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Introduction

The aim of this thesis is to study the geometry of connected, complete, possibly compact, Riemannian
manifolds (M, ⟨ , ⟩) endowed with with a (gradient) Einstein-type structure of the form{

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f),

(1)

where the φ-Ricci tensor is defined as

Ricφ := Ric − αφ∗⟨ , ⟩N (2)

for some α ∈ R \ {0}, φ : M → (N, ⟨ , ⟩N ) a smooth map with tension field τ(φ) and target a Riemannian
manifold (N, ⟨ , ⟩N ) and f, µ, λ ∈ C∞(M). We often consider µ, and sometimes also λ, to be constant.

The structure described by (1) generalizes some well known particular cases that have been intensively
studied by researchers in the last decade. Indeed, for µ ≡ 0, λ ∈ R and φ constant, (1) characterizes gradient
Ricci solitons

Ric + Hess(f) = λ⟨ , ⟩. (3)

In case in (3) we allow λ ∈ C∞(M) we obtain the Ricci almost soliton equation introduced in [PRRiS]. Note
that when λ(x) = a + bS(x) for some constants a, b ∈ R and S(x) the scalar curvature of (M, ⟨ , ⟩), for
x ∈ M , the soliton corresponding to (3) is called a Ricci-Bourguignon soliton after the recent work of G.
Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [CCDMM]. For a “flow”derivation of the
gradient Ricci almost solitons equation in the general case see the work of [GWX].

In case µ = 0, λ ∈ R and α > 0 the system (1) represents Ricci-harmonic solitons introduced by R.
Müller, [M]. As expected the concept comes from the study of a combination of the Ricci and harmonic
maps flows. We refer to [M] for details and interesting analytic motivations.

For φ and µ constants, with µ = 1
τ for some τ > 0, and λ ∈ R, (1) describes quasi-Einstein manifolds

Ric + Hess(f)− 1

τ
df ⊗ df = λ⟨ , ⟩ (4)

Letting µ, λ ∈ C∞(M) we obtain the generalized quasi-Einstein condition

Ric + Hess(f)− µdf ⊗ df = λ⟨ , ⟩. (5)

See, for instance, [Ca] and [AG]. Obviously (5) extends the quasi-Einstein requirement (4).
To approach the study mentioned above, that is the argument of Part II of the thesis, we introduce some

new curvature tensors that take into account the curvature of a Riemannian manifold endowed with a smooth
map φ. Furthermore, since Ricci solitons and quasi-Einstein manifolds are usually seen as a perturbation
of Einstein manifolds (the choice of a constant potential in (3) and in (4) led to an Einstein metric), we
recall the concept of harmonic-Einstein manifolds so that the Einstein-type structures will be seen as a
perturbation of harmonic-Einstein manifolds.

The thesis is divided in two parts. Part I is not just preliminary for Part II but it is interesting also on
its own. It is composed by the first two Chapters of the thesis.
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In Chapter 1 we introduce the new curvature tensors mentioned above, called the φ-curvature tensors.
Formally almost all of them are defined in the same way as the standard curvatures using the φ-Ricci tensor,
defined in (2), instead of the Ricci tensor. More precisely: the φ-scalar curvature, denoted by Sφ, is defined
as the trace of the φ-Ricci tensor; the φ-Schouten tensor is defined as

Aφ = Ricφ − Sφ

2(m− 1)
⟨ , ⟩,

where m ≥ 2 is the dimension of M ; the φ-Cotton tensor Cφ represents the obstruction to the commutation
of the covariant derivatives of the φ-Schouten tensor and so on. The only tensor whose definition is different
from the one probably expected is the φ-Bach tensor Bφ.

When φ is a constant map all the φ-curvatures reduce to the standard curvature tensors.
Their properties are almost the same as the properties of the tensors that they generalize. For instance,

the φ-Weyl tensor Wφ has the same symmetries of the Riemann tensor and its (1, 3)-version is a conformal
invariant. The only relevant difference is that the φ-Cotton, the φ-Weyl and the φ-Bach tensor are not,
in general, totally traceless. Their traces are related to the map φ and, clearly, they vanish in case φ is a
constant map. We can say more: the φ-Weyl, the φ-Cotton and the φ-Bach tensors are totally traceless if
and only if, respectively, φ is constant, is conservative (that is, the energy stress tensor related to the map φ
is divergence free) and is harmonic (with the exceptional case m = 4 where φ-Bach il always traceless). As
a consequence the role of the map φ is not negligible, hence in this Chapter we also recall some properties
for smooth maps, such as weakly conformality and homothety, that will be met also in the sequel.

The fact that the φ-curvature are not, in general, totally traceless have consequences especially in the
computations. Even thought when φ is conservative we are able to recover a generalization of Schur’s identity,
that relates the divergence of φ-Ricci to the gradient of the φ-scalar curvature, the divergence of φ-Weyl is
not related with the φ-Cotton as in the case of their standard counterparts. As a consequence, in order to
have that φ-Weyl is harmonic it is not sufficient that Wφ is divergence free.

In Chapter 1 we also determine the transformation laws for the φ-curvatures under a conformal change
of the metric. We show that on a four-dimensional manifold the φ-Bach tensor is a conformal invariant, that
is one of the motivation that justify its definition. The other motivations are contained in Chapter 2, where
we study harmonic-Einstein manifolds and their fundamental properties. A Riemannian manifold (M, ⟨ , ⟩)
is said to be harmonic-Einstein if the traceless part of the φ-Ricci tensor vanishes for some harmonic map
φ :M → (N, ⟨ , ⟩N ) and if the φ-Ricci tensor has constant trace, that is, if it carries a structure of the type{

Ricφ = Λ⟨ , ⟩
τ(φ) = 0,

(6)

for some Λ ∈ R. We shall see that when m ≥ 3, the requirement of constant φ-scalar curvature is unnecessary,
generalizing Schur’s Lemma for Einstein manifolds. Its proof follows easily from the generalization of Schur’s
identity, since a harmonic map is conservative. The only relevant curvatures properties of harmonic-EInstein
manifolds are encoded in Wφ and the sign of Sφ, since the other φ-curvatures are trivial.

System (6) is a starting point in our investigation in the sense that it justifies, in a geometric contest,
the interest of studying a structure of the type (1). Indeed if we perform a conformal deformation of the
metric ⟨ , ⟩ of M , then from (6) we obtain a solution of (1) for m ≥ 3 with µ = − 1

m−2 and viceversa, where
the function λ satisfies

∆ff + (m− 2)λ = (m− 2)Λe−
2f

m−2 . (7)
Here ∆f is the symmetric diffusion operator (or weighted Laplacian)

∆f = ∆− ⟨∇f,∇⟩.

Thus we can think of the study ofRicφ + Hess(f) + 1

m− 2
df ⊗ df = λ⟨ , ⟩

τ(φ) = dφ(∇f)
(8)
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as of that of (6) under conformal deformations of the original metric ⟨ , ⟩ of M . This parallels what happens
in the study of Einstein and conformally Einstein metrics.

Knowing the transformation laws under a conformal change of metric and the φ-curvatures of harmonic-
Einstein manifolds we will be able to prove that a conformally harmonic-Einstein manifolds of dimension
m ≥ 3 satisfy 

Cφijk + ftW
φ
tijk = 0

(m− 2)Bφij +
m− 4

m− 2
Wφ
tijkftfk = 0

(9)

where f is related to the conformal factor in the change of the metric and fi,Cφijk, Wφ
tijk and Bφij are,

respectively, the components of ∇f , φ-Cotton, the φ-Weyl and the φ-Bach tensors in a local orthonormal
coframe. In case φ is constant the above integrability conditions become the integrability condition for a
conformally Einstein metric, that have been proved to be sufficient, under a further mild assumption of
genericity of the metric, to guarantee the existence of a conformally Einstein metric on M by R. Gover
and P. Nurowski, [GN]. We extend this result to the case of (9) showing that, under a corresponding mild
additional assumption of genericity of the metric and on the map φ (related to the injectivity of a curvature
operator Wφ, defined in terms of φ-Weyl, and of the singular points of φ), they are sufficient conditions to
generate a conformally harmonic-Einstein structure on M .

The two integrability conditions (9) are not a special feature of the system (8). An analogous of them
holds also for the Einstein-type structure (1). In case φ is a constant map the analogous for (3) of the
integrability conditions in (9) have been used to study the local geometry of Bach flat gradient Ricci solitons
by H.-D. Cao and Q. Chen in [CC]. Their results has been extended by G. Catino, P. Mastrolia, D. D.
Monticelli and M. Rigoli to gradient Einstein-type manifolds in Theorem 1.2 of [CMMR]. The latter are
structure of the type (1) with φ a constant map, µ ∈ R and λ(x) = ρS(x)+λ for some real constants ρ and λ.
These results suggest to study (1) from the same point of view and in Chapter 6 we are able to characterize,
when µ ̸= − 1

m−2 (the equality case pertaining to conformally harmonic-Einstein manifolds) and α > 0, from
the adequate integrability conditions and the properness of the function f , the local geometry of a complete
Riemannian manifold with a non trivial gradient Einstein-type structure and φ-Bach tensor that vanishes
along the direction of ∇f . Notice that for conformally harmonic-Einstein manifolds the latter requirement
is always satisfied, as one can immediately deduce contracting the second equation of (9) against ∇f . The
main result of Chapter 6 is that, in a neighborhood of every regular level set of f , the manifold (M, ⟨ , ⟩) is
a warped product with (m− 1)-dimensional harmonic-Einstein fibers, given by the level sets of f . Moreover
the map is uniquely determined by its restriction on a single leave of the foliation. Assuming further a
genericity condition and the constancy of λ we are able to prove that the manifold is harmonic-Einstein.
This Chapter can be seen as the core of this thesis and the problem of characterize the local structure of
Einstein-type structure as (1) is the one that led us to define the φ-curvature and justify their definition,
especially for φ-Bach.

A justification for the study of harmonic-Einstein manifolds is given by General Relativity. Indeed a
four dimensional Lorentzian harmonic-Einstein manifold is a solution of the Einstein field equations, for a
proper choice of the constant α, with as energy-stress tensor the one of a wave map (that is, a harmonic map
with source a Lorentzian manifold). Investigating standard static spacetimes (that are, Lorentzian manifold
given by the warped product of a three dimensional Riemannian manifold with an open real interval) that
are harmonic-Einstein manifolds with respect to a wave map that does not depend on the “time”we realize
that the spatial part supports a structure of the type (1) and the warping factor u satisfies ∆u+λu = 0, for
some λ ∈ R. As we shall see a warped product M ×u F , where u = e−

f
d , is a harmonic-Einstein manifold

with respect to a map Φ given by the lifting to M × F of a smooth map φ : M → (N, ⟨ , ⟩N ) if and only if
F is Einstein with scalar curvature dΛ, where d is the dimension of F and Λ ∈ R andRicφ + Hess(f)− 1

d
df ⊗ df = λ⟨ , ⟩

τ(φ) = dφ(∇f),
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where the constant λ satisfies
∆ff = dλ− dΛe

2
d f . (10)

In particular the study of (1) with µ = 1 and m = 3 has repercussions to the study of the standard static
spacetimes mentioned above. Notice that this can be seen as an extension of some results of J. Corvino, see
[Co], that deals with the vacuum case. More generally, the study of (1) with µ = 1

d has application to the
study of warped product harmonic-Einstein manifolds. The possibility of constructing examples of Einstein
manifolds realized as warped product metrics is an old interesting question considered in A. Besse’s book,
[B], so we may expect that also the more general problem of finding harmonic-Einstein manifolds realized
as warped products can be interesting.

It is not a case that (7) and (10) holds, respectively, for conformally harmonic-Einstein manifolds and
for harmonic-Einstein warped products; this is a consequence of the validity of (1). Indeed, it is well known,
from the work of D. S. Kim and Y. H. Kim, [KK], that the validity of (4) on M yields, via a non-trivial
consequence of the second Bianchi identities, the validity of the equation

∆ff − τλ = −βe 2
τ f (11)

for some constant β ∈ R. We extend the validity of this equation to the structure (1) for every µ, obtaining
the so called Hamilton-type identities. It is interesting that in these equations the map φ and the constant
α does not appear. This observation let us extend some results for (4) that rely on (11) to the more general
structures (1).

We also evaluate the Laplacian of the square norm of the traceless part Tφ of the φ-Ricci tensor and, as
a consequence, we prove a “gap”property that shows that whenever |Tφ| is sufficiently small, a stochastically
complete manifold carries a harmonic-Einstein type structure, if some necessary conditions are satisfied.
This compares and generalize some previous results, see [MMR].

It is important to observe that in all the results discussed up to now the target manifold (N, ⟨ , ⟩N )
can be any Riemannian manifold. We show that, when we put some restraints on the curvature of the
target manifold (and we assume that the density of energy is sufficiently small, in case of negative φ-scalar
curvature), for a complete manifold the concept of being harmonic-Einstein collapse to one of being Einstein.
This result is achieved showing that φ is constant via the classical Bochner formula for smooth maps and the
assumption on the curvature of the target manifold is an appropriate upper bound on the largest eigenvalue of
the curvature operator. Notice that a harmonic-Einstein manifolds can be a Einstein manifold even thought
φ is not a constant map: this happens if and only if φ is homothetic.

Einstein manifolds in low dimension have been characterized: a Riemannian manifold of dimension
m ∈ {2, 3} is Einstein if and only if it has constant sectional curvature. In higher dimension a Einstein
manifold has constant sectional curvature if and only if it is locally conformally flat.

For surfaces the Ricci tensor is always proportional to the metric hence the problem of finding a Einstein
metric on a surface reduces to the one of finding a metric of constant scalar curvature on it. The uniformiza-
tion of Riemann surfaces provides a way to select a complete metric of constant scalar curvature in every
conformal class of metrics according to the topology of the surface. Observe that choosing a conformal class
of metrics on a surface is equivalent to choose a complex structure on it. For harmonic-Einstein manifold
the situation is different. The Ricci tensor is always proportional to the metric but, in order to obtain that
the φ-Ricci tensor is proportional to the metric the map φ must be weakly conformal. The fact of being
weakly conformal depends only on the complex structure, exactly as for the fact of being harmonic. A weakly
conformal and harmonic map on a Riemann surface is a minimal branched immersion. Then the problem
of finding a harmonic-Einstein metric on a Riemann surface reduces to the problem of finding a metric of
constant φ-scalar curvature for a minimal branched immersion. We will not go further into this study.

In higher dimension we shall see that a harmonic-Einstein manifold has constant sectional curvature if and
only if it is Einstein, since this requirement forces the map φ to be homothetic. An analogous phenomenon
happens also when we consider local symmetry and harmonic curvature: for a Einstein manifold they are
equivalent to conformal local symmetry and harmonic Weyl curvature, respectively. For harmonic-Einstein
manifold the conditions above imply the same restriction on the geometry of the manifold together with
some conditions on the map φ, that we shall investigate.
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In Part II, together with (1), we also consider the more general Einstein-type structureRicφ +
1

2
LX⟨ , ⟩ = µX♭ ⊗X♭ + λ⟨ , ⟩

τ(φ) = dφ(X),
(12)

for some X ∈ X(M) and with X♭ denoting the 1-form dual to X via the musical isomorphism ♭. Notice that
(12) reduces to (1) when X = ∇f . Interesting results for the structure (12) are obtained when µ = 0 and X
is non-Killing.

The compact case is quite rigid once we require constancy of the φ-scalar curvature. Indeed, when µ ̸= 0,
α > 0 and λ, f ∈ C∞(M) with f non-constant a Riemannian manifold with constant φ-scalar curvature that
supports an Einstein-type structure as in (1) is always isometric to a Euclidean sphere and φ is a constant
map. When µ = 0 the same happens under the same hypothesis for the general structure (12), when X is
not a Killing vector field. Our results extend the ones of [BBR] and [BG] to the case when, a priori, φ is not
constant.

In proving the mentioned results we extend the well known fact, due to M. Obata, see [O], that a
compact Einstein manifold endowed with a non-Killing conformal vector field is isometric to a Euclidean
sphere, obtaining that if a compact harmonic-Einstein manifold with α > 0 is endowed with a vertical (i.e.,
annihilated by the differential of φ), non-Killing conformal vector field then φ is constant and the Riemannian
manifold is isometric to the Euclidean sphere.

The study of particular vector fields on a harmonic-Einstein manifold is treated in Chapter 4. The moti-
vation is that dealing with harmonic-Einstein manifolds that supports a non trivial Einstein-type structure
as (12) is equivalent to dealing with harmonic-Einstein manifolds that posses a vector field that satisfies

1

2
LX⟨ , ⟩ − µX♭ ⊗X♭ =

(
λ− Sφ

m

)
⟨ , ⟩

dφ(X) = 0.

The aim of Chapter 4 is to show that, essentially, eventually under some assumptions on the critical points of
the potential function f , the only complete manifolds that supports a non-trivial (that is, with non-constant
potential) Einstein-type structure as (1) are space forms. When µ = 0 we are also able to obtain some results
in this direction in the generic case (12).

In the compact case we are able to obtain rigidity results also in case the φ-Schouten tensor is a Codazzi
tensor field and one of its normalized higher order symmetric functions in its eigenvalues is a positive constant
(necessary conditions to have the isometry with the Euclidean sphere and the constancy of φ). The φ-scalar
curvature is constant if and only the first symmetric function of the eigenvalues of the φ-Schouten tensor is
constant, hence we can see this as a generalization of the previous results obtained assuming the constancy
of the φ-scalar curvature. The rigidity in the compact case is the subject of Chapter 5.

As one can expect, assuming λ constant in (12), we are able to prove several interesting results in the
complete case; that is the aim of Chapter 7. Above all we mention the estimates on the infumum of the
φ-scalar curvature Sφ∗ , that are obtained as a consequence of a general formula for the Laplacian of the
φ-scalar curvature and the validity of the weak maximum principle for the weighted Laplacian, that, in
turns, is guaranteed by appropriate estimates on the volume growth of geodesic balls. In contrast to the
results obtained in the other Chapters we are not able to obtain the estimates on Sφ∗ for every µ ∈ R, indeed
we shall restrict to the case µ ∈ [0, 1]. Moreover, if µ ̸= 0 we restrict to the gradient Einstein-type structure
(1) and we also require some additional properties for the potential function. For φ constant our estimates
have been obtained in Theorem 3 of [R].

Finally we also deal with some non-existence results. Firstly, if µ ̸= 0, setting u = e−µf and tracing the
first equation in (1) we obtain

Lu := ∆u+ µ(mλ− Sφ) = 0. (13)

Since u > 0, by a well known result of [FCS] and [MP], the operator L is stable or, in other words, its
spectral radius λ1L(M) is non-negative. Thus, instability of L yields a non-existence result for (1) at least
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in case µ is non-zero constant. Toward this aim we detect appropriate conditions on the coefficient of the
linear term in (13).

Secondly, with the aid of a Bochner-type formula for the square norm of X for complete Einstein-type
structures as (12), we provide non-existence results assuming an upper bound on the φ-scalar curvature and
for µ > 1

2 . In the gradient case (1) we are able to obtain the same result also for µ ≤ 0, assuming eventually
a suitable integrability condition. It is interesting that the only structures arising from a harmonic-Einstein
warped product, as explained above, to which we are able to apply the non-existence result is the one where
the dimension of the fibre is d = 1. As a consequence we obtain that the existence of a complete φ-static
metric, that is a metric such that (1) holds with µ = 1, f ∈ C∞(M) and ∆ff = −λ ∈ R, forces M to be
non-compact and λ < 0.
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Notations and conventions

All the manifolds are assumed to be smooth and connected. In what follows we shall freely use the method of
the moving frame, as illustrated in Chapter 1 of [AMR], fixing two orthonormal coframes on the Riemannian
manifolds (M, ⟨ , ⟩) and (N, ⟨ , ⟩) of dimension, respectively, m and n. We fix the indexes ranges

1 ≤ i, j, k, t, . . . ≤ m, 1 ≤ a, b, c, d . . . ≤ n.

With {ei}, {θi}, {θij}, {Θij} and {Ea}, {ωa}, {ωab }, {Ωab} we shall respectively denote local orthonormal
frames, coframes, the respectively Levi-Civita connection forms and curvature forms on the open subsets
U of M and V on N . Throughout this thesis we adopt the Einstein summation convention over repeated
indexes. Locally the metric ⟨ , ⟩ is given by

⟨ , ⟩ = δijθ
i ⊗ θj ,

and the dual frame {ei} is defined by the relations

θj(ei) = δji ,

The Levi-Civita connection forms {θij} are characterized, from Proposition 1.1 of [AMR], from the skew-
symmetry property

θij + θji = 0,

and the validity of the first structure equations

dθi + θij ∧ θj = 0.

The curvature forms {Θij} are defined by the second structure equations

dθij + θik ∧ θkj = Θij

and they are skew-symmetric, that is,
Θij +Θji = 0.

The components in the basis {θi ⊗ θj : 1 ≤ i < j ≤ m} of the space of the skew-symmetric 2-forms on U are
given by the components of the Riemann curvature tensor of (M, ⟨ , ⟩), that is,

Θij =
1

2
Rijktθ

k ∧ θt

where, denoting by R the (1, 3) version of the curvature tensor of (M, ⟨ , ⟩),

R = Rijktθ
k ⊗ θt ⊗ θj ⊗ ei.

Recall that, for every X,Y, Z ∈ X(M), where X(M) denotes the C∞(M)-module of smooth vector fields on
M ,

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z,
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where [ , ] is the Lie bracket. The (0, 4) version of the curvature tensor of (M, ⟨ , ⟩) is denoted by Riem and
is defined by, for every X,Y, Z,W ∈ X(M), by

Riem(W,Z,X, Y ) = ⟨R(X,Y )Z,W ⟩,

locally
Riem = Rijktθ

i ⊗ θj ⊗ θk ⊗ θt,

where
Rijkt = Rijkt.

The Ricci tensor is defined as the trace of Riemann, that is,

Ric = Rijθ
i ⊗ θj where Rij = Rkikj .

The Riemann tensor has the following symmetries

Rijkt +Rijtk = 0, Rijkt +Rjikt = 0, Rijkt = Rktij

and satisfies the first Bianchi identity

Rijkt +Riktj +Ritjk = 0

and the second Bianchi identity
Rijkt,l +Rijtl,k +Rijlk,t = 0,

where, for an arbitrary tensor field of type (r, s)

T = T i1...irj1...js
θj1 ⊗ . . .⊗ θjs ⊗ ei1 ⊗ . . .⊗ eir ,

its covariant derivative is defined as the tensor field of type (r, s+ 1)

∇T = T i1...irj1...js,k
θk ⊗ θj1 ⊗ . . .⊗ θjs ⊗ ei1 ⊗ . . .⊗ eir ,

by the relation

T i1...irj1...js,k
θk = dT i1...irj1...js

−
s∑
t=1

T i1...irj1...jt−1hjt+1...js
θhjt +

r∑
t=1

T
i1...it−1hit+1...ir
j1...js

θith .

The following commutation relation holds

T i1...irj1...js,kt
= T i1...irj1...js,tk

+

s∑
t=1

RhjtktT
i1...ir
j1...jt−1hjt+1...js

−
r∑
t=1

RithktT
i1...it−1hit+1...ir
j1...js

. (14)

The formula above can be proved in general but, for simplicity of notations, we prove it for a tensor of type
(1, 1). With the same argument one can prove it for general tensor fields.

Proposition 15. Let T be a tensor of type (1, 1) on the Riemannian manifold (M, ⟨ , ⟩), locally given by

T = T ij θ
j ⊗ ei.

Then
T ij,kt = T ij,tk +RsjktT

i
s −RisktT

s
j . (16)

x



Proof. By definition of covariant derivative

T ij,kθ
k = dT ij − T isθ

s
j + T sj θ

i
s.

Taking the differential of the relation above we get

dT ij,k ∧ θk + T ij,kdθ
k = −dT is ∧ θsj − T isdθ

s
j + dT sj ∧ θis + T sj dθ

i
s. (17)

Once again, from the definition of covariant derivative

T ij,ktθ
t = dT ij,k − T it,kθ

t
j − T ij,tθ

t
k + T tj,kθ

i
t.

Inserting the relation above into (17), using the first and the second structure equation we obtain

T ij,ktθ
k ∧ θt = T isΘ

s
j − T sj Θ

i
s.

Recalling that
Θij =

1

2
Rijktθ

k ∧ θt,

skew-symmetrizing the above we conclude the validity of (16).

Let φ : M → N be a smooth map and suppose, from now on, to have chosen the local coframes so that
φ−1(V) ⊆ U . We set

φ∗ωa = φai θ
i

so that the differential dφ of φ, a section of T ∗M ⊗ φ−1TN , where φ−1TN is the pullback bundle, can be
written as

dφ = φai θ
i ⊗ Ea.

The energy density e(φ) of the map φ is defined as

e(φ) =
|dφ|2

2
,

where |dφ|2 is the square of the Hilbert-Schmidt norm of dφ, that is,

|dφ|2 = φai φ
a
i .

Observe that
|dφ|2 = tr(φ∗⟨ , ⟩).

The generalized second fundamental tensor of the map φ is given by ∇dφ, locally

∇dφ = φaijθ
j ⊗ θi ⊗ Ea,

where its coefficient are defined according to the rule

φaijθ
j = dφai − φakθ

k
i + φbiω

a
b .

The tension field τ(φ) of the map φ is the section of φ−1TN defined by

τ(φ) = tr(∇dφ)

and it is locally given by
τ(φ) = φaiiEa.

Let Ω ⊆M be a relatively compact domain and let EΩ be the energy functional on Ω, that is,

EΩ(φ) :=

ˆ
Ω

e(φ).

Recall that a smooth map φ : (M, ⟨ , ⟩) is harmonic if for each relatively compact domain Ω ⊆ M it is a
stationary point of the energy functional EΩ : C∞(M,N) → R with respect to variations preserving φ on
∂Ω. It can be verified that φ is harmonic if and only if its tension field vanishes.
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Part I

φ-curvatures and harmonic-Einstein
manifolds
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Chapter 1

φ-curvature tensors

In this Chapter we introduce some new curvature tensor fields and we describe their fundamental properties.
Those tensor fields shall be called φ-curvatures and they take into account the geometry of a Riemannian
manifold (M, ⟨ , ⟩) equipped with a smooth map φ :M → (N, ⟨ , ⟩N ).

In Section 1.1 we fix the terminology for some properties that may be satisfied from the smooth map
φ and that appears quite frequently in the sequel. Precisely we recall the definition of (weakly) conformal,
homothetic, conservative, affine and relatively affine maps. We also define almost relatively affine maps.
Further we state some known results relating those properties, that shall be useful.

In Section 1.2, the core of this Chapter, we define the φ-curvatures, comparing them with the classic
curvature tensors (that can be seen as the φ-curvatures when φ is taken as a constant map). Those curvature
tensors are the φ-Ricci Ricφ, the φ-scalar Sφ, the φ-Schouten Aφ, the φ-Weyl Wφ, the φ-Cotton Cφ, the
φ-Bach Bφ and the φ-traceless part Tφ of φ-Ricci. We also describe their symmetries and evaluate their
traces and divergences.

In Section 1.3 we provide the transformation laws for the φ-curvatures under a conformal change of the
metric. As major consequence we prove that in the four-dimensional case the φ-Bach tensor is a conformal
invariant.

In the last Section of the Chapter, Section 1.4, we investigate the consequence on the vanishing of some
tensors related to the φ-Weyl tensor and its derivatives on the geometry of the manifold and the smooth
map φ. The consequences on the geometry of (M, ⟨ , ⟩) include and generalize the classic notions of locally
conformally flat, harmonic Weyl curvature and conformally symmetric manifolds while the consequences on
the map φ are related to the properties recalled in Section 1.1.

1.1 Smooth maps and conservation laws
Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map between Riemannian manifolds of dimension, respectively,
m and n.

Definition 1.1.1. The map φ is weakly conformal if there exists ζ ∈ C∞(M) such that

φ∗⟨ , ⟩N = ζ⟨ , ⟩. (1.1.2)

Remark 1.1.3. If φ is weakly conformal then, taking the trace of (1.1.2), we get

ζ =
|dφ|2

m
. (1.1.4)

In particular ζ ≥ 0 on M .

Definition 1.1.5. Let φ be weakly conformal and x ∈M . If ζ(x) = 0 then x is called branching point of φ,
otherwise x is called regular point of φ.
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Remark 1.1.6. Assume φ is weakly conformal and x ∈ M is a regular point for φ. Then φ is an immersion
(that is, dφ is injective) in a neighbourhood of x. Indeed, if X ∈ TxM , evaluating (1.1.2) at X yields

|dφ(X)|2N = ζ(x)|X|2,

and since ζ(x) ̸= 0, dφ(X) = 0 if and only if X = 0.
As a consequence, if φ is weakly conformal and m > n then φ is constant. Indeed, assume by contradiction
that φ is non-constant. Then there exists x ∈ M regular point and thus, since φ is an immersion in a
neighbourhood of x, m ≤ n, that is a contradiction.

Definition 1.1.7. The map φ is conformal if (1.1.2) holds for some positive function ζ on M , that is, φ is
weakly conformal with no branching points.

Remark 1.1.8. If φ is conformal then, by Remark 1.1.6, φ is an immersion of M into N .

Definition 1.1.9. The map φ is homothetic if (1.1.2) holds for some constant ζ ∈ R.

Remark 1.1.10. If φ is homothetic, from (1.1.4), we deduce that |dφ|2 is constant.
Remark 1.1.11. If φ is a non-constant homothety, that is, if ζ is a positive constant, then the following is an
isometric immersion

φ : (M, ζ⟨ , ⟩) → (N, ⟨ , ⟩N ).

Definition 1.1.12. The stress-energy tensor of φ is given by

S := φ∗⟨ , ⟩N − e(φ)⟨ , ⟩, (1.1.13)

where
e(φ) :=

1

2
|dφ|2

is the density of energy of φ. The map φ is called conservative if S is divergence free.

Remark 1.1.14. The stress-energy tensor (of harmonic maps) had been first defined by Baird and Eells in
[BaE], with a different sign convention. Notice that, its vanishing and the vanishing of its divergence are
independent from the sign convention.
Remark 1.1.15. The following are some trivial examples of conservative maps:

i) Constant maps;

ii) Weakly conformal maps, if m = 2;

iii) Homothetic maps.

To prove ii) and iii) let φ be a weakly conformal map. From (1.1.2), (1.1.4) and the definition (1.1.13) of S
we deduce

S = −m− 2

2m
|dφ|2⟨ , ⟩. (1.1.16)

If m = 2 then S = 0, in particular div(S) = 0. If φ is homothetic then |dφ|2 is constant, hence S is parallel
and, in particular, div(S) = 0.

Proposition 1.1.17. Let S be the stress-energy tensor of the smooth map φ : (M, g) → (N,h). Then

div(S) = ⟨τ(φ), dφ⟩N ,

that is, in a local orthonormal coframe,
Sij,j = φajjφ

a
i . (1.1.18)
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Proof. In a local orthonormal coframe the components of S are given by

Sij = φai φ
a
j −

|dφ|2

2
δij .

Taking the divergence of the above, using the symmetry of ∇dφ, we get

Sij,j =(φai φ
a
j )j −

|dφ|2j
2

δij

=φai φ
a
jj + φaijφ

a
j −

|dφ|2i
2

=φai φ
a
jj + φajiφ

a
j − φajiφ

a
j

=φajjφ
a
i ,

that is (1.1.18).

As an immediate consequence we have

Corollary 1.1.19. If φ is harmonic then φ is conservative.

As a partial converse of the above Corollary we have the following Proposition, whose proof is contained
in [BaE].

Proposition 1.1.20. If φ is a differentiable submersion almost everywhere and it is conservative then φ is
harmonic.

Remark 1.1.21. In the Proposition above the hypothesis that φ is a differentiable submersion almost ev-
erywhere cannot be removed. Indeed, there are situations in which φ is conservative even though it is not
harmonic. For instance, let φ be a isometric immersion. Since τ(φ) = mH, where H is the mean curvature
field of the immersion, see (1.170) of [AMR], φ is harmonic if and only if it is a minimal immersion. Since
isometric immersion are clearly homothetic maps, from iii) of Remark 1.1.15 they are always conservative
even thought they can be not minimal.

In the next Proposition we characterize the situations where S vanishes on M , that are the critical points
of the energy for variation of the domain metric (rather then variations of the map), see [S].

Proposition 1.1.22. Let φ be a non-constant map, then S = 0 if and only if m = 2 and φ is weakly
conformal.

Proof. If S = 0 then

φ∗⟨ , ⟩N =
|dφ|2

2
⟨ , ⟩, (1.1.23)

thus φ is weakly conformal. Taking the trace of (1.1.23) we deduce

|dφ|2 =
m

2
|dφ|2,

that is,
m− 2

2
|dφ|2 = 0.

Then either |dφ|2 = 0 on M or m = 2, but since φ is non-constant we must have m = 2. The converse
follows immediately from (1.1.16).

The next Proposition is a sort of analogous of the above Proposition when m ≥ 3.

Proposition 1.1.24. If m ≥ 3, φ is conservative and weakly conformal then φ is homothetic.
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Proof. Since φ is weakly conformal (1.1.16) holds, hence we may take its divergence to infer

div(S) = −m− 2

2m
d|dφ|2.

Since φ is conservative div(S) = 0 and, using m > 2, from the above we infer d|dφ|2 = 0 on M . Then, since
M is connected, |dφ|2 must be constant on M and thus φ is a homothetic map.

The next definitions are contained in [IY].
Definition 1.1.25. The map φ is affine if dφ the generalized second fundamental tensor of φ vanishes, that
is,

∇dφ = 0. (1.1.26)
Remark 1.1.27. Affine maps are totally geodesic, that is, they maps geodesic into geodesics. Moreover, affine
maps are harmonic since the tension of a smooth map is the trace of its generalized second fundamental
tensor.
Definition 1.1.28. The map φ is relatively affine if φ∗⟨ , ⟩N is parallel, that is,

∇φ∗⟨ , ⟩N = 0

Remark 1.1.29. If φ is affine the it is also relatively affine.
Remark 1.1.30. One can see that φ is a relative affine map if and only if, in a local orthonormal coframe,

φaijφ
a
k = 0. (1.1.31)

Indeed, a computation shows
(φai φ

a
j )k = φaikφ

a
j + φai φ

a
jk.

If (1.1.31) holds then, from the above, ∇φ∗⟨ , ⟩N = 0. On the other hand, if ∇φ∗⟨ , ⟩N = 0, using the
symmetry of ∇dφ and the above we easily conclude that (1.1.31) holds.
Remark 1.1.32. If φ is relatively affine then, summing (1.1.31) on i and j and on i and k, respectively, one
gets that φ is conservative and |dφ|2 is constant on M . On the other hand relatively affine maps can be not
harmonic (and, as a consequence, non affine), see page 41 of [X] and references therein for examples.

Recall that, as defined in [P], a symmetric 2-times covariant tensor field is harmonic if it is a Codazzi
tensor, that is, his covariant derivative is totally symmetric, and it is divergence free (or equivalently, if it is
a Codazzi tensor with constant trace).
Definition 1.1.33. The map φ is almost relatively affine if φ∗⟨ , ⟩N is harmonic.
Remark 1.1.34. The author has not find in the literature the definition of smooth maps φ such that φ∗⟨ , ⟩N
is a Codazzi tensor nor such that φ∗⟨ , ⟩N is harmonic, but since in our study we ran into the latter situation
he find reasonable to give the definition above.
Remark 1.1.35. Relatively affine (and thus also affine) maps are almost relatively affine. It is easy to see
that φ∗⟨ , ⟩N is Codazzi if and only if, in a local orthonormal coframe

φaijφ
a
k = φaikφ

a
j . (1.1.36)

If φ is almost relatively affine, tracing (1.1.36), we get

div(S) = 1

2
d|dφ|2,

where S is the energy-stress tensor of the map φ, defined by (1.1.13). As a consequence the almost relatively
affine map φ, since |dφ|2 is constant, is also conservative.

The vertical distribution of φ is determined by the vector fields X ∈ X(M) such that dφ(X) = 0. From
Proposition 2.1 of [IY] a relatively affine map has constant rank on M equal to q and, in case 0 < q < n,
the vertical distribution has dimension q − n and it is parallel, that is, if X,Y are such that dφ(X) = 0 and
dφ(Y ) = 0, then dφ(∇XY ) = 0.
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1.2 Definition of φ-curvatures and properties
Let (M, ⟨ , ⟩) be Riemannian manifold of dimension m and φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) a smooth map, where
the target (N, ⟨ , ⟩N ) is a Riemannian manifold of dimension n. We fix α ∈ C(M), α ̸≡ 0 on M .

Definition 1.2.1. Indicating with Ric the usual Ricci tensor of (M, ⟨ , ⟩) we define the φ-Ricci tensor by
setting

Ricφ := Ric − αφ∗⟨ , ⟩N . (1.2.2)

In a local orthonormal coframe
Rφij = Rij − αφai φ

a
j

where
Ricφ = Rφijθ

i ⊗ θj , Ric = Rijθ
i ⊗ θj and dφ = φai θ

i ⊗ Ea.

Remark 1.2.3. The φ-Ricci curvature and the Ricci curvature coincide if and only if φ is locally costant on
{x ∈ M : α(x) ̸= 0}. Indeed, Ricφ = Ric if and only if αφ∗⟨ , ⟩N = 0, that is, φ∗⟨ , ⟩N = 0 on the open
subset {x ∈M : α(x) ̸= 0} of M . Since ⟨ , ⟩N is a Riemannian metric on N and, for every X ∈ Tx0M , where
x0 ∈M ,

(φ∗⟨ , ⟩N )(X,X) = |dφ(X)|2N , (1.2.4)
we deduce that φ∗⟨ , ⟩N = 0 at a point x0 ∈ M if and only if dφ = 0 at x0. Then φ∗⟨ , ⟩N = 0 on
{x ∈ M : α(x) ̸= 0} if and only if dφ = 0 on {x ∈ M : α(x) ̸= 0}, that is, φ is locally costant on
{x ∈M : α(x) ̸= 0}.

Definition 1.2.5. The φ-scalar curvature Sφ is defined as

Sφ = tr(Ricφ).

Using (1.2.2) we get
Sφ := S − α|dφ|2, (1.2.6)

where S is the usual scalar curvature of (M, ⟨ , ⟩) and |dφ|2 is the square of the Hilbert-Schmidt norm of the
section dφ of the vector bundle φ∗TN .
Remark 1.2.7. Observe that Sφ = S if and only if α|dφ|2 = 0, that is, |dφ|2 = 0 on {x ∈ M : α(x) ̸= 0}.
Then the φ-scalar curvature and the usual scalar curvature coincide if and only if φ is locally constant on
{x ∈M : α(x) ̸= 0}.
Remark 1.2.8. The φ-Ricci tensor and the φ-scalar first appeared in the work [M] of R. Müller and the
notation adopted here have also been used by L. F. Wang in [W].

Definition 1.2.9. When m ≥ 2 we introduce the φ-Schouten tensor Aφ in analogy with the standard case

Aφ := Ricφ − Sφ

2(m− 1)
⟨ , ⟩. (1.2.10)

In a local orthonormal coframe
Aφij = Rφij −

Sφ

2(m− 1)
δij ,

where
Aφ = Aφijθ

i ⊗ θj .

An immediate computation using (1.2.2) and (1.2.6) gives the relation of Aφ with the usual Schouten tensor
A, that is,

Aφ = A− α

(
φ∗⟨ , ⟩N − |dφ|2

2(m− 1)
⟨ , ⟩
)
, (1.2.11)

where
A = Ric − S

2(m− 1)
⟨ , ⟩.
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Remark 1.2.12. Assume m = 2. Since in this situation Ric is proportional to the metric ⟨ , ⟩, the Schouten
tensor A vanishes. As a consequence, from (1.2.11) we get

Aφ = −αS.

where S is the stress-energy tensor defined by (1.1.13). In particular Aφ = A if and only if S = 0 on
{x ∈ M : α(x) ̸= 0}, that is equivalent in case φ is non-constant on {x ∈ M : α(x) ̸= 0}, in view of
Proposition 1.1.22, to the fact that φ is weakly conformal on {x ∈M : α(x) ̸= 0}.
Assume m ≥ 3. Observe that Aφ = A if and only if

φ∗⟨ , ⟩N =
|dφ|2

2(m− 1)
⟨ , ⟩ on {x ∈M : α(x) ̸= 0}. (1.2.13)

In particular φ is weakly conformal, when restricted to {x ∈M : α(x) ̸= 0}. By taking the trace of (1.2.13)
we infer

m− 2

2(m− 1)
|dφ|2 = 0 on {x ∈M : α(x) ̸= 0}.

In conclusion, when m ≥ 3, Aφ = A if and only if φ is locally constant on {x ∈M : α(x) ̸= 0}.
Remark 1.2.14. An easy computation shows

tr(Aφ) = m− 2

2(m− 1)
Sφ. (1.2.15)

Indeed, using (1.2.10) and (1.2.4) we infer

tr(Aφ) = tr(Ricφ)− m

2(m− 1)
Sφ =

m− 2

2(m− 1)
Sφ.

We recall the Kulkarni-Nomizu product, that we shall indicate with the “parrot”operator ∧ , of two
symmetric 2-covariant tensors. It gives rise to a 4-covariant tensor with the same symmetries of Riem, the
Riemann curvature tensor. In components, with respect to a local orthonormal coframe, given the 2-covariant
symmetric tensors T and V we have

(V ∧ T )ijkt := VikTjt − VitTjk + VjtTik − VjkTit. (1.2.16)

Definition 1.2.17. For m ≥ 3, the φ-Weyl tensor is defined by

Wφ := Riem − 1

m− 2
Aφ ∧ ⟨ , ⟩, (1.2.18)

where Riem is the Riemann tensor of (M, ⟨ , ⟩).

In a local orthonormal coframe

Wφ
tijk = Rtijk −

1

m− 2
(Aφtjδik −Aφtkδij +Aφikδtj −Aφijδtk),

where
Wφ =Wφ

tijkθ
t ⊗ θi ⊗ θj ⊗ θk and Riem = Rtijkθ

t ⊗ θi ⊗ θj ⊗ θk.

From the standard decomposition of the Riemann curvature tensor we know that, for m ≥ 3,

Riem =W +
1

m− 2
A ∧ ⟨ , ⟩,

where W is the standard Weyl tensor of (M, ⟨ , ⟩). From the distributivity of ∧ with respect to sums,
together with (1.2.11), we deduce the expression of Wφ in terms of W :

Wφ =W +
α

m− 2

(
φ∗⟨ , ⟩N − |dφ|2

2(m− 1)
⟨ , ⟩
)

∧ ⟨ , ⟩. (1.2.19)

8



Remark 1.2.20. Notice that Wφ = W if and only if (1.2.13) holds, this is due to the fact that · ∧ ⟨ , ⟩ is
injective. Then, since m ≥ 3, Wφ coincide with W if and only if φ is locally constant on {x ∈M : α(x) ̸= 0}
on M , as seen in Remark 1.2.12.

If a four times covariant tensor field K has the same symmetries of Riem then all his traces can be
determined by Kkikj , hence it is convenient to denote

tr(K)ij := Kkikj .

Observe that tr(K) is a two times covariant tensor field and tr(Riem) = Ric.
Proposition 1.2.21. The φ-Weyl tensor field has the same symmetries of Riem and

tr(Wφ) = αφ∗⟨ , ⟩N . (1.2.22)

Proof. The φ-Weyl tensor field has the same symmetries of Riem because, as mentioned above, the Kulkarni-
Nomizu product of two times covariant tensor fields have the same symmetries of Riem. Observe that, using
(1.2.18), (1.2.10), (1.2.15) and (1.2.2),

Wφ
jijk =Rjijk −

1

m− 2
(Aφjj −Aφjkδij +Aφikδjj −Aφijδjk)

=Rik −Aφik −
1

m− 2
Aφjjδik

=Rik −Rφik +
Sφ

2(m− 1)
δik −

1

m− 2

m− 2

2(m− 1)
Sφδik

=αφai φ
a
k,

that is, (1.2.22).

Remark 1.2.23. Combining the above Proposition with Remark 1.2.20, the φ-Weyl tensor field is totally
traceless if and only if it coincide with the Weyl tensor.
Remark 1.2.24. Assume m = 3. Is well known that W = 0, hence from (1.2.19),

Wφ = α

(
φ∗⟨ , ⟩N − |dφ|2

4
⟨ , ⟩
)

∧ ⟨ , ⟩.

For the rest of the section we consider α to be a non-null constant. The next result, analogous to Schur’s
identity, typically shows how the geometry of φ enters into the picture.
Proposition 1.2.25. In a local orthonormal coframe

Rφij,i =
1

2
Sφj − αφaiiφ

a
j , (1.2.26)

where φaii are the components of the tension field τ(φ) of the map φ.
Proof. By taking the covariant derivative of (1.2.6) we get

1

2
Sj =

1

2
Sφj + αφaijφ

a
i

and by the usual Schur’s identity we obtain

Rij,i =
1

2
Sφj + αφaijφ

a
i . (1.2.27)

Using (1.2.2) we infer
Rφij,i = Rij,i − αφaiiφ

a
j − αφai φ

a
ji.

Therefore, from the symmetries of ∇dφ,

Rφij,i = Rij,i − αφaijφ
a
i − αφaiiφ

a
j

and, using (1.2.27), from the above we conclude the validity of (1.2.26).
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Remark 1.2.28. In global notation (1.2.26) becomes

div(Ricφ) = 1

2
dSφ − αdiv(S),

where S is the stress-energy tensor of the map φ, defined in (1.1.13). Since α is constant it can also be
written as

div(Ricφ + αS) =
1

2
dSφ. (1.2.29)

A trivial computation, similar to the one performed in the proof of the above Proposition, shows that (1.2.29)
holds even in case we consider α to be a non-constant differentiable function. We stated the Proposition
above with α constant because in that case, using (1.2.26), the following analogous of the usual Schur’s
identity holds

Rφij,i =
1

2
Sφj

if φ is conservative (actually, also the converse implication holds). When dealing with harmonic-Einstein
manifolds in Chapter 2 a key fact will be the validity of the formula above.

Definition 1.2.30. Analogously to the standard case, when m ≥ 2, we define the φ-Cotton tensor Cφ as the
obstruction to the commutativity of the covariant derivative of Aφ, that is, in a local orthonormal coframe,

Cφijk := Aφij,k −Aφik,j . (1.2.31)

Using definition (1.2.10) of Aφ we compute the indicated covariant derivatives in (1.2.31) to obtain Cφ

expressed in terms of the usual Cotton tensor C of (M, ⟨ , ⟩) in the following

Proposition 1.2.32. If α is constant then the φ-Cotton tensor field and the Cotton tensor field C of
(M, ⟨ , ⟩) are related by

Cφijk = Cijk − α

[
φaikφ

a
j − φaijφ

a
k −

φat
m− 1

(φatkδij − φatjδik)

]
. (1.2.33)

Proof. An easy computation using (1.2.31), (1.2.10), (1.2.2) and(1.2.6) shows that

Cφijk =Aφij,k −Aφik,j

=Rφij,k −
Sφk

2(m− 1)
δij −Rφik,j +

Sφj
2(m− 1)

δik

=Rij,k − α(φai φ
a
j )k −

Sk
2(m− 1)

δij + α
|dφ|2k

2(m− 1)
δij

−Rik,j + α(φai φ
a
k)j +

Sj
2(m− 1)

δij − α
|dφ|2j

2(m− 1)
δik

=Aij,k −Aik,j − α

[
φaikφ

a
j + φai φ

a
jk −

φatφ
a
tk

m− 1
δij − φaijφ

a
k − φai φ

a
kj +

φatφ
a
tj

m− 1
δik

]
,

that is, since Cijk = Aij,k −Aik,j , (1.2.33).

The relations in the Proposition below are obtained by computation.

Proposition 1.2.34. The φ-Cotton tensor field satisfies the following properties:

Cφikj = −Cφijk and therefore Cφijj = 0; (1.2.35)

Cφjji = αφajjφ
a
i = −Cφjij ; (1.2.36)

Cφijk + Cφjki + Cφkij = 0. (1.2.37)
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Proof. We prove only (1.2.36) because (1.2.35) and (1.2.37) are trivially satisfied. Using (1.2.10), (1.2.15)
and (1.2.26) we deduce

Cφiik =Aφii,k −Aφik,i

=

(
m− 2

2(m− 1)
Sφ
)
k

−Rφik,i +
Sφk

2(m− 1)

=
m− 2

2(m− 1)
Sφk −

(
Sφk
2

− αφaiiφ
a
k

)
+

1

2(m− 1)
Sφk

=αφaiiφ
a
k,

that is, (1.2.36).

Remark 1.2.38. Observe that, since α ̸= 0, Cφ = C if and only if the tensor field

φ∗⟨ , ⟩N − |dφ|2

2(m− 1)
⟨ , ⟩ (1.2.39)

is a Codazzi tensor. Natural examples of situations in which (1.2.39) is a Codazzi tensor are when m = 2
and φ is weakly conformal or when m ≥ 3 and φ is homothetic. Indeed, in both cases,

φ∗⟨ , ⟩N − |dφ|2

2(m− 1)
⟨ , ⟩ = m− 2

2m(m− 1)
|dφ|2⟨ , ⟩. (1.2.40)

If m = 2 the right hand side of (1.2.40) vanishes while, if m ≥ 3 and |dφ|2 is constant, then the right hand
side of (1.2.40) is parallel. Another situation in which Cφ = C is when φ is almost relatively affine, see
Definition 1.1.33. Notice that in all the examples above the map φ is conservative, as one can expected since
C is totally traceless.
Remark 1.2.41. For a three times covariant tensor field C on M that is skew symmetric in the last two
indices, that is Cikj = −Cikj , all its traces are determined by Cijj , hence it is convenient to denote:

tr(C)i := Cijj .

Then tr(C) is a 1-form on M . Observe that (1.2.36) gives

tr(Cφ) = αdiv(S).

Explicitating (1.2.31) in terms of Rφij,k we obtain the commutation relations

Rφij,k = Rφik,j + Cφijk +
1

2(m− 1)
(Sφk δij − Sφj δik), (1.2.42)

that shall be useful later on.
Remark 1.2.43. If m = 2, from the symmetries of Cφ, the only non-vanishing components of Cφ can be
determined by Cφiik (no sum on i) for {i, k} = {1, 2}. It is immediate to see that (no sum on i)

Cφiik = αdiv(S)k,

indeed using (1.2.36),
αdiv(S)k = tr(Cφ)k = Cφiik + Cφkkk = Cφiik.

Then Cφ = 0 if and only if φ is conservative, for m = 2.
In the next Proposition we evaluate the divergence of Wφ in terms of Cφ.

11



Proposition 1.2.44. For m ≥ 3, in a local orthonormal coframe,

Wφ
tijk,t =

m− 3

m− 2
Cφikj + α(φaijφ

a
k − φaikφ

a
j ) +

α

m− 2
φatt(φ

a
j δik − φakδij). (1.2.45)

Proof. Observe that from (1.2.19) we can express Wφ
tijk componentwise in the form

Wφ
tijk =Wtijk +

α

m− 2
(φatφ

a
j δik − φatφ

a
kδij + φai φ

a
kδtj − φai φ

a
j δtk)

−α |dφ|2

(m− 1)(m− 2)
(δtjδik − δtkδij).

Taking covariant derivatives, tracing, using the well known formula (see for instance equation (1.87) of
[AMR])

Wtijk,t = −m− 3

m− 2
Cijk, (1.2.46)

and (1.2.33) we obtain

Wφ
tijk,t =Wtijk,t +

α

m− 2
(φattφ

a
j δik + φatφ

a
jtδik − φattφ

a
kδij − φatφ

a
ktδij)

+
α

m− 2
(φaijφ

a
k + φai φ

a
kj − φaikφ

a
j − φai φ

a
jk) +

α

m− 2

[
−2φasφ

a
st

m− 1
(δtjδik − δtkδij)

]
=
m− 3

m− 2
Cikj +

α

m− 2

[
φatt(φ

a
j δik − φakδij) + φat (φ

a
jtδij − φaktδij) + φaijφ

a
k − φaikφ

a
j

]
+

α

m− 2

[
− 2

m− 1
φas(φ

a
sjδik − φaskδij)

]
=
m− 3

m− 2
Cφikj + α

m− 3

m− 2

[
φijφ

a
k − φaikφ

a
j −

φat
m− 1

(φatjδik − φatkδij)

]
+

α

m− 2

[
φatt(φ

a
j δik − φakδij) +

m− 3

m− 1
φat (φ

a
jtδij − φaktδij) + φaijφ

a
k − φaikφ

a
j

]
=
m− 3

m− 2
Cφikj + α(φaijφ

a
k − φaikφ

a
j ) +

α

m− 2
φatt(φ

a
j δik − φakδij),

that is, (1.2.45).

The following proposition contains the ‘fake Bianchi identity”for Wφ.

Proposition 1.2.47. In a local orthonormal frame

Wφ
tijk,l +Wφ

tikl,j +Wφ
tilj,k =

1

m− 2
(Cφtjkδil + Cφtklδij + Cφtljδik − Cφijkδtl − Cφiklδtj − Cφiljδtk).

Proof. It follows from a computation using the decomposition (1.2.18), the second Bianchi identity for Riem
and the definition (1.2.31) of Cφ.

Remark 1.2.48. Formula (1.2.45) can also be deduced taking the trace of the fake Bianchi identity above,
using (1.2.22) and (1.2.36).

Definition 1.2.49. We introduce, for m ≥ 3, the φ-Bach tensor Bφ by setting, in a local orthonormal
coframe

(m− 2)Bφij = Cφijk,k +Rφtk(W
φ
tikj − αφatφ

a
i δjk) + α

(
φaijφ

a
kk − φakkjφ

a
i −

1

m− 2
|τ(φ)|2δij

)
. (1.2.50)
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Remark 1.2.51. If φ is a constant map then the φ-Bach tensor reduces to the usual Bach tensor B, whose
components in a local orthonormal coframe are given by

(m− 2)Bij = Cijk,k +RtkWtikj .

Proposition 1.2.52. Let m ≥ 3, the φ-Bach tensor is symmetric and

tr(Bφ) = α
m− 4

(m− 2)2
|τ(φ)|2. (1.2.53)

Proof. We rewrite Bφ in the form
(m− 2)Bφ = V + Z

where:

Vij := Cφijk,k − αRφkjφ
a
kφ

a
i − αφakkjφ

a
i , Zij := RφtkW

φ
tikj + αφaijφ

a
kk −

α

m− 2
|τ(φ)|2δij .

Since Z is symmetric it remains to show that V shares the same property. To verify this fact, in other words
that Vij = Vji, we see that, explicitating both sides of the equality, it turns out to be equivalent to show
that

α[φak(R
φ
ikφ

a
j −Rφkjφ

a
i ) + φakkiφ

a
j − φakkjφ

a
i ] = Cφjik,k − Cφijk,k = −(Cφijk − Cφjik)k.

By using (1.2.35) and (1.2.37) we have

−(Cφijk − Cφjik)k = −(Cφijk + Cφjki)k = Cφkij,k,

hence the above equality is equivalent to

Cφkij,k = α[φak(R
φ
ikφ

a
j −Rφkjφ

a
i ) + φakkiφ

a
j − φakkjφ

a
i ]. (1.2.54)

It remains to compute Cφkij,k to verify (1.2.54). From the general formula (14) we get

Aφik,jk = Aφki,kj +RkjA
φ
ki +RtijkA

φ
tk. (1.2.55)

Using (1.2.31) and (1.2.55) twice we have

Cφkij,k = Aφki,jk −Aφkj,ik = (Aφki,kj +RkjA
φ
ki +RtijkA

φ
kt)− (Aφkj,ki +RkiA

φ
kj +RtjikA

φ
kt).

Hence, with the aid of (1.2.10), we deduce

Cφkij,k =

(
Rφki,k −

Sφk
2(m− 1)

δki

)
j

+RkjA
φ
ki +RtijkA

φ
kt

−
(
Rφkj,k −

Sφk
2(m− 1)

δkj

)
i

−RkiA
φ
kj −RtjikA

φ
kt.

From (1.2.26) and the symmetries of Riem we obtain

Cφkij,k =

(
1

2
Sφi − αφakkφ

a
i −

Sφi
2(m− 1)

)
j

+RkjA
φ
ki +RtijkA

φ
kt

−

(
1

2
Sφj − αφakkφ

a
j −

Sφj
2(m− 1)

)
i

−RkiA
φ
kj −RtijkA

φ
kt

=

(
m− 2

2(m− 1)
Sφi − αφakkφ

a
i

)
j

+RkjA
φ
ki −

(
m− 2

2(m− 1)
Sφj − αφakkφ

a
j

)
i

−RkiA
φ
kj .
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Since Hess(Sφ) is symmetric we deduce

Cφkij,k = α(φakkφ
a
j )i − α(φakkφ

a
i )j +RkjA

φ
ki −RkiA

φ
kj .

Using once again (1.2.10) and the symmetry of ∇dφ

Cφkij,k =α(φakkiφ
a
j + φakkφ

a
ji − φakkjφ

a
i − φakkφ

a
ij)

+Rkj

(
Rφki −

Sφ

2(m− 1)
δki

)
−Rki

(
Rφkj −

Sφ

2(m− 1)
δkj

)
=α(φakkiφ

a
j − φakkjφ

a
i ) +RkjR

φ
ki −

Sφ

2(m− 1)
Rij −RkiR

φ
kj +

Sφ

2(m− 1)
Rji.

By plugging (1.2.2) into the above we finally conclude

Cφkij,k =α(φakkiφ
a
j − φakkjφ

a
i ) + (Rφkj + αφakφ

a
j )R

φ
ki − (Rφki + αφakφ

a
i )R

φ
kj

=α(φakkiφ
a
j − φakkjφ

a
i ) + αφakφ

a
jR

φ
ki − αφakφ

a
iR

φ
kj

=α[φakkiφ
a
j − φakkjφ

a
i + φak(R

φ
kiφ

a
j −Rφkjφ

a
i )],

and this proves the validity of (1.2.54).
We now compute tr(Bφ). From (1.2.50) we have

(m− 2)Bφii = Cφiik,k +RφtkW
φ
tiki − αRφikφ

a
kφ

a
i + α

(
|τ(φ)|2 − φakkiφ

a
i −

m

m− 2
|τ(φ)|2

)
.

Then with the aid of (1.2.36) and (1.2.22) we infer

(m− 2)Bφii =α(φ
a
iiφ

a
k)k + αRφtkφ

a
tφ

a
k − αRφikφ

a
kφ

a
i − α

2

m− 2
|τ(φ)|2 − αφakkiφ

a
i

=αφaiikφ
a
k + α|τ(φ)|2 − α

2

m− 2
|τ(φ)|2 − αφakkiφ

a
i

=α
m− 4

m− 2
|τ(φ)|2,

which is equivalent to (1.2.53).

We conclude with

Definition 1.2.56. We define the traceless part of the φ-Ricci tensor by

Tφ = Ricφ − Sφ

m
⟨ , ⟩. (1.2.57)

Denoting by T the traceless part of the Ricci tensor, using (1.2.2) and (1.2.6),

Tφ = T − α

(
φ∗⟨ , ⟩N − |dφ|2

m
⟨ , ⟩
)
. (1.2.58)

Remark 1.2.59. Using (1.2.58) it is immediate to obtain that the traceless part of the φ-Ricci tensor coincide
with the traceless part of Ricci if and only φ is weakly conformal (on {x ∈M : α(x) ̸= 0}, when α is assumed
to be a function)
Remark 1.2.60. If m = 2 then

Tφ = Aφ,

and thus, form Remark 1.2.12,
Tφ = −αS.
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Remark 1.2.61. All the φ-curvatures Ricφ, Sφ, Aφ, Wφ, Cφ, Bφ and Tφ agrees with the original curvatures
in case either α ≡ 0 on M or φ is a constant map. The case where φ is constant will be referred in the sequel
as the standard case.
Remark 1.2.62. In low dimension some standard curvature tensor are trivial. On the contrary their modified
counterparts detect the geometry not only of (M, ⟨ , , ⟩) but of φ : (M, ⟨ , , ⟩) → (N, ⟨ , ⟩N ) and thus they can
be non trivial.

1.3 Transformation laws under a conformal change of the metric
Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3, let f ∈ C∞(M) and let

⟨̃ , ⟩ := e−
2

m−2 f ⟨ , ⟩. (1.3.1)

Let {ei} be a local orthonormal frame for (M, ⟨ , ⟩) defined on an open set U ⊆M . Let {θi}, {θij} and {Θij}
be, respectively, the dual coframe, the Levi-Civita connection forms and the curvature forms associated to
{θi}. In the next well known Proposition we collect the transformation laws under the conformal change of
the metric (1.3.1) for these objects, and as a consequence, also for the Riemann tensor.

Proposition 1.3.2. Set
ẽi := e

1
m−2 fei, (1.3.3)

then {ẽi} is a orthonormal frame for (M, ⟨̃ , ⟩) on U . Denote by {θ̃i}, {θ̃ij} and {Θ̃ij} the associated coframe,
Levi-Civita connection forms and curvature forms on U . Then

θ̃i = e−
1

m−2 fθi, (1.3.4)

θ̃ij = θij +
1

m− 2
(fiθ

j − fjθ
i), (1.3.5)

Θ̃ij = Θij +
1

m− 2

[
fikδtj − fjkδit +

1

m− 2
(fifkδtj − fkfjδit − |∇f |2δikδtj)

]
θk ∧ θt. (1.3.6)

Moreover, denoting by R̃iem the Riemann tensor of (M, ⟨̃ , ⟩),

R̃iem = Riem +
1

m− 2

[
Hess(f) + 1

m− 2

(
df ⊗ df − |∇f |2

2
⟨ , ⟩
)]

∧ ⟨ , ⟩,

that is,
e−

2
m−2 f R̃ijkt =R

i
jkt +

1

m− 2
(fikδjt − fitδjk + fjtδik − fjkδit)

+
1

(m− 2)2
(fifkδjt − fiftδjk + fjftδik − fjfkδit)

− |∇f |2

(m− 2)2
(δikδjt − δitδjk),

(1.3.7)

where
Riem = Rijktθ

k ⊗ θt ⊗ θj ⊗ ei, R̃iem = R̃ijktθ̃
k ⊗ θ̃t ⊗ θ̃j ⊗ ẽi.

Proof. Clearly (1.3.3) is a local orthonormal frame for (M, ⟨̃ , ⟩), indeed

⟨̃ẽi, ẽj⟩ = δij .

Clearly, using (1.3.3) and (1.3.4),
θ̃i(ẽj) = δij ,
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hence {θ̃i} is the dual coframe corresponding to {ẽi}. The Levi-Civita connection forms are given by (1.3.5).
Indeed they are skew symmetric and they satisfy the first structure equation and those properties characterize
them. Using (1.3.4) and the first structure equations

dθi = −θij ∧ θj (1.3.8)

we obtain

dθ̃i =d(e−
1

m−2 fθi)

=− 1

m− 2
e−

1
m−2 fdf ∧ θi + e−

1
m−2 fdθi

=− e−
1

m−2 f

(
1

m− 2
df ∧ θi + θij ∧ θj

)
.

From (1.3.5) and (1.3.4) we get

θ̃ij ∧ θ̃j =e−
1

m−2 f

(
θij −

fj
m− 2

θi +
fi

m− 2
θj
)
∧ θj

=e−
1

m−2 f

(
θij ∧ θj −

fj
m− 2

θi ∧ θj
)

=e−
1

m−2 f

(
1

m− 2
df ∧ θi + θij ∧ θj

)
.

By comparing with the above we obtain the validity of the structure equations

dθ̃i = −θ̃ij ∧ θ̃j ,

as claimed. Recall the second structure equations

dθij = −θik ∧ θkj +Θij . (1.3.9)

From the second structure equations with respect to the metric ⟨̃ , ⟩, using (1.3.5) we obtain

Θ̃ij =dθ̃
i
j + θ̃ik ∧ θ̃kj

=d

[
θij +

1

m− 2
(fiθ

j − fjθ
i)

]
+

[
θik +

1

m− 2
(fiθ

k − fkθ
i)

]
∧
[
θkj +

1

m− 2
(fkθ

j − fjθ
k)

]
=dθij + θik ∧ θkj +

1

m− 2
(dfi ∧ θj + fidθ

j − dfj ∧ θi − fjdθ
i)

+
1

m− 2
[(fiθ

k − fkθ
i) ∧ θkj + θik ∧ (fkθ

j − fjθ
k)] +

1

(m− 2)2
(fiθ

k − fkθ
i) ∧ (fkθ

j − fjθ
k).

From the above, using (1.3.8) and (1.3.9) we deduce

Θ̃ij =Θij +
1

m− 2
(dfi ∧ θj − fiθ

j
k ∧ θ

k − dfj ∧ θi + fjθ
i
k ∧ θk)

+
1

m− 2
[fiθ

k ∧ θkj − fkθ
i ∧ θkj + fkθ

i
k ∧ θj − fjθ

i
k ∧ θk]

+
1

(m− 2)2
(fkfiθ

k ∧ θj − fjfiθ
k ∧ θk − fkfkθ

i ∧ θj + fkfjθ
i ∧ θk),

that is, using the skew-symmetry of the Levi Civita connection forms and the alternating property of the
wedge product

Θ̃ij =Θij +
1

m− 2
[(dfi − fkθ

k
i ) ∧ θj − (dfj − fkθ

k
j ) ∧ θi]

+
1

(m− 2)2
(fkfiθ

k ∧ θj − |∇f |2θi ∧ θj + fkfjθ
i ∧ θk).

16



From the definition of covariant derivative

fijθ
j = dfi − fjθ

j
i ,

by plugging into the above we get

Θ̃ij =Θij +
1

m− 2
[fikθ

k ∧ θj − fjkθ
k ∧ θi] + 1

(m− 2)2
(fkfiθ

k ∧ θj + fkfjθ
i ∧ θk − |∇f |2θi ∧ θj),

that is (1.3.6). Recall
Θij =

1

2
Rijktθ

k ∧ θt,

hence, from (1.3.6) we get
1

2
R̃ijktθ̃

k ∧ θ̃t =1

2
Rijktθ

k ∧ θt

+
1

m− 2

[
fikδjt − fjkδit +

1

m− 2
(fifkδjt − fkfjδit − |∇f |2δikδjt)

]
θk ∧ θt.

By skew-symmetrizing the above we obtain

e−
2

m−2 f R̃ijkt =R
i
jkt +

1

m− 2
(fikδjt − fitδjk + fjtδik − fjkδit)

+
1

(m− 2)2
(fifkδjt − fiftδjk + fjftδik − fjfkδit)−

|∇f |2

(m− 2)2
(δikδjt − δitδjk),

that is (1.3.7).

Remark 1.3.10. Recall that the Weyl tensor W is a conformal invariant, when we consider its (1, 3)-version
(see for instance Section 1.4 of [AMR]), that is, in a local orthonormal coframe,

e−
2

m−2 fW̃ i
jkt =W i

jkt. (1.3.11)

Let (N, ⟨ , ⟩N ) be a Riemannian manifold of dimension n, we denote by {Ea}, {ωa} and {ωab } the local
orthonormal frame, coframe and the corresponding Levi-Civita connection forms on an open set V such that
φ−1(V) ⊆ U . Clearly dφ is independent on the choice of the metric on M , it means,

φ̃ai = e
1

m−2 fφai , (1.3.12)

where
φai θ

i ⊗ Ea = dφ = φ̃ai θ̃
i ⊗ Ea.

As an immediate consequence we get
|̃dφ|

2
= e

2
m−2 f |dφ|2. (1.3.13)

By definition
∇dφ = φaijθ

j ⊗ θi ⊗ Ea, φaijθ
j = dφai − φaj θ

j
i + φbiω

a
b

and
∇̃dφ = φ̃aij θ̃

j ⊗ θ̃i ⊗ Ea, φ̃aij θ̃
j = dφ̃ai − φ̃aj θ̃

j
i + φ̃biω

a
b .

We denote by τ̃(φ) the tension of the map

φ : (M, ⟨̃ , ⟩) → (N, ⟨ , ⟩N ),

in components
τ̃(φ)a = φ̃aii.

In the next Proposition we determine the transformation laws for the quantities of our interest related to
the smooth map φ, under the conformal change of the metric (1.3.1).
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Proposition 1.3.14. In a local orthonormal coframe

φ̃aij = e
2

m−2 f

[
φaij +

1

m− 2
(φai fj + φaj fi − φakfkδij)

]
, (1.3.15)

in particular
τ(φ̃) = e

2
m−2 f [τ(φ)− dφ(∇f)] . (1.3.16)

Moreover, in a local orthonormal coframe,

φ̃aiik = e
3

m−2 f

[
φaiik − φaikfi − φai fik +

2

m− 2
(φaiifk − φai fifk)

]
. (1.3.17)

Proof. The validity of (1.3.15) follows easily using (1.3.4), the definition of φ̃aij , (1.3.12), (1.3.5) and the
definition of φaij as follows:

φ̃aije
− 1

m−2 fθj =φ̃aij θ̃
j

=dφ̃ai − φ̃aj θ̃
j
i + φ̃biω

a
b

=d(e
1

m−2 fφai )− e
1

m−2 fφaj

[
θji +

1

m− 2
(fjθ

i − fiθ
j)

]
+ e

1
m−2 fφbiω

a
b

=e
1

m−2 f (dφai − φaj θ
j
i + φbiω

a
b ) +

1

m− 2
e

1
m−2 fφai df − 1

m− 2
e

1
m−2 fφaj (fjθ

i − fiθ
j)

=e
1

m−2 f

[
φaij +

1

m− 2
(φai fj + φaj fi − φakfkδij)

]
θj .

Taking the trace of (1.3.15) we immediately get (1.3.16). For convenience we denote

T aij = φaij +
1

m− 2
(φai fj + φaj fi − φat ftδij),

then, with the aid of (1.3.5),

φ̃aijkθ̃
k =dφ̃aij − φ̃akj θ̃

k
i − φ̃aikθ̃

k
j + φ̃bijω

a
b

=d(e
2

m−2 fT aij)− e
2

m−2T akj

[
θki +

1

m− 2
(fkθ

i − fiθ
k)

]
− e

2
m−2 fT aik

[
θkj +

1

m− 2
(fkθ

j − fjθ
k)

]
+ e

2
m−2 fT bijω

a
b .

Thus, using also (1.3.4) and the definition of T ,

e−
3

m−2 f φ̃aijkθ
k =

2

m− 2
T aijfkθ

k + T aijkθ
k − 1

m− 2
T akj(fkθ

i − fiθ
k)− 1

m− 2
T aik(fkθ

j − fjθ
k)

=

[
T aijk +

2

m− 2
T aijfk +

1

m− 2
(T akjfi − T atjftδik + T aikfj − T aitftδjk)

]
θk,

that is,

e−
3

m−2 f φ̃aijk =T aijk +
2

m− 2
T aijfk +

1

m− 2
(T akjfi − T atjftδik + T aikfj − T aitftδjk).

Summing on i = j and using the relations

T aii = φaii − φai fi, T aiik = φaiik − φaikfi − φai fik,

18



(the first follows immediately from the definition of T while the second is obtained taking covariant derivative
of the first), we get from the above

e−
3

m−2 f φ̃aiik =T aiik +
2

m− 2
T aiifk +

2

m− 2
(T akifi − T aikfi + T aikfi − T akifi)

=T aiik +
2

m− 2
T aiifk

=φaiik − φaikfi − φai fik +
2

m− 2
(φaiifk − φai fifk),

that is (1.3.17).

Our aim is to determine the transformation laws of the φ-curvatures under the conformal change of
the metric (1.3.1). We fix α ∈ R \ {0} and we denote by R̃ic

φ
the φ-Ricci tensor related to the map

φ : (M, ⟨̃ , ⟩) → (N, ⟨ , ⟩N ), that is,
R̃ic

φ
= R̃ic − αφ∗⟨ , ⟩N . (1.3.18)

We denote by S̃φ the φ-scalar curvature associated to φ : (M, ⟨̃ , ⟩) → (N, ⟨ , ⟩N ), that is, S̃φ = S̃ − α|̃dφ|
2
.

The same applies for all the other φ-curvatures. In the following Proposition we deal with the transformation
laws for the φ-Ricci curvature, the φ-scalar curvature and, as a consequence, for the φ-Schouten tensor. We
denote by

∆ff := ∆− ⟨∇f,∇⟩
the f -Laplacian.
Proposition 1.3.19. In the notations above

R̃ic
φ
= Ricφ + Hess(f) + 1

m− 2
(df ⊗ df +∆ff⟨ , ⟩), (1.3.20)

that is, in local orthonormal coframe,

e−
2

m−2 f R̃φik = Rφik + fik +
1

m− 2
(fifk +∆ffδik). (1.3.21)

Moreover
e−

2
m−2 f S̃φ = Sφ +

m− 1

m− 2
(2∆f − |∇f |2) (1.3.22)

and
Ãφ = Aφ + Hess(f) + 1

m− 2

(
df ⊗ df − |∇f |2

2
⟨ , ⟩
)

hold. The latter in local orthonrmal coframe is given by

e−
2

m−2 f Ãφij = Aφij + fij +
1

m− 2

(
fifj −

|∇f |2

2
δij

)
. (1.3.23)

Proof. To obtain (1.3.21), that is,

e−
2

m−2 f (R̃ik − αφ̃ai φ̃
a
k) = Rik − αφai φ

a
k + fik +

1

m− 2
(fifk +∆ffδik),

since (1.3.12) holds, it is sufficient to take the trace of (1.3.7). Indeed

e−
2

m−2 f R̃ik =e−
2

m−2 f R̃ijkj

=Rijkj +
1

m− 2
[(m− 2)fik +∆fδik]

+
1

(m− 2)2
[(m− 2)fifk + |∇f |2δik]−

|∇f |2

(m− 2)2
(m− 1)δik

=Rik + fik +
1

m− 2
[fifk + (∆f − |∇f |2)δik].
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To obtain (1.3.22) it is sufficient to take the trace of the above. Indeed

e−
2

m−2 f S̃ = S +∆f +
|∇f |2

m− 2
+

m

m− 2
∆ff = S +

m− 1

m− 2
(2∆f − |∇f |2),

so that, using also (1.3.13),

e−
2

m−2 f S̃φ = e−
2

m−2 f (S̃ − α|̃dφ|
2
) = S +

m− 1

m− 2
(2∆f − |∇f |2)− α|dφ|2 = Sφ +

m− 1

m− 2
(2∆f − |∇f |2).

Now (1.3.23) follows from the definition (1.2.10) of the φ-Schouten tensor and the formulas (1.3.21) and
(1.3.22), indeed

e−
2

m−2 f Ãφij =e
− 2

m−2 f R̃φij −
e−

2
m−2 f S̃φ

2(m− 1)
δij

=Rφij + fij +
fifj
m− 2

+
1

m− 2
∆ffδij −

1

2(m− 1)

[
Sφ +

m− 1

m− 2
(2∆f − |∇f |2)

]
δij

=Aφij + fij +
fifj
m− 2

+
1

m− 2
∆ffδij −

1

m− 2
∆fδij +

1

2(m− 2)
|∇f |2δij

=Aφij + fij +
1

m− 2

(
fifj −

|∇f |2

2
δij

)
.

Remark 1.3.24. If we set
u := e−

f
2 , (1.3.25)

an immediate computation using (1.3.22) implies the validity of the Yamabe equation

4(m− 1)

m− 2
∆u− Sφu+ S̃φu

m+2
m−2 = 0. (1.3.26)

Then the problem of finding metrics in a fixed conformal class with prescribed φ-scalar curvature can be
tackled with the same techniques used in the standard case (where φ is constant). See, for instance, Section
2.1 of [MaMR].

In the next Proposition we deal with the transformation laws for the φ-Cotton tensor.
Proposition 1.3.27. In a local orthonormal coframe

e−
3

m−2 f C̃φijk = Cφijk +Wφ
tijkft. (1.3.28)

Proof. For simplicity of notation we set

Ãφij = e
2

m−2 fTij , Tij := Aφij + fij +
1

m− 2

(
fifj −

|∇f |2

2
δij

)
. (1.3.29)

To obtain the transformation law for the φ-Cotton tensor we first need the transformation law for the
covariant derivative of Ãφ. First of all we express the coefficients of ∇̃Ãφ in terms of T and ∇T . The
formula is the following:

e−
3

m−2 f Ãφij,k =
2

m− 2
Tijfk + Tij,k +

1

m− 2
(Tkjfi − Ttjftδki + Tikfj − Titftδjk). (1.3.30)

To obtain the above we use the definition of covariant derivative and (1.3.5) to get

Ãφij,kθ̃
k =dÃφij − Ãφkj θ̃

k
i − Ãφikθ̃

k
j

=d(e
2

m−2 fTij)− e
2

m−2 fTkj

(
θki −

fi
m− 2

θk +
fk

m− 2
θi
)

− e
2

m−2 fTik

(
θkj −

fj
m− 2

θk +
fk

m− 2
θj
)
,
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that is,

e−
2

m−2 f Ãφij,kθ̃
k =

2

m− 2
Tijdf + dTij

− Tkj

(
θki −

fi
m− 2

θk +
fk

m− 2
θi
)
− Tik

(
θkj −

fj
m− 2

θk +
fk

m− 2
θj
)

=
2

m− 2
Tijdf + (dTij − Tkjθ

k
i − Tikθ

k
j ) +

1

m− 2
[Tkj(fiθ

k − fkθ
i) + Tik(fjθ

k − fkθ
j)].

Using (1.3.4) and the definition of Tij,k we infer

e−
3

m−2 f Ãφij,kθ
k =

2

m− 2
Tijfkθ

k + Tij,kθ
k +

1

m− 2
[Tkj(fiθ

k − fkθ
i) + Tik(fjθ

k − fkθ
j)]

=

[
2

m− 2
Tijfk + Tij,k +

1

m− 2
(Tkjfi − Ttjftδki + Tikfj − Titftδjk)

]
θk,

that implies (1.3.30). Now, using the definition of the φ-Cotton tensor, (1.3.30) twice and the symmetry of
T we get

e−
3

m−2 f C̃φijk =e−
3

m−2 f (Ãφij,k − Ãφik,j)

=
2

m− 2
Tijfk + Tij,k +

1

m− 2
(Tkjfi − Ttjftδki + Tikfj − Titftδjk)

− 2

m− 2
Tikfj − Tik,j −

1

m− 2
(Tjkfi − Ttkftδji + Tijfk − Titftδkj)

=Tij,k − Tik,j +
2

m− 2
(Tijfk − Tikfj) +

1

m− 2
[Tikfj − Tijfk + (Ttkδji − Ttjδki)ft],

that is,
e−

3
m−2 f C̃φijk = Tij,k − Tik,j +

1

m− 2
(Tijδkt − Tikδjt + Ttkδji − Ttjδki)ft. (1.3.31)

To express the right hand side of the above in terms of Cφ we first observe that, from the definition (1.3.29)
of T ,

Tij,k = Aφij,k + fijk +
1

m− 2
(fikfj + fifjk − ftftkδij),

so that, using the commutation rule (see (14))

fijk = fikj +Rtijkft,

we get

Tij,k − Tik,j =A
φ
ij,k + fijk +

1

m− 2
(fikfj + fifjk − ftftkδij)

−
[
Aφik,j + fikj +

1

m− 2
(fijfk + fifkj − ftftjδik)

]
=Cφijk +Rtijkft +

1

m− 2
[fikfj − fijfk + ft(ftjδik − ftkδij)].

Moreover an easy computation using (1.3.29) shows that

(Tijδkt − Tikδjt + Ttkδji − Ttjδki)ft =A
φ
ijfk −Aφikfj +Aφtkftδji −Aφtjftδki

+ fijfk − fikfj + ftkftδji − ftjftδki,
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indeed

(Tijδkt−Tikδjt + Ttkδji − Ttjδki)ft

=(Aφijδkt −Aφikδjt +Aφtkδji −Aφtjδki)ft + (fijδkt − fikδjt + ftkδji − ftjδki)ft

+
1

m− 2
(fifjδkt − fifkδjt + ftfkδji − ftfjδki)ft −

|∇f |2

2(m− 2)
(δijδkt − δikδjt + δtkδji − δtjδki)ft

=Aφijfk −Aφikfj +Aφtkftδji −Aφtjftδki + fijfk − fikfj + ftkftδji − ftjftδki

+
1

m− 2
(fifjfk − fifkfj + |∇f |2fkδji − |∇f |2fjδki)−

|∇f |2

2(m− 2)
(δijfk − δikfj + fkδji − fjδki)

=Aφijfk −Aφikfj +Aφtkftδji −Aφtjftδki + fijfk − fikfj + ftkftδji − ftjftδki

+
|∇f |2

m− 2
(fkδji − fjδki)−

|∇f |2

m− 2
(fkδji − fjδki).

Plugging the two relations above into (1.3.31) we finally conclude

e−
3

m−2 f C̃φijk =Cφijk +Rtijkft +
1

m− 2
[fikfj − fijfk + ft(ftjδik − ftkδij)]

+
1

m− 2
(Aφijfk −Aφikfj +Aφtkftδji −Aφtjftδki)

+
1

m− 2
(fijfk − fikfj + ftkftδji − ftjftδki)

=Cφijk +Rtijkft −
1

m− 2
(Aφtjδki −Aφtkδij +Aφikδtj −Aφijδtk)ft.

Thus follows (1.3.28), in view of the decomposition (1.2.18).

Remark 1.3.32. Using (1.3.11), (1.3.12) and (1.3.13), from the relation between the φ-Weyl and the Weyl
tensor (1.2.19) we deduce that the (1, 3) version of the φ-Weyl tensor is a conformal invariant, that is,

e−
2

m−2 fW̃φ
ijkt =Wφ

ijkt. (1.3.33)

The last transformation law we are going to illustrate is the one for the φ-Bach tensor Bφ and is the
hardest to obtain. In order to determine it we first need to evaluate the transformation law for the tensor

Vij := Cφijk,k − α(Rφjkφ
a
k + φakkj)φ

a
i , (1.3.34)

that is the content of

Lemma 1.3.35. In the above notations, in a local orthonormal coframe,

e−
4

m−2 f Ṽij =Vij + ftkW
φ
tijk −

m− 5

m− 2
ftfkW

φ
tijk +

m− 4

m− 2
(Cφjki + Cφikj)fk

+ α

{
φaijφ

a
kfk +

1

m− 2
[(φakfk − φakk)(φ

a
i fj + φaj fi)− φattφ

a
kfkδij −∆ffφ

a
i φ

a
j ]

} (1.3.36)

Proof. We procede exactly as in the proof of the Proposition above. We set

C̃φijk = e
3

m−2 fTijk, Tijk = Cφijk + ftW
φ
tijk.
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From the definition of covariant derivative and using (1.3.5)

C̃φijk,sθ̃
s =dC̃φijk − C̃φsjkθ̃

s
i − C̃φiskθ̃

s
j − C̃φijsθ̃

s
k

=d(e
3

m−2 fTijk)

− e
3

m−2 fTsjk

(
θsi −

fi
m− 2

θs +
fs

m− 2
θi
)

− e
3

m−2 fTisk

(
θsj −

fj
m− 2

θs +
fs

m− 2
θj
)

− e
3

m−2 fTijs

(
θsk −

fk
m− 2

θs +
fs

m− 2
θk
)
,

hence

e−
4

m−2 f C̃φijk,sθ
s =

3

m− 2
Tijkdf + Tijk,sθ

s

− 1

m− 2
Tsjk(−fiθs + fsθ

i)

− 1

m− 2
Tisk(−fjθs + fsθ

j)

− 1

m− 2
Tijs(−fkθs + fsθ

k).

Then we deduce

e−
4

m−2 f C̃φijk,s =Tijk,s +
3

m− 2
Tijkfs +

1

m− 2
(fiTsjk + fjTisk + fkTijs)

− ft
m− 2

(Ttjkδis + Titkδjs + Tijtδks).

Summing on s = k an easy calculation shows that

e−
4

m−2 f C̃φijk,k = Tijk,k −
m− 4

m− 2
Tijkfk +

1

m− 2
(Tkjkfi + Tikkfj)−

fk
m− 2

(Tkji + Tikj). (1.3.37)

Using (1.2.45), that we report here for the reader convenience,

Wφ
tijk,t =

m− 3

m− 2
Cφikj + α(φaijφ

a
k − φaikφ

a
j ) +

α

m− 2
φatt(φ

a
j δik − φakδij),

we infer

Tijk,k = Cφijk,k + ftkW
φ
tijk +

m− 3

m− 2
Cφjkifk + α(φajiφ

a
kfk − φajkfkφ

a
i ) +

α

m− 2
φatt(φ

a
i fj − φakfkδij). (1.3.38)

Indeed, by taking the divergence of the relation that defines T ,

Tijk,k =(Cφijk + ftW
φ
tijk)k

=Cφijk,k + ftkW
φ
tijk + ftW

φ
tijk,k

=Cφijk,k + ftkW
φ
tijk + fkW

φ
tjik,t

=Cφijk,k + ftkW
φ
tijk +

m− 3

m− 2
Cφjkifk + α(φajiφ

a
kfk − φajkfkφ

a
i ) +

α

m− 2
φatt(φ

a
i fj − φakfkδji).

Clearly
Tijkfk = Cφijkfk + ftfkW

φ
tijk. (1.3.39)
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The traces of T are given by, using (1.2.36), (1.2.22) and the symmetries of tensors involved,

Tkjk = Cφkjk + ftW
φ
tkjk = −αφakkφaj + αφatφ

a
j ft = α(φakfk − φakk)φ

a
j

and
Tikk = 0,

then we easily get
Tkjkfi + Tikkfj = α(φakfk − φakk)φ

a
j fi. (1.3.40)

Using the definition of T , the skew symmetry in the first two indices of Wφ and the identity (1.2.37) for Cφ
we evaluate

fkTkji + fkTikj =fk(C
φ
kji +Wφ

tkjift) + fk(C
φ
ikj +Wφ

tikjft)

=fk(C
φ
kji + Cφikj) + ftfkW

φ
tikj

=− fkC
φ
jik + ftfkW

φ
tikj

=fkC
φ
jki + ftfkW

φ
tikj .

Plugging the above together with (1.3.38), (1.3.39) and (1.3.40) in (1.3.37) we finally get

e−
4

m−2 f C̃φijk,k =Cφijk,k + ftkW
φ
tijk −

m− 5

m− 2
ftfkW

φ
tijk +

m− 4

m− 2
(Cφjki + Cφikj)fk

+ α

{
φaijφ

a
kfk − φajkfkφ

a
i +

1

m− 2
[φakk(φ

a
i fj − φaj fi) + φakfkφ

a
j fi − φattφ

a
kfkδij ]

}
.

To conclude the proof notice that, with the aid of (1.3.21) and (1.3.17),

e−
4

m−2 f (R̃φkjφ̃
a
kφ̃

a
i + φ̃akkjφ̃

a
i ) =

[
Rφkj + fkj +

1

m− 2
(fkfj +∆ffδkj)

]
φakφ

a
i

+

[
φakkj − φakjfk − φakfjk +

2

m− 2
(φakkfj − φakfkfj)

]
φai

=Rφkjφ
a
kφ

a
i + fkjφ

a
kφ

a
i +

1

m− 2
(φakfkfjφ

a
i +∆ffφ

a
i φ

a
j )

+ φakkjφ
a
i − φakjfkφ

a
i − φakfjkφ

a
i +

2

m− 2
(φakkφ

a
i fj − φakfkφ

a
i fj),

that is,

e−
4

m−2 f (R̃φkjφ̃
a
kφ̃

a
i + φ̃akkjφ̃

a
i ) =R

φ
kjφ

a
kφ

a
i + φakkjφ

a
i

− φakjfkφ
a
i +

1

m− 2
(∆ffφ

a
i φ

a
j − φakfkφ

a
i fj + 2φakkφ

a
i fj).

Inserting the relation obtained so far into definition (1.3.34) of V we obtain the validity of (1.3.36).

Now we are ready to prove

Theorem 1.3.41. In the above notations, we have

e−
4

m−2 f (m− 2)B̃φij = (m− 2)Bφij −
m− 4

m− 2
fk(C

φ
ijk + ftW

φ
tijk − Cφjki). (1.3.42)

Proof. From the definition of φ-Bach (1.2.50) and (1.3.34)

(m− 2)Bφij = Vij +Wφ
tikjR

φ
tk + αφatt

(
φaij −

1

m− 2
φakkδij

)
(1.3.43)
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Using (1.3.21), (1.3.33) and (1.2.22) we obtain

e−
4

m−2 fW̃φ
tikjR̃

φ
tk =Wφ

tikj

(
Rφtk + ftk +

ftfk
m− 2

+
∆ff

m− 2
δtk

)
=Wφ

tikjR
φ
tk +Wφ

tikjftk +
1

m− 2
Wφ
tikjftfk + α

∆ff

m− 2
φai φ

a
j

=Wφ
tikjR

φ
tk −Wφ

tijkftk −
1

m− 2
Wφ
tijkftfk + α

∆ff

m− 2
φai φ

a
j .

Using (1.3.15) three times a computation yields

e−
4

m−2 f φ̃att

(
φ̃aij −

1

m− 2
φ̃akkδij

)
=φatt

(
φaij −

1

m− 2
φakkδij

)
+

1

m− 2
φattφ

a
kfkδij − φakfkφ

a
ij +

1

m− 2
(φakk − φakfk)(φ

a
i fj + φaj fi).

Combining these two relations with (1.3.36) and (1.3.43) we deduce the validity of (1.3.42).

Remark 1.3.44. If φ is a constant map then (1.3.42) reduces to the well known (see, for instance, equation
(3.36) of [CMMR16])

e−
4

m−2 f (m− 2)B̃ij = (m− 2)Bij −
m− 4

m− 2
fk(Cijk + ftWtijk − Cjki).

As a consequence, for m = 4, the Bach tensor is a conformal invariant.
As an immediate consequence of the transformation law for φ-Bach we generalize the conformal invariance

in the four dimensional case.

Corollary 1.3.45. If m = 4 then Bφ is a conformal invariant, that is,

e−2f B̃φij = Bφij .

1.4 Vanishing conditions on φ-Weyl and its derivatives
Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 4. Recall the following classic definitions:

(i) The Riemannian manifold (M, ⟨ , ⟩) is locally conformally flat if

W = 0.

(ii) The Riemannian manifold (M, ⟨ , ⟩) has harmonic Weyl curvature if W is divergence free, that is, in a
local orthonormal coframe

Wtijk,t = 0.

(iii) The Riemannian manifold (M, ⟨ , ⟩) is called conformally symmetric if

∇W = 0.

Recall that a 4-times covariant tensor K that has the same symmetries of the Riemann tensor is harmonic
if the induced two forms on ∧2M is harmonic, that is, K satisfies the second Bianchi identity and is divergence
free. Observe that Riem and W are harmonic if and only if they are divergence free. Indeed, Riem always
satisfies the second Bianchi identity while, in case W is divergence free, C = 0 and thus W satisfies also the
second Bianchi identity (see Lemma 1.2 of [AMR], that is, Proposition 1.2.47 with φ constant). For Wφ the
situation is different, we need to require both the conditions above and not just that it is divergence free to
obtain that it is harmonic.

We give the following
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Definition 1.4.1. Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map, where m ≥ 4, and α ∈ R \ {0}.

(i) The Riemannian manifold (M, ⟨ , ⟩) has harmonic φ-Weyl curvature if Wφ is harmonic, that is, Wφ is
divergence free

Wφ
tijk,t = 0 (1.4.2)

and satisfies the second Bianchi identity

Wφ
tijk,l +Wφ

tikl,j +Wφ
tilj,k = 0. (1.4.3)

(ii) The Riemannian manifold (M, ⟨ , ⟩) is called φ-conformally symmetric if

∇Wφ = 0. (1.4.4)

Remark 1.4.5. Since W is totally traceless, if W is proportional to ⟨ , ⟩ ∧ ⟨ , ⟩, that is,

W =
ξ

2
⟨ , ⟩ ∧ ⟨ , ⟩

for some ξ ∈ C∞(M), then it is easy to see that ξ = 0 and thus W = 0, that is, (M, ⟨ , ⟩) is locally conformally
flat. It is not unusual that when a tensor with the same symmetries of Riem is proportional to ⟨ , ⟩ ∧ ⟨ , ⟩
we get some strong rigidity results. For instance, if Riem is proportional to ⟨ , ⟩ ∧ ⟨ , ⟩ then (M, ⟨ , ⟩) has
constant sectional curvature.

When dealing with the φ-Weyl curvature instead of the usual Weyl curvature we have

Proposition 1.4.6. Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map, where m ≥ 4, and α ∈ R\{0}. Assume
that, for some ξ ∈ C∞(M),

Wφ =
ξ

2
⟨ , ⟩ ∧ ⟨ , ⟩. (1.4.7)

Then
ξ =

α|dφ|2

m(m− 1)
, (1.4.8)

φ is weakly conformal, that is,

φ∗⟨ , ⟩N =
|dφ|2

m
⟨ , ⟩,

and (M, ⟨ , ⟩) is locally conformally flat. Moreover, if ξ ∈ R, then φ is a homothetic map and, if ξ = 0, then
φ is a constant map.

As a consequence,
W̊φ = 0 (1.4.9)

if and only if φ is weakly conformal and (M, ⟨ , ⟩) is locally conformally flat, where

W̊φ :=Wφ − α|dφ|2

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩ (1.4.10)

is the traceless part of Wφ.

Proof. Locally (1.4.7) reads
Wφ
tijk = ξ(δtjδik − δtkδij). (1.4.11)

Summing (1.4.11) on t = j, using (1.2.22), we obtain

αφai φ
a
k = (m− 1)ξδik,

that is, since α ̸= 0,
φ∗⟨ , ⟩N =

(m− 1)ξ

α
⟨ , ⟩.
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Taking the trace of the above we get (1.4.8) and that φ is weakly conformal. Then, from (1.2.19) we have

Wφ =W +
α|dφ|2

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩.

But then, using (1.4.7) and (1.4.8), W = 0, that is, (M, ⟨ , ⟩) is locally conformally flat. If ξ ∈ R then, from
(1.4.8), |dφ|2 is constant and thus φ is a homothetic map.

If φ is weakly conformal and (M, ⟨ , ⟩) is locally conformally flat then (1.4.9) holds trivially, using (1.2.19).

The Proposition above shows that a vanishing condition on φ-Weyl affects both the geometry of (M, ⟨ , ⟩)
and of the smooth map φ : M → (N, ⟨ , ⟩N ). In the next two Propositions we deal with the cases where
(M, ⟨ , ⟩) is φ-conformally symmetric and the φ-Weyl curvature is harmonic, obtaining the same twofold
effect.

Proposition 1.4.12. Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map, where m ≥ 4, and α ∈ R \ {0}.
Then (M, ⟨ , ⟩) is φ-conformally symmetric if and only if φ is relatively affine and (M, ⟨ , ⟩) is conformally
symmetric.

Proof. Assume that (M, ⟨ , ⟩) is φ-conformally symmetric, that is, (1.4.4) holds. By setting

U := φ∗⟨ , ⟩N − |dφ|2

2(m− 1)
⟨ , ⟩, (1.4.13)

we get, using (1.4.4) and (1.2.19),

Wtijk,l +
α

m− 2
(Utj,lδik − Utk,lδij + Uik,lδtj − Uij,lδtk) = 0. (1.4.14)

Summing the above for t = j, using the traceless property of the Weyl tensor, we deduce
α

m− 2
(Ujj,lδik − Uik,l +mUik,l − Uik,l) = 0,

that is, since α ̸= 0,
(m− 2)Uik,l + Ujj,lδik = 0.

Recalling the definition of U , from the above we conclude

(m− 2)

(
φai φ

a
k −

|dφ|2

2(m− 1)
δik

)
l

+
m− 2

2(m− 1)
|dφ|2l δik = 0,

that is, φ∗⟨ , ⟩N is parallel. Then φ is relatively affine, by Definition 1.1.28, and |dφ|2 is constant on M , by
Remark 1.1.30, hence also U is parallel. As a consequence (1.4.14) immediately gives ∇W = 0.

Assume that φ is relatively affine and that (M, ⟨ , ⟩) is conformally symmetric. Since φ is relatively affine
then φ∗⟨ , ⟩N is parallel and |dφ|2 is constant, hence also U defined in (1.4.13) is parallel. Then, taking the
covariant derivative of (1.2.19) and using also that W is parallel, we obtain that Wφ is parallel.

During the proof of the proof second Proposition we need the following

Lemma 1.4.15. If m ≥ 4 then Aφ is Codazzi if and only if

Wφ
tijk,t = α(φaijφ

a
k − φaikφ

a
j ). (1.4.16)

Proof. If Aφ is Codazzi then Cφ = 0. In particular it is traceless, that is,

0 = Cφiij = αφaiiφ
a
j .
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Then, using (1.2.45), we immediately get (1.4.16). Conversely, if (1.4.16) holds, summing on k = i we obtain

Wφ
tiji,t = α(φaijφ

a
i − φaiiφ

a
j ).

On the other hand, using (1.2.22),
Wφ
tiji,t = α(φattφ

a
j + φatφ

a
jt).

Then, comparing with the above

α(φaijφ
a
i − φaiiφ

a
j ) = α(φattφ

a
j + φatφ

a
jt),

that implies,
φaiiφ

a
j = 0.

Then, using (1.4.16) and (1.2.45)

α(φaijφ
a
k − φaikφ

a
j ) =W

φ
tijk,t

=
m− 3

m− 2
Cφikj + α(φaijφ

a
k − φaikφ

a
j ) +

α

m− 2
φatt(φ

a
j δik − φakδij)

=
m− 3

m− 2
Cφikj + α(φaijφ

a
k − φaikφ

a
j ),

that implies Cφ = 0, that is, Aφ is a Codazzi tensor.

Proposition 1.4.17. Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map, where m ≥ 4, and α ∈ R \ {0}.

i) If Wφ is divergence free, that is, (1.4.2) holds, then φ∗⟨ , ⟩N is divergence free, φ is conservative and
|dφ|2 is constant. Moreover

Wtijk,t =
α

m− 2
(φaikφ

a
j − φaijφ

a
k). (1.4.18)

ii) If Wφ satisfies the second Bianchi identity, that is, (1.4.3) holds, then

Wφ
tijk,t = α(φaijφ

a
k − φaikφ

a
j ) (1.4.19)

and Cφ = 0.

As a consequence, (M, ⟨ , ⟩) has harmonic φ-Weyl curvature if and only if φ is almost relatively affine and
(M, ⟨ , ⟩) has harmonic Weyl curvature.

Proof. Assume that (1.4.2) holds. From (1.2.45) we have

m− 3

m− 2
Cφijk = α(φaijφ

a
k − φaikφ

a
j ) +

α

m− 2
φatt(φ

a
j δik − φakδij). (1.4.20)

Summing the above on j = i and using (1.2.36) we obtain

α
m− 3

m− 2
φaiiφ

a
k = α(φaiiφ

a
k − φaikφ

a
i ) +

α

m− 2
φatt(φ

a
k −mφak),

that is,
α(φaiiφ

a
k + φaikφ

a
i ) = 0.

Since α ̸= 0 we conclude
(φai φ

a
k)i = 0.

Taking the divergence of (1.2.19), using that Wφ is divergence free, we deduce

Wtijk,t +
α

m− 2
(Utj,tδik − Utk,tδij + Uik,j − Uij,k) = 0,
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where U is defined as in (1.4.13), that is, since φ∗⟨ , ⟩N is divergence free

Wtijk,t +
α

m− 2

(
−

|dφ|2j
m− 1

δik +
|dφ|2k
m− 1

δij + φaijφ
a
k − φaikφ

a
j

)
= 0. (1.4.21)

Summing the above on k = i, using the traceless property of W , we get

α

m− 2

(
−1

2
|dφ|2j − φaiiφ

a
j

)
= 0,

that implies
φaiiφ

a
j =

1

2
|dφ|2j .

Observe that, since φ∗⟨ , ⟩N is divergence free,

φaiiφ
a
j = −φai φaji = −1

2
|dφ|2j .

Combining it with the above we conclude that |dφ|2 is constant and then, once again from the above, φ is
conservative. Now from (1.4.21) we deduce, since |dφ|2 is constant, the validity of (1.4.18).

Assume that (1.4.3) holds. Then, using Proposition 1.2.47,

Cφtjkδil + Cφtklδij + Cφtljδik − Cφijkδtl − Cφiklδtj − Cφiljδtk = 0.

Summing the above on t = l and using (1.2.36) we get

(m− 3)Cφijk = αφatt(φ
a
j δik − φakδij). (1.4.22)

From (1.2.45), using the above we obtain (1.4.19). From the Lemma above (1.4.19) is equivalent to Cφ = 0.
Assume that (M, ⟨ , ⟩) has harmonic φ-Weyl curvature. Combining (1.4.19) with the fact that Wφ is

divergence free and α ̸= 0 we get
φaijφ

a
k = φaikφ

a
j ,

that is, φ∗⟨ , ⟩N is a Codazzi tensor. Inserting the above into (1.4.18) we conclude that also W is divergence
free.

Assume that φ is almost relatively affine and that (M, ⟨ , ⟩) has harmonic Weyl curvature. Since (M, ⟨ , ⟩)
has harmonic Weyl curvature then (M, ⟨ , ⟩) is Cotton flat, that is, the Schouten tensor is a Codazzi tensor.
Since φ∗⟨ , ⟩N is harmonic then φ∗⟨ , ⟩N is a Codazzi tensor with constant trace, hence also U defined in
(1.4.13) is a Codazzi tensor. As a consequence also

Aφ = A+ αU

is a Codazzi tensor, that is, (M, ⟨ , ⟩) is φ-Cotton flat. Then φ is conservative and from (1.2.45) we obtain
that Wφ is divergence free while from Proposition 1.2.47 we get that Wφ satisfies the second Bianchi identity.
In conclusion, Wφ is harmonic.

Remark 1.4.23. If m = 3 the vanishing conditions of φ-Weyl considered above have repercussions only the
map φ and not on the geometry of (M, ⟨ , ⟩). Indeed it is immediate, using (1.2.19) and that W = 0, to
deduce

W̊φ = α

(
φ∗⟨ , ⟩N − |dφ|2

3
⟨ , ⟩
)

∧ ⟨ , ⟩,

where W̊φ is defined as in (1.4.10). Since α ̸= 0 and · ∧ ⟨ , ⟩ is injective, we obtain that W̊φ = 0 if and only
if φ is weakly conformal. Similarly one can prove that Wφ is harmonic or parallel if and only if, respectively,
φ∗⟨ , ⟩N is harmonic or parallel.
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Chapter 2

Harmonic-Einstein manifolds

In this Chapter we define harmonic-Einstein manifolds and we prove some results regarding them, general-
izing some classic and also some new results on Einstein manifolds.

In Section 2.1 we give the definition of harmonic-Einstein manifolds and we generalize the classic Schur’s
lemma for Einstein manifolds. Then we show that to determine the geometry of a harmonic-Einstein manifold
the only φ-curvature needed are the φ-Weyl and the sign of the φ-scalar curvature. Finally we characterize the
harmonic-Einstein manifolds that are also Einstein in terms of φ, it must be a homothetic map. In Subsection
2.1.1 we relate the condition of harmonic curvature and local symmetry of a harmonic-Einstein manifold to
the concept introduced in Section 1.4 above. Moreover we characterize harmonic-Einstein manifolds with
constant sectional curvature, they are locally conformally flat and Einstein. In Subsection 2.1.2 we consider
Riemann surfaces that are harmonic-Einstein manifolds. As for the Einstein manifolds, the bidimensional
case presents some remarkable differences with respect to the higher dimensional case. This Section is just
a beginning for the study of such surfaces, we will not proceed further in this direction in this thesis.

In Section 2.2 we prove that under some restrictions on the curvature of the target manifold (and an
upper bound for the density of energy of φ, in case of negative φ-scalar curvature) the map φ is constant and
thus the concept of harmonic-Einstein manifold collapse to the concept of Einstein manifold. The restriction
is on the largest eigenvalue of the curvature operator of the pullback bundle φ−1TN , it must be lower than
the constant α.

In Section 2.3 we define conformally harmonic-Einstein manifolds, that are manifolds which are harmonic-
Einstein after a conformal change of the metric. We characterize them in Theorem 2.3.5, providing the first
important motivation for the study of Einstein-type structures. Further we prove that conformally harmonic-
Einstein manifolds satisfy two integrability conditions and, in Subsection 2.3.1, we show that the validity
of these two integrability conditions is also a sufficient condition for being conformally harmonic-Einstein
manifold, if we assume a genericity condition on the metric, that is related to the injectivity of a curvature
operator, denoted by Wφ, and on the smooth map φ.

In Section 2.4 we compute the Laplacian of square norm of the traceless part of the φ-Ricci tensor and,
as a consequence, we prove that a stochastically complete Riemannian manifold is harmonic-Einstein in case
some necessary conditions hold, provided the norm of the traceless part of the φ-Ricci tensor is sufficiently
small. To give a quantitative estimate on the threshold for the norm of the traceless part of the φ-Ricci
tensor we state and prove an estimate on the biggest eigenvalue of the curvature operator Wφ, the same
operator appearing in Subsection 2.3.1.

In the last Section of the Chapter, Section 2.5, we prove with the formalism of the moving frame the
classic formulas for the Riemann curvature of a warped product Riemannian manifold and we apply them in
order to characterize warped product harmonic-Einstein manifolds with respect to a map that is constant on
the leaves of the canonical fibration of the warped product. This is the subject of Theorem 2.5.26, providing
the second important motication for the study of Einstein-type structures. Finally, in Subsection 2.5.1,
we discuss some applications in General Relativity. We show that four dimensional Lorentzian harmonic-
Einstein warped products, for an appropriate constant α, are solutions of the Einstein field equations and
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as energy stress tensor the one of the harmonic-map. Furthermore, we introduce φ-static metric in order to
characterize the standard static spacetimes that are harmonic-Einstein, when the map that is constant on
the leaves of the canonical fibration.

2.1 Definition and properties
Next definition is analogous to that of an Einstein manifold.

Definition 2.1.1. A harmonic-Einstein structure on a smooth manifold M of dimension m ≥ 2 is the data
of:

(i) A Riemannian metric ⟨ , ⟩ on M ;

(ii) A smooth map φ :M → (N, ⟨ , ⟩N ), where the target (N, ⟨ , ⟩N ) is a Riemannian manifold;

(iii) A constant α ∈ R \ {0}

such that, for some λ ∈ C∞(M), {
Ricφ = λ⟨ , ⟩
τ(φ) = 0,

(2.1.2)

where Ricφ is defined by (1.2.2). For brevity in the following we say that (M, ⟨ , ⟩) is a harmonic-Einstein
manifold (with respect to φ and α, if it is not clear from the context). Further, if λ = 0 we say that (M, ⟨ , ⟩)
is harmonic-Ricci flat (with respect to φ and α) or also φ-Ricci flat.

To have a strict parallelism with the notion of Einstein manifold, in case m = 2 we require in addiction
λ to be constant. Note that for m ≥ 3 this is automatic because of the following version of Schur’s lemma.

Proposition 2.1.3. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 2, α ∈ R \ {0}, λ ∈ C∞(M)
and suppose that for some φ :M → (N, ⟨ , ⟩N )

Ricφ = λ⟨ , ⟩. (2.1.4)

Then
m− 2

2
dλ = αdiv(S),

where S is the energy-stress tensor of the map φ, in a local orthonormal coframe

m− 2

2
λj = αφaiiφ

a
j . (2.1.5)

In particular, if m ≥ 3 and φ is conservative then λ is constant.

Proof. We trace (2.1.4) to obtain Sφ = mλ and then

Sφj = mλj . (2.1.6)

On the other hand, taking covariant derivative of (2.1.4) we have

Rφij,k = λkδij .

Tracing with respect to i and k

Rφij,i = λj .

We then use (1.2.26) to obtain (2.1.5).
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It is well known that, essentially, the only non trivial curvature on an Einstein manifold is the Weyl
tensor. Indeed, if (M, ⟨ , ⟩) is an Einstein manifold then S is constant,

Ric =
S

m
⟨ , ⟩ that implies T = 0 and A =

m− 2

2m(m− 1)
S⟨ , ⟩.

If the dimension m ≥ 3 then C = 0, B = 0 and

˚Riem =W,

where
˚Riem := Riem − S

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩.

In the present setting the analogous results are given by the following

Proposition 2.1.7. Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold for some φ : M → (N, ⟨ , ⟩N ) and
α ∈ R \ {0}. Then Sφ is constant,

Ricφ =
Sφ

m
⟨ , ⟩ that implies Tφ = 0 and Aφ =

m− 2

2m(m− 1)
Sφ⟨ , ⟩.

If the dimension m ≥ 3 then Cφ = 0, Bφ = 0 and

˚Riem = W̊φ, (2.1.8)

where all the φ-curvatures are defined in Section 1.2.

Proof. We already proved above the constancy of Sφ. Observe that the validity of the first equation of
(2.1.2) is equivalent to

Tφ = 0,

where Tφ is the traceless part of the φ-Ricci tensor and is defined by (1.2.57). Using the definition (2.1.2)
of harmonic-Einstein manifold we deduce

Aφ = Ricφ − Sφ

2(m− 1)
⟨ , ⟩ = m− 2

2m(m− 1)
Sφ⟨ , ⟩.

Inserting the above into the decomposition (1.2.18) we immediately get

Riem =Wφ +
Sφ

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩,

that is equivalent to, using the definition of φ-scalar curvature,

Riem − S

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩ =Wφ − α|dφ|2

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩,

that is (2.1.8). Furthermore, since Sφ is constant it follows that Aφ is parallel, hence is a Codazzi tensor
field, and then Cφ = 0. Using (1.2.22) and once again (2.1.2) we have

Rφtk(W
φ
tikj − αφai φ

a
t δjk) =

Sφ

m
(Wφ

kikj − αφai φ
a
j ) = 0.

From the above, Cφ = 0 and the fact that φ is harmonic, we deduce

(m− 2)Bφij = Cφijk,k +Rφtk(W
φ
tikj − αφatφ

a
i δjk) + α

(
φaijφ

a
kk − φakkjφ

a
i −

1

m− 2
|τ(φ)|2δij

)
= 0

thus (M, ⟨ , ⟩) is φ-Bach flat.
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Clearly when φ is constant a harmonic-Einstein manifold is an Einstein manifold. This is not the only
situation in which these two notions collapse, as shown in the next
Proposition 2.1.9. Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold of dimension m ≥ 2 for some α ∈ R\{0}
and φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ), that is, the following system holds:Ricφ =

Sφ

m
⟨ , ⟩

τ(φ) = 0.
(2.1.10)

Then (M, ⟨ , ⟩) is Einstein if and only if φ is homothetic.
Proof. Assume (M, ⟨ , ⟩) is Einstein, that is,

Ric =
S

m
⟨ , ⟩.

Plugging the above into the first equation of (2.1.10) and using (1.2.6) we deduce

α

(
φ∗⟨ , ⟩N − |dφ|2

m
⟨ , ⟩
)

= 0.

Since α ̸= 0 the above implies that φ is weakly conformal. Moreover, since both S and Sφ are constant, from
the definition of φ-scalar curvature (1.2.6) and α ̸= 0, we infer that |dφ|2 is constant. Then φ is homothetic.

The converse is trivial.

Remark 2.1.11. Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold for some α ∈ R \ {0} and a non-constant
smooth map φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ), that is, the following system holds{

Ricφ = λ⟨ , ⟩
τ(φ) = 0.

(2.1.12)

for some λ ∈ R. Assume (M, ⟨ , ⟩) is Einstein. Then, from the Proposition above φ is homothetic and,
since it is also non-constant, from Remark 1.1.11 we have that φ : (M, ζ⟨ , ⟩) → (N, ⟨ , ⟩N ) is an isometric
immersion, where ζ = |dφ|2 ∈ R. We set

⟨̃ , ⟩ := ζ⟨ , ⟩.

Then (M, ⟨̃ , ⟩) is an Einstein manifold minimally immersed in (N, ⟨ , ⟩N ) via φ : (M, ⟨̃ , ⟩) → (N, ⟨ , ⟩N ).
Indeed, using (1.3.20) (with f constant) and the first equation of (2.1.12) we immediately get

R̃ic
φ
=
λ

ζ
⟨̃ , ⟩,

that is, since φ is homothetic,
R̃ic =

(
λ

ζ
+ α

)
⟨̃ , ⟩

The fact that φ : (M, ζ⟨ , ⟩) → (N, ⟨ , ⟩N ) is a minimal immersion is due to the fact that φ : (M, ⟨̃ , ⟩) →
(N, ⟨ , ⟩N ) is a isometric immersion such that τ̃(φ) = 0 (it can be easily seen using (1.3.16) with f constant).
Notice that

S = m

(
λ

ζ
+ α

)
does not have necessary the same sign of λ.
Remark 2.1.13. The Remark above shows why it can be interesting the study of harmonic-Einstein manifold
when φ is an isometric immersion, that is, the study of Einstein manifolds minimally immersed. Another
interesting study may be the one when φ is a Riemannian submersion (that probably will have some interest-
ing applications in Physics for non-linear σ-models). A Riemannian submersion φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N )
is horizontaly homothetic and the following are equivalent: φ is harmonic; φ is a harmonic morphism; the
foliation of M consisting of the fibres of φ is minimal, that is, every fiber of φ is a minimal submanifold of
(M, ⟨ , ⟩). For the definitions and more details see [BW] and [FPI].
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2.1.1 Symmetries and sectional curvatures
Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold of dimension m ≥ 3. From Proposition 2.1.7 we have

˚Riem = W̊φ

that is equivalent to, using the definition of φ-scalar curvature,

Riem =Wφ +
Sφ

2m(m− 1)
⟨ , ⟩ ∧ ⟨ , ⟩, (2.1.14)

Notice that ˚Riem vanishes if and only if (M, ⟨ , ⟩) has constant sectional curvature. If m ≥ 4, W̊φ

vanishes if and only (M, ⟨ , ⟩) is locally conformally flat and φ is weakly conformal, see Proposition 1.4.6 (if
m = 3, from Remark 1.4.23, W̊φ vanishes if and only if φ is weakly conformal). Recall that, if m ≥ 3, from
Proposition 1.1.24, a harmonic map that is also weakly conformal is homothetic. Recall moreover that, from
Proposition 2.1.9, a harmonic-Einstein manifold is Einstein if and only if φ is a homothetic map.

The discussion above implies the validity of

Proposition 2.1.15. Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold of dimension m ≥ 3. The following
are equivalent:

(i) (M, ⟨ , ⟩) has constant sectional curvature;

(ii) φ is homothetic and, if m ≥ 4, (M, ⟨ , ⟩) is locally conformally flat.

(iii) (M, ⟨ , ⟩) is Einstein and, if m ≥ 4, locally conformally flat.

(iv) (M, ⟨ , ⟩) is Einstein and it has constant sectional curvature.

Another interesting feature of the φ-Weyl curvature of harmonic-Einstein manifold of dimension m ≥ 3
is that, since Sφ is constant, from (2.1.14), we have

∇Riem = ∇Wφ. (2.1.16)

Since Riem satisfies the second Bianchi identity then also Wφ does (this can also be easily seen combining
Proposition 1.2.47 with Cφ = 0, that is given by Proposition 2.1.7).

Recall the following classic definitions:

(i) A Riemannian manifold of dimension m ≥ 3 has harmonic curvature tensor if Riem is divergence free,
or equivalently, Ric is Codazzi (and it has constant sectional curvature), or equivalently it has harmonic
Weyl curvature and Ric is harmonic (that is, is Codazzi with constant trace);

(ii) A Riemannian manifold of dimension m ≥ 3 is locally symmetric if the Riemann tensor if parallel.
Locally symmetric Riemannian manifolds have parallel Ricci tensor.

We then have, combining (2.1.16) with Proposition 1.4.12, Proposition 1.4.17 and Remark 1.4.23,

Proposition 2.1.17. Let (M, ⟨ , ⟩) be a harmonic-Einstein manifold of dimension m ≥ 3. Then:

(i) (M, ⟨ , ⟩) has harmonic curvature if and only if φ is almost relatively affine and, if m ≥ 4, (M, ⟨ , ⟩)
has harmonic Weyl curvature. If is this the case, then Ric and φ∗⟨ , ⟩N are both harmonic tensor.

(ii) (M, ⟨ , ⟩) is locally symmetric if and only if φ is relatively affine and, if m ≥ 4, (M, ⟨ , ⟩) is conformally
symmetric. If is this the case, then Ric and φ∗⟨ , ⟩N are both parallel tensor with constant trace.
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2.1.2 Some remarks for Riemann surfaces
Let M be a surface, that is, a smooth manifold of dimension 2. By fixing a Riemannian metric ⟨ , ⟩ on M
then

Riem =
S

2
⟨ , ⟩ ∧ ⟨ , ⟩.

As a consequence the Ricci tensor Ric of (M, ⟨ , ⟩) is always proportional to the metric tensor ⟨ , ⟩. In
particular (M, ⟨ , ⟩) is Einstein if S is constant, that is, if and only if (M, ⟨ , ⟩) has constant sectional curvature.

Recall that a Riemann surface (M,J) is given by a complex manifold M of dimension 1 with complex
structure J , or equivalently, a oriented smooth manifold M of dimension 2 endowed with an almost complex
structure J . In the two dimensional case giving a complex structure is equivalent to choose a conformal class
of metric on M , where the conformal class of a Riemannian metric ⟨ , ⟩ on M is defined as

[⟨ , ⟩] = {e−2f ⟨ , ⟩ : f ∈ C∞(M)}.

The famous uniformization theorem states that on a surface M , in any fixed conformal class of metrics
[⟨ , ⟩] there exists a complete Riemannian metric of constant curvature. In particular, every Riemann surface
(M,J) can be endowed with a Riemannian metric ⟨ , ⟩ such that (M, ⟨ , ⟩) is Einstein and J is determined
by [⟨ , ⟩]. In case M is compact, the sign of the curvature depends on the topology of the surface, indeed
when S is positive the universal covering of M is given by a sphere immersed in R3, when S = 0 by the
Eucludean plane and when S < 0 by the hyperbolic plane.

Let (M,J) be a Riemann surface and let φ : M → (N, ⟨ , ⟩N ) be a smooth map. We fix a Riemannian
metric ⟨ , ⟩ on M such that J is determined by [⟨ , ⟩]. Then φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) is weakly conformal if

φ∗⟨ , ⟩N =
|dφ|2

m
⟨ , ⟩.

Observe that conformality of φ depends on [⟨ , ⟩], that is, on the complex structure induced by ⟨ , ⟩, and
not on the choice of ⟨ , ⟩. Hence we can say that φ : (M,J) → (N, ⟨ , ⟩N ) is conformal, without fixing a
Riemannian metric on M . The same applies for the harmonicity of φ, see Section 10 of the first report in
[EL].

Fix a Riemannian metric ⟨ , ⟩ on M . Since Ric is always proportional to ⟨ , ⟩ and α ̸= 0 we immediately
deduce that

Ricφ = Ric − αφ∗⟨ , ⟩N

is proportional to ⟨ , ⟩ if and only if φ : (M,J) → (N, ⟨ , ⟩N ) is weakly conformal. As a consequence, if
(M, ⟨ , ⟩) is harmonic-Einstein then φ : (M,J) → (N, ⟨ , ⟩N ) is weakly-conformal and harmonic. In [BW], see
Section 3.5, the weakly-conformal and harmonic maps from a surface are called minimal branched immersions.

Observe that, if φ : (M,J) → (N, ⟨ , ⟩N ) is a minimal branched immersion then there exists a Riemannian
metric ⟨ , ⟩ on M such that (M, ⟨ , ⟩) is harmonic-Einstein if and only if

Sφ = S − α|dφ|2

is constant. If [⟨ , ⟩] corresponds to J , to find such a metric it is sufficient to find a solution f ∈ C∞(M) of

2∆f + Sφ − S̃φe−2f = 0, (2.1.18)

if we denote by S̃φ the φ-scalar curvature of the metric ⟨̃ , ⟩ = e−2f ⟨ , ⟩ and the map φ : (M, ⟨ , ⟩) →
(N, ⟨ , ⟩N ), that is,

S̃φ = S̃ − αe2f |dφ|2.

It follows from (2.11) of [?] with the choice of u = −f , and the fact that

|̃dφ|2 = e2f |dφ|2.
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With the following Proposition we show that, independently on the topology of the surface, when we are
given a compact non-constant minimal immersion from a Riemann surface we can always find a Riemannian
metric inducing the complex structure with vanishing φ-scalar curvature, by choosing α adequately. This
is in contrast with the standard case, where the only compact Riemannian surfaces that admits a metric of
zero sectional curvature are the one with genus g = 1. The topology of M is relevant for the sign of the
constant α.

Proposition 2.1.19. Let (M,J) be a compact Riemann surface and let φ : M → (N, ⟨ , ⟩N ) be a non-
constant minimal branched immersion. Set

α =
πχ(M)

E(φ)
, (2.1.20)

where χ(M) is the Euler characteristic of M and E(φ) is the energy of φ. Then there exists a metric in the
conformal class [⟨ , ⟩] corresponding to J with vanishing φ-scalar curvature.

Proof. As seen above, to find a metric ⟨̃ , ⟩ in the conformal class [⟨ , ⟩] with φ-scalar S̃φ = 0, from (2.1.18),
it is sufficient to find f ∈ C∞(M) such that

∆f +
Sφ

2
= 0,

Since M is compact the equation above, that is a Poisson equation, admits a solution f ∈ C∞(M) if and
only if ˆ

M

Sφ = 0. (2.1.21)

Recall that, from Gauss-Bonnet formula,
ˆ
M

S = 2πχ(M),

where χ(M) is the Euler characteristic of M . Moreover, by definition,

E(φ) =
1

2

ˆ
M

|dφ|2.

Combining the two equations above we conclude with the definition of Sφ we conclude

1

2

ˆ
M

Sφ = πχ(M)− αE(φ).

As a consequence, in order to obtain (2.1.21) we must have

πχ(M) = αE(φ).

Since φ is non-constant the above amounts requiring (2.1.20).

Remark 2.1.22. If M is a compact oriented surface then

χ(M) = 2− 2g,

where g is the genus of M . In particular α, given by (2.1.20), is positive if and only if g = 0.
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2.2 The role of the curvature of the target manifold
Let (M, ⟨ , ⟩) be a Riemannian manifold and φ :M → (N, ⟨ , ⟩N ) a smooth map. Recall the definition of the
curvature operator R acting on S2(φ−1TN), the space of symmetric 2-covariant tensor fields on φ−1TN :
let NRacbd denote the components of the curvature tensor of N in a local orthonormal coframe {ωa}, for
1 ≤ a, b, . . . ≤ n, where n is the dimension of N , let β = βabω

a⊗ωb be an element of S2(φ−1TN) and define

R(β) := NRacbdβcdω
a ⊗ ωb.

It is not difficult to see that, introduced in S2(φ−1TN) the natural inner product ( , ), induced by ⟨ , ⟩N ,
the operator R : S2(φ−1TN) → S2(φ−1TN) is self-adjoint and thus diagonalizable. We let Λ(x) to denote
its largest eigenvalue at x ∈M . We have

Theorem 2.2.1. Let (M, ⟨ , ⟩) be a complete m-dimensional manifold with m ≥ 2 which is hamonic-Einstein,
that is, such that Ricφ =

Sφ

m
⟨ , ⟩

τ(φ) = 0
(2.2.2)

for some φ :M → (N, ⟨ , ⟩N ) and α ∈ R \ {0}. Assume that

Λ∗ := sup
M

Λ < α, (2.2.3)

and, if α < 0,
e(φ)∗ := sup

M
e(φ) < +∞, (2.2.4)

where e(φ) is the density of energy of φ. Depending on the sign of the constant Sφ, we have

i) if Sφ ≥ 0, then φ is constant and (M, ⟨ , ⟩) is Einstein with scalar curvature S = Sφ;

ii) if Sφ < 0, then

0 ≤ e(φ)∗ ≤ − Sφ

2(α− Λ∗)
.

Remark 2.2.5. If (M, ⟨ , ⟩) is harmonic-Einstein with α > 0 then, since φ∗⟨ , ⟩N ≥ 0, we have

Ric ≥ Sφ

m
⟨ , ⟩.

If Sφ > 0 then, by Myers’ theorem, M is compact and thus Λ∗ and e(φ)∗ are both finite. This shows how
for α, Sφ > 0 request (2.2.4) is not needed. It is interesting that, even though M is non necessarily compact
when α > 0 and Sφ = 0, we do not need (2.2.4) the same. This is pointed out in

Corollary 2.2.6. In the assumption of the Theorem above suppose that the manifold is harmonic-Ricci flat.
Then φ is constant and (M, ⟨ , ⟩) is Ricci flat.

Remark 2.2.7. Since α > 0, Ricφ = 0 immediately implies that Ric ≥ 0 on the complete manifold (M, ⟨ , ⟩).
In case the harmonic map φ has bounded image and N is simply connected with non-positive sectional
curvature by a Theorem of S. Y. Cheng [Ch] we know that φ is constant and as a consequence (M, ⟨ , ⟩) is
Ricci flat. The setting of Corollary 2.2.6 is more general and, in any case, different.

Proof (of Theorem 2.2.1). Since φ is harmonic Weitzenböck-Bochner formula reads

1

2
∆|dφ|2 = |∇dφ|2 + NRabcdφ

a
i φ

b
jφ

c
jφ

d
i +Rijφ

a
i φ

a
j , (2.2.8)
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for a proof of the above see Proposition 1.5 of [AMR]. Having set

β := φai φ
b
iω

a ⊗ ωb,

we have
NRabcdφ

a
i φ

b
jφ

c
jφ

d
i = −(R(β), β) ≥ −Λ|β|2N . (2.2.9)

Plugging into (2.2.9) and using (1.2.2) we conclude
1

2
∆|dφ|2 ≥ |∇dφ|2 − Λ|β|2N +Rφijφ

a
i φ

a
j + α|β|2N ,

that is, since (M, ⟨ , ⟩) is harmonic-Einstein and, by (2.2.3), Λ∗ < +∞,
1

2
∆|dφ|2 ≥ (α− Λ∗)|β|2N +

Sφ

m
|dφ|2, (2.2.10)

Notice that
|β|2N = |φ∗⟨ , ⟩N |2

and from Newton’s inequality

|φ∗⟨ , ⟩N |2 ≥ |dφ|4

m
,

hence the above implies

|β|2N ≥ |dφ|4

m
.

Plugging into (2.2.10), since (2.2.3) holds, we get
1

2
∆|dφ|2 ≥ α− Λ∗

m
|dφ|4 + Sφ

m
|dφ|2

By setting
u := |dφ|2

the above yields
m

2
∆u ≥ (α− Λ∗)u2 + Sφu, (2.2.11)

where the constant α− Λ∗ is strictly positive because of (2.2.3).
We observe that the first equation of (2.2.2) in case α > 0 imply

Ric ≥ Sφ

m
⟨ , ⟩

where Sφ is constant and therefore completeness of (M, ⟨ , ⟩) yields the validity of the Omori-Yau maximum
principle for the Laplace-Beltrami operator ∆. In case α < 0 we obtain the same result, since the fact that
φ∗⟨ , ⟩ ≥ 0 implies

φ∗⟨ , ⟩ ≤ |dφ|2⟨ , ⟩
and thus, using (2.2.4),

φ∗⟨ , ⟩ ≤ 2e(φ)∗⟨ , ⟩.
Hence

Ric ≥
(
Sφ

m
+ 2αe(φ)∗

)
⟨ , ⟩.

We then apply Theorem 3.6 of [AMR] to deduce

u∗ := sup
M

u < +∞

and the Omori-Yau maximum principle again to conclude, from (2.2.11), that

u∗ [(α− Λ∗)u∗ + Sφ] ≤ 0. (2.2.12)

From (2.2.12) and the definition of u we immediately deduce conclusions i) and ii).
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2.3 Conformally harmonic-Einstein manifolds
Next result is one of the important motivations for the general structure we shall introduce in Chapter 3.
We begin with the following

Definition 2.3.1. A Riemannian manifold (M, ⟨ , ⟩) of dimension m ≥ 3 is said to be conformally harmonic-
Einstein if there exists ψ ∈ C∞(M), ψ > 0 on M such that, having defined

⟨̃ , ⟩ := ψ2⟨ , ⟩,

the Riemannian manifold (M, ⟨̃ , ⟩) is harmonic-Einstein.

Proposition 2.3.2. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3 such that, by setting

⟨̃ , ⟩ = e−
2

m−2 f ⟨ , ⟩

for some f ∈ C∞(M), we have that (M, ⟨̃ , ⟩) is harmonic-Einstein. Then

Cφijk + ftW
φ
tijk = 0 (2.3.3)

and
(m− 2)Bφij +

m− 4

m− 2
Wφ
tijkftfk = 0 (2.3.4)

hold.

Proof. A harmonic-Einstein manifold is φ-Cotton flat and φ-Bach flat, see Proposition 2.1.7. As a conse-
quence, C̃φ = 0 and B̃φ = 0. Using (1.3.28) and C̃φ = 0 we immediately get (2.3.3). Using (1.3.42), B̃φ = 0
and (2.3.3) twice we infer the validity of (2.3.4).

Theorem 2.3.5. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3, let φ : M → (N, ⟨ , ⟩N ) be
a smooth map and let α ∈ R \ {0}. Then there exists ψ ∈ C∞(M), ψ > 0 on M and Λ ∈ C∞(M) such that,
having defined ⟨̃ , ⟩ := ψ2⟨ , ⟩, {

R̃ic − αφ∗⟨ , ⟩N = Λ⟨̃ , ⟩
τ̃(φ) = 0,

(2.3.6)

if and only if for some f, λ ∈ C∞(M)Ric − αφ∗⟨ , ⟩N + Hess(f) + 1

m− 2
df ⊗ df = λ⟨ , ⟩

τ(φ) = dφ(∇f).
(2.3.7)

In this case f and ψ are related by
ψ = e−

f
m−2 (2.3.8)

while Λ and λ satisfy
∆ff + (m− 2)λ = (m− 2)Λe

−2
m−2 f . (2.3.9)

Here ∆f is the symmetric diffusion operator ∆− ⟨∇f,∇⟩.

Remark 2.3.10. Note that, since m ≥ 3, Λ is constant by Proposition 2.1.3.
Remark 2.3.11. We shall see later, see Remark 6.1.17, that the system (2.3.7) satisfies the integrability
conditions (2.3.3) and (2.3.4). Using the Theorem above we get as a consequence of Remark 6.1.17 a different
proof of Proposition 2.3.2, a proof that does not rely on the transformation laws (1.3.28) and (1.3.42).
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Remark 2.3.12. It is worth to observe that (2.3.4) implies that if (M, ⟨ , ⟩) is a four dimensional conformally
harmonic-Einstein manifold then it is φ-Bach flat. This partly motivates the definition of Bφ given in
(1.2.50). Indeed, in this way the situation parallels that of four dimensional conformally Einstein manifolds
that are always Bach flat (another way to see that a four dimensional conformally harmonic-Einstein manifold
is Bach flat is to combine Corollary 1.3.45 with Proposition 2.1.7).

In order to prove the Theorem above we shall need (1.3.20) and (1.3.16), that we report here for the sake
of the reader:

R̃ic
φ
= Ricφ + Hess(f) + 1

m− 2
df ⊗ df +

∆ff

m− 2
⟨ , ⟩, (2.3.13)

τ(φ̃) = e
2

m−2 f (τ(φ)− dφ(∇f)). (2.3.14)

Proof (of Thereom 2.3.5). By (2.3.14) we deduce that τ(φ) = dφ(∇f) if and only if τ(φ̃) = 0. Suppose
(2.3.6) holds, for some Λ ∈ R, where ⟨̃ , ⟩ = ψ2⟨ , ⟩ with ψ given by (2.3.8). Using (2.3.13) we obtain

Ric − αφ∗⟨ , ⟩N + Hess(f) + 1

m− 2
df ⊗ df +

∆ff

m− 2
⟨ , ⟩ = Λ⟨̃ , ⟩,

that is,

Ric + Hess(f) + 1

m− 2
df ⊗ df − αφ∗⟨ , ⟩N =

(
e−

2
m−2 fΛ− ∆ff

m− 2

)
⟨ , ⟩,

that gives the first equation of (2.3.7) once we define λ as in (2.3.9). Conversely suppose that (2.3.7) holds
for some f, λ ∈ C∞(M). Define ψ as in (2.3.8) and ⟨̃ , ⟩ = ψ2⟨ , ⟩. From (2.3.13) and (2.3.7) we obtain

R̃ic − αφ∗⟨ , ⟩N = λ⟨ , ⟩+ ∆ff

m− 2
⟨ , ⟩ = e

2
m−2 f

(
λ+

∆ff

m− 2

)
⟨̃ , ⟩,

that is the first equation of (2.3.6) with Λ given by (2.3.9).

2.3.1 A sufficient condition for being conformally harmonic-Einstein
From Proposition 2.3.2 a conformally harmonic-Einstein manifold (M, ⟨ , ⟩) satisfies the two integrability
conditions (2.3.3) and (2.3.4). Suppose now we are given f ∈ C∞(M), α ∈ R \ {0} and a smooth map
φ : M → (N, ⟨ , ⟩N ) such that (2.3.3) and (2.3.4) are satisfied. Does it follow that (M, ⟨ , ⟩) is conformally
harmonic-Einstein? To answer the question we need to introduce the next genericity condition.

Definition 2.3.15. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3 and denote by S2
0(M)

the bundle of the 2-times covariant, symmetric, traceless tensor fields on M . We define, for a smooth map
φ :M → (N, ⟨ , ⟩N ),

Wφ : S2
0(M) → S2

0(M)

by setting for β ∈ S2
0(M), β = βijθ

i ⊗ θj ,

Wφ(β) =
[
Wφ
tikj −

α

2
φat (φ

a
i δkj + φaj δki)

]
βtkθ

i ⊗ θj . (2.3.16)

It is easy using the properties of φ-Weyl to verify that Wφ is well defined, that is, Wφ(β) is 2-times
covariant, symmetric and traceless for every β ∈ S2

0(M), and that it is self-adjoint with respect to the
standard extension of ⟨ , ⟩ to S2

0(M), that we denote with the same symbol. Thus Wφ is diagonalizable.

Definition 2.3.17. Let M be a smooth manifold. We say that the pair (⟨ , ⟩, φ) is generic, where ⟨ , ⟩ is
a Riemannian metric and φ : M → (M, ⟨ , ⟩N ) a smooth map, if φ is possibly singular (that is, dφ is zero)
only at isolated points and if Wφ is injective, in other words if all its eigenvalues are non null everywhere on
M .
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We are now ready to state the following Proposition, that extends a result of A. R. Gover and P. Nurowski
[GN], Section 2.4, that deals with the conformally Einstein case and that we can consider as the degenerate
case dφ ≡ 0.

Proposition 2.3.18. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3, α ∈ R \ {0} and
φ :M → (N, ⟨ , ⟩N ). Suppose that (⟨ , ⟩, φ) is generic and that the integrability conditions (2.3.3) and (2.3.4)
are satisfied for some f ∈ C∞(M). Then, defining

⟨̃ , ⟩ := e−
2

m−2 f ⟨ , ⟩,

the Riemannian manifold (M, ⟨̃ , ⟩) is harmonic-Einstein, that is, (M, ⟨ , ⟩) is conformally harmonic-Einstein.

Proof. We trace (2.3.3) with respect to i and j and we use (1.2.22) and (1.2.36) to obtain, for each k =
1, . . . ,m,

αφak(φ
a
ii − φai fi) = 0.

Fix x ∈M . If there exists k such that φak(x) ̸= 0 then we have the validity of the following equality at x:

τ(φ) = dφ(∇f). (2.3.19)

Otherwise the same holds by continuity, because by assumption the points where φak = 0 for every k are
isolated. In conclusion (2.3.19) holds on M . Next, taking the covariant derivative of (2.3.3), using (1.2.45)
and (2.3.19) we obtain

Cφijk,k =− (ftW
φ
tijk)k

=− ftkW
φ
tijk − ftW

φ
tijk,k

=− ftkW
φ
tijk − fkW

φ
tjik,t

=− ftkW
φ
tijk − fk

(
m− 3

m− 2
Cφjki + α(φaijφ

a
k − φajkφ

a
i ) +

α

m− 2
φatt(φ

a
i δjk − φakδij)

)
=− ftkW

φ
tijk − fk

m− 3

m− 2
Cφjki + α(−φaijfkφak + φajkfkφ

a
i ) +

α

m− 2
φatt(−φai fkδjk + φakfkδij)

=ftkW
φ
tikj −

m− 3

m− 2
fkC

φ
jki + α(φajkfkφ

a
i − φaijφ

a
kk) +

α

m− 2
(|τ(φ)|2δij − φattφ

a
i fj).

The last formula enables us to express (m− 2)Bφij , defined in (1.2.50), in the form

(m− 2)Bφij =ftkW
φ
tikj −

m− 3

m− 2
fkC

φ
jki + α(φajkfkφ

a
i − φaijφ

a
kk) +

α

m− 2
(|τ(φ)|2δij − φattφ

a
i fj)

+RφtkW
φ
tikj − αRφkjφ

a
kφ

a
i + α

(
φaijφ

a
kk − φakkjφ

a
i −

1

m− 2
|τ(φ)|2δij

)
=(Rφtk + ftk)W

φ
tikj −

m− 3

m− 2
fkC

φ
jki + αφajkfkφ

a
i −

α

m− 2
φattφ

a
i fj − αRφkjφ

a
kφ

a
i − αφakkjφ

a
i ,

and using once again (2.3.19)

(m− 2)Bφij =(Rφtk + ftk)W
φ
tikj −

m− 3

m− 2
fkC

φ
jki −

α

m− 2
φattφ

a
i fj − αRφkjφ

a
kφ

a
i − αφakfkjφ

a
i

=(Rφtk + ftk)(W
φ
tikj − αφakφ

a
i δjt)−

m− 3

m− 2
fkC

φ
jki −

α

m− 2
φattφ

a
i fj .

Thus the second integrability condition (2.3.4) can be expressed as

(Rφtk + ftk)(W
φ
tikj − αφakφ

a
i δjt)−

m− 3

m− 2
fkC

φ
jki −

α

m− 2
φattφ

a
i fj +

m− 4

m− 2
Wφ
tijkftfk = 0.
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Inserting (2.3.19) and (2.3.3) into the above we get

0 =(Rφtk + ftk)(W
φ
tikj − αφakφ

a
i δjt) +

m− 3

m− 2
fkftW

φ
tjki −

α

m− 2
φat ftφ

a
i fj +

m− 4

m− 2
Wφ
tijkftfk

=

(
Rφtk + ftk +

1

m− 2
ftfk

)
(Wφ

tikj − αφakφ
a
i δjt).

Next we define
λ :=

1

m

(
Sφ +∆f +

|∇f |2

m− 2

)
,

so that the symmetric 2-times covariant tensor field

β := Ricφ + Hess(f) + 1

m− 2
df ⊗ df − λ⟨ , ⟩

is traceless. From the above identity and from (1.2.22) we then have

(Wφ
tikj − αφakφ

a
i δjt)βtk =(Wφ

tikj − αφakφ
a
i δjt)

(
Rφtk + ftk +

1

m− 2
ftfk − λδtk

)
=(Wφ

tikj − αφakφ
a
i δjt)

(
Rφtk + ftk +

1

m− 2
ftfk

)
− λ(Wφ

kikj − αφai φ
a
j ) = 0.

Interchanging the role of i and j in the above equation we get

0 = (Wφ
tjki − αφajφ

a
t δik)βtk = (Wφ

tikj − αφajφ
a
t δik)βtk.

Summing up the last two formulas

0 =(Wφ
tikj − αφai φ

a
t δjk)βtk + (Wφ

tikj − αφajφ
a
t δik)βtk

=[2Wφ
tikj − αφat (φ

a
i δkj + φaj δki)]βtk

=2

(
Wφ
tikj −

1

2
αφat (φ

a
i δkj + φaj δki)

)
βtk.

Hence,
Wφ(β) =

(
Wφ
tikj −

1

2
αφat (φ

a
i δkj + φaj δki)

)
βtkθ

i ⊗ θj = 0.

Thus, since Wφ is injective, β = 0, that is,

Ricφ + Hess(f) + 1

m− 2
df ⊗ df = λ⟨ , ⟩.

The latter together with (2.3.19) and Theorem 2.3.5 show that (M, ⟨̃ , ⟩) is harmonic-Einstein.

2.4 A gap result for harmonic-Einstein manifolds
Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m, φ : M → (N, ⟨ , ⟩N ) a smooth map, α ∈ R \ {0}
and set Tφ to denote the traceless part of the φ-Ricci tensor, defined as in (1.2.57), that is,

Tφ = Ricφ − Sφ

m
⟨ , ⟩. (2.4.1)

Let the operator Wφ be defined as in (2.3.16). Notice that for every β ∈ S2
0(M)

⟨Wφ(β), β⟩ =Wφ
tikjβtkβij − αφai φ

a
jβikβkj , (2.4.2)

43



where β = βijθ
i ⊗ θj . We also set

div(Cφ) := Cφijk,kθ
i ⊗ θj . (2.4.3)

and
tr(Cφ) = Cφkkiθ

i. (2.4.4)
Observe that, from (1.2.36),

tr(Cφ)i,j = α(φakkφ
a
i )j = α(φakkiφ

a
j + φakkφ

a
ij). (2.4.5)

Next result is computational but not trivial.

Theorem 2.4.6. In the above setting and for m ≥ 3 we have

1

2
∆|Tφ|2 =|∇Tφ|2 + m− 2

2(m− 1)
tr(Tφ ◦ Hess(Sφ)) + m

m− 2
tr[(Tφ)3] + Sφ

m− 1
|Tφ|2

+ tr(div(Cφ) ◦ Tφ)− ⟨Wφ(Tφ), Tφ⟩ − tr(Tφ ◦ ∇tr(Cφ))
(2.4.7)

Proof. A simple calculation shows the validity of

1

2
∆|Tφ|2 = |∇Tφ|2 + Tφij,kkT

φ
ij .

From (2.4.1),

Tφij,kk =Rφij,kk −
∆Sφ

m
δij ,

and since Tφ is traceless the formula above can be rewritten as
1

2
∆|Tφ|2 = |∇Tφ|2 +Rφij,kkT

φ
ij . (2.4.8)

Now we want to evaluate Rφij,kk. First we derive the following commutation relation, alternative to (1.2.42),

Rφij,k = Rφik,j +Rtikj,t + α(φaijφ
a
k − φaikφ

a
j ). (2.4.9)

To prove it we use the second Bianchi identity and the definition (1.2.2) of the φ-Ricci tensor

Rtijk,t =−Rtikt,j −Rtitj,k = Rik,j −Rij,k

=Rφik,j + α(φai φ
a
k)j −Rφij,k − α(φai φ

a
j )k

=Rφik,j −Rφij,k + α(φaijφ
a
k + φai φ

a
kj)− α(φaikφ

a
j + φai φ

a
jk)

=Rφik,j −Rφij,k + α(φaijφ
a
k − φaikφ

a
j ).

To compute the coefficients of ∆Ricφ we then use (2.4.9), together with (14), (1.2.26) and (1.2.2) to get:

Rφij,kk =[Rφik,j +Rtikj,t + α(φaijφ
a
k − φaikφ

a
j )]k

=Rφik,jk +Rtikj,tk + α(φaijkφ
a
k + φaijφ

a
kk − φaikkφ

a
j − φaikφ

a
jk)

=Rφik,kj +RtijkR
φ
tk +RtkjkR

φ
it +Rtikj,tk + α(φaijkφ

a
k + φaijφ

a
kk − φaikkφ

a
j − φaikφ

a
jk)

=

(
1

2
Sφi − αφakkφ

a
i

)
j

+RtijkR
φ
tk +RtjR

φ
it +Rtikj,tk + α(φaijkφ

a
k + φaijφ

a
kk − φaikkφ

a
j − φaikφ

a
jk)

=
1

2
Sφij − α(φakkjφ

a
i + φakkφ

a
ij) +RtijkR

φ
tk +RφkjR

φ
ik + αRφikφ

a
kφ

a
j +Rtikj,tk

+ α(φaijkφ
a
k + φaijφ

a
kk − φaikkφ

a
j − φaikφ

a
jk)

=
1

2
Sφij +RtijkR

φ
tk +RφkjR

φ
ik + αRφikφ

a
kφ

a
j +Rtikj,tk + α(−φakkjφai + φaijkφ

a
k − φaikkφ

a
j − φaikφ

a
jk).
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Exploiting (2.4.9) and the commutation relation (1.2.42)
Rtikj,tk =[Rφij,k −Rφik,j + α(φaikφ

a
j − φaijφ

a
k)]k

=

[
Cφijk +

1

2(m− 1)
(Sφk δij − Sφj δik)

]
k

+ α(φaikkφ
a
j + φaikφ

a
jk − φaijkφ

a
k − φaijφ

a
kk)

=Cφijk,k +
1

2(m− 1)
(∆Sφδij − Sφij) + α(φaikkφ

a
j + φaikφ

a
jk − φaijkφ

a
k − φaijφ

a
kk),

and inserting into the above we obtain

Rφij,kk =
m− 2

2(m− 1)
Sφij +RtijkR

φ
tk +RφkjR

φ
ik + Cφijk,k +

∆Sφ

2(m− 1)
δij

+ α(Rφikφ
a
kφ

a
j − φakkjφ

a
i − φaijφ

a
kk).

(2.4.10)

Indeed,

Rφij,kk =
1

2
Sφij +RtijkR

φ
tk +RφkjR

φ
ik + αRφikφ

a
kφ

a
j + α(−φakkjφai + φaijkφ

a
k − φaikkφ

a
j − φaikφ

a
jk)

+ Cφijk,k +
1

2(m− 1)
(∆Sφδij − Sφij) + α(φaikkφ

a
j + φaikφ

a
jk − φaijkφ

a
k − φaijφ

a
kk)

=
1

2
Sφij +RtijkR

φ
tk +RφkjR

φ
ik + αRφikφ

a
kφ

a
j − αφakkjφ

a
i

+ Cφijk,k +
1

2(m− 1)
(∆Sφδij − Sφij)− αφaijφ

a
kk

=
m− 2

2(m− 1)
Sφij +RtijkR

φ
tk +RφkjR

φ
ik + Cφijk,k +

∆Sφ

2(m− 1)
δij + α(Rφikφ

a
kφ

a
j − φakkjφ

a
i − φaijφ

a
kk).

Using the decomposition (1.2.18), that in components reads

Rtijk =Wφ
tijk +

1

m− 2
(Rφtjδik −Rφtkδij +Rφikδtj −Rφijδtk)−

Sφ

(m− 1)(m− 2)
(δtjδik − δtkδij),

we obtain

RtijkR
φ
tk =Wφ

tijkR
φ
tk +

1

m− 2
(Rφtjδik −Rφtkδij +Rφikδtj −Rφijδtk)R

φ
tk

− Sφ

(m− 1)(m− 2)
(δtjδik − δtkδij)R

φ
tk

=Wφ
tijkR

φ
tk +

1

m− 2
(RφtjR

φ
ti − |Ricφ|2δij +RφikR

φ
jk −RφijS

φ)

− Sφ

(m− 1)(m− 2)
(Rφij − Sφδij)

=Wφ
tijkR

φ
tk +

1

m− 2
(2RφkjR

φ
ki − |Ricφ|2δij −RφijS

φ)− Sφ

(m− 1)(m− 2)
(Rφij − Sφδij)

=Wφ
tijkR

φ
tk +

2

m− 2
RφikR

φ
kj −

1

m− 2
|Ricφ|2δij

+
(Sφ)2

(m− 1)(m− 2)
δij −

m

(m− 1)(m− 2)
SφRφij .

Inserting the last formula in (2.4.10) we obtain

Rφij,kk =
m− 2

2(m− 1)
Sφij +

m

m− 2
RφkjR

φ
ik + Cφijk,k +Wφ

tijkR
φ
tk −

m

(m− 1)(m− 2)
SφRφij

+ α(Rφikφ
a
kφ

a
j − φakkjφ

a
i − φaijφ

a
kk)

+

[
(Sφ)2

(m− 1)(m− 2)
+

1

2(m− 1)
∆Sφ − 1

m− 2
|Ricφ|2

]
δij .

(2.4.11)
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Using the fact that Tφ is traceless, from (2.4.11), we infer

Rφij,kkT
φ
ij =

m− 2

2(m− 1)
TφijS

φ
ij +

m

m− 2
TφijR

φ
kjR

φ
ik + TφijC

φ
ijk,k +Wφ

tijkT
φ
ijR

φ
tk

− m

(m− 1)(m− 2)
SφTφijR

φ
ij + αTφij(R

φ
ikφ

a
kφ

a
j − φakkjφ

a
i − φaijφ

a
kk).

(2.4.12)

The following relations can be easily deduced from (2.4.1) (and (1.2.22) for the last one)

RφkjR
φ
ikT

φ
ij = TφkjT

φ
ikT

φ
ij +

2Sφ

m
|Tφ|2,

Rφikφ
a
kφ

a
jT

φ
ij = Tφikφ

a
kφ

a
jT

φ
ij +

Sφ

m
Tφijφ

a
i φ

a
j ,

TφijR
φ
tkW

φ
tijk = TφijT

φ
tkW

φ
tijk − α

Sφ

m
Tφijφ

a
i φ

a
j .

Using them all in (2.4.12) we conclude that

Rφij,kkT
φ
ij =

m− 2

2(m− 1)
TφijS

φ
ij +

m

m− 2
TφkjT

φ
ikT

φ
ij +

1

m− 1
Sφ|Tφ|2 + TφijC

φ
ijk,k

+ TφijT
φ
tkW

φ
tijk + αTφikφ

a
kφ

a
jT

φ
ij − αTφij(φ

a
kkjφ

a
i + φaijφ

a
kk).

Inserting the last formula in (2.4.8) we finally obtain

1

2
∆|Tφ|2 =|∇Tφ|2 + m− 2

2(m− 1)
TφijS

φ
ij +

m

m− 2
TφkjT

φ
ikT

φ
ij +

1

m− 1
Sφ|Tφ|2 + TφijC

φ
ijk,k

+ TφijT
φ
tkW

φ
tijk + αTφikφ

a
kφ

a
jT

φ
ij − αTφij(φ

a
kkjφ

a
i + φaijφ

a
kk),

that is (2.4.7), using (2.4.2) with β = Tφ and (2.4.5).

We let η(x) denote the largest eigenvalue of Wφ : S2
0(M) → S2

0(M) at x ∈M and we set

η∗ := sup
M

η.

We are now ready to prove the following

Theorem 2.4.13. Let (M, ⟨ , ⟩) be a stochastically complete Riemannian manifold of dimension m ≥ 3 and
let φ :M → (N, ⟨ , ⟩N ) be a smooth map, α ∈ R, α > 0. Assume

i) Sφ is constant.

ii) φ is harmonic.

iii) div(Cφ) = 0.

Then, either (M, ⟨ , ⟩) is harmonic-Einstein or

sup
M

|Tφ| ≥
√
m− 1

m

(
Sφ

m− 1
− η∗

)
. (2.4.14)

Remark 2.4.15. Note that by Proposition 2.1.3, Definition 2.1.1 and Proposition 2.1.7, conditions i), ii) and
iii) are necessary for (M, ⟨ , ⟩) to be harmonic-Einstein. Furthermore (2.4.14) is not empty only if |Tφ| is
bounded and

Sφ > (m− 1)η∗. (2.4.16)
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Proof. First of all note that if η∗ = +∞ then (2.4.14) holds true. Thus we can suppose η∗ < +∞. In the
assumptions of the Theorem div(Cφ) = 0 and, since φ is harmonic, by (2.4.4) and (1.2.36), tr(Cφ) = 0.
Thus equation (2.4.7) becomes

1

2
∆|Tφ|2 = |∇Tφ|2 + m

m− 2
tr[(Tφ)3] + Sφ

m− 1
|Tφ|2 − ⟨Wφ(Tφ), Tφ⟩. (2.4.17)

Since Tφ is traceless, Okumura’s inequality, [Ok], (see also Lemma 6.2 of [AMR]) gives the validity of

tr[(Tφ)3] ≥ − m− 2√
m(m− 1)

|Tφ|3.

Furthermore, from the estimates on the largest eigenvalue of Wφ

⟨Wφ(Tφ), Tφ⟩ ≤ η∗|Tφ|2.

Inserting these informations in (2.4.17) and setting u := |Tφ|2 we deduce the validity of the differential
inequality

1

2
∆u ≥

(
Sφ

m− 1
− η∗ − m√

m(m− 1)

√
u

)
u. (2.4.18)

If u∗ := supM u = +∞ then (2.4.14) is obviously satisfied. Thus let u∗ < +∞. Since stochastically
completeness is equivalent to the validity of the weak maximum principle for the Laplace-Beltrami operator,
see [PRS03], applying the latter to (2.4.18) we obtain

0 ≥

(
Sφ

m− 1
− η∗ − m√

m(m− 1)

√
u∗

)
u∗.

Thus either u∗ = 0, that is, Tφ = 0 on M and (M, ⟨ , ⟩) is harmonic-Einstein or

Sφ

m− 1
− η∗ −

√
mu∗

m− 1
≤ 0.

The latter inequality implies (2.4.14).

As a consequence we obtain the following “gap”result for |Tφ|2.
Corollary 2.4.19. Under the assumptions of Theorem 2.4.13 let

sup
M

|Tφ| <
√
m− 1

m

(
Sφ

m− 1
− η∗

)
, (2.4.20)

then (M, ⟨ , ⟩) is harmonic-Einstein.
Remark 2.4.21. Notice that (2.4.20) implies η∗ < +∞, otherwise we would have a contradiction, and (2.4.16).

To conclude this Section we provide an estimate, even though is non sharp, for η∗.
Proposition 2.4.22. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3, φ : M → (N, ⟨ , ⟩N ) a
smooth map and α > 0. Assume

e(φ)∗ := sup
M

e(φ) < +∞, (2.4.23)

where e(φ) is the density of energy of φ, and, for m ≥ 4,

|Wφ|∗ := sup
M

|Wφ| < +∞. (2.4.24)

Then, if m = 3
η∗ ≤ αe(φ)∗ (2.4.25)

and if m ≥ 4

η∗ ≤

√
m− 2

2(m− 1)
|Wφ|∗ + 2α

m− 2
e(φ)∗. (2.4.26)
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Proof. We set: for every β ∈ S2
0(M), β = βijθ

i ⊗ θj ,

W(β) :=Wtikjβtkθ
i ⊗ θj .

Then W : S2
0(M) → S2

0(M) is well defined and self-adjoint with respect to the standard extension of ⟨ , ⟩ to
S2
0(M) (it can be seen as Wφ for φ constant). Moreover from Huisken’s inequality (see Lemma 2.9 in [H] or

also Proposition 8.8 in [AMR], whose proof can be extended to the case where T ∈ S2
0(M))

|⟨W(β), β⟩| ≤

√
m− 2

2(m− 1)
|W |2|β|2. (2.4.27)

From (2.4.2) and (1.2.19) we get

⟨Wφ(β), β⟩ = ⟨W(β), β⟩ − α
2

m− 2
|dφ(β)|2 + α

(m− 1)(m− 2)
|dφ|2|β|2, (2.4.28)

where, in local coordinates,
dφ(β) = φajβijθ

i ⊗ Ea.

From (2.4.28) we deduce

⟨Wφ(β), β⟩ ≤ ⟨W(β), β⟩+ α

(m− 1)(m− 2)
|dφ|2|β|2

and using (2.4.27) we have

|⟨Wφ(β), β⟩| ≤

(√
m− 2

2(m− 1)
|W |2 + α

(m− 1)(m− 2)
|dφ|2

)
|β|2. (2.4.29)

If m = 3 the above reads, since W = 0,

|⟨Wφ(β), β⟩| ≤ α

2
|dφ|2|β|2,

that is, using (2.4.23), (2.4.25). To obtain (2.4.26) for m ≥ 4 we need the following relation between |W |2
and |Wφ|2:

|Wφ|2 = |W |2 + 4α2

m− 2
|φ∗⟨ , ⟩N |2 − 2α2

(m− 1)(m− 2)
|dφ|4. (2.4.30)

To prove (2.4.30) we use (1.2.19) and the symmetries of Wφ to get

|Wφ|2 =Wφ
tikjW

φ
tikj

=Wφ
tikj

[
Wtikj +

α

m− 2
(φatφ

a
kδij − φatφ

a
j δik + φai φ

a
j δtk − φai φ

a
kδtj)−

α

(m− 1)(m− 2)
|dφ|2(δtkδij − δtjδik)

]
=Wφ

tikjWtikj +
4α

m− 2
Wφ
tikiφ

a
tφ

a
k −

2α

(m− 1)(m− 2)
|dφ|2Wφ

kiki,

and we conclude using (1.2.19), the fact that W is totally trace free and (1.2.22). From (2.4.30) we obtain

|W |2 ≤ |Wφ|2 + 2α2

(m− 1)(m− 2)
|dφ|4,

so that√
m− 2

2(m− 1)
|W |2 ≤

√
m− 2

2(m− 1)
|Wφ|2 +

(
α

m− 1
|dφ|2

)2

≤

√
m− 2

2(m− 1)
|Wφ|+ α

m− 1
|dφ|2. (2.4.31)
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Plugging the above into (2.4.29) we get

|⟨Wφ(β), β⟩| ≤

(√
m− 2

2(m− 1)
|Wφ|+ α

m− 2
|dφ|2

)
|β|2,

and then (2.4.26) holds, using (2.4.24) and (2.4.23).

Remark 2.4.32. The estimate above is non sharp, indeed assume W̊φ = 0, that is, via Proposition 1.4.6, φ
is weakly conformal and (M, ⟨ , ⟩) is locally conformally flat. Then it is easy to see that

η = −α |dφ|2

m− 1
.

Indeed, using (2.4.2),

Wφ
tikj =

α|dφ|2

m(m− 1)
(δtkδij − δtjδik)

and that φ is weakly conformal, for every β ∈ S2
0(M), β = βijθ

i ⊗ θj

⟨Wφ(β), β⟩ = α|dφ|2

m(m− 1)
(δtkδij − δtjδik)βtkβij − α

|dφ|2

m
δijβikβkj = − α|dφ|2

m(m− 1)
|β|2 − α

|dφ|2

m
|β|2,

that is,

⟨Wφ(β), β⟩ = −α |dφ|2

m− 1
|β|2.

Notice that in this case, since

|Wφ|2 =
2α2|dφ|4

m(m− 1)
,

we can equivalently say that
η = −

√
m

2(m− 1)
|Wφ|.

2.5 Harmonic-Einstein warped products
Let (M, ⟨ , ⟩) and (F, ⟨ , ⟩F ) be two Riemannian manifolds of dimensionm and d respectively. Let u ∈ C∞(M),
u > 0 on M .

Definition 2.5.1. we denote by M̄ =M × F the product manifold, by

⟨ , ⟩ := π∗
M ⟨ , ⟩+ (u ◦ πM )2π∗

F ⟨ , ⟩F ,

where πM : M̄ →M and πF : M̄ → F are the canonical projections, and by

M ×u F := (M̄, ⟨ , ⟩)

the warped product with base (M, ⟨ , ⟩), fibre (F, ⟨ , ⟩F ) and warping function u.

We are going to identify T (M × F ) with TM ⊗ TF , so that

⟨ , ⟩ ≡ ⟨ , ⟩+ u2⟨ , ⟩F .

We use the following indexes conventions

1 ≤ i, j, . . . ≤ m, 1 ≤ α, β, . . . ≤ d, 1 ≤ A,B, . . . ≤ m+ d.
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Let {ei}, {θi}, {θij}, {Θij} be, respectively, a local orthonormal frame, the dual coframe, the relative connec-
tion and curvature forms on an open subset U of M and let {εα}, {ψα}, {ψαβ }, {Ψαβ} be the same quantities
on an open subset W of F .

In the next well known Proposition we determine the local orthonormal frame, the dual coframe, the
relative connection and curvature forms on U := U × W induced by the choices above, that we denote by
{eA}, {θA}, {θAB}, {ΘAB}, respectively.

Proposition 2.5.2. In the notations above

ei = π∗
M (ei) ≡ ei, em+α =

1

u ◦ πM
π∗
F (εα) ≡

1

u
εα, (2.5.3)

θ
i
= π∗

M (θi) ≡ θi, θ
m+α

= u ◦ πM · π∗
Fψ

α ≡ uψα, (2.5.4)

θ
i

j = θij , θ
m+α

m+β = ψαβ , θ
m+α

i = uiψ
α = −θim+α, (2.5.5)

Θ
i

j = Θij , Θ
m+α

m+β = Ψαβ − |∇u|2ψα ∧ ψβ , Θ
m+α

i = uijθ
j ∧ ψα = −Θ

i

m+α. (2.5.6)

The non-vanishing components of Riem are determined by

R̄ijkt = Rijkt, R̄im+α j m+β = −uij
u
δαβ , R̄m+α

m+βm+γ m+δ =
1

u2
FRαβγδ −

|∇u|2

u2
(δαγδβδ − δαδδβγ), (2.5.7)

where Rijkt and FRαβγδ are the components of the Riemann tensors of (M, ⟨ , ⟩) and (F, ⟨ , ⟩F ), respectively.

Proof. It is clear that {eA} defined as in (2.5.3) is a local orthonormal frame, indeed

⟨ei, ej⟩ = ⟨ei, ej⟩ = δij , ⟨ei, em+α⟩ = 0

and
⟨em+α, em+β⟩ = u2

〈εα
u
,
εβ
u

〉
F
= ⟨εα, εβ⟩F = δαβ .

The relations (2.5.4) follows immediately from (2.5.3).
To show the validity of (2.5.5) recall that the first structure equation on M ×u F are given by

dθ
A
= −θAB ∧ θB .

For A = i we obtain, using (2.5.4),

dθ
i
=− θ

i

B ∧ θB

=− θ
i

j ∧ θ
j − θ

i

m+α ∧ θm+α

=− θ
i

j ∧ θj − uθ
i

m+α ∧ ψα

and since, from the first structure equation on M ,

dθ
i
=dθi = −θij ∧ θj ,

we conclude from the above
(θ
i

j − θij) ∧ θj + uθ
i

m+α ∧ ψα = 0. (2.5.8)
For A = m+ α we obtain, using (2.5.4),

dθ
m+α

=− θ
m+α

B ∧ θB

=− θ
m+α

i ∧ θi − θ
m+α

m+β ∧ θm+β

=− θ
m+α

i ∧ θi − uθ
m+α

m+β ∧ ψβ
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and since, from the first structure equation for F ,

dθ
m+α

=d(uψα)

=du ∧ ψα + udψα

=uiθ
i ∧ ψα − uψαβ ∧ ψβ

=− uiψ
α ∧ θi − uψαβ ∧ ψβ

we conclude from the above

u(θ
m+α

m+β − ψαβ ) ∧ ψβ + (θ
m+α

i − uiψ
α) ∧ θi = 0. (2.5.9)

It is immediate to verify that {θAB} given by (2.5.5) are skew-symmetric, that is, θAB = −θBA , and satisfies
(2.5.8) and (2.5.9), hence they are the connection forms associated to the coframe {θA}.

The second structure equation reads as

dθ
A

B = −θAC ∧ θCB +Θ
A

B .

For A = i and B = j, using (2.5.5),

dθ
i

j =− θ
i

C ∧ θCj +Θ
i

j

=− θ
i

k ∧ θ
k

j − θ
i

m+α ∧ θm+α

j +Θ
i

j

=− θik ∧ θkj + uiujψ
α ∧ ψα +Θ

i

j

=− θik ∧ θkj +Θ
i

j .

From the second structure equation on M we have

dθ
i

j = dθij = −θik ∧ θkj +Θij ,

hence from the above we infer
Θ
i

j = Θij . (2.5.10)
For A = m+ α and B = m+ β, using (2.5.5),

dθ
m+α

m+β =− θ
m+α

C ∧ θCm+β +Θ
m+α

m+β

=− θ
m+α

i ∧ θim+β − θ
m+α

m+γ ∧ θm+γ

m+β +Θ
m+α

m+β

=uiuiψ
α ∧ ψβ − ψαγ ∧ ψγβ +Θ

m+α

m+β

=|∇u|2ψα ∧ ψβ − ψαγ ∧ ψγβ +Θ
m+α

m+β .

From the second structure equation on F we have

dθ
m+α

m+β = dψαβ = −ψαγ ∧ ψγβ +Ψαβ ,

hence from the above we obtain
Θ
m+α

m+β = Ψαβ − |∇u|2ψα ∧ ψβ . (2.5.11)
For A = m+ α and B = i, using (2.5.5),

dθ
m+α

i =− θ
m+α

C ∧ θCi +Θ
m+α

i

=− θ
m+α

j ∧ θji − θ
m+α

m+β ∧ θm+β

i +Θ
m+α

i

=− ujψ
α ∧ θji − uiψ

α
β ∧ ψβ +Θ

m+α

i

=ujθ
j
i ∧ ψ

α − uiψ
α
β ∧ ψβ +Θ

m+α

i .
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From the definition of the Hessian of u we have

uijθ
j = dui − ujθ

j
i ,

thus we infer, using (2.5.4),

dθ
m+α

i =d(uiψ
α)

=dui ∧ ψα + uidψ
α

=uijθ
j ∧ ψα + ujθ

j
i ∧ ψ

α − uiψ
α
β ∧ ψβ .

Comparing it with the above we obtain

Θ
m+α

i = uijθ
j ∧ ψα. (2.5.12)

Combining (2.5.10), (2.5.11) and (2.5.12) we deduce the validity of (2.5.6).
By definition of Riem, the Riemann tensor of M ×u F , we have

Θ
A

B =
1

2
R̄ABCDθ

C ∧ θD.

For A = m+ α and B = i, with the aid of (2.5.4),

Θ
m+α

i =
1

2
R̄m+α
iCD θ

C ∧ θD

=
1

2
R̄m+α
ijk θ

j ∧ θk + 1

2
R̄m+α
im+βm+γθ

m+β ∧ θm+γ
+

1

2
R̄m+α
ij m+βθ

j ∧ θm+β
+

1

2
R̄m+α
im+β jθ

m+β ∧ θj

=
1

2
R̄m+α
ijk θj ∧ θk + u2

2
R̄m+α
im+βm+γψ

β ∧ ψγ − uR̄m+α
im+β jθ

j ∧ ψβ ,

and using (2.5.12) we obtain

R̄m+α ijk = 0, R̄im+αm+βm+γ = 0, R̄im+α j m+β = −uij
u
δαβ . (2.5.13)

For A = i and B = j, using (2.5.4), (2.5.13) and the symmetries of Riem,

Θ
i

j =
1

2
R̄ijCDθ

C ∧ θD

=
1

2
R̄ijktθ

k ∧ θt + u2

2
R̄ij m+αm+βψ

α ∧ ψβ + uR̄ijkm+αθ
k ∧ ψα

=
1

2
R̄ijktθ

k ∧ θt + u2

2
R̄ij m+αm+βψ

α ∧ ψβ ,

but since, from (2.5.10) and the definition of Riem

Θ
i

j = Θij =
1

2
Rijktθ

k ∧ θt

we obtain
R̄ijkt = Rijkt, R̄ij m+αm+β = 0. (2.5.14)

For A = m+ α and B = m+ β, using (2.5.4), (2.5.13) and (2.5.14),

Θ
m+α

m+β =
1

2
R̄m+α
m+β CDθ

C ∧ θD =
u2

2
R̄m+α
m+βm+γ m+δψ

γ ∧ ψδ,
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inserting (2.5.11) we deduce

1

2
(FRαβγδ − u2R̄m+α

m+βm+γ m+δ)ψ
γ ∧ ψδ = |∇u|2ψα ∧ ψβ .

Skew-symmetrizing the above we obtain
FRαβγδ − u2R̄m+α

m+βm+γ m+δ = |∇u|2(δαγδβδ − δαδδβγ),

that is,

R̄m+α
m+βm+γ m+δ =

1

u2
FRαβγδ −

|∇u|2

u2
(δαγδβδ − δαδδβγ).

Hence (2.5.7) holds.

Since u > 0 on M there exists f ∈ C∞(M) such that

u = e−
f
d . (2.5.15)

As a consequence of the above Proposition we have

Corollary 2.5.16. In the notations above, the non-vanishing components of Ric, the Ricci tensor of (M̄, ⟨ , ⟩),
are given by

R̄ij = Rij − d
uij
u
, R̄m+αm+β = −

(
∆u

u
+ (d− 1)

|∇u|2

u2

)
δαβ +

1

u2
FRαβ , (2.5.17)

where Rij and FRαβ are the components of the Ricci tensors of (M, ⟨ , ⟩) and (F, ⟨ , ⟩F ), respectively.
Equivalently, in terms of f , where f is defined by (2.5.15),

R̄ij = Rij + fij −
1

d
fifj , R̄m+αm+β =

∆ff

d
δαβ + e

2f
d FRαβ . (2.5.18)

Proof. Tracing the relations (2.5.7) we obtain

R̄ij = R̄iAjA = R̄ikjk + R̄im+α j m+α = Rij −
uij
u
δαα = Rij − d

uij
u
,

R̄m+αm+β =R̄m+αAm+β A

=R̄m+α im+β i +Rm+αm+γ m+βm+γ

=− uii
u
δαβ +

1

u2
FRαβ − (d− 1)

|∇u|2

u2
δαβ

=−
(
∆u

u
+ (d− 1)

|∇u|2

u2

)
δαβ +

1

u2
FRαβ

and

R̄im+α =R̄iAm+αA = R̄ij m+α j + R̄im+βm+αm+β = 0.

Hence (2.5.17) holds. From the definition (2.5.15) of f

ui = −1

d
e−

f
d fi = −u

d
fi, (2.5.19)

in particular

|∇u|2 =
u2

d2
|∇f |2,
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and also
uij = −u

d

(
fij −

1

d
fifj

)
,

in particular

∆u = −u
d

(
∆f − 1

d
|∇f |2

)
.

By plugging the above relations into (2.5.17) we conclude the validity of (2.5.18).

Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map and denote

Φ := φ ◦ πM : M̄ → (N, ⟨ , ⟩N ). (2.5.20)

We use the indexes convention
1 ≤ a, b, . . . ≤ n,

where n is the dimension of N . Let {Ea}, {ωa}, {ωab }, {Ωab} be, respectively, an orthonormal frame,
orthonormal coframe, connection forms and curvatures form on a open subset V of N such that φ−1(V) ⊆ U .

Proposition 2.5.21. In the assumptions and the notations above

τ̄(Φ) = τ(φ)− dφ(∇f), (2.5.22)

where τ̄(Φ) is the tension of Φ :M ×u F → (N, ⟨ , ⟩N ).

Proof. Let d̄ be the differential on M̄ . Then, using (2.5.4),

d̄Φ = ΦaAθ
A ⊗ Ea = Φai θ

i ⊗ Ea + uΦam+αψ
α ⊗ Ea.

Due to the definition (2.5.20) of Φ we have

d̄Φ = π∗
Mdφ ≡ dφ = φai θ

i ⊗ Ea,

hence, by comparison with the above,
Φai = φai , Φam+α = 0. (2.5.23)

In particular
|d̄Φ|

2
= ΦaAΦ

a
A = φai φ

a
i = |dφ|2.

Moreover
ΦaABθ

B
= d̄ΦaA − ΦaBθ

B

A +ΦbAω
a
b ,

that is, using (2.5.5),

ΦaAjθ
j + uΦaAm+αψ

α = d̄ΦaA − Φaj θ
j

A − Φam+αθ
m+α

A +ΦbAω
a
b ,

For A = i we obtain, using (2.5.23) and (2.5.5),

Φaijθ
j + uΦaim+αψ

α = dφai − φaj θ
j
i + φbiω

a
b = φaijθ

j ,

hence
Φaij = φaij , Φaim+α = 0. (2.5.24)

For A = m+ β we obtain using (2.5.23) and (2.5.5),

Φam+β jθ
j + uΦam+βm+αψ

α = ujφ
a
jψ

β ,
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hence, for f ∈ C∞(M) given by (2.5.15), using (2.5.19),

Φam+α j = 0, Φam+αm+β = φaj
uj
u
δαβ = −1

d
φaj fjδαβ . (2.5.25)

Then, using (2.5.24) and (2.5.25), we infer

τ̄(Φ)a = ΦaAA = Φaii +Φam+αm+α = τ(φ)a − φaj fj ,

that is, (2.5.22).

We are now able to prove the following theorem, the main result of this Section. This result is another
important motivation for the introduction of the general structure of Chapter 3, together with Theorem
2.3.5.

Theorem 2.5.26. Let (M, ⟨ , ⟩) and (F, ⟨ , ⟩F ) be Riemannian manifolds of dimension m and d respectively.
Let f ∈ C∞(M) and φ :M → (N, ⟨ , ⟩N ) smooth. Set u as in (2.5.15) and Φ : M̄ → (N, ⟨ , ⟩N ) as in (2.5.20).
Then M ×u F is harmonic-Einstein, that is, satisfies, for some λ ∈ R and α ∈ R \ {0},{

Ric − αΦ∗⟨ , ⟩N = λ⟨ , ⟩
τ(Φ) = 0

(2.5.27)

if and only if (M, ⟨ , ⟩) satisfiesRic − αφ∗⟨ , ⟩N + Hess(f)− 1

d
df ⊗ df = λ⟨ , ⟩

τ(φ) = dφ(∇f)
(2.5.28)

and (F, ⟨ , ⟩F ) satisfies
FRic = Λ⟨ , ⟩F , (2.5.29)

where Λ is constant and is given by
Λ =

1

d
(dλ−∆ff)e

− 2f
d . (2.5.30)

Proof. Assume that M ×u F satisfies (2.5.27). From Corollary 2.5.16 we infer

Rij + fij −
1

d
fifj = αφai φ

a
j + λδij , (2.5.31)

and
FRαβ =

1

d
(dλ−∆ff) e

− 2f
d δαβ . (2.5.32)

From Proposition 2.5.21 we deduce
τ(φ) = dφ(∇f). (2.5.33)

Combining (2.5.31) and (2.5.33) we obtain (2.5.28). As we shall see in Proposition 7.1.5, with the choice of
µ = 1

d , the validity of (2.5.28) implies the existence of some constant Λ such that

∆ff − dλ = −dΛe
2f
d ,

that is, (2.5.30). Plugging (2.5.30) into (2.5.32) we deduce the validity of (2.5.29).
Conversely, suppose that (M, ⟨ , ⟩) and (F, ⟨ , ⟩F ) satisfy, respectively, (2.5.28) and (2.5.29), where Λ is

defined by (2.5.30). Since (2.5.28) holds then, using once again Proposition 7.1.5, we deduce that Λ is
constant. From Corollary 2.5.16, using the first equation of (2.5.28), we infer

R̄ij = Rij + fij −
1

d
fifj = αφai φ

a
j + λδij ,
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and from (2.5.29) and (2.5.30),

R̄m+αm+β =
∆ff

d
δαβ + e

2d
f FRαβ = λδαβ .

Combining it with the above and recalling the validity of (2.5.23), since from the second equation of (2.5.28)
and Proposition 2.5.21 the map Φ : M̄ → (N, ⟨ , ⟩N ) is harmonic, we conclude that (2.5.27) holds.

Now we deal the “dual ”case. Let γ : (F, ⟨ , ⟩F ) → (N, ⟨ , ⟩N ) be a smooth map and denote

Γ := γ ◦ πF : M̄ → (N, ⟨ , ⟩N ). (2.5.34)

Proposition 2.5.35. In the assumptions and the notations above

τ̄(Γ) =
1

u2
F τ(γ). (2.5.36)

Proof. Using (2.5.4),
d̄Γ = ΓaAθ

A ⊗ Ea = Γai θ
i ⊗ Ea + uΓam+αψ

α ⊗ Ea.

Due to the definition (2.5.34) of Γ we have

d̄Γ = π∗
F dγ ≡ dγ = γaαψ

α ⊗ Ea,

hence
Γai = 0, Γam+α =

γaα
u
. (2.5.37)

In particular
|d̄Γ|

2
= ΓaAΓ

a
A =

1

u2
γai γ

a
i =

1

u2
|dγ|2F .

Moreover
ΓaABθ

B
= d̄ΓaA − ΓaBθ

B

A + ΓbAω
a
b ,

that is, using (2.5.5),

ΓaAjθ
j + uΓaAm+αψ

α = d̄ΓaA − Γaj θ
j

A − Γam+αθ
m+α

A + ΓbAω
a
b ,

For A = i we obtain, using (2.5.37) and (2.5.5),

Γaijθ
j + uΓaim+αψ

α = −ui
u
γaαψ

α,

hence
Γaij = 0, Γaim+α = − ui

u2
γaα. (2.5.38)

For A = m+ β we obtain using (2.5.23) and (2.5.5),

Γam+β jθ
j + uΓam+βm+αψ

α =d

(
γaβ
u

)
− γaα

u
ψαβ +

γbβ
u
ωab

=
1

u

(
dγaβ − γaαψ

α
β + γbβω

a
b

)
− 1

u2
γaβujθ

j ,

hence, from the definition of covariant derivative of dγ,

Γam+β j = − 1

u2
γaβuj , Γam+βm+α =

1

u2
γaβα. (2.5.39)

Then, using (2.5.38) and (2.5.39), we infer

τ̄(Γ)a = ΓaAA = Γaii + Γam+αm+α =
1

u2
γaαα =

1

u2
F τ(γ)a,

that is, (2.5.36).
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Assume M = I ∋ 0 is an open interval on R with the Euclidean metric, α ∈ R \ {0} and γ : (F, ⟨ , ⟩F ) →
(N, ⟨ , ⟩N ) is a smooth map. We set Γ as in (2.5.34). From (2.5.36) we get that Γ is harmonic if and only if
γ is harmonic. In our setting (2.5.17) yields

R̄11 = −du
′′

u
, R̄1+α 1+β = −

(
u′′

u
+ (d− 1)

(u′)2

u2

)
δαβ +

1

u2
FRαβ .

Using (2.5.37) we get, from the above

R̄Γ
11 = −du

′′

u
, R̄Γ

1+α 1+β = −
(
u′′

u
+ (d− 1)

(u′)2

u2

)
δαβ +

1

u2
FRγαβ . (2.5.40)

Assume I ×u F is harmonic-Einstein with respect to Γ and α, that is,{
Ric − αΓ∗⟨ , ⟩N = λ⟨ , ⟩
τ̄(Γ) = 0.

Then γ is harmonic and from (2.5.40) we obtain

u′′ = −λ
d
u (2.5.41)

and
FRαβ =

(
λ+

u′′

u
+ (d− 1)

(
u′

u

)2
)
u2δαβ .

By plugging (2.5.41) into the above we get

FRαβ = (d− 1)

(
(u′)2 +

λ

d
u2
)
δαβ . (2.5.42)

Observe that
(u′)2 +

λ

d
u2

is constant on I, indeed (
(u′)2 +

λ

d
u2
)′

= 2u′
(
u′′ +

λ

d
u

)
,

hence we conclude using (2.5.41). Hence can be rewritten as (assuming 0 ∈ I)

FRαβ = (d− 1)

(
u′(0)2 +

λ

d
u(0)2

)
δαβ .

In conclusion the following hold
FRicγ = (d− 1)

(
u′(0)2 +

λ

d
u(0)2

)
⟨ , ⟩F

F τ(γ) = 0,

(2.5.43)

hence (F, ⟨ , ⟩F ) is harmonic-Einstein with respect to γ and α and moreover u solves (2.5.41). Observe that
the solutions of (2.5.41) are given by

u = u′(0)snλ
d
+ u(0)cnλ

d
, (2.5.44)

where

snκ(t) :=



1√
−κ

sinh(
√
−κt) for κ < 0

t for κ = 0

1√
κ
sin(

√
κt) for κ > 0

for every t ∈ R.
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and
cnκ := sn′

κ.

We obtained, since also the converse implication holds,

Proposition 2.5.45. Let I ∋ 0 be an open interval on R with the Euclidean metric, α ∈ R \ {0} and
γ : (F, ⟨ , ⟩F ) → (N, ⟨ , ⟩N ) be a smooth map. Let u ∈ C∞(I) and set Γ as in (2.5.34). Then I ×u F is
harmonic-Einstein with respect to Γ and α if and only if (F, ⟨ , ⟩F ) is harmonic-Einstein with respect to γ
and α and u is given by (2.5.44). In this case the following relation holds:

FSγ = m(d− 1)

(
u′(0)2 +

S̄Γ

d(m+ 1)
u(0)2

)
.

Remark 2.5.46. In particular, in the assumption of the Proposition above, in case u is constant (that is the
case where the warped product is a Riemannian product), we get from (2.5.41), since u > 0, that λ = 0. As
a consequence the following are equivalent:

(i) I ×u F is harmonic-Einstein with respect to Γ and α;

(ii) I ×u F is Γ-Ricci flat for α;

(iii) (F, ⟨ , ⟩F ) is γ-Ricci flat for α.

2.5.1 Lorentzian setting
Remark 2.5.47. We say that a Lorentzian manifold (M̄, ⟨ , ⟩) of dimension m, for m ≥ 3, is harmonic-Einstein
if there exists Φ : M̄ → (N, ⟨ , ⟩N ), where (N, ⟨ , ⟩N ) is a Riemannian manifold, and α ∈ R \ {0} such that{

Ric − αΦ∗⟨ , ⟩N = λ⟨ , ⟩
τ̄(Φ) = 0,

(2.5.48)

for some constant λ. The situation when a Lorentzian manifold is harmonic-Einstein, as one can expects
due to the analogy with Lorentzian Einstein manifolds, is interesting in view of applications to General
Relativity. Indeed, taking the trace of the first equation of (2.5.48), we infer, since m ≥ 2,

Ric − S

2
⟨ , ⟩+ Λ⟨ , ⟩ = α

(
Φ∗⟨ , ⟩N − |d̄Φ|

2

2
⟨ , ⟩

)
,

where
Λ =

m− 2

2m
S
Φ
.

Hence, for m = 4 and
α =

8πG

c4
, (2.5.49)

where G is Newton’s gravitational constant and c is the speed of light in vacuum, the above yields

Ric − S
Φ

2
⟨ , ⟩+ Λ⟨ , ⟩ = 8πG

c4
S,

where S̄ is the stress energy tensor of the wave map (harmonic map, with as source a Lorentzian manifold)
Φ, as defined in (1.1.13), and it is divergence free because Φ is wave map. Hence the spacetime (M̄, ⟨ , ⟩) is
a solution of the Einstein field equations with zero constant

Λ =
S
Φ

4
.
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Now let (M, ⟨ , ⟩) be a m-dimensional Riemannian manifold, with m ≥ 2. Denote

M̄ :=M × I,

where I ⊆ R is an open interval. Let f ∈ C∞(M) and

u := e−f ,

we consider on M̄ the Lorentzian metric

⟨ , ⟩ := ⟨ , ⟩ − u2dt⊗ dt,

where t denotes the coordinate on I, and we denote by M ×u I := (M̄, ⟨ , ⟩) the Lorentzian warped product.
Let φ :M → (N, ⟨ , ⟩N ) be a smooth map, set Φ as in (2.5.20). One can prove the analogous of Corollary

2.5.16 and Proposition 2.5.21 also in the Lorentzian setting. We have, see Corollary 43 of [On], for every
X,Y tangent vector to the base M and V,W tangent vector to the fibre F ,

Ric(X,Y ) = Ric(X,Y )− 1

u
Hess(u)(X,Y )

Ric(X,V ) = 0

Ric(V,W ) = −∆u

u
⟨V,W ⟩.

Moreover, since Φ := φ ◦ πM ,
Φ∗⟨ , ⟩N = π∗

Mφ
∗⟨ , ⟩N ,

and using u = e−f the above relations imply

(Ric − αΦ∗⟨ , ⟩N )(X,Y ) = (Ric − αφ∗⟨ , ⟩N )(X,Y ) + Hess(f)(X,Y )− df ⊗ df(X,Y )

(Ric − αΦ∗⟨ , ⟩N )(X,V )Φ = 0

(Ric − αΦ∗⟨ , ⟩N )(V,W ) = ∆ff⟨V,W ⟩.
(2.5.50)

It is also easy to prove the validity of

τ̄(Φ) = τ(φ) +
1

u
dφ(∇u),

that is,
τ̄(Φ) = τ(φ)− dφ(∇f). (2.5.51)

Assume M ×u I is harmonic-Einstein for some constant α ∈ R \ {0} and Φ as above, that is, (2.5.48)
holds for some λ ∈ R. Using (2.5.50) and the first equation of (2.5.48) we deduce the validity of

Ric − αφ∗⟨ , ⟩N + Hess(f)− df ⊗ df = λ⟨ , ⟩

with
∆ff = λ, (2.5.52)

or equivalently
∆u+ λu = 0.

Furthermore, from (2.5.51) we immediately get

τ(φ) = dφ(∇f).

In conclusion: 
Ric − αφ∗⟨ , ⟩N + Hess(f)− df ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f)
∆ff = λ

(2.5.53)
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On the other hand, assume (2.5.53) holds. From (2.5.51) we immediately get τ̄(Φ) = 0. Moreover, using
(2.5.50) we deduce

Ric − αΦ∗⟨ , ⟩N = ∆ff⟨ , ⟩,
that is, using (2.5.52),

Ric − αΦ∗⟨ , ⟩N = λ⟨ , ⟩.

Definition 2.5.54. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m and let φ : M → (N, ⟨ , ⟩N ) a
smooth map. If there exists α ∈ R \ {0}, f ∈ C∞(M) and λ ∈ R such that (2.5.53) holds we say that the
Riemannian metric ⟨ , ⟩ on M is φ-static.

We summarize the discussion above in the next

Proposition 2.5.55. Let (M, ⟨ , ⟩) be a m-dimensional Riemannian manifold and let I ⊆ R be an open
interval. Let α ∈ R \ {0}, φ :M → (N, ⟨ , ⟩N ) a smooth map and f ∈ C∞(M). We set Φ as in (2.5.20). The
Lorentzian warped product manifold M ×e−f I is harmonic-Einstein for some constant α ∈ R \ {0} and Φ as
above if and only if the Riemannian metric ⟨ , ⟩ on M is φ-static.

Remark 2.5.56. In case φ is constant we recover Proposition 2.7 of [Co] and the classic concept of static
metrics.
Remark 2.5.57. Assume the Lorentzian warped product is harmonic-Einstein, that is (2.5.48) holds for some
constant α ∈ R \ {0}, Φ as above and λ ∈ R. Clearly, tracing the harmonic-Einstein equation,

λ =
S̄Φ

m+ 1
.

Moreover, as showed above, (2.5.53) holds. Taking the trace of the first equation of (2.5.53) and using also
the third equation of it we infer

Sφ = (m− 1)λ.

Combining with the above we conclude

Sφ = (m− 1)λ =
m− 1

m+ 1
S̄Φ.

Notice that, if M is compact, then the third equation of (2.5.53) easily implies λ = 0 and f constant,
in particular M ×u I is a Riemannian product. Then to obtain examples of non-trivial warped products we
need to consider M to be non-compact (and also S̄Φ < 0, as we shall see later on in Remark 7.4.15).

The situation when the Lorentzian warped product M ×u I is harmonic-Einstein (for some constant
α ∈ R \ {0} and Φ as above) is interesting in view of Remark 2.5.47, especially for m = 3 and α given by
(2.5.49). Indeed in this case the Lorentzian warped product M ×u I is a standard static spacetime that is a
solution of the Einstein equation (with zero cosmological constant) where the stress-energy tensor is given
by

S̄ = Φ∗⟨ , ⟩N − ē(Φ)⟨ , ⟩,
where ē(Φ) is the density of energy of Φ. Since Φ = φ ◦ πM we have ē(Φ) = e(φ) and thus,

S̄ = π∗
MS+ e(φ)e−2fdt⊗ dt, (2.5.58)

where S is the energy-stress tensor of φ, that is,

S = φ∗⟨ , ⟩ − e(φ)⟨ , ⟩.

We summarize in the next

Proposition 2.5.59. Let M×uI be a four dimensional Lorentzian warped product that is harmonic-Einstein
with respect α given by (2.5.49) and Φ given by (2.5.20), for a smooth map φ :M → (N, ⟨ , ⟩N ). Then M×u I
is a solution of the Einstein field equations with cosmological constant Λ = Sφ

2 and with as stress-energy
tensor the one of the wave map Φ, that is given by (2.5.58).
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Part II

Einstein-type structures
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Chapter 3

Definition of Einstein-type structures
and basic formulas

In what follow X(M) will denote the C∞(M)-module of the vector fields on M .

Definition 3.0.1. We say that the Riemannian manifold (M, ⟨ , ⟩) carries an Einstein-type structure if
there exist X ∈ X(M), φ : M → (N, ⟨ , ⟩N ) for some Riemannian manifold (N, ⟨ , ⟩N ), and functions
α, λ, µ ∈ C∞(M) such that Ric + 1

2
LX⟨ , ⟩ − µX♭ ⊗X♭ − αφ∗⟨ , ⟩N = λ⟨ , ⟩

τ(φ) = dφ(X),
(3.0.2)

where ♭ : X(M) →
∧1

(M) is the musical isomorphism and LX⟨ , ⟩ denotes the Lie derivative of the metric
along the vector field X.

In case X = ∇f for some f ∈ C∞(M) we say that (M, ⟨ , ⟩) carries a gradient Einstein-type structure. In
case the Einstein-type structure is gradient (3.0.2) takes the form{

Ric + Hess(f)− µdf ⊗ df − αφ∗⟨ , ⟩N = λ⟨ , ⟩
τ(φ) = dφ(∇f).

(3.0.3)

Remark 3.0.4. The gradient Einstein-type structures as (3.0.3) for µ = − 1
m−2 , in view of Theorem 2.3.5,

coincide with conformally harmonic-Einstein manifolds, while, for µ = 1
d for some positive integer d, are

the base for some harmonic-Einstein warped product, see Theorem 2.5.26 for the precise statement. These
situations motivate the study of gradient Einstein-type structures. Furthermore, the structure described by
(3.0.2) generalizes some well known particular cases that have been intensively studied by researchers in the
last decade. Indeed, (3.0.2) characterizes:

i) Ricci solitons for φ constant, µ = 0 and λ ∈ R, that is,

Ric + 1

2
LX⟨ , ⟩ = λ⟨ , ⟩.

Letting λ ∈ C∞(M) we obtain Almost Ricci solitons, whose gradient version has been introduced in
[PRRiS]. Note that when λ = a+bS for some constants a, b ∈ R and S the scalar curvature of (M, ⟨ , ⟩),
the corresponding soliton is called a Ricci-Bourguignon soliton after the recent work of G. Catino, L.
Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri [CCDMM]. For a flow derivation of the gradient
Ricci almost soliton equation in the general case see the work [GWX];
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ii) Quasi-Einstein manifold for X = ∇f , φ constant, µ = 1
d for some positive integer d and λ ∈ R, that is,

Ric + Hess(f)− 1

d
df ⊗ df = λ⟨ , ⟩.

In case X is not necessarily a gradient vector field we have generalized n-quasi Einstein manifolds,
introduced in [BR]. In literature the generalized quasi-Einstein condition is given by

Ric + Hess(f)− µdf ⊗ df = λ⟨ , ⟩

with µ, λ ∈ C∞(M). See, for instance, [C] and [AG].

iii) Ricci-harmonic solitons for µ = 0, λ ∈ R and α > 0, whose gradient version has been introduced by
R. Müller in [M]. As expected the concept comes from the study of a combination of the Ricci and
harmonic maps flows. We refer to [M] for details and interesting analytic motivations.

iv) τ -quasi Ricci-harmonic metrics for X = ∇f and µ = 1
τ , where τ is a positive constant, introduced in

[W].

In what follows the term Ric−αφ∗⟨ , ⟩N will be simply written as Ricφ, when there is no risk of confusion,
following the notation introduced in Chapter 1.

In Section 3.1 we compute the gradient and the Laplacian of the φ-scalar curvature for Riemannian
manifolds supporting an Einstein-type structure, these formulas shall be used frequently in the following
Chapters.

In Section 3.2 we present a general non-existence result, related to the existence of a first positive zero
for the solution of a Cauchy problem, for gradient Einstein-type structure with µ constant and different from
zero.

3.1 Basic formulas
The following commutation relations, valid for every Y ∈ X(M), follows from the general commutation
relation (14):

Y ijk − Y ikj = Y tRtijk, (3.1.1)

Y ijkl − Y ijlk = Y tj Rtikl + Y it R
t
jkl. (3.1.2)

We shall need them in the proof of the following

Proposition 3.1.3. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m with an Einstein-type structure
as in (3.0.2), with α ∈ R \ {0}, X ∈ X(M), λ ∈ C∞(M), µ ∈ R and φ :M → (N, ⟨ , ⟩N ) smooth. Then in a
local orthonormal coframe the following hold,

Rφij,k +Rφik,j −RtijkX
t +

1

2
(Xj

k −Xk
j )i = µ[Xi

kX
j −Xi

jX
k +Xi(Xj

k −Xk
j )] + λkδij − λjδik, (3.1.4)

1

2
Sφk −RφikX

i +
1

2
(Xi

k −Xk
i )i = µ

[
1

2
(Xi

k +Xk
i )X

i +
3

2
(Xi

k −Xk
i )X

i −Xi
iX

k

]
+ (m− 1)λk, (3.1.5)

1

2
∆(1+2µ)XS

φ + (1− µ)(|Tφ|2 + α|τ(φ)|2) +
[
(m− 1)µ+ 1

m
Sφ − µ(m− 1)λ

]
(Sφ −mλ)

= (m− 1)∆2µXλ+
µ

2
D,

(3.1.6)

where
D := 2[(Xi

k −Xk
i )X

i]k + (Xi
k −Xk

i )X
i
k. (3.1.7)

Here ∆Y , for Y ∈ X(M), stands for the operator ∆− ⟨Y,∇ ⟩.
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Proof. In a local orthonormal coframe (3.0.2) is given byR
φ
ij +

1

2
(Xi

j +Xj
i ) = µXiXj + λδij

φaii = φaiX
i.

(3.1.8)

Taking the covariant derivative of the first equation in (3.1.8) yields

Rφij,k +
1

2
(Xi

jk +Xj
ik) = µ(Xi

kX
j +XiXj

k) + λkδij .

Inverting the role of j and k and by subtraction we obtain

Rφij,k −Rφik,j +
1

2
(Xi

jk −Xi
kj +Xj

ik −Xk
ij) = µ(Xi

kX
j −Xi

jX
k +XiXj

k −XiXk
j ) + λkδij − λjδik.

Using three times (3.1.1) and the first Bianchi identity we deduce

1

2
(Xi

jk −Xi
kj +Xj

ik −Xk
ij) = RtijkX

t +
1

2
(Xj

k −Xk
j )i.

Plugging into the above we have

Rφij,k −Rφik,j +RtijkX
t +

1

2
(Xj

k −Xk
j )i = µ[Xi

kX
j −Xi

jX
k +Xi(Xj

k −Xk
j )] + λkδij − λjδik,

that is (3.1.4). Summing on i = j in (3.1.4) we get

Sφk −Rφik,i −RikX
i +

1

2
(Xi

k −Xk
i )i = µ(2Xi

kX
i −Xi

iX
k −XiXk

i ) + (m− 1)λk.

Using (1.2.26), the second equation of (3.1.8) and the definition (1.2.2) of Ricφ we infer

Rφik,i +RikX
i =

1

2
Sφk − αφaiiφ

a
k +RikX

i =
1

2
Sφk +RφikX

i

and inserting into the above we obtain (3.1.5).
Tracing the first equation of (3.1.8) we deduce

Sφ +Xi
i = µ|X|2 +mλ, (3.1.9)

using it together with the first equation of (3.1.8) in (3.1.5) we get

1

2
Sφk −RφikX

i +
1

2
(Xi

k −Xk
i )i =µ

[
(−Rφik + µXiXk + λδik)X

i + (Sφ − µ|X|2 −mλ)Xk
]

+ µ
3

2
(Xi

k −Xk
i )X

i + (m− 1)λk,

or equivalently

1

2
Sφk +

1

2
(Xi

k −Xk
i )i = (1− µ)RφikX

i + µ(Sφ − (m− 1)λ)Xk + µ
3

2
(Xi

k −Xk
i )X

i + (m− 1)λk, (3.1.10)

Contracting (3.1.10) against X we obtain

1

2
SφkX

k +
1

2
(Xi

k −Xk
i )iX

k = (1− µ)RφikX
iXk + µ(Sφ − (m− 1)λ)|X|2 + (m− 1)λkX

k,

thus

(1− µ)µRφikX
iXk =

µ

2
SφkX

k +
µ

2
(Xi

k −Xk
i )iX

k − µ(Sφ − (m− 1)λ)µ|X|2 − (m− 1)µλkX
k. (3.1.11)
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From (3.1.2) easily follows
Xi
kik = Xk

iik,

then taking the divergence of (3.1.10) and inserting the commutation relation above we get

1

2
Sφkk =(1− µ)(Rφik,kX

i +RφikX
i
k) + µ(Sφk − (m− 1)λk)X

k + µ(Sφ − (m− 1)λ)Xk
k

+ µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )X

i
k + (m− 1)λkk.

(3.1.12)

Contracting the first equation of (3.1.8) against Ricφ we infer

|Ricφ|2 +RφikX
i
k = µRφijX

iXk + λSφ,

that using the definition (2.4.1) it is equivalent to

|Tφ|2 + (Sφ)2

m
+RφikX

i
k = µRφijX

iXk + λSφ,

that is,
RφikX

i
k = −|Tφ|2 − Sφ

m
(Sφ −mλ) + µRφijX

iXk.

Using the above and (1.2.26) we deduce

(1− µ)(Rφik,kX
i +RφikX

i
k) =

(
1

2
− µ

2

)
Sφi X

i − (1− µ)αφakkφ
a
iX

i − (1− µ)|Tφ|2

− (1− µ)
Sφ

m
(Sφ −mλ) + µ(1− µ)RφijX

iXk

and from the second equation of (3.1.8) and (3.1.11) it follows

(1− µ)(Rφik,kX
i +RφikX

i
k) =

1

2
Sφi X

i − (1− µ)(|Tφ|2 + α|τ(φ)|2)− (1− µ)
Sφ

m
(Sφ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k − µ(Sφ − (m− 1)λ)µ|X|2 − (m− 1)µλkX
k.

Inserting the above into (3.1.12) we obtain

1

2
Sφkk =

1 + 2µ

2
Sφi X

i − (1− µ)(|Tφ|2 + α|τ(φ)|2)− (1− µ)
Sφ

m
(Sφ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k − µ(Sφ − (m− 1)λ)(−Xk
k + µ|X|2)− 2(m− 1)µλkX

k

+ µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )X

i
k + (m− 1)λkk,

that, using (3.1.9), can be written as

1

2
Sφkk =

1 + 2µ

2
Sφi X

i − (1− µ)(|Tφ|2 + α|τ(φ)|2)−
[
(1− µ)

Sφ

m
+ µSφ − µ(m− 1)λ

]
(Sφ −mλ)

+
µ

2
(Xi

k −Xk
i )iX

k + µ
3

2
(Xi

k −Xk
i )kX

i + µ
3

2
(Xi

k −Xk
i )X

i
k + (m− 1)(λkk − 2µλkX

k),

that is,

1

2
∆(1+2µ)XS

φ + (1− µ)(|Tφ|2 + α|τ(φ)|2) +
[
(m− 1)µ+ 1

m
Sφ − µ(m− 1)λ

]
(Sφ −mλ)

= (m− 1)∆2µXλ+
µ

2
[(Xi

k −Xk
i )iX

k + 3(Xi
k −Xk

i )kX
i + 3(Xi

k −Xk
i )X

i
k].
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We then conclude the validity of (3.1.6), since

(Xi
k −Xk

i )iX
k + 3(Xi

k −Xk
i )kX

i + 3(Xi
k −Xk

i )X
i
k =2(Xi

k −Xk
i )kX

i + 3(Xi
k −Xk

i )X
i
k

=2[(Xi
k −Xk

i )X
i]k + (Xi

k −Xk
i )X

i
k

=D.

Remark 3.1.13. In case µ = 0 equation (3.1.6) can be rewritten as

1

2
∆XS

φ + α|τ(φ)|2 + |Tφ|2 + Sφ

m
(Sφ −mλ) = (m− 1)∆λ. (3.1.14)

Observe that in case X = ∇f (or, more generally, in case ∇X is symmetric), equation (3.1.4) and (3.1.5)
become, respectively,

Rφij,k −Rφik,j −Rtijkft = µ(fikfj − fijfk) + λkδij − λjδik, (3.1.15)

1

2
Sφk −Rφikfi = µ(fikfi −∆ffk) + (m− 1)λk. (3.1.16)

Moreover D defined in (3.1.7) vanishes identically and thus (3.1.6) takes the form

1

2
∆(1+2µ)fS

φ + (1− µ)(|Tφ|2 + α|τ(φ)|2)

+

[
(m− 1)µ+ 1

m
Sφ − µ(m− 1)λ

]
(Sφ −mλ) = (m− 1)∆2µfλ.

(3.1.17)

Remark 3.1.18. Formula (3.1.17) when λ is constant reduces to (2.1) of [W].

3.2 A non-existence result
The results of this Section are part of a joint work with Marco Rigoli. We now present a general non-existence
result for gradient Einstein-type structure with µ ̸= 0.

Proposition 3.2.1. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m. For r ∈ R+, let

v(r) := vol(∂Br), A(r) :=
µ

v(r)

ˆ
∂Br

(mλ− Sφ),

where Br is the geodesic ball of radius r with centre in o ∈ M . Let z ∈ Liploc(R+
0 ) be a solution of the

Cauchy problem {
(vz′)′ +Avz = 0 on R+

z(0+) = z0 > 0, (vz′)(0+) = 0.
(3.2.2)

Suppose that z admits a first zero R0 ∈ R+. Then there exist no f, λ ∈ C∞(M) and α, µ ∈ R \ {0}, such that

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩. (3.2.3)

Proof. By contradiction assume the existence of f, λ ∈ C∞(M) and α, µ ∈ R \ {0}, such that (3.2.3) holds.
Since µ ̸= 0 the positive function u := e−µf satisfies

Hess(f)− µdf ⊗ df = −Hess(u)
µu

,

and (3.2.3) can be rewritten as

Ricφ − Hess(u)
µu

= λ⟨ , ⟩.
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Taking the trace of the above we obtain Lu = 0, where

Lu := ∆u+ q(x)u, q := µ(mλ− Sφ).

Since u > 0, by a well known result of [FCS] and [MP], the operator L is stable or, in other words, its
spectral radius λL1 (M) is non-negative.

Now we prove that under our assumptions λ1L(M) < 0, obtaining the desired contradiction. Observe that
v ∈ L∞

loc(R
+
0 ), v > 0 on R+ and v−1 ∈ L∞

loc)(R+) by (iii) of Proposition 1.6 of [BMR]. By Proposition 3.2
and Proposition 3.6 of [BMR] there exists a solution of (3.2.2) is in Liploc(R+

0 ) and its possible zeroes are
isolated. Suppose that z admits a first zero R0 ∈ R+. We define

ψ := z ◦ r,

where r is the distance function from the fixed origin o ∈M . We consider the Rayleigh quotient

Q(ψ) :=

(ˆ
BR0

ψ2

)−1 ˆ
BR0

(|∇ψ|2 − qψ2).

From the co-area formula and Gauss lemma we get

Q(ψ) =

(ˆ R0

0

z2v

)−1 ˆ R0

0

[(z′)2v −Avz2].

Integrating by parts and using (3.2.2) we obtain
ˆ R0

0

(z′)2v = zz′v|R0

0 −
ˆ R0

0

z(vz′) =

ˆ R0

0

Avz2,

so thatQ(ψ) = 0. Then by the min-max characterization λL1 (BR0
) ≤ 0 and by monotonicity of the eigenvalues

of L we infer λL1 (M) < 0.

Remark 3.2.4. It remains to determine some sufficient conditions under which a solution z of (3.2.2), always
existing by Proposition 3.2 of [BMR], admits a first zero. From Corollary 5.2 of [BMR], if A ≥ 0 on R+,
A ̸≡ 0 and either g−1 /∈ L1(+∞) or otherwise there exist r > R > 0 such that A ̸≡ 0 on [0, R] and

ˆ r

R

(
√
A−√

χg) > −1

2

(
log

ˆ R

0

Av + log

ˆ +∞

R

1

g

)
, (3.2.5)

z has a first zero. Here g ∈ L∞
loc(R

+
0 ) is such that g−1 ∈ L∞

loc(R+) and 0 ≤ v ≤ g on R+
0 , while χg is the

critical curve relative to g defined by

χg(r) =

{
2g(r)

ˆ +∞

r

1

g

}−2

.

Note that (3.2.5) can be rewritten as
ˆ r

R

(
√
A−√

χg) > −1

2

(
log

ˆ
BR

µ(mλ− Sφ) + log

ˆ +∞

R

1

g

)
.

Observe that the existence of a first zero can be guarantee from an oscillatory condition. For instance,
from Corollary 2.9 of [MaMR], if for some r0 ∈ R+

µ lim
r→+∞

ˆ
Br\Br0

(mλ− Sφ) = +∞, (3.2.6)

then every solution of (3.2.2) is oscillatory.
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By way of example, we have

Proposition 3.2.7. Suppose µ(Sφ −mλ) ≤ 0 on M ,

v(r) ≤ Crθ, (3.2.8)

for some constants C > 0 and θ ∈ R and, in case θ > 1, that for some R ∈ R+ and for some constant
D > θ−1

2 ˆ
∂Br

µ(mλ− Sφ) ≥ D2

r2
v(r) for r ≥ R, (3.2.9)

Then a solution z of (3.2.2) admits a first zero.

Proof. From (3.2.8) we can choose
g(r) = Crθ.

Clearly g−1 /∈ L1(+∞) if and only if θ ≤ 1. In case θ > 1

χg(r) =

(
θ − 1

2r

)2

.

Hence (3.2.5) can be rewritten as
ˆ r

R

√
A− θ − 1

2
(log r − logR) > −1

2
log

ˆ
BR

µ(mλ− Sφ)− 1

2
log

R1−θ

C(θ − 1)
,

that is, ˆ r

R

√
A− θ − 1

2
log r >

1

2
logC +

1

2
log(θ − 1)− 1

2
log

ˆ
BR

µ(mλ− Sφ).

From (3.2.9) and the definition of A we immediately see that√
A(r) ≥ D

r
for r ≥ R. (3.2.10)

Using (3.2.10), to obtain the validity of (3.2.5) for some r ≥ R it is sufficient that

D

ˆ r

R

ds

s
− θ − 1

2
log r >

1

2
logC +

1

2
log(θ − 1)− 1

2
log

ˆ
BR

µ(mλ− Sφ),

that is,
D (log r − logR)− θ − 1

2
log r > log(

√
C(θ − 1))− 1

2
log

ˆ
BR

µ(mλ− Sφ),

or equivalently, (
D − θ − 1

2

)
log r > log(RD

√
C(θ − 1))− 1

2
log

ˆ
BR

µ(mλ− Sφ). (3.2.11)

Since D > θ−1
2 there exists r large enough such that (3.2.11) holds. Then, from Remark 3.2.4, we can

conclude the proof. Observe that A ̸≡ 0 on [0, R] is guaranteed by the fact that, since by assumption
µ(Sφ −mλ) ≤ 0 on M on M , Sφ ̸≡ mλ on BR that, in turns, is guaranteed by (3.2.9).

Remark 3.2.12. We consider, in case θ > 1, the limiting case v(r) = Crθ. Inserting this information into
(3.2.9) we obtain ˆ

∂Br

µ(mλ− Sφ) ≥ CD2rθ−2 for r ≥ R.

69



An immediate computation and the fact that θ > 1, shows that
ˆ
Br\BR

µ(mλ− Sφ) ≥ CD2

θ − 1
(rθ−+1 −Rθ−1)

and therefore the integral diverges as r → +∞. This means that condition (3.2.6) is satisfied and the solution
is even oscillatory.

Observe that instead of (3.2.9) we may have assumed the strongest condition
ˆ
∂Br

µ(mλ− Sφ) ≥ CD2rθ−2 for r ≥ R. (3.2.13)

Indeed, using (3.2.8),
ˆ
∂Br

µ(mλ− Sφ) ≥ CD2rθ−2 = crθ
D2

r2
≥ D2

r2
v(r) for r ≥ R,

hence (3.2.13) implies (3.2.9). But (3.2.13) implies also (3.2.6) for r0 = R, so not only admits a zero but is
even oscillatory. Indeed

ˆ
Br\BR

µ(mλ− Sφ) =

ˆ r

R

(ˆ
∂Bs

µ(mλ− Sφ)

)
ds ≥ CD2

ˆ r

R

sθ−2ds =
CD2

θ − 1
(rθ−1 −Rθ−1)

so that, since θ > 1,
lim

r→+∞

ˆ
Br\BR

µ(mλ− Sφ) = +∞ (3.2.14)

Notice that, in general, (3.2.9) does not imply (3.2.6), hence this condition guarantee the existence of a
first zero and not the oscillation for the solution z. For instance, assume for some constant γ < 1 and B > 0,

v(r) = Brγ for every r ≥ R.

Then, from (3.2.9), ˆ
∂Br

µ(mλ− Sφ) ≥ BD2

r2−γ
for r ≥ R. (3.2.15)

Since γ < 1

ˆ
Br\BR

µ(mλ− Sφ) ≥ BD2

ˆ r

R

ds

s2−γ
=
BD2

1− γ

(
1

R1−γ − 1

r1−γ

)
→ BD2

(1− γ)R1−γ for r → +∞,

hence
lim

r→+∞

ˆ
Br\BR

µ(mλ− Sφ)

is not forced to be infinite.
As another example we give

Proposition 3.2.16. Suppose Sφ ≥ mλ on M ,

v(r) ≤ Λexp{arα logβ r}, (3.2.17)

for some constants Λ, a, α > 0 and β ≥ 0 and
ˆ
∂Br

µ(mλ− Sφ) ≥ 9a2

4
(α log r + βr)2r2(α−1) log2(β−1) rv(r). (3.2.18)

Then a solution z of (3.2.2) admits a first zero.
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Proof. The proof is similar to that of Proposition 3.2.7. From (3.2.17) we can choose

g(r) = Λ exp{arα logβ r}.

Clearly g−1 /∈ L1(+∞). We claim that the validity of, for some r and R large enough,
ˆ r

R

√
A− arα logβ r > −1

2
log

ˆ
BR

µ(mλ− Sφ) +
1

2
− 3a

2
Rα logβ R (3.2.19)

implies the validity of (3.2.5). Indeed, if we define

χ̃g(t) :=

(
g′(t)

2g(t)

)2

,

then √
χ̃g(t) ∼

√
χg(t) for t→ +∞,

see (4.4) of [BMR09]. In particular, if R is large enough, for every t ≥ R,√
χg(t) < 2

√
χ̃g(t).

Then we deduce
ˆ r

R

√
χg < 2

ˆ r

R

√
χ̃g = log g(r)− log g(R) = arα logβ r − aRα logβ R,

so that ˆ r

R

√
A−
ˆ r

R

√
χg >

ˆ r

R

√
A− arα logβ r + aRα logβ R. (3.2.20)

Moreover
−1

2
log

ˆ +∞

t

1

g
∼ −a

2
tα logβ t for t→ +∞,

hence for R large enough we have

− 1

2
log

ˆ +∞

R

1

g
<

1

2
(1− aRα logβ R). (3.2.21)

Using (3.2.20) and (3.2.21) we deduce the validity of the claim.
Clearly (3.2.17) implies√

A(t) ≥ 3a

2
(α log t+ βt)tα−1 logβ−1 t =

3a

2
(tα logβ t)′.

Using the above, the validity of (3.2.19) is implied by the validity of

3a

2
rα logβ r > −1

2
log

ˆ
BR

µ(mλ− Sφ) +
1

2
. (3.2.22)

The right hand side of (3.2.22) the above is monotone decreasing in R, then it is sufficient that (3.2.22)
holds for some R = R0 to obtain that it holds also for all R ≥ R0. Then we may fix R such that A ̸≡ 0 on
[0, R], clearly for r large enough we obtain the validity of (3.2.22). Then we can conclude the proof, as in
Proposition 3.2.7.
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Chapter 4

Non trivial Einstein-type structures
on harmonic-Einstein manifolds

Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 2 that supports a Einstein-type structure, that
is, Ricφ +

1

2
LX⟨ , ⟩ − µX♭ ⊗X♭ = λ⟨ , ⟩

τ(φ) = dφ(X),
(4.0.1)

for some α ∈ R \ {0}, λ, µ ∈ C∞(M) and X ∈ X(M) \ {0}.

Definition 4.0.2. We say that the Einstein-type structure (4.0.1) is non-trivial if X ̸= 0.

Remark 4.0.3. If (4.0.1) is trivial then {
Ricφ = λ⟨ , ⟩
τ(φ) = 0.

In particular
λ =

Sφ

m

and, assuming λ constant in case m = 2 (if m ≥ 3 it is automatic in view of Proposition 2.1.3), (M, ⟨ , ⟩) is
harmonic-Einstein.

We shall see that the converse is not true, that is, there exists harmonic-Einstein manifolds that supports
non trivial Einstein-type structures.

Definition 4.0.4. We say that the Einstein-type structure (4.0.1) reduces to a harmonic-Einstein structure
if (M, ⟨ , ⟩) is harmonic-Einstein with respect to the map φ and α, that is, ifRicφ =

Sφ

m
⟨ , ⟩

τ(φ) = 0
(4.0.5)

holds and further Sφ is constant if m = 2.

Notice that the Einstein-type structure (4.0.1) reduces to a harmonic-Einstein structure if and only if
1

2
LX⟨ , ⟩ − µX♭ ⊗X♭ =

(
λ− Sφ

m

)
⟨ , ⟩

dφ(X) = 0,

(4.0.6)
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with Sφ constant if m = 2. In literature the first equation of the above is called the almost quasi-Yamabe
soliton equation. In the following we say that the vector field X is vertical in case the second equation of
the above holds, that is, in case X is annihilated by the differential of φ. This terminology is motivated by
the case of of submersions.

The aim of this Chapter is to study complete Riemannian manifolds that admits a non-trivial Einstein-
type structure that reduces to a harmonic-Einstein type structure. For this purpose we study harmonic-
Einstein manifolds endowed with a vector field X such that (4.0.6) holds, for some λ ∈ C∞(M) and µ ∈ R.
When µ = 0 we are able to study the generic case, sometimes requiring the compactness of M and that X
is non-Killing, while when µ ̸= 0 our results deal only with the gradient case.

In Section 4.1 we the consequence of the presence of a conformal vertical vector field on the geometry
of a harmonic-Einstein manifolds. We begin by generalize the classical result of M. Obata, that says that a
compact Einstein manifold that admits a conformal non-homothetic vector fields must be isometric to the
sphere, see Proposition 4.1.14, where we assume α > 0. Then we investigate the remaining cases, that is,
when X is Killing and when X is homothetic non-Killing. In the latter we are able to study the complete
case.

In Subsection 4.1.1, applying the result obtained in Section 4.1, we shows triviality results for generic
Einstein-type structures. We show that if a compact Riemannian manifold supports a Einstein-type structure
with X non Killing and α > 0 that reduces to a harmonic-Einstein structure then it is isometric to the sphere,
the map φ is constant and λ is non-constant, see Corollary 4.1.37. Moreover we prove that if a complete
Riemannian manifold of dimension supports a Einstein-type structure with λ constant and X non-Killing
that reduces to a harmonic-Einstein structure is flat and φ is constant, see Proposition 4.1.35.

In Section 4.2 we study non-trivial gradient Einstein-type structures that reduces to harmonic-Einstein
structures. Our main results are Theorem 4.2.19 when µ = 0 and Theorem 4.2.25 when µ ̸= 0. Those results
shows that (eventually assuming that the potential function f has exactly one the critical point), essentially,
the only complete Riemannian manifolds admitting a non-trivial gradient Einstein-trype structure that
reduces to a harmonic-Einstein structure are space forms. We conclude with Corollary 4.2.32 and Corollary
4.2.33, showing that the only compact harmonic-Einstein manifold that supports a non-trivial Einstein-type
structure is the sphere.

4.1 Harmonic-Einstein manifolds and vertical conformal vector
fields

In the next Lemma we provide a formula for the Laplacian of the conformal factor of a vertical conformal
vector field.

Lemma 4.1.1. Let φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) be a smooth map. Let X ∈ X(M) be a vertical vector field
that is conformal, that is, 

1

2
LX⟨ , ⟩ = η⟨ , ⟩

dφ(X) = 0,
(4.1.2)

for some η ∈ C∞(M). Then

∆η +
Sφ

m− 1
η +

1

2(m− 1)
⟨∇Sφ, X⟩ = 0. (4.1.3)

Proof. We rewrite the first equation of (4.1.2) in local form with respect to an orthonormal coframe as

Xi
j +Xj

i = 2ηδij . (4.1.4)

Observe that, contracting (4.1.4) against Ricφ we get

RφijX
i
j +RφijX

j
i = 2Sφη,
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that is, since Ricφ is symmetric
RφijX

i
j = ηSφ. (4.1.5)

Moreover from Schur’s identity (1.2.26) and the second equation of (4.1.2), that in local form is given by
φaiX

i = 0,
Rφji,jX

i =
1

2
Sφi X

i. (4.1.6)

Observe that, from the second equation of (4.1.2) and the definition (1.2.2) we have

RijX
j = RφijX

j .

Using the commutation relation (3.1.1) and the above we get

∆(div(X)) =(Xi
i )jj = (Xi

ij)j = (Xi
ji +RkiijX

k)j

=Xi
jij − (RijX

i)j

=Xi
jij − (RφijX

i)j

=(Xi
j)ij −Rφij,jX

i −RφijX
i
j .

With the aid of (4.1.4), (4.1.6) and (4.1.5) the latter can be rewritten in the form

∆(div(X)) =(−Xj
i + 2ηδij)ij −

1

2
Sφi X

i − Sφη

=−Xj
iij + 2∆η − 1

2
Sφi X

i − Sφη.

Using the commutation relation (3.1.2) we obtain

Xj
iij = Xj

iji +RkjijX
k
i +RkiijX

j
k = Xj

iji +RkiX
k
i −RkjX

j
k = Xj

iji,

and inserting into the last above we infer

∆(div(X)) = −(Xj
ij)i + 2∆η − 1

2
Sφi X

i − Sφη.

Using once again (3.1.1), (4.1.4), (4.1.6) and (4.1.5) and proceeding as above

∆(div(X)) =− (Xj
ji +RkjijX

k)i + 2∆η − 1

2
Sφi X

i − Sφη

=−Xj
jii − (RkiX

k)i + 2∆η − 1

2
Sφi X

i − Sφη

=−Xj
jii − (RφkiX

k)i + 2∆η − 1

2
Sφi X

i − Sφη

=−∆div(X)−Rφki,iX
k −RφkiX

k
i + 2∆η − 1

2
Sφi X

i − Sφη

=−∆div(X)− 1

2
Sφi X

i − Sφη + 2∆η − 1

2
Sφi X

i − Sφη

=−∆div(X)− Sφi X
i − 2Sφη + 2∆η,

that is,
∆(div(X)) = ∆η − 1

2
Sφi X

i − Sφη.

Observe that, taking the trace of the first equation of (4.1.2),

div(X) = mη,
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so that from the above we obtain

∆η =
1

m

(
∆η − 1

2
⟨∇Sφ, X⟩ − Sφη

)
,

that immediately gives (4.1.3).

Our aim now is to extend the well known fact, due to M. Obata, that a compact Einstein manifold that
admits a non-Killing conformal vector field is isometric to a Euclidean sphere. To do so we first recall and
prove the next, well known,

Theorem 4.1.7 (Licherowicz-Obata). Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m
satisfying for some κ ∈ R

Ric ≥ (m− 1)κ⟨ , ⟩. (4.1.8)
Let u ∈ C∞(M) be a non-constant eigenfunction of −∆ relative to the eigenvalue λ ∈ R, that is,

∆u+ λu = 0. (4.1.9)

Then
λ ≥ mκ, (4.1.10)

equality holding if and only if (M, ⟨ , ⟩) is isometric to a Euclidean sphere Sm of Rm+1 of constant sectional
curvature κ > 0 (hence the equality holds in (4.1.8)).

Proof. From Newton’s inequality and (4.1.9)

|Hess(u)|2 ≥ 1

m
(∆u)2 = − λ

m
u∆u,

the equality holds on M if and only if Hess(u) = η⟨ , ⟩ for some η ∈ C∞(M). Recall Bochner formula

1

2
∆(|∇u|2) = |Hess(u)|2 + ⟨∇(∆u),∇u⟩+ Ric(∇u,∇u),

so that, using the above, (4.1.9) and (4.1.8) we get

1

2
∆(|∇u|2) ≥ − λ

m
u∆u− λ|∇u|2 + (m− 1)κ|∇u|2.

Observe that
div(u∇u) = u∆u+ |∇u|2, (4.1.11)

hence from the above we conclude the validity of

1

2
∆(|∇u|2) ≥ − λ

m
div(u∇u) + (m− 1)

(
κ− λ

m

)
|∇u|2. (4.1.12)

Integrating the above on M , using the divergence theorem,

0 ≥ (m− 1)

(
κ− λ

m

)ˆ
M

|∇u|2

and since u is non constant we infer
κ− λ

m
≤ 0,

that is, (4.1.10).
Suppose that the equality holds in (4.1.10), then from (4.1.12) we get

1

2
∆(|∇u|2) ≥ −κdiv(u∇u) = −κ

2
∆(u2).

76



Thus the function
|∇u|2 + κu2

is subharmonic on M so that, since M is compact, is constant. In particular
1

2
∆(|∇u|2) = −κ

2
∆(u2) = −κdiv(u∇u),

and by plugging into Bochner formula, using (4.1.9) with λ = mκ, (4.1.8) and (4.1.11), we conclude

|Hess(u)|2 =
1

2
∆(|∇u|2)− ⟨∇(∆u),∇u⟩ − Ric(∇u,∇u)

=− κdiv(u∇u) +mκ|∇u|2 − Ric(∇u,∇u)
≤− κdiv(u∇u) +mκ|∇u|2 − (m− 1)κ|∇u|2

=− κu∆u.

But Newton’s inequality is given by, since λ = mκ,

|Hess(u)|2 ≥ λ

m
u∆u = −κu∆u,

thus it is saturated on M as a consequence of the above inequality. Then

Hess(u) = η⟨ , ⟩

for some η ∈ C∞(M). Since ∆u = −mκu, taking the trace of the above we obtain

η = −κu.

But then u is a solution of
Hess(u) + κu⟨ , ⟩ = 0.

Since M is compact κ > 0, Riemannian manifolds that admits non trivial solutions to this equation has been
characterized by Obata in [O]: (M, ⟨ , ⟩) is isometric to the sphere immersed in Rm+1 of constant sectional
curvature given by κ. As a consequence the equality holds in (4.1.8).

Remark 4.1.13. On the m-dimensional sphere of constant sectional curvature κ functions η (except the
identically zero function) such that

∆η +mκη = 0

are called first order spherical harmonics. Together with the zero function they form the eigenspace relative
to the first positive eigenvalue of −∆, which has dimension m+ 1.

With the aid of formula (4.1.3) and Lichnerowicz-Obata Theorem we are able to prove

Proposition 4.1.14. Let (M, ⟨ , ⟩) be a compact, harmonic-Einstein manifold of dimension m ≥ 2 with
respect to some α > 0 and φ :M → (N, ⟨ , ⟩N ), that is,Ricφ =

Sφ

m
⟨ , ⟩

τ(φ) = 0.
(4.1.15)

If there exists a conformal and non-Killing, vector field X ∈ X(M) such that

dφ(X) = 0, (4.1.16)

then φ is constant and (M, ⟨ , ⟩) is isometric to a Euclidean sphere Sm in Rm+1 of constant sectional curvature

κ :=
Sφ

m(m− 1)
> 0. (4.1.17)

Moreover, the conformal factor η of X is a first order spherical harmonic.
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Proof. Let X ∈ X(M) be a non-Killing conformal vector field with conformal factor η ∈ C∞(M), η ̸≡ 0, that
is,

LX⟨ , ⟩ = 2η⟨ , ⟩. (4.1.18)

Since Sφ is constant, by Proposition 2.1.3 for m ≥ 3 and by definition of harmonic-Einstein manifold for
m = 2, formula (4.1.3) becomes

∆η +
Sφ

m− 1
η = 0. (4.1.19)

Multiplying by η the above and integrating by parts we obtain
ˆ
M

|∇η|2 =
Sφ

m− 1

ˆ
M

η2,

and thus, since η is non-constant, Sφ ≥ 0. Suppose by contradiction that Sφ = 0, then η is harmonic on the
compact Riemannian manifold (M, ⟨ , ⟩), hence it is constant. Taking the trace of (4.1.18) we get

div(X) = mη

and since η is constant, integrating over M , with the aid of the divergence theorem, we deduce also that
η = 0, contradiction. We have therefore proved that Sφ > 0. From the first equation in (4.1.15), α > 0 and
the fact that ⟨ , ⟩N is a Riemannian metric on N we obtain

Ric ≥ Sφ

m
⟨ , ⟩. (4.1.20)

Since X is not Killing, η does not vanish identically on M and from (4.1.19) and Sφ > 0 we deduce that η
cannot be a constant. The validity of (4.1.19) and (4.1.20) allows us to apply Lichnerowicz-Obata Theorem
(see Theorem 4.1.7) to deduce that (M, ⟨ , ⟩) is isometric to a Euclidean sphere Sm of Rm+1 of constant
sectional curvature κ given by (4.1.17). We now observe that, from the first equation in (4.1.15) and the
fact that we have now equality in (4.1.20), because of (4.1.17) and the isometry, we have

Sφ

m
⟨ , ⟩ = Ricφ = Ric − αφ∗⟨ , ⟩N =

Sφ

m
⟨ , ⟩ − αφ∗⟨ , ⟩N ,

and since α ̸= 0
φ∗⟨ , ⟩N = 0.

Thus φ is constant. Notice that now (4.1.19) can be rewritten as

∆η +mκη = 0,

hence η is a first order spherical harmonic.

Now we deal with harmonic-Einstein manifolds admitting a vertical Killing vector field. The connection
between vertical Killing vector fields and the sign of φ-Ricci is, essentially, the same as the one between
Killing vector fields and the sign of Ricci. To motivate our assertion, in the next Proposition we extend the
classic result of Bochner that a compact Riemannian manifold with negative Ricci curvature does not admit
a non-trivial Killing vector field.

Proposition 4.1.21. Let (M, ⟨ , ⟩) be a compact Riemannian manifold, φ : M → (N, ⟨ , ⟩N ) be a smooth
map and α ∈ R \ {0}. Let X be a vertical Killing vector field, that is, (4.1.33) holds. If Ricφ ≤ 0 then X is
parallel. Further, if Ricφ is strictly negative at a point x0 ∈M , then X = 0.

Proof. The proof is a trivial application of the Bochner formula for vector fields

1

2
∆|X|2 = |∇X|2 + div(LX⟨ , ⟩)(X)− ⟨∇div(X), X⟩ − Ric(X,X), (4.1.22)
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see for instance Lemma 8.1 of [AMR]. Since X is Killing it is also divergence free. Moreover

Ric(X,X) = Ricφ(X,X) + α|dφ(X)|2,

using also that X is vertical from the Bochner formula above we get

1

2
∆|X|2 = |∇X|2 − Ricφ(X,X). (4.1.23)

Integrating on M , using the divergence theorem we obtain
ˆ
M

|∇X|2 =

ˆ
M

Ricφ(X,X).

Since Ricφ ≤ 0 we deduce that X is parallel. As a consequence |X|2 is constant. Then (4.1.23) reads

Ricφ(X,X) = 0. (4.1.24)

Assume Ricφ < 0 at x0, then X = 0 at x0. Since |X|2 is constant then X = 0 on M .

Remark 4.1.25. The thesis of the Proposition above holds also if either X is a vertical homothetic vector
field or, in case m = 2, X is a vertical conformal vector field. Indeed, let X ∈ X(M) be such that

1

2
LX⟨ , ⟩ = η⟨ , ⟩

dφ(X) = 0

for some η ∈ C∞(M). Then, using the Bochner formula (4.1.22) we obtain

1

2
∆|X|2 = |∇X|2 − (m− 2)⟨∇η,X⟩ − Ricφ(X,X),

that is (4.1.23) under the assumptions above.
From Proposition 4.1.21 we immediately get

Corollary 4.1.26. Let (M, ⟨ , ⟩) be a compact, harmonic-Einstein manifold of dimension m ≥ 2 with respect
to α ∈ R \ {0} and φ : M → (N, ⟨ , ⟩N ), that is, (4.1.15) holds. If there exists a vertical Killing vector field
X ∈ X(M) \ {0} then Sφ ≥ 0. If Sφ = 0 then X is parallel.

Proof. Assume by contradiction Sφ < 0. From Proposition 4.1.21 if Sφ < 0 then X = 0, that is a contra-
diction. If Sφ = 0, Proposition 4.1.21, then X is parallel.

4.1.1 Generic Einstein-type structures
In this subsection we apply the results on vertical conformal vector fields obtained above in Section 4.1 to
study non trivial Einstein-type structures that reduces to harmonic-Einstein structures.

Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 that supports a non trivial
Einstein-type structure as (4.0.1) for some λ ∈ C∞(M), µ ∈ R, X ∈ X(M), φ :M → (N, ⟨ , ⟩N ) smooth and
α ∈ R \ {0}. Recall that, if (4.0.1) reduces to a harmonic-Einstein structure, then (M, ⟨ , ⟩) is a harmonic-
Einstein manifold and X satisfies (4.0.6). In order to produce interesting results we shall restrict to the case
µ = 0. The motivation is illustrated in the next Remark.
Remark 4.1.27. Let (M, ⟨ , ⟩) be a Riemannian manifold that supports a non trivial Einstein-type structure
as (4.0.1) for some α ∈ R \ {0}, λ, µ ∈ C∞(M) and X ∈ X(M) \ {0}. Assume that the structure (4.0.1)
reduces to a harmonic-Einstein structure. If X is conformal then

X = 0 on {x ∈M : µ(x) ̸= 0}. (4.1.28)
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Indeed, since (4.0.1) reduces to a harmonic-Einstein structure, (4.0.6) holds and combining its first equation
with the fact that, since X is conformal, there exists η ∈ C∞(M) such that

1

2
LX⟨ , ⟩ = η⟨ , ⟩,

we get

− µX♭ ⊗X♭ =

(
λ− η − Sφ

m

)
⟨ , ⟩. (4.1.29)

Taking the trace of the above we have

− µ|X|2 = mλ−mη − Sφ. (4.1.30)

From (4.1.29) we also get

−µX♭ ⊗X♭(X,X) =

(
λ− η − Sφ

m

)
⟨X,X⟩,

that is,

−µ|X|4 =

(
λ− η − Sφ

m

)
|X|2.

Combining the above with (4.1.30) we conclude

(m− 1)µ|X|4 = 0,

that implies (4.1.28). Notice that, if µ is constant then µ = 0, since the Einstein-type structure is non trivial.
Assume then that µ = 0. Hence (4.0.6) reduces to

1

2
LX⟨ , ⟩ =

(
λ− Sφ

m

)
⟨ , ⟩

dφ(X) = 0,

(4.1.31)

that is, X is a vertical conformal vector field.
Remark 4.1.32. In the assumptions above, X is a vertical Killing vector field, that is,

1

2
LX⟨ , ⟩ = 0

dφ(X) = 0.
(4.1.33)

if and only if
λ =

Sφ

m
. (4.1.34)

This may happen, since (M, ⟨ , ⟩) has constant φ-scalar curvature, only if λ is constant and, if M is compact,
using Corollary 4.1.26, only in case λ ≥ 0.

When λ is constant and X is non-Killing we have that X is a vertical homothetic vector field. In the
complete case, we have

Proposition 4.1.35. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 that supports a
Einstein-type structure as (4.0.1) for some λ ∈ R, µ = 0, X ∈ X(M) non-Killing, where φ :M → (N, ⟨ , ⟩N )
and α ∈ R \ {0}. Assume that (4.0.1) reduces to a harmonic-Einstein structure. Then (M, ⟨ , ⟩) is flat, φ is
constant and

λ ̸= Sφ

m
. (4.1.36)
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Proof. Our hypothesis implies that (4.1.31) holds. Since X is non-Killing we have, from the first equation
of (4.1.31), the validity of (4.1.36). Then X is a vertical homothetic, non-Killing vector field. By a result
known to Tashiro, Theorem 4.1 of [T], if a complete Riemannian manifold (M, ⟨ , ⟩) admits a homothetic
non-Killing vector field then (M, ⟨ , ⟩) is flat. Then (M, ⟨ , ⟩) is flat and thus, since (M, ⟨ , ⟩) is harmonic-
Einstein, φ is a weakly conformal map. The φ-scalar curvature of (M, ⟨ , ⟩) is constant, because (M, ⟨ , ⟩)
harmonic-Einstein, but since (M, ⟨ , ⟩) is flat S = 0 and thus Sφ = −α|dφ|2. In conclusion |dφ|2 and thus
φ is homothetic. Assume by contradiction that φ is non-constant. Then, since φ is homothetic, there exists
a ∈ R+ such that

φ∗⟨ , ⟩ = a

m
⟨ , ⟩.

Evaluating the above along X we get
|dφ(X)|2 =

a

m
|X|2

and from the second equation of (4.1.31) we obtain that |X|2 = 0 and thus X = 0, that is a contradiction,
since X is not Killing.

When λ is a generic function, as an easy application of Proposition 4.1.14, we can deal with the compact
case.

Corollary 4.1.37. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 2 that supports a
Einstein-type structure as (4.0.1) for some λ ∈ C∞(M), µ = 0, X ∈ X(M) non-Killing, φ :M → (N, ⟨ , ⟩N )
smooth and α > 0. Assume that (4.0.1) reduces to a harmonic-Einstein structure. Then φ is constant and
(M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature

κ =
Sφ

m(m− 1)

immersed in Rm+1. Moreover, up to a translation, λ is a first order spherical harmonic (in particular, λ is
non-constant).

Proof. Our hypothesis implies X is a vertical conformal, non-Killing vector field, that is, (4.1.31) holds. As
we seen in Proposition 4.1.14, if a compact harmonic-Einstein manifold of dimension m ≥ 2 with α > 0
supports a vertical conformal, non-Killing vector field then it is isometric to a sphere immersed in Rm+1 and
φ is constant. As a consequence Sφ = S is a positive constant. Moreover the conformal factor

η = λ− Sφ

m

of X is a first order spherical harmonic.

4.2 Gradient Einstein-type structures
In the gradient case the Einstein-type structure (4.0.1) is given by{

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f),

(4.2.1)

where φ : M → (N, ⟨ , ⟩N ) is smooth, f, λ ∈ C∞(M), µ ∈ R and α ∈ R \ {0}. We know that the structure
(4.2.1) reduces to a harmonic-Einstein structure if and only if (4.0.6) holds, that in our setting is given by,Hess(f)− µdf ⊗ df =

(
λ− Sφ

m

)
⟨ , ⟩

dφ(∇f) = 0,

(4.2.2)

Moreover, the structure is non trivial provided f non-constant.
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Remark 4.2.3. For µ = 0 (4.2.2) reads Hess(f) =
(
λ− Sφ

m

)
⟨ , ⟩

dφ(∇f) = 0,

(4.2.4)

that is, ∇f is a vertical conformal vector field. For µ ̸= 0 we set

u := e−µf (4.2.5)

Clearly u > 0 on M ,
∇u = −µu∇f,

Hess(u) = −µu(Hess(f)− µdf ⊗ df),

and f is non-constant if and only if u is non-constant. Then (4.2.2) is equivalent toHess(u) = −µu
(
λ− Sφ

m

)
⟨ , ⟩

dφ(∇u) = 0,

(4.2.6)

that is, ∇u is a vertical conformal vector field.
In both the cases above we have the existence of a function v ∈ C∞(M) such that ∇v is vertical and

conformal. In the following Proposition we show that the conformal factor of a gradient vertical conformal
vector field on a harmonic-Einstein manifold assumes a particular form.

Proposition 4.2.7. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 2 such that Tφ is zero,
where Tφ is the traceless part of the φ-Ricci tensor, and Sφ is constant. Let v ∈ C∞(M) be such that ∇v is
a vertical conformal vector field, that is, {

Hess(v) = η⟨ , ⟩
dφ(∇v) = 0

(4.2.8)

for some η ∈ C∞(M). Then there exists ζ ∈ R such that

Hess(v) + Sφ

m(m− 1)
v⟨ , ⟩ = ζ⟨ , ⟩. (4.2.9)

If Sφ ̸= 0 then

v =
m(m− 1)

Sφ
(ζ − η). (4.2.10)

As a consequence if ∇v is homothetic and non-Killing, that is, if η ∈ R \ {0}, then Sφ = 0. If M is compact
and v is non-constant then Sφ > 0.

Proof. Tracing the first equation of (4.2.8) we deduce

∆v

m
= η, (4.2.11)

Taking the divergence of the first equation of (4.2.8) and using (4.2.11) we deduce

vijj = (ηδij)j = ηi =

(
∆v

m

)
i

. (4.2.12)
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On the other hand, commutating the last two indexes of vjij , using the definition of Ricφ, the second equation
of (4.2.8), that Tφ = 0 and that Sφ is constant we get

vjij =vjji +Rkjijvk

=(∆v)i +Rijvj

=(∆v)i +Rφijvj + αφai φ
a
j vj

=(∆v)i +
Sφ

m
vi

=

(
∆v +

Sφ

m
v

)
i

,

Comparing it with (4.2.12) we deduce, since M is connected, there exists ζ ∈ R such that

∆v +
Sφ

m
v =

∆v

m
+ (m− 1)ζ,

or equivalently,
∆v

m
= ζ − Sφ

m(m− 1)
v.

Since the first equation of (4.2.8) can be written as

Hess(v) = ∆v

m
⟨ , ⟩,

from the above we deduce the validity of (4.2.9).
If we suppose that Sφ ̸= 0 then we can define

v̄ := v − m(m− 1)ζ

Sφ
.

Notice that, using (4.2.9),
Hess(v̄) + Sφ

m(m− 1)
v̄⟨ , ⟩ = 0. (4.2.13)

Moreover, from the first equation of (4.2.8) and the above,

η⟨ , ⟩ = Hess(v) = Hess(v̄) = − Sφ

m(m− 1)
v̄⟨ , ⟩,

that implies
− Sφ

m(m− 1)
v̄ = η.

Hence, recalling the definition of v,

v − m(m− 1)ζ

Sφ
= v̄ = −m(m− 1)η

Sφ
,

that is (4.2.10).
Suppose that η is constant. Assume by contradiction Sφ ̸= 0. From (4.2.10), v is constant, that is a

contradiction since ∇v is non-Killing.
Assume M is compact and v is non-constant. If, by contradiction, Sφ = 0 by tracing (4.2.9) we obtain

∆v = mζ, hence v is constant, that is a contradiction. Then Sφ ̸= 0. Taking the trace of (4.2.13) and
multiplying it by v, integrating and using the divergence theorem we getˆ

M

|∇v|2 =
Sφ

m− 1

ˆ
M

v2.

Since v is non-constant also v is non constant and thus Sφ > 0.
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Complete Riemannian manifolds that admits a non trivial solution v ∈ C∞(M) of

Hess(v) + κv⟨ , ⟩ = ζ⟨ , ⟩, (4.2.14)

for some κ ∈ R and some ζ ∈ R \ {0}, have been studied from the Japanese school between the 60’s and the
80’s. Notice that, if κ ̸= 0, by setting

v̄ = v +
ζ

κ
,

then v̄ solves
Hess(v̄) + κv̄⟨ , ⟩ = 0.

Unifying in a single statement the results of M. Obata, Y. Tashiro and M. Kanai obtained, respectively, in
[O], [T] and [K] (see also Theorem 2.10 of [MRS] and Theorem 8.5 of [AMR] for more modern and readable
proof), we obtain

Theorem 4.2.15. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m. There exists a non-
trivial solution v ∈ C∞(M) of (4.2.14) for some κ ∈ R and some ζ ∈ R \ {0} if and only if, according to the
sign of κ,

i) (M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature κ immersed in Rm+1, in case κ > 0.
Moreover, up to a translation, v is a first order spherical harmonic.

ii) (M, ⟨ , ⟩) is isometric to the Euclidean space of dimension m, in case κ = 0. Moreover

v(x) =
ζ

2
|x|2 + ⟨b, x⟩+ c

for some b ∈ Rm and c ∈ R.

iii) (M, ⟨ , ⟩) is isometric to the hyperbolic space of constant sectional curvature κ and of dimension m, in
case κ < 0 and v has precisely one critical point. Moreover, up to a translation, v solves ∆v+mκv = 0.

In order to obtain a complete viewpoint on gradient vertical conformal vector fields the only remaining
case to deal is the one where the vector field is Killing.
Remark 4.2.16. Let (M, ⟨ , ⟩) be a complete Riemannian manifold and φ : (M, ⟨ , ⟩) → (N, ⟨ , ⟩N ) a smooth
map. Assume f ∈ C∞(M) is a non-trivial affine function such that ∇f is vertical, that is, f is non constant
and satisfies {

Hess(f) = 0

dφ(∇f) = 0.
(4.2.17)

The first equation of (4.2.17), via the Innami splitting theorem [I], yields that (M, ⟨ , ⟩) splits as a Riemannian
product R×Σ, where Σ is any level set of f , that is a totally geodesic hypersurface of (M, ⟨ , ⟩) when endowed
with the induced metric ⟨ , ⟩Σ := ı∗⟨ , ⟩, where ı : Σ →M is the inclusion.

Moreover, identifying M with R× Σ, the second equation of (4.2.17) implies that

φ = ψ ◦ πΣ, (4.2.18)

where ψ := φ|Σ = φ ◦ ı and πΣ : R× Σ → Σ is the canonical projection.
In order to obtain (4.2.18) we quickly review how the isometry of the Innami splitting theorem is con-

structed. From the first equation of (4.2.17) we have that |∇f |2 is constant on M , and since f is non-constant,
|∇f | = a > 0. We set Σ := f−1({b}) for some b ∈ R (such that Σ ̸= ∅). Since ∇f ̸= 0 on Σ, then Σ is a
smooth hypersurface of M . We set

Y :=
∇f
a
,

then Y is a complete vector field defined on Σ that is normal to Σ and that defines an orientation. Moreover,
the flow of the vector field Y

ϕ : R× Σ →M
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coincide with the normal exponential map to Σ and is bijective. Finally, the signed distance function from
Σ is given by

f

a
,

hence identifying M with R× Σ we get
f(t, x) = at+ b.

To obtain that ϕ is an isometry is sufficient to endow Σ with the induced metric ⟨ , ⟩Σ, R with the Euclidean
metric dt⊗ dt (so that the gradient of f has norm a) and consider the product metric on R× Σ.

Finally, identifying M with R× Σ we have, via the second equation of (4.2.17), that

adφ

(
d

dt

)
= 0,

hence φ is independent from t ∈ R, that is, (4.2.18) holds. This means that the value of φ is conserved along
the flow of Y .

In conclusion, up to isometry, the only complete Riemannian manifolds (M, ⟨ , ⟩) endowed with a smooth
map φ : M → (N, ⟨ , ⟩N ) and a non constant function f ∈ C∞(M) such that (4.2.17) holds are given by
Riemannian products R × Σ and φ corresponds to ψ ◦ πΣ, where ψ : Σ → (N, ⟨ , ⟩N ) is a smooth map and
πΣ : R× Σ → Σ is the canonical projection.

In the next Theorem we deal with the complete case, when µ = 0.

Theorem 4.2.19. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 that supports a
non-trivial gradient Einstein-type structure as (4.2.1) for µ = 0, φ : M → (N, ⟨ , ⟩N ) smooth, α ∈ R \ {0}
and some f, λ ∈ C∞(M). Assume that (4.2.1) reduces to a harmonic-Einstein structure. We set

κ :=
Sφ

m(m− 1)
. (4.2.20)

Then κ is constant and

i) if κ > 0 then φ is constant and (M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature κ
immersed in Rm+1. Moreover, up to a translation, f is a first order spherical harmonic and λ+ κf is
constant. In particular λ is non constant;

ii) if κ < 0 then φ is constant (M, ⟨ , ⟩) is isometric to the hyperbolic space of constant sectional curvature
κ and of dimension m, in case f has precisely one critical point. Moreover, up to a translation, f
solves ∆f +mκf = 0 and λ+ κf is constant. In particular λ is non constant;

iii) if κ = 0 then λ is constant and

a) if λ ̸= 0 then φ is constant and (M, ⟨ , ⟩) is isometric to the Euclidean space Rm and

f(x) =
λ

2
|x|2 + ⟨x, b⟩+ c for every x ∈ Rm, (4.2.21)

for some b ∈ Rm and c ∈ R;
b) If λ = 0 then (M, ⟨ , ⟩) splits as the Riemannian product of R with a totally geodesic ψ-Ricci flat

hypersurface Σ, where ψ := φ|Σ. Moreover φ is given by ψ ◦ πΣ on R×Σ, where πΣ : R×Σ → Σ
is the canonical projection and the function f can be expressed on R× Σ as

f(t, x) = at+ b for every t ∈ R and x ∈ Σ, (4.2.22)

for some a > 0 and b ∈ R such that Σ = f−1({b}).
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Proof. First of all, notice that to prove that φ is constant it is sufficient to show that (M, ⟨ , ⟩) has constant
sectional curvature equal to κ given by (4.2.20). Indeed, if this is the case, we easily get S = Sφ and thus φ
is constant. Our assumptions implies the validity of (4.2.4). From Proposition 4.2.7, we deduce that

Hess(f) + Sφ

m(m− 1)
f⟨ , ⟩ = ζ⟨ , ⟩ (4.2.23)

for some constant ζ. If Sφ ̸= 0 the isometry and the fact that f̄ = f − ζ
κ solves

∆f̄ +mκf̄ = 0 (4.2.24)

follow from Theorem 4.2.15, using (4.2.23). Moreover, from (4.2.10), we immediately deduce

λ+ κf =
Sφ

m
+ ζ.

If Sφ = 0, combining (4.2.23) and (4.2.4), we deduce λ = ζ is constant. If λ ̸= 0 we conclude, once again, by
Theorem 4.2.15. If λ = 0 then f is a non trivial affine function, hence we conclude that (M, ⟨ , ⟩) splits by
Remark 4.2.16. It remains to prove only that (Σ, ⟨ , ⟩Σ) is ψ-Ricci flat. This fact follows easily from Remark
2.5.46, since (M, ⟨ , ⟩) is φ-Ricci flat and φ is given by ψ ◦ πΣ.

The next Theorem deals with the case µ ̸= 0. We sketch the main points of the proof because, essentially,
is the same as the proof of the Theorem above.

Theorem 4.2.25. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 that supports a
non trivial gradient Einstein-type structure as (4.2.1) for µ ̸= 0, φ :M → (N, ⟨ , ⟩N ), α ∈ R \ {0} and some
f, λ ∈ C∞(M). Assume that (4.2.1) reduces to a harmonic-Einstein structure. We set κ as in (4.2.20) and
u as in (4.2.5). Then κ is constant and there exists a constant ζ such that

µu

(
λ− κ

(m− 1)µ+ 1

µ

)
+ ζ = 0. (4.2.26)

i) If κ > 0 then φ is constant and (M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature κ
immersed in Rm+1. We set

ū := u− ζ

κ
. (4.2.27)

Then ū is a first order spherical harmonic. Moreover, ζ ̸= 0, that is, λ is non-constant.

ii) If κ < 0 then φ is constant (M, ⟨ , ⟩) is isometric to the hyperbolic space of constant sectional curvature
κ and of dimension m, in case f has precisely one critical point. We set

ū := u− ζ

κ
. (4.2.28)

Then ū solves ∆ū+mκū = 0. Moreover, λ is constant if and only if ζ = 0 and, if this is the case, then

λ = κ
(m− 1)µ+ 1

µ
. (4.2.29)

iii) If κ = 0 then (M, ⟨ , ⟩) is isometric to the Euclidean space Rm and

f(x) = − 1

µ
log

(
ζ

2
|x|2 + ⟨x, b⟩+ c

)
for every x ∈ Rm, (4.2.30)

for some b ∈ Rm and c ∈ R. In particular, λ = − ζ
µu is non-constant.
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Proof. Our assumptions and Remark 4.2.3 easily gives the validity of (4.2.6). From Proposition 4.2.7, we
deduce the validity of

Hess(u) + Sφ

m(m− 1)
u⟨ , ⟩ = ζ⟨ , ⟩ (4.2.31)

for some constant ζ. If Sφ ̸= 0 we proceed as in the proof of the Theorem above, with the difference that
from (4.2.10) we get

κu = ζ + µu

(
λ− Sφ

m

)
,

that is, (4.2.26). Observe that if λ is constant, since u is non-constant, from (4.2.26) we infer ζ = 0 and
(4.2.29) holds. The converse is trivial, hence λ is constant if and only if ζ = 0 and, in this case, (4.2.29)
holds. From the first equation of (4.2.1) we infer

Hess(f)− µdf ⊗ df =

(
λ− Sφ

m

)
⟨ , ⟩,

that is, using (4.2.29),
Hess(f)− µdf ⊗ df =

κ

µ
⟨ , ⟩.

If κ > 0 then, since we already know that (M, ⟨ , ⟩) is isometric to the sphere, M is compact and the above
gives a contradiction at the points of maximum of f if µ > 0 and at the point of minimum of f if µ < 0. To
conclude the proof of the cases where Sφ ̸= 0 notice also that the critical points of f and u coincides.

Assume Sφ = 0. Observe that ζ ̸= 0. Indeed, if by contradiction ζ = 0, from (4.2.31) u is an affine
function. On a complete Riemannian manifold there are no non-constant and positive affine function, see
Remark 4.2.16. Moreover u is constant if and only if f is constant, hence we get a contradiction. Then, from
(4.2.31), we deduce the isometry with the Euclidean space and that

u(x) =
ζ

2
|x|2 + ⟨x, b⟩+ c for every x ∈ Rm,

that implies (4.2.30). Moreover, from (4.2.26) we get µλu = −ζ.

In the compact case we get the following results, that shall be useful later. To prove them is sufficient to
show that Sφ > 0 and then apply Theorem 4.2.19 and Theorem 4.2.25, respectively. Notice that Sφ > 0 is
a consequence of Proposition 4.2.7.

Corollary 4.2.32. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 2 that supports a
non trivial gradient Einstein-type structure as (4.2.1) for µ = 0 and some f, λ ∈ C∞(M), φ :M → (N, ⟨ , ⟩N )
smooth and α ∈ R \ {0}. Assume that (4.2.1) reduces to a harmonic-Einstein structure. Then φ is constant
and (M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature

κ =
Sφ

m(m− 1)

immersed in Rm+1. Moreover, up to a translation, λ is a first order spherical harmonic (in particular, λ is
non-constant).

Corollary 4.2.33. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 2 that support a
gradient Einstein-type structure as in (4.2.1) for µ ̸= 0 and some f, λ ∈ C∞(M) with f non-constant, where
φ :M → (N, ⟨ , ⟩N ) and α ∈ R \ {0}. Assume that (4.2.1) reduces to a harmonic-Einstein structure. We set
κ as in (4.2.20) and u as in (4.2.5). Then φ is constant and (M, ⟨ , ⟩) is isometric to the sphere of constant
sectional curvature κ immersed in Rm+1. Moreover, up to a translation, u is a first order spherical harmonic
and (4.2.26) holds for some ζ ∈ R \ {0}. In particular, λ is non-constant.
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Chapter 5

Rigidity results in the compact case

In this Chapter we provide rigidity results for compact non-trivial Einstein-type structures. The general
procedure is to show that in case the φ-scalar curvature is constant the Einstein-type structure reduces to
a harmonic-Einstein structure. As a consequence of the results of Chapter 4 we conclude the isometry with
the sphere and the constancy of φ, that is the rigidity mentioned above. This procedure can be adapted also
in case one of the higher order symmetric function of the eigenvalues of the φ-Schouten tensor is a positive
constant, assuming that the Riemannian manifold is φ-Cotton flat (or equivalently, that the φ-Schouten
tensor is Codazzi). Observe that the constancy of the φ-scalar curvature is equivalent to the constancy of
the first order symmetric function of the eigenvalues of the φ-Schouten tensor σφ1 , see Remark 5.2.33, hence
this assumption generalize the previous one tp higher order curvatures.

In Section 5.1 we prove rigidity in case the φ-scalar curvature is constant. When µ = 0 we deal with
the generic case, obtaining rigidity when X is non-Killing, while when µ ̸= 0 we deal only with the gradient
case.

We begin Section 5.2 with Subsection 5.2.1, recalling the fundamental properties of Codazzi tensors, such
as Newton’s and Garding’s inequalities, and where we define the Newton endomorphisms and the higher order
curvatures. Those properties shall be useful in Subsection 5.2.2, where we prove rigidity results in case one
of the higher order symmetric function of the eigenvalues of the φ-Schouten tensor is a positive constant
and the Riemannian manifold is φ-Cotton flat (when µ = 0 we deal with the generic case, obtaining rigidity
when X is non-Killing, while when µ ̸= 0 we deal only with the gradient case, as in Section 5.1).

5.1 Rigidity with constant φ-scalar curvature
We prove two rigidity results, that distinguish between the cases µ = 0 and µ ̸= 0. We begin with the case
µ = 0 where we are able to study a generic Einstein-type structure.

Theorem 5.1.1. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 2 with an Einstein-type
structure of the form Ricφ +

1

2
LX⟨ , ⟩ = λ⟨ , ⟩

τ(φ) = dφ(X),
(5.1.2)

for some X ∈ X(M), λ ∈ C∞(M), α ∈ R \ {0} and φ : M → (N, ⟨ , ⟩N ) smooth. Assume that α > 0 and
that Sφ is constant. Then the structure (5.1.2) reduces to a harmonic-Einstein structure, that is,Ricφ =

Sφ

m
⟨ , ⟩

τ(φ) = 0.
(5.1.3)
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Proof. Recall that we have the validity of (3.1.14), that is,

1

2
∆XS

φ = −α|τ(φ)|2 − |Tφ|2 − (Sφ −mλ)
Sφ

m
+ (m− 1)∆λ,

where Tφ is the traceless φ-Ricci tensor, defined in (2.4.1). Tracing the first equation of (5.1.2) we obtain

Sφ −mλ = −div(X), (5.1.4)

thus inserting into the above we get

1

2
∆Sφ =

1

2
⟨X,∇Sφ⟩ − α|τ(φ)|2 − |Tφ|2 + Sφ

m
div(X) + (m− 1)∆λ.

Integrating over M , using the divergence theorem and integrating by parts we infer

m− 2

2m

ˆ
M

⟨X,∇Sφ⟩ =
ˆ
M

(|Tφ|2 + α|τ(φ)|2).

Since α > 0 and Sφ is constant we get Tφ = 0 and τ(φ) = 0, hence (5.1.3) holds. Then (M, ⟨ , ⟩) is
harmonic-Einstein.

Combining the above Theorem with Corollary 4.1.37 and Corollary 4.2.32 we easily obtain

Corollary 5.1.5. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 2 with an Einstein-
type structure of the form (5.1.2), for some X ∈ X(M), λ ∈ C∞(M), α ∈ R \ {0} and φ : M → (N, ⟨ , ⟩N )
smooth. Assume that Sφ is constant. Then φ is constant and (M, ⟨ , ⟩) is isometric to the sphere of constant
sectional curvature κ immersed in Rm+1, where κ is given by

κ =
Sφ

m(m− 1)
, (5.1.6)

provided one of the following holds:

i) X is non-Killing and α > 0.

ii) X = ∇f for some non-constant f ∈ C∞(M).

Moreover, up to a translation, λ is a first order spherical harmonic.

The following Theorem is the result analogous to Theorem 5.1.1 for gradient Einstein-type structures
with µ ̸= 0. However its proof is not based on equation (3.1.17), as probably expected, but on the powerful
identity (5.1.14) below.

Theorem 5.1.7. Let (M, ⟨ , ⟩) be a compact manifold of dimension m ≥ 2 with a gradient Einstein-type
structure of the form {

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f),

(5.1.8)

for some f, λ ∈ C∞(M), α, µ ∈ R \ {0} and φ : M → (N, ⟨ , ⟩N ) smooth. Assume that Sφ is constant and
α > 0. Then the structure (5.1.8) reduces to a harmonic-Einstein structure, that is, (5.1.3) holds.

Proof. Let
u := e−µf (5.1.9)

We compute div(Tφ(∇u, ·)♯). Exploiting the definition of Tφ, in a local orthonormal coframe, we have

(Tφijui)j = Tφij,jui + Tφijuij = Rφij,jui −
Sφi
m
ui + Tφijuij . (5.1.10)
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Using (5.1.9) a computation yields

ui = −µufi, uij = −µu(fij − µfifj), (5.1.11)

so that, using the first equation of (5.1.8)

uij = µu(Rφij − λδij). (5.1.12)

Moreover from (1.2.26), the first equation of (5.1.11) and the second equation of (5.1.8)

Rφij,jui =
1

2
Sφi ui − αφajjφ

a
i ui =

1

2
Sφi ui + µuαφajjφ

a
i fi =

1

2
Sφi ui + µuαφaiiφ

a
jj . (5.1.13)

Inserting (5.1.12) and (5.1.13) into (5.1.10), since Tφ is traceless, we obtain

(Tφijui)j =
1

2
Sφi ui + µuαφaiiφ

a
jj −

Sφi
m
ui + µTφij(R

φ
ij − λδij)u

=
m− 2

2m
Sφi ui + µ(αφaiiφ

a
jj + TφijT

φ
ij)u,

that is, in global notation

div(Tφ(∇u, ·)♯) = m− 2

2m
⟨∇Sφ,∇u⟩+ µ(α|τ(φ)|2 + |Tφ|2)u. (5.1.14)

Since Sφ is constant, integrating over M and using the divergence theorem we deduce

µ

ˆ
M

(α|τ(φ)|2 + |Tφ|2)u = 0.

From µ ̸= 0, α > 0 and u > 0 on M we obtain Tφ = 0, that is the first equation of (5.1.3), and τ(φ) = 0,
that is the second equation of (5.1.3).

Combining the Theorem above with Corollary 4.2.33 we immediately get

Corollary 5.1.15. Let (M, ⟨ , ⟩) be a compact manifold of dimension m ≥ 2 with a non trivial gradient
Einstein-type structure of the form (5.1.8) for some f, λ ∈ C∞(M), α, µ ∈ R \ {0} and φ : M → (N, ⟨ , ⟩N )
smooth. Assume that Sφ is constant and α > 0. Then φ is constant and (M, ⟨ , ⟩) is isometric to the sphere
of constant sectional curvature κ immersed in Rm+1, where κ is given by (5.1.6). Finally, up to a translation,
u is a first order spherical harmonic, where u is defined by (5.1.9), and for some ζ ∈ R \ {0},

λ = − ζ

µu
+

1 + (m− 1)µ

µ
κ.

In particular λ is non constant.

5.2 Rigidity for φ-Cotton flat manifolds
Next we present two more rigidity results, again distinguishing between the cases µ = 0 and µ ̸= 0. In both
the results we assume that the manifold is φ-Cotton flat. We begin with some remarks on Codazzi tensor
fields, since a manifold is φ-Cotton flat if and only if the φ-Schouten tensor is a Codazzi tensor field.
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5.2.1 Codazzi tensor fields and useful formulas
In this section we present a general formula for a 2-times covariant, symmetric tensor field T on a Riemannian
manifold (M, ⟨ , ⟩) of dimension m. For x ∈M fixed, we set

λ1 ≤ . . . ≤ λm,

to denote the (possibly coinciding) eigenvalues of T at x and we consider the elementary symmetric functions
of the eigenvalues of T

S0 := 1, Sk :=
∑

1≤i1<...<ik≤m

λi1 . . . λik for 1 ≤ k ≤ m. (5.2.1)

In other words the Sk’s are the coefficients of the polynomial expansion

det(I + λT ) =

m∑
k=0

Skλ
k, (5.2.2)

where I is the identity. As usual we normalize the Sk’s by setting

Sk =

(
m

k

)
σk,

obtaining the normalized symmetric function of the eigenvalues of T . In this way we obtain the validity of
Newton’s inequalities in the form

σk−1σk+1 ≤ σ2
k for 1 ≤ k ≤ m− 1. (5.2.3)

Furthermore, if σk−1 ̸= 0 at x, equality holds in (5.2.3) if and only if all the eigenvalues of T at x are equal.
The σk’s give rise to continuous functions on M and, from the classic results of [G], we deduce that if for
some k, 1 ≤ k ≤ m, we have σk > 0 everywhere on M then, for 1 ≤ i ≤ k, σi > 0 on M and furthermore,
Gårding’s inequalities hold,

σ1 ≥ σ
1
2
2 ≥ . . . ≥ σ

1
k

k , (5.2.4)
with equality at a point x ∈ M at some stage of the chain if and only if T has equal eigenvalues at x. The
next Lemma follows directly by (5.2.4) and will be used later.

Lemma 5.2.5. In the notations above suppose that σk > 0 on M for some 2 ≤ k ≤ m− 1, where m ≥ 3 is
the dimension of M . Then

σ1σk − σk+1 ≥ 0 (5.2.6)
with equality holding at a point x ∈M if and only if T is proportional to the metric at x.

Proof. Since σk > 0 on M , by Gårding’s inequalities

σ1 ≥ . . . ≥ σ
1

k−1

k−1 ≥ σ
1
k

k > 0.

From σk−1 > 0 on M and Newton’s inequalities (5.2.3)

σk+1 =
σk+1σk−1

σk−1
≤ σ2

k

σk−1
= σk

σk
σk−1

.

We claim
σk
σk−1

≤ σ1,

and since σk > 0, from the above we obtain

σk+1 ≤ σkσ1,
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that is (5.2.6). It remains to prove the claim. We use Gårding’s inequalities twice and σ1, σk > 0 to deduce

σk = σ
1
k

k σ
k−1
k

k ≤ σ1σ
k−1
k

k ≤ σ1σk−1.

Since σk−1 > 0 this implies the claim. Observe that the equality in (5.2.6) holds at a point if and only if T
is proportional to the metric at that point since this forces Newton’s inequality and Gårding’s inequalities,
used to prove the validity of (5.2.6), to be equalities at that point.

Associated with T one considers the Newton endomorphisms

Pk = Pk(T ) : X(M) → X(M) for 0 ≤ k ≤ m,

inductively defined by
P0 := I, Pk := SkI − t ◦ Pk−1 for 1 ≤ k ≤ m, (5.2.7)

where t : X(M) → X(M) is the endomorphism induced by T . Notice that

Pk =

k∑
i=0

(−1)1
(

m

k − i

)
σk−1t

i

and, from Cayley-Hamilton theorem and (5.2.2), Pm = 0 on M . Moreover, having set

ck := (m− k)

(
m

k

)
, (5.2.8)

we have
tr(Pk) = (m− k)Sk = ckσk, tr(t ◦ Pk−1) = kSk = ck−1σk. (5.2.9)

The Newton’s endomorphisms give rise to a family of second order differential operators Lk defined as follows.
Setting hess(u) for the endomorphism induced by Hess(u), where u ∈ C2(M),

Lku := tr(Pk ◦ hess(u)). (5.2.10)

A computation shows that Lk can be written in the form:

Lku = div(Pk(∇u))− ⟨div(Pk),∇u⟩. (5.2.11)

Obviously,
div(P0) = 0 = div(Pm). (5.2.12)

To compute div(Pk) for the remaining values of k we introduce the 3-times covariant tensor field C of
components

Cijk := Tij,k − Tik,j . (5.2.13)

Using the definition of Pk, for 1 ≤ k ≤ m− 1,

div(Pk)j = −div(Pk−1)iTij − Cijs(Pk)is. (5.2.14)

In particular when T is a Codazzi tensor field all the Newton’s endomorphisms are divergence free. Hence
if T is Codazzi equation (5.2.11) becomes

tr(Pk ◦ hess(u)) = Lku = div(Pk(∇u)), (5.2.15)

We remark that, having fixed the 2-times covariant tensor field T , we can define an operator

L̃k : X(M) → X(M) for 0 ≤ k ≤ m,
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by setting, for every Z ∈ X(M)

L̃k(Z) :=
1

2
tr(Pk ◦ lZ), (5.2.16)

where lZ : X(M) → X(M) is the endomorphism associated to the Lie derivative of the metric in the direction
of Z

LZ⟨ , ⟩.

A computation yields
L̃k(Z) = div(Pk(Z))− ⟨div(Pk), Z⟩,

hence if T is Codazzi
L̃k(Z) = div(Pk(Z)).

We then obtain the following generalization of (5.2.15)

div(Pk(Z)) =
1

2
tr(Pk ◦ lZ). (5.2.17)

5.2.2 Rigidity with constant higher order φ-scalar curvature
In order to obtain the next rigidity results we shall make use of

Lemma 5.2.18. Let (M, ⟨ , ⟩) and (N, ⟨ , ⟩N ) be Riemannian manifolds, φ : M → (N, ⟨ , ⟩N ), X ∈ X(M),
α ∈ R \ {0} and suppose that the following compatibility condition holds

τ(φ) = dφ(X). (5.2.19)

Let tr(Cφ) be the 1-form defined in (2.4.4), then

tr(Cφ)(X) = α|τ(φ)|2. (5.2.20)

In particular if the φ-Schouten tensor, defined in (1.2.10), is a Codazzi tensor then φ must be harmonic.

Proof. In a local orthonormal coframe (5.2.19) reads

φaii = φaiX
i

and from (1.2.36)
tr(Cφ)i = αφakkφ

a
i ,

hence we easily conclude

tr(Cφ)(X) = tr(Cφ)iXi = αφakkφ
a
iX

i = αφakkφ
a
ii = α|τ(φ)|2,

that is, (5.2.20). Observe that, by definition (1.2.31), if Aφ is a Codazzi tensor then Cφ = 0. If this is the
case, from α ̸= 0 and (5.2.20) we deduce τ(φ) = 0.

In the following we will denote by σφk and Pφk the normalized kth symmetric function of the eigenvalues of
the φ-Schouten tensor, for brevity, the kth φ-scalar curvature and the Newton endomorphism corresponding
to the φ-Schouten tensor, respectively.

Theorem 5.2.21. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 3 with an Einstein-
type structure of the form (5.1.2) with X ∈ X(M), λ ∈ C∞(M), α ∈ R\{0} and φ :M → (N, ⟨ , ⟩N ) smooth.
Suppose that (M, ⟨ , ⟩) is φ-Cotton flat, that is,

Cφ = 0 (5.2.22)

and that σφk is a positive constant for some k = 2, . . . ,m− 1. Then (5.1.2) reduces to a harmonic-Einstein
structure.

94



Remark 5.2.23. If m = 2 then Aφ = Tφ, hence σφ1 = 0 and thus, from Newton’s inequality σφ2 ≤ 0. This
motivates the hypothesis m ≥ 3.

Proof. Since (5.2.22) holds the φ-Schouten tensor Aφ is a Codazzi tensor. Then (5.2.17) holds T = Aφ, that
is, for Z = X,

div(Pφk (X)) =
1

2
tr(Pφk ◦ lX). (5.2.24)

Expressing the first equation of (5.1.2) in terms of Aφ we obtain

1

2
LX⟨ , ⟩ = − Sφ

2(m− 1)
⟨ , ⟩ −Aφ + λ⟨ , ⟩,

so that
1

2
lX =

(
λ− Sφ

2(m− 1)

)
I − aφ, (5.2.25)

where lX and aφ denotes the endomorphisms of X(M) induced by LX⟨ , ⟩ and Aφ, respectively. Inserting
(5.2.25) in (5.2.24) a computation using (5.2.9) yields

div(Pφk (X)) = ck

[(
λ− Sφ

2(m− 1)

)
σφk − σφk+1

]
, (5.2.26)

where ck is defined in (5.2.8). Since we are assuming that σφk > 0, from Lemma 5.2.5 we deduce the validity
of

σφ1 σ
φ
k − σφk+1 ≥ 0, (5.2.27)

equality holding at a point if and only if at that point Aφ, and therefore Ricφ, is proportional to the metric.
Since M is compact by the Hodge-de Rham decomposition (see, for instance, [ABR])

X = ∇h+ Y,

for some h ∈ C∞(M) and Y ∈ X(M) with div(Y ) = 0. Thus, div(X) = ∆h and tracing the first equation of
(5.1.2)

Sφ +∆h = mλ,

that can be rewritten in the following way:

σφ1 +
∆h

m
= λ− Sφ

2(m− 1)
,

where we used that, tracing (1.2.10),

σφ1 =
tr(Aφ)
m

=
Sφ

m
− Sφ

2(m− 1)
. (5.2.28)

Plugging into (5.2.26) we have

div(Pφk )(X) = ck

(
σφ1 σ

φ
k − σφk+1 +

σφk
m

∆h

)
.

Integrating on M , since σφk is constant, we infer:
ˆ
M

(σφ1 σ
φ
k − σφk+1) = 0.

By (5.2.27) and the above we deduce that the actually equality holds in (5.2.27) all on M . It follows that Aφ
is a trivial Codazzi tensor field, that is, is a constant multiple of the metric ⟨ , ⟩. In particular Sφ is constant
and also Ricφ is proportional to the metric on all M . Combining it with Lemma 5.2.18 we conclude that
(M, ⟨ , ⟩) is harmonic-Einstein.
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Combining the above Theorem with Corollary 4.1.37 and Corollary 4.2.32 we easily obtain
Corollary 5.2.29. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 3 with an Einstein-
type structure of the form (5.1.2) with X ∈ X(M), λ ∈ C∞(M), α ∈ R\{0} and φ :M → (N, ⟨ , ⟩N ) smooth.
Suppose that (M, ⟨ , ⟩) is φ-Cotton flat and that σφk is a positive constant for some k = 2, . . . ,m− 1. Then
φ is constant and (M, ⟨ , ⟩) is isometric to the sphere of constant sectional curvature κ immersed in Rm+1,
where κ is given by

κ =
2(σφk )

1
k

m− 2
, (5.2.30)

provided one of the following holds:
i) X is non-Killing and α > 0.

ii) X = ∇f for some non-constant f ∈ C∞(M).
Moreover, up to a translation, λ is a first order spherical harmonic.
Proof. The only thing we need to prove is the validity of (5.2.30). Notice that, since Aφ is proportional to
the metric, using (5.2.28) and the constancy of φ

m− 2

2m(m− 1)
S = σφ1 = (σφ2 )

1
2 = . . . = (σφm)

1
m .

Thus we have
κ =

S

m(m− 1)
=

2(σφk )
1
k

m− 2
,

as in (5.2.30).

In Theorem 5.2.21 we dealt with the case µ = 0 with a general vector field X. Now we consider the case
µ ̸= 0 but we restrict ourselves to the gradient case, X = ∇f for some f ∈ C∞(M). We have
Theorem 5.2.31. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 3 with a non trivial
gradient Einstein-type structure of the form (5.1.8), with φ : M → (N, ⟨ , ⟩N ) smooth, f, λ ∈ C∞(M) and
µ, α ∈ R\{0}. Suppose that (M, ⟨ , ⟩) is φ-Cotton flat, that is (5.2.22) holds, that f is non-constant and that
σφk is a positive constant for some k = 2, . . . ,m− 1. Then (5.1.8) reduces to a harmonic-Einstein structure.
Proof. We set

u := e−µf .

Then
Ricφ − 1

µu
Hess(u) = λ⟨ , ⟩,

that is equivalent, using the definition of Aφ, to

Hess(u) = µu

[
Aφ −

(
λ− Sφ

2(m− 1)
⟨ , ⟩
)]

.

Then, as in the proof of Theorem 5.2.21 but using (5.2.15), we obtain

div(Pφk (∇f)) = µck

[
u(σφk+1 − σφ1 σ

φ
k ) +

σφk
mµ

∆u

]
.

Using constancy of σk and integrating on M we get

µck

ˆ
M

u(σφk+1 − σφ1 σ
φ
k ) = 0

and since u > 0 and µ ̸= 0,
σφk+1 − σφ1 σ

φ
k = 0, on M.

We now conclude as in Theorem 5.2.21.
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Combining the Theorem above with Corollary 4.2.33 we obtain

Corollary 5.2.32. Let (M, ⟨ , ⟩) be a compact Riemannian manifold of dimension m ≥ 3 with a non trivial
gradient Einstein-type structure as (5.1.8) with f, λ ∈ C∞(M), φ : M → (N, ⟨ , ⟩N ), α ∈ R \ {0} and
µ ∈ R \ {0}. Suppose that (M, ⟨ , ⟩) is φ-Cotton flat, that is (5.2.22) holds, and that σφk is a positive constant
for some k = 2, . . . ,m− 1. Then φ is constant and (M, ⟨ , ⟩) is isometric to a Euclidean sphere Sm in Rm+1

of constant sectional curvature κ given by (5.2.30).

Remark 5.2.33. Observe that, since
σφ1 =

m− 2

2(m− 1)
Sφ,

Theorem 5.1.1 and Theorem 5.1.7 can be interpreted as the case k = 1 of Theorem 5.2.21 and Theorem
5.2.31, respectively. In those Theorems the assumptions of φ-Cotton flatness and on the sign of the curvature
are unnecessary.
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Chapter 6

Gradient Einstein-type structures
with vanishing conditions on φ-Bach

In this Chapter we shall consider a Riemannian manifold (M, ⟨ , ⟩) with a non trivial gradient Einstein-type
structure of the form {

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f),

(6.0.1)

for some α ∈ R \ {0}, µ ∈ R, λ, f ∈ C∞(M) and φ : M → (N, ⟨ , ⟩N ). Our aim is to prove the structure
Theorem 6.4.1 below, generalizing Theorem 1.2 of [CMMR], and Theorem 6.4.3, that is new even in the
standard case where φ is constant.

We begin with Section 6.1, defining the tensor Dφ and computing the first two integrability conditions
related to the system (6.0.1), see (6.1.11) and (6.1.16). In case µ = − 1

m−2 , as we seen in Section 2.3,
the Riemannian manifold is conformally-Einstein and in the two integrability conditions, that are given by
(2.3.3) and (2.3.4), does not appear the tensor Dφ. This is justify from the fact that, as we shall see in
Remark 6.1.14, the vanishing of the tensor Dφ is related to the fact that the φ-Schouten tensor is Codazzi
in a conformal metric.

In Section 6.2 we show that Dφ = 0 and φ is harmonic provided that α > 0, µ ̸= − 1
m−2 , the potential

function f is proper and non constant and the φ-Bach tensor vanishes in the direction of ∇f . See Remark
6.2.13 for more details on those assumptions.

In Section 6.3, we draw the consequences on the local structure of (M, ⟨ , ⟩) of the vanishing of Dφ and
τ(φ). We show in Proposition 6.3.15 and Proposition 6.3.45 that the level set corresponding to a regular
value of f is a totally umbilical hypersurface with constant mean curvature that is harmonic-Eistein with
respect to the induced metric, α and the restriction of φ. Then in Proposition 6.3.29 we prove that Cφ = 0
on {x ∈M : ∇f(x) ̸= 0}.

In the last Section of the Chapter, that is Section 6.4, we combine the results of the previous Sections in
order to state and prove Theorem 6.4.1 and Theorem 6.4.3. In both those theorems we assume that (6.0.1)
satisfies the hypothesis mentioned above. In the first we prove that in a neighbourghood of every regular
level set of f , the manifold (M, ⟨, , ⟩) is isometric to a warped product with (m − 1)-dimensional totally
umbilical and with constant mean curvature harmonic-Einstein leaves (with respect to the induced metric, α
and the restriction of φ) and that φ can be recovered by its value on a single leaf. In the latter one we prove
that not only Dφ and τ(φ) must vanish but also Cφ and Bφ, when λ is constant of the foliation. Moreover
we prove that the traceless part of the φ-Ricci tensor Tφ belongs to the kernel of the curvature operator Wφ,
introduced in in Chapter 2. Assuming thus a genericity condition we get that (M, ⟨ , ⟩) is harmonic-Einstein.
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6.1 The tensor Dφ and the first two integrability conditions
In the following we shall use (3.1.15) and (3.1.16), which we report here for the reader’s convenience

Rφij,k −Rφik,j = ftRtikj + µ(fikfj − fijfk) + λkδij − λjδik, (6.1.1)

1

2
Sφi = Rφkifk + µ(fkifk −∆ffi) + (m− 1)λi. (6.1.2)

We now come to the definition of the tensor Dφ that shall reveal essential in our study.

Definition 6.1.3. Let m ≥ 3. In a local orthonormal coframe we let the components of Dφ be given by

Dφ
ijk :=

1

m− 2

[
Rφijfk −Rφikfj +

1

m− 1
ft(R

φ
tkδij −Rφtjδik)−

Sφ

m− 1
(fkδij − fjδik)

]
. (6.1.4)

We observe that if φ is a constant map then Dφ coincides with the tensor D defined in [CC], with a
different sign convention. The following properties are easily verified by computation.

Proposition 6.1.5. The tensor Dφ is skew-symmetric in the last two indices and it is totally trace free,
that is, in a local orthonormal coframe,

Dφ
ikj = −Dφ

ijk, (6.1.6)

Dφ
kii = Dφ

iki = Dφ
iik = 0. (6.1.7)

An essential feature of Dφ is that it can be expressed purely in terms of the potential function f . Indeed,
we have the following

Proposition 6.1.8. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

Dφ
ijk =

1

m− 2

[
fikfj − fijfk +

1

m− 1
ft(ftjδik − ftkδij)−

∆f

m− 1
(fjδik − fkδij)

]
. (6.1.9)

Proof. The proof is computational, using the first equation of (6.0.1). Taking its trace

Sφ +∆f = µ|∇f |2 +mλ,

hence using the above in the definition (6.1.4), together with the first equation of (6.0.1), we obtain

Dφ
ijk =

1

m− 2
[(−fij + µfifj + λδij)fk − (−fik + µfifk + λδik)fj ]

+
1

(m− 1)(m− 2)
ft[(−ftk + µftfk + λδtk)δij − (−ftj + µftfj + λδtj)δik]

− −∆f + µ|∇f |2 +mλ

(m− 1)(m− 2)
(fkδij − fjδik)

=
1

m− 2

[
fikfj − fijfk +

1

m− 1
ft(ftjδik − ftkδij)−

∆f

m− 1
(fjδik − fkδij)

]
,

that is (6.1.9).

Now we prove the first integrability condition of the system (6.0.1).

Proposition 6.1.10. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

Cφijk + ftW
φ
tijk = [1 + (m− 2)µ]Dφ

ijk. (6.1.11)
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Proof. Using (6.1.1) in (1.2.42) we obtain

Cφijk +
1

2(m− 1)

(
Sφk δij − Sφj δik

)
+ ftR

t
ijk − µ(fikfj − fijfk)− λkδij + λjδik = 0. (6.1.12)

We claim the validity of

Rtijkft =Wφ
tijkft −Dφ

ijk −
ft

m− 1
(Rφtkδij −Rφtjδik). (6.1.13)

We postpone its proof and we complete the proof of (6.1.11). Inserting (6.1.13) in (6.1.12) we obtain

0 =Cφijk +Wφ
tijkft −Dφ

ijk +
1

2(m− 1)
(Sφk δij − Sφj δik)

− µ(fikfj − fijfk)− λkδij + λjδik −
ft

m− 1
(Rφtkδij −Rφtjδik).

Using (6.1.2) we deduce

1

2(m− 1)
(Sφk δij − Sφj δik) =

1

m− 1
(Rφtkft + µ(ftkft −∆ffk) + (m− 1)λk)δij

− 1

m− 1
(Rφtjft + µ(ftjft −∆ffj) + (m− 1)λj)δik

=
ft

m− 1
(Rφtkδij −Rφtjδik) + µ

ft
m− 1

(ftkδij − ftjδik)

+ µ
∆f

m− 1
(fjδik − fkδij) + λkδij − λjδik,

and by plugging into the above equality we infer

0 =Cφijk +Wφ
tijkft −Dφ

ijk

− µ

[
fikfj − fijfk +

ft
m− 1

(ftjδik − ftkδij)ft +
∆f

m− 1
(fkδij − fjδik)

]
,

that implies (6.1.11), using (6.1.9). It remains to prove (6.1.13). Explicitating (1.2.10) in (1.2.18) we obtain

Rtijk −Wφ
tijk =

1

m− 2

[
Rφtjδik −Rφtkδij +Rφikδtj −Rφijδtk −

Sφ

m− 1
(δtjδik − δtkδij)

]
,

then, using (6.1.4), we deduce

Rtijkft −Wφ
tijkft =

1

m− 2

[
ft(R

φ
tjδik −Rφtkδij) +Rφikfj −Rφijfk −

Sφ

m− 1
(δikfj − δijfk)

]
=− 1

m− 2

[
Rφijfk −Rφikfj +

ft
m− 1

(Rφtkδij −Rφtjδik)−
Sφ

m− 1
(δijfk − δikfj)

]
− 1

m− 2

(
1− 1

m− 1

)
ft(R

φ
tkδij −Rφtjδik)

=−Dφ
ijk −

ft
m− 1

(Rφtkδij −Rφtjδik)

that is (6.1.13).

Remark 6.1.14. Notice that, combining the first integrability condition (6.1.11) with (1.3.28),

[1 + (m− 2)µ]Dφ
ijk = e−

3
m−2 f C̃φijk,
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where C̃φijk are the components of C̃φ in the local coframe {θ̃i} determined by the metric ⟨̃ , , ⟩ = e−
2

m−2 f ⟨ , ⟩.
That implies, using (1.3.4),

C̃φ = [1 + (m− 2)µ]Dφ.

Then Dφ is the description of the tensor C̃φ in terms of the metric ⟨ , ⟩, up to constant multiplicative factor.
The second integrability condition follows by taking the divergence of (6.1.11). Indeed we have the

following

Proposition 6.1.15. In the present setting, with m ≥ 3, in a local orthonormal coframe we have

(m− 2)Bφij + µWφ
tijkftfk −

m− 3

m− 2
Cφjikfk = [1 + (m− 2)µ]

(
Dφ
ijk,k −

α

m− 2
φakkφ

a
i fj

)
. (6.1.16)

Proof. We take the divergence of (6.1.11) and we use (6.0.1) and (1.2.45), together with (1.2.50), to obtain

[1 + (m− 2)µ]Dφ
ijk,k =(Cφijk + ftW

φ
tijk)k

=Cφijk,k + ftkW
φ
tijk + ftW

φ
tijk,k

=Cφijk,k + (−Rφtk + µftfk + λδtk)W
φ
tijk + fkW

φ
tjik,t

=Cφijk,k +RφtkW
φ
tikj + µWφ

tijkftfk + λWφ
kijk

+

[
m− 3

m− 2
Cφjki + α(φjiφ

a
k − φajkφ

a
i ) +

α

m− 2
φatt(φ

a
i δjk − φakδji)

]
fk

=(m− 2)Bφij + αRφkjφ
a
kφ

a
i − α

(
φaijφ

a
kk − φakkjφ

a
i −

1

m− 2
|τ(φ)|2δij

)
+ µWφ

tijkftfk − αλφai φ
a
j

+
m− 3

m− 2
Cφjkifk + α(φjiφ

a
kk − φajkfkφ

a
i ) +

α

m− 2
φatt(φ

a
i fj − φakkδji)

=(m− 2)Bφij + α

(
Rφkjφ

a
k + φakkj − λφaj − φajkfk +

1

m− 2
φakkfj

)
φai

+ µWφ
tijkftfk +

m− 3

m− 2
Cφjkifk.

Observe that from (6.0.1) we deduce the validity of

Rφjkφ
a
k + fjkφ

a
k = µφakkfj + λφaj ,

and by plugging it the above, together with (6.1.11), we obtain

[1 + (m− 2)µ]Dφ
ijk,k =(m− 2)Bφij + α

(
−fjkφak + µφakkfj + (φakfk)j − φajkfk +

1

m− 2
φakkfj

)
φai

+ µWφ
tijkftfk +

m− 3

m− 2
Cφjkifk

=(m− 2)Bφij +
α

m− 2
[1 + (m− 2)µ]φakkfj

+ µWφ
tijkftfk +

m− 3

m− 2
Cφjkifk,

and thus (6.1.16) follows.

Remark 6.1.17. In case µ = − 1
m−2 from (6.1.11) and (6.1.16) we respectively obtain (2.3.3) and (2.3.4).

Furthermore, when φ is constant, (6.1.11) and (6.1.16) extend, respectively, (4-5) and (4-6) of [CMMR],
with α = β = 1. Observe, however, that the normalization α = β = 1 that we adopt here is inessential.
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6.2 Vanishing of Dφ and τ(φ)

In what follows we shall assume the following vanishing condition on φ-Bach

Bφ(∇f, ·) = 0, (6.2.1)

the non-degeneracy condition
µ ̸= − 1

m− 2
(6.2.2)

and that f is proper, that is, the preimage of compact subsets is compact, and non constant. We shall
comment on these assumptