theorem 2.5.2¢. Indeed, in the
assumptions and notations of [Cheorem 2.5.26, the constant A is the Einstein constant of the space (F, (, ) r).

Compare () with (), where = 1.

7.2 Weighted volume growth for gradient Einstein-type structures

The validity on a complete Riemannian manifold (M, (, }) of dimension m of a system of the type
1
Ric+ Hess(v) — —dv®@dv > —(y+m —1)Gor(, ), (7.2.1)
Y

where r(z) := distps(x,0) is the geodesic distance of © € M to a fixed origin o € M, for some v € C*°(M),
~v € R and some continuous function G : R(J{ — Rg , implies some restriction on the weighted volume growth
of geodesic balls. The same applies to the system

Ric + Hess(v) > —(y+m — 1)Gor(, ),

that, for the sake of brevity, we shall indicate as the case v = +o0.
Indeed, in case v > 0, the left hand side of () is the generalized Bakry-Emery Ricci tensor Ric] of
(M, (,)) introduced by Z. Qian in [Q], so that we can write ([f.2.1]) in the form

Ric) > —(y+m—1)Gor(,). (7.2.2)
Inequality () enables us to estimate from above the weighted volume of geodesic balls

vol, (By) ::/ e ",
B

T

via Theorem 2.4 of [MRS] whenever G has an appropriate behaviour at infinity. Of course in the estimate
will enter the parameter . Indeed, let g be a positive solution (if any) of

" —Gg>0onR{
{g g="10n %o (7.2.3)

9(0) =0, g'(0)=1.

Then (), together with completeness of (M, (, )), implies via Theorem 2.4 of [MRS], for r large enough,
vol, (B,) < C/ gtmt (7.2.4)
0

for some constant C' > 0. Note that, and this is important, the upper bound in () only depends on G
via g but not on v.
In case v = +oo, that is,
Ric, > —(m—1)Gor{, ),

the estimates corresponding to () are given in Proposition 8.11 of [AMR], that is,

voly(8B,) < Cr=a1+JI (Ji(m-1)G)dt
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for some constants £, C' > 0 and r > ¢ and as a consequence

T
vol,(B,) < D + / CstJ2 (S (m=1)G)dt g s (7.2.5)
0

with C, e as above, D > 0 a constant and r € Rar.
In particular, when G = ¥ for some X € R, 7y = +00 and G = X for some ¥ € R, that is,

Ric, > —(m — 1)X(, ) (7.2.6)
from () we obtain the estimate

(m—-1)%

vol,(B,) < D+B/ e T O for p >> 1 (7.2.7)
0

and some constants B,C, D > 0.
We point out that for if v > 0 and ¥ < 0, Qian, Theorem 5 in [Q], shows that the complete manifold
(M, (,)) satisfying
Ric] > —(y+m —1)3(, )

has to be compact. For v = 400 and ¥ < 0 a complete Riemannian manifold (M, (, }) satisfying ([/.2.7) can
be non-compact (to see this it is sufficient to consider the Gaussian shrinker gradient Ricci soliton structure
on the Euclidean space). Nevertheless, the following Proposition holds.

Proposition 7.2.8. Let (M,{,)) be a complete Riemannian manifold such that () holds for some
v € C®(M) and for some constant ¥ < 0. Then (M, (,)) is v-parabolic.

Recall that (M, (, )) is said to be v-parabolic if every bounded above v-subharmonic function (that is,
subharmonic with respect to A, ) on M is constant. To prove the above Proposition we observe that Theorem
A of [RS] can be easily adapted in the weighted setting, obtaining

Theorem 7.2.9. Let (M, (, )) be a complete Riemannian manifold, let v € C*°(M) and assume that
voly,(0B,) ™ ¢ L*(4+00). (7.2.10)
Then M is parabolic with respect to A, .

Proof (of Proposition ) Our assumptions implies the validity of () Notice that () is implied
by
r

— ¢! .

von gy £ L)
To prove the above observe that, using ()7 for r >> 1,

S r
vol,(B,) — D+BJ] e E 24Ot gy
and that, using L’Hopital’s rule and ¥ < 0,
lim R = lim Bem"Fr-0r - 4o,
r=too D Bfo e t*+Ctg r—+o00

concluding the proof. O

For X > 0 we have

Proposition 7.2.11. Let (M, {,)) be a complete Riemannian manifold and v € C>°(M). Assume ()
holds for some ¥ € R. Then the weak maximum principle at infinity for A, holds. As a consequence, the
L'-Liouwville property for v-subharmonic functions holds.
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Recall that the L-Liouville property for v-subharmonic functions holds if every u € Lipyo.(M) solution
of Ayu <0 on M and satisfying 0 < u € Ll(M7 e~ ") is constant.

Proof. From Theorem 3.11 of [PRS] (see Theorem 9 of [PRiS] and the discussion above), the validity of the
weak maximum principle at infinity for A, is guaranteed in case

r

Togvol,(By) # 1 (Hoo) (1212

As remarked_above () yields () for some constants B,C,D > 0, so that, by a computation we
obtain that () holds. Now the validity of the L!-Liouville property for v-subharmonic functions follows
immediately from the validity of the weak maximum principle for A,, see for instance Theorem 24 of
[PRiS]. O

Remark 7.2.13. The Proposition above appears also in [W]], see Lemma 3.8.

In the presence of a gradient-Einstein type structure on a complete Riemannian manifold we naturally
have the validity of a system of the type (&), as we now show.

Proposition 7.2.14. Let (M, (,)) be a complete Riemannian manifold with a gradient Einstein-type struc-
ture as in () for some f € C*(M), o : M — (N,(, )n), a € R\ {0} and p, A\ € R. Let o € M be a fized
origin and r(x) := distpr(z,0) the geodesic distance of ¥ € M from o. Let K, F : Rf — RJ be such that, if
a<0

|dp|> < K or (7.2.15)

and if p <0
IVfI?<For. (7.2.16)

Then, denoting for everyt € R

L Jrire=o o foie=o
T ot <0 Tl tift<o
we have
Ricy > —(m —1)Gor(, ), (7.2.17)
where \ P K
G- _2tprte it (7.2.18)
+m—1
Proof. The following inequalities, in the sense of quadratic forms, hold:
0< (,0*<7 >N < |d@|2<’ >
Hence using the first equation of () we obtain, in case a > 0
Ric + Hess(f) — pdf @ df > A(, )
while in case a < 0, using (),
Ric + Hess(f) — pdf @ df > (A+aK or){, ).
In conclusion, for every o € R\ {0},
Ric+ Hess(f) —pdf @ df > (A +a_Kor)(, ). (7.2.19)

In case 1 > 0, () gives

Ricy > (A+a_Kor)(, ).
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Notice that
df @ df <|Vf*(,).

Hence, in case p1 < 0 we get, from (), using (),

Ricy > (A+a_Kor+puFor)(,).

We then conclude the validity of () O

As a consequence of tProposition 7.2.14] and the Propositions above we have

Proposition 7.2.20. Let (M, (, )) be a complete Riemannian manifold with a gradient Einstein-type struc-
ture as in () for some f € C°(M), o : M — (N,{,)n), @« € R\ {0} and p, A € R. In case a < 0
assume

(Idpf*)* := sup |dip|" < +o0

and in case < 0 assume
(IVf1?)* = sup [V < +oo.

Then

i) The weak mazimum principle at infinity for Ay and the L'-Liowville property for f-subharmonic
functions hold;

i) M is compact in case p > 0 and either a, X >0 or a < 0 and A > |a(|dy¢|?)*;
i) (M, (,)) is f-parabolic in case p =0 and either a, A >0 or a < 0 and A > |a|(|dp|?)*;

i) (M, (,)) is f-parabolic in case p < 0 and either a > 0 and X > |u|(|Vf]*)* or a < 0 and

A > |ul(IVF2)* + al(ldel?)".

Proof. From Proposition 7.2.14, by choosing K = (|de]?)* in case a < 0 and K = (|dip|?)* in case p < 0, we
have

Ricy > —(m —1)X(, ) (7.2.21)
with ) )
m—1
(where we are using the convention (+o00)_ = 0). Then i) follows from Proposition 7.2.11, i) from Theorem
5 of [@] and finally 4i7) and 4v) follows from Proposition 7.2.8. O

7.3 (-scalar curvature estimates

Assume (M, (,)) is a Riemannian manifold of dimension m > 2, ¢ : M — (N,(, )n) a smooth map,
X € X(M), o € R\ {0}, A € R such that

Ric¢’+%ﬁx<, Y= A(,)
7(p) = dp(X).

Recall that the Einstein-type structure () is trivial if X = 0. For for the sake of the reader we report
here (), that is,

(7.3.1)

1 ¢
EAXS’“" +T?12 + alt(p)|? + %(S“’ —mA) =0, (7.3.2)
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where T% denotes the traceless part of the ¢-Ricci tensor
o]
T% := Ric¥ — S—(, ).
m
Taking the trace of the first equation of (n) we get
S? 4+ div(X) = mA. (7.3.3)

In the next Proposition we obtain the ¢-scalar curvature estimates in the complete case, when o > 0.

Proposition 7.3.4. Let (M, (, )) be a complete Riemannian manifold of dimension m > 2 with an Einstein-
type structure as in () with ¢ : M — (N, {, )n) a smooth map, X € X(M), a >0 and X\ € R. Denoting
S? :=infy; S¥ we have SY > —oco. Moreover

i) If A <0 then
mA <S¢ <0.

If there exists xo € M such that S¥(xg) = mA then the structure () reduces to a harmonic-Einstein
structure and X is a vertical Killing vector field. Furthermore, if M is compact then () is trivial.
If SY = 0 then either S >0 on M or (M, {,)) is flat and ¢ is a constant map;

it) If A =0 then
S? =0.

*

Then either S¥ >0 on M or (M, {, )) is p-Ricci flat and X is a vertical Killing vector field. Further-
more, if M is compact then X is parallel;

i) If XA > 0 then
0< S <mA.

If there exists xog € M such that S¥(xo) = 0 then (M, (,)) is flat and ¢ is a constant map.

If S = mA either S® > m\ or the structure () reduces to a harmonic-Einstein structure, X is a
vertical Killing vector field and M is compact.

Proof. The proof of this Theorem follows closely the proof of Theorem 8.2 of [AMR]]. Since a > 0 we have
1
Ricx > Ric? + S Lx(, ) = A(, ),

hence from the results of Section 8.2 of [AMR] we deduce the validity of the Omori-Yau maximum principle
for the operator Ax on M. Moreover, since a > 0, from ([.3.2) we deduce the validity of

Layse <=5 (50 Zmn) (7.3.5)
9 X = m mA). ..

We set u := —S¥ so that () gives

U2

1

—Axu > A\u+ —.
2 m

We are in position to apply Theorem 3.6 of [AMR] with the choices

2
F(t) =1, pu,|Vul) = hu+ =

As consequences u* < 0o and
(u)?

Au* + <0,

that is, u* is included between 0 and —mA and thus SY is included between 0 and m.
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e Assume A < 0. Then m\ < Sf < 0.

Assume that for some zo € M we have S¢(zq) = mA. Then S¥ > SY > m so that the function
v := S® —m is non-negative on M. Using () we obtain
v+ mA v2

1 1 S
SAxv = -AxS? < ——(5¥ —m)) = — v=—— — v < -\,
2 2 m m m

that is,
1
§AXU + v <0,

An application of the minimum principle in [GT]]. exactly as in Theorem 8.2 of [AMR], gives that v =0
on M, that is, S¥ = mA on M. Then from () we infer the validity of

T?% + alr(0)]* = 0, (7.3.6)

and, since o € R, (M, (,)) is harmonic-Einstein. Moreover, since S¥ = m\ we deduce from the
first equation of ([7.3.1]) that X is a Killing vector field and from the second that is vertical, that is,
dp(X) = 0. From [Proposition 4.1.21], since S is negative, we get that X = 0 if M is compact.

Now assume that SY = 0. Then or S¥ > 0 on M or otherwise_there exists zo € M such that
5% (z0) = S¢ = 0. In the latter case S > S¥ =0 > mA and, from ([.3.5),

1 S
“AxS% < ——(589 —m\) <0.
2 m

Applying the strong minimum principle S¥ = 0 on M. Then, as before, the structure (M, (,)) is
harmonic-Einstein. In particular

1
§£X<7>:)‘<7>'

By a result known to Tashiro, Theorem 4.1 of [I]], (M, (, )) is flat. Then S =0 on M and, since also
S¥ =0, we obtain
0=2S8%=28—aldp|* = —aldp|*.
Since a € RT, ¢ must be a constant map.
o Assume A = 0, then S¥ = 0 and thus or S¥ > 0 on M or otherwise S¥(xzg) = 0 for some zo € M. In
the latter case, proceeding as above we get S¥ = 0 on M, hence (M, (, )) is harmonic-Einstein with

vanishing ¢-scalar curvature, or equivalently, ¢-Ricci flat. Since A = 0, X is a vertical Killing vector
field. From [Proposition 4.1.2]] we get that X is parallel if M is compact.

e Assume X\ > 0, then 0 < S¥ < mA.
Assume there exists 9 € M such that S?(zg) = S¥ = 0. Then, using ([7.3.5) we obtain
1 S 5)?
—“AxS¥ < ——(S¥ —m)\) = N Cidk + AS¥ < \S¥,
2 m m
that is,
1
§AXS“’ —AS¥ <0,
hence from the minimum principle of [GT]] we obtain S¥ = 0 on M. Then, as above, (M, (,)) is

harmonic-Einstein and X is a vertical homothetic vector field. Moreover, once again by the result
known to Tashiro, we obtain that (M, (, )) is flat and ¢ is constant.

Now assume there exists xg € M such that S¥(z¢) = SY = mA. Then S¥ > S7 = mA > 0 so that the
function v := S¥ — mA is non-negative on M. Using () we obtain

1 1 S¥
—A = -AxS% < —— (8% — <0.
9 XU B XS = ’ITL(S m)\)_O
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The strong minimum principle gives that v = 0 on M, that is, S¥ = mA on M. Then, as before, we
get that (M, (,)) is harmonic-Einstein and X is a vertical Killing vector field. Finally, since a > 0
we have Ric > Ric? and since (M, (, )) is harmonic-Einstein with S¥ > 0, by Myer’s theorem, we get
that M is compact. O

In the gradient case we can be more specific, combining the Theorem above with [Cheorem 4.2.19.

Theorem 7.3.7. Let (M, (,)) be a complete Riemannian manifold of dimensionm > 2, o : M — (N, {, )n)
a smooth map, f € C*(M), a >0, A € R such that

Deno

i)

iii)

(35

{Rz’c“’ + Hess(f) = X(, ) (7.3.8)

() = dp(V ).
ting SY := infy; S¥ we have S¥ > —o0o. Moreover

If A <0 then
mA <S¢ <0.

If there exists xo € M such that S¥(xo) = mA then f is constant.

If Sf = 0 then either S¥ >0 on M or (M,(,)) is isometric to the euclidean space R™ and ¢ is a
constant map. Moreover, the potential f can be ezpressed on R™ as f(z) = §|z|? + (b,z) + ¢ for some
beR™ and c € R, for every x € R™.

If A =0 then
5S¢ =0.

Then either S > 0 on M or, if f is non constant, (M, (,)) splits as the Riemannian product of R
with o totally geodesic v¥-Ricci flat hypersurface ¥, where 1 := ¢|s,. Moreover ¢ = oms; on R x I,
where ms; : R X ¥ — X is the canonical projection and the function f can be expressed on R X ¥ as

ft,x) =at+b foreveryt e R and x € %, (7.3.9)

for some a >0 and b € R such that ¥ = f~1({b}).

If A > 0 then
0< 85?2 <mA.

If there exists xg € M such that S¥(xzg) =0 then (M, (, )) is isometric to the euclidean space R™ and
@ is a constant map. Moreover, the potential f can be expressed on R™ as f(x) = 2|z|* 4+ (b,z) + ¢

-2
for some b € R™ and c € R, for every x € R™.
If S = m)\ either S¥ > m\ or M is compact and f is constant.

Proof. We can apply [Proposition 7.3.4 with X = Vf. The only thing we need to observe to prove the
Theorem is that, from [Theorem 4.2.19, the only possibility when A is constant and S¥ # 0 to have that

) reduces to a harmonic-Einstein manifold is that f is constant. The other cases follows from a) and

b) of zzz) in [Theorem 4.2.19. O

Now we deal with the case u # 0. As a consequence of () we provide an estimate on SY := inf; S¥,
assuming « > 0 and 0 < p < 1. Precisely we prove

Theorem 7.3.10. Let IM7 (, ) be a complete Riemannian manifold of dimension m with a gradient Einstein-

type structure as in (|

map.

Ywitha>0,0<pu<1,ANeR, felC>®(M)and p: M — (N,(,)n) a smooth
If A < 0 assume that f. > —oo, where f. is the infimum of f on M, or that the smallest eigenvalue

of Hess(f) is bounded from below. Denoting S¥ := infy; S® we have S¥ > +o00. Moreover
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i) If X\ > 0 then M is compact and

If w # 1, then
(m—1p
1+ (m—1)p

and S¥ = mM, that is, S?(xo) = S{ for some xo € M, if and only f is constant.

mA < S¥ <m

it) If A =0 then
S? =0.

Moreover, if u £ 1, or S¥ >0 on M or otherwise f is constant.
iit) If A < 0 then

mA < 8% < Mm)\.
1+ (m—1p

If 1w # 1, then S?(xg) = mA for some xog € M if and only f is constant.

Proof. The proof of this theorem follows closely the proof of Theorem 3 of [R]. Equation () can be
written, since A is constant and pu > 0, as

1 2 2y (m—1)p+1 (m —1)um
§A(1+2M)f5@ =(un—=1)(a|r(p)|" +[T7]7) - T(S“" —mA) [ 5¥ — mA . (7.3.11)
We set u := —S¥ so that () takes the form
1 (m—-1)u+1 (m—1)u
Since p < 1 we deduce
1 (m—1pu+1 (m—1)u
A S A ol M ) o
on M. We now set
g:=Q0+2u)f
so that . ( D ) ( D
m—1)p+ m—1)u
—“Au> —F— _— 3.1
58gu 2 - (u+m)\)(u+1+(m1)um)\>’ (7.3.13)
or equivalently, in terms of S%,
1 (m—-1)u+1 (m—1)u
- Y < Y _ Y _ -~ 7 . ..
2AgS < - (S¥ —m) (S T4 (m— 1)Mm)\ (7.3.14)

i) If X > 0 then, from p > 0 and Theorem 5 of [Q], M is compact and since SY = S%(xg) for some
x9 € M we deduce, from (IE.3.14), that

(m—1)p

———mA <S¢ <mA.
1_~_(m_1)m <S8 <m

We now show that the left inequality above is strict if 4 # 1. Indeed, assume by contradiction
hﬂﬂ)

S7 = Ll)“#m/\. Because of ( the non-negative function

— 1+(m-1)

v:= 8% — 7(7”7 Du mA
' 1+ (m—1)u
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satisfies

1 —1 1 1 —1 1

NP Gkt Ty (RS S IV e S O
2 m 1+ (m—1)u m

Since M is compact v attains its minimum, that is zero, and from the minimum principle, see page 35

of [GT]], we deduce that v vanishes identically. Hence

(m—1)p
©
S T+ (m— 1)Mm)\.

(7.3.15)

From () we then have

(1 = w(alr(p)? +|T%*) =0,
so that, since p < 1 and o > 0. (M is a harmonic-Einstein manifold. To obtain the contradiction,
since A is constant, we use Corollary 4.2.33 combined with the fact that f cannot be constant. Indeed,
if f is constant then S¥ = mJ, that is impossible since () holds.
Suppose now that S¥x = mA; then

AW>5f:mA>1$;:¥mm&
hence from () we deduce
éAgS%O <o.
Since M is compact we infer that S¥ = SY. Once again from () we obtain that (M is

harmonic-Einstein. Then f is constant because, if by contradiction f is non-constant from [Corollary]
we deduce that also A is non-constant, a contradiction.

If A <0 we show that the weak maximum principle hold for A, if either f. > —oo or the smallest eigenvalue
of Hess(f) is bounded from below.

e Assume at first f, > —oo. We want to prove that

T
4l
log vol, B, # L (+0),

and then conclude as in the proof of tProposition 7.2.1]]. From the definition of ¢ we immediately obtain
voly(B,) < e=?#f+vol;(B,) and since (M, (, )) we know, from the proof of ll;roposition 7.2.1i, that

r
gt
log vols B, # L' (+00),

we are able to conclude the validity of the weak maximum principle at infinity for A,.

o Now suppose that the smallest eigenvalue of Hess(f) is bounded from below. The first equation of
() can be written in terms of g as

Ric + Hess(g) — —'o—sdg @ dg = M, ) + 2Hess(f) + a™(, ),

(1+42p)
so that, using that «, 4 > 0 and that the smallest eigenvalue of Hess(f) is bounded from below,

14 2u)2
Ric] > A(, ), 7:w>0.

Then, from [Proposition 7.2.2d, the weak maximum principle for A, also holds in this case.
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Using Theorem 3.6 of [AMR] we conclude that u* := sup,; u < 400 and that

,Mm)\ < u* < ,m)\7
L+ (m—1)u

and as a consequence we immediately get the bounds on SY.

ii) Let A = 0, the bounds on SY gives S¥ = 0. In this ) gives A, S? < 0 so that either S¥ > 0
on M or §¥ = 0. In the latter case, if 4 # 1, from ([7.3.11]), we obtain that the Einstein-type structure
() reduces to a harmonic-Einstein structure. From 4ii) of [Theorem 4.2.25, since \ is constant, we
conclude that f is constant.

iii) Let A < 0. If S¥(xg) = mA for some xyp € M then, from (), the function v := S¥ — mA is
non-negative and satisfies,

1 -1 1 1 -1 1
Ly tm=butl (L o\ oot o,
2 m 1+ (m—1)u m
that is,
Agv+2dv <0,

so that, since v attains its minimum, from the minimum principle v = 0. Then S¥ = mA\ and, from
(F-3.11)), the Einstein-type structure () reduces to a harmonic-Einstein structure in case p # 1.
Assume, by contradiction, f is non-constant. Since A is constant, from #4) of [Cheorem 4.2.25 we obtain

)\:g,u(m—l)—i-l

b

m p(m—1)

that contradicts S¥ = mA. O

7.4 Some triviality results

Formula (), contained in the Proposition below, is a Bochner-type formula for Einstein-type structures.

Proposition 7.4.1. Let (M, {, }) be an m-dimensional Riemannian manifold with an Finstein-type structure
as

1
Ric+ SLx(,) = X" @ X" —ag™{, )y = M, )

7(p) = dp(X),
with A€ C°(M), X e X(M), p e R, a e R\ {0} and ¢ : M — (N, (, )n) smooth. Then

(7.4.2)

SAXIXP = VX + alr(@) + [(2um — DA~ 2089 X[ + (2~ DIX[* — (m — 2)(VA,X),  (743)
Proof. The generalized Bochner formula is given by, see Lemma 8.1 of [AMR],
%A|X|2 = VX2 +div(Lx(, ))(X) — (Vdiv(X), X) — Ric(X, X). (7.4.4)
Taking the trace of the first equation of () we get
div(X) = =5% + p| X|* + mA. (7.4.5)

Then
(Vdiv(X), X) = —(VS?, X) + u(V|X |}, X) + m(V, X). (7.4.6)
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By definition of the ¢-Ricci tensor we have
Ric(X, X) = Ric? (X, X) + aldp(X)|?, (7.4.7)

so that, using () and

£X<7 >(X’X) = <V|X‘23X>
we infer

Ric(X, X) = —%<V|X|27 X))+ p X4+ MNX P+ alr(p)]. (7.4.8)
Finally, using the first equation of () we obtain
div(Lx (, ))(X) = —2div(Ric?)(X) + 2udiv(X® @ X*)(X) + 2(VA, X).
From the generalized Schur’s identity () and the second equation of () we deduce
div(Ric?) (X) = 1 (VS¥, X) ~ alr(e)P,
so that from the above relation and
div(X’ ® X")(X) = div(X)|X|? + %(V\XP,X}

we get

div(Lx (, )(X) = —(VS?, X) + 2a|7() > + w(V|X 3, X) + 2udiv(X)| X > + 2(VA, X). (7.4.9)

By plugging (.4.d), (7.4.8) and ([.4.9) in ([.4.4) we have

: 1
A|X|2 VX + alr(p)* + 2udiv(X)|X[* = (m = 2)(VA, X) + S(VIX]?, X) — pl X[ = ALXP?,

that is ()7 using once again () and the definition of Ax. O
Proposition 7.4.10. Let M be a complete Riemannian mamfold of dimension m > 2 with an
Finstein-type structure as in ( wzth XeX(M), \eR, pu>3%, a>0andp: M — (N,(,)n) smooth.
" (8%) = S]1\14p S¥ < o0, (7.4.11)
then

X|?)* :=sup |X|* <2 7.4.12
(XY i= sup | X < o (14.12)
As a consequence, if
1
S < —— | A, 7.4.13
(57 < (m-5.) (4.13)

then () reduces to a harmonic-Einstein structure.

Proof. First of all observe that the Omori-Yau maximum principle holds for Ax. Indeed, since u,a > 0,
from the first equation of () we deduce

Ricx > A(, ). (7.4.14)

As shown in Proposition 8.7, and the discussion above, of [], () is sufficient to obtain the validity
of the Omori-Yau maximum principle for Ax. Since A is constant and « > 0, ([7.4.3) gives

1
FAXIX[? 2 [(2pm — DA = 2uSP)X | + (2 = DX
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Moreover, using () and p > 0 in the above and setting u := | X|? we get
%Axu > [(2m — D)X — 20(S) u + (20 — D).
Since p >  the constant y(2u — 1) is positive, hence from Theorem 3.6 of [], with the choices
F(t) =t* for every t € R,  (u,|Vul) := [(2um — )X — 2u(S®)*Ju + u(2p — 1)u?,
we conclude u* < +o00 and
[(Cum — )X —2u(S?)" + p(2p — Du*]u* <O0.

Hence, from the above,
* 1
(S9)* — (m - ﬂ) A
2u—1 ’
that is, () Clearly, if () holds, from () we immediately get that X = 0. O
Remark 7.4.15. Assume that (, ) is a complete @-static metric on M, in the sense of Definition 2.5.54, that

is,

u* <2

Ric? + Hess(f) —df @ df = A(, ) (7.4.16)
() = dp(Vf)
with f € C®*(M), e R, a>0and ¢ : M — (N, (, )n) smooth and
Apf =\ (7.4.17)

From Remark 2.5.57 we know that if f is non constant then M is non-compact. Taking the trace of the first
equation of ([.4.14),

so that, using ()7
S¥ =(m—1)\

As a consequence of the above the condition (), with X = Vf, is satisfied if and only if A > 0. Then,
if () is non-trivial, that is, f is non constant, then (M, (, )) is non-compact and A < 0.

Now we provide some triviality results for gradient Einstein-type structure with potential function f
satisfying the integrability condition () below for some 1 < p < +00. To prove the next Proposition
we shall use a modification of Theorem 1.1 of [PRS05], that we report here for the sake of the reader,

S? + Asf =mA,

Theorem 7.4.18. Let (M,(,)) be a complete Riemannian manifold and let f € C*(M). Assume that
u € Lip,,.(M) satisfy
uljyue™ >0 weakly on M. (7.4.19)

If, for some p € (1,400),

(/ IUII"ef)_1 ¢ L*(+00), (7.4.20)

r

then u is constant.

Proposition 7.4.21. Let (M be a complete Riemannian manifold of dimension m with a gradient
FEinstein-type structure as in () with « € R\ {0}, u, A € R, f € C®(M) and ¢ : M — (N,{,)n) a
smooth map. We denote by (S®)* and ST, respectively, the supremum and the infimum of S¥ on M. Suppose

V(e )| € LP(M), (7.4.22)
for some p € (1,400), a > 0 and that one the following conditions hold
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) =1, (59)" < (m—D\;
i) p=0, A <0;

@ 1
iii) p <0, SY > (m—ﬂ))\.

Then f is constant and (M, (, )) is harmonic-Finstein.

Proof. Since A € R and X = V[ equation () becomes

%Af|vf|2 = [Hess(f)|* + a|7()* + 2uXm — X = 2uS#)|V | + p(2u — DIV . (7.4.23)
Recall that, from Kato’s inequality,

IVIV£|]? < |Hess(f)|> weakly on M.
Then we infer
%Af\vf\Q = [VAALVF+IVIVE? < VAV + [Hess(f)]*  weakly on M.
Combining the above with () and using o > 0, we obtain
VALV = (2um — 2182 — NIV A2 + p(2u — 1)[VF|* weakly on M.
If anyone of ), i7) orb 4ii) hold it is easy to prove the validity of, for some positive constant ¢ and ¢ € {2,4}:
VAV >c|VfIT>0 weakly on M. (7.4.24)

Then we are in position to apply with the choice of u = |V f|. Indeed, ( is equivalent
to |Vf| € LP(M.e~7) and the latter guarantees the validity of () Moreover also () holds. As a
consequence of we have that |V f]| is constant and, since () holds, the only possibility

is that f is constant. Then (M, (, )) is harmonic-Einstein. O

Remark 7.4.25. To prove lProposition 7.4.2]J we may consider, instead of one of the assumptions @), i) or 4i7)
the assumption

iv) >0, <0, A<0and

where f, :=infy; f and A is the constant appearing in ()

Indeed, () can be rewritten, using the trace of the first equation in (), as

1Af\Vf|2 = [Hess(f)* + alr(@)* + [V (2pAf = X = u[V f]?),

2
or equivalently,

%Af|vf|2 = [Hess(f)]” + alr(@)* + [VF?@uAsf + ulV 2 = X).
Proceeding as in the proof of the Proposition we get

IV FIALVF] > [VIRuALf + V2 = A) weakly on M. (7.4.26)

We use () to obtain, from (),

IVFIAV ] > (A= 2Ae® + u|VFI?)|VF> weakly on M.
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The hypothesis iv) guarantees the validity of
A —2Ae? >0,

hence from the above we get
VAV f] > /L|Vf|4 weakly on M,

and thus we can conclude, as in the proof of the Proposition.
Notice that if f is constant, from () we have

Ae?t = ).

Hence A = 0 if and only if A = 0 and, if this is the case, f can be an arbitrary constant. On the other hand,
if A is different from zero then AA > 0 and
1 A
= —log(2).
/ o (A)
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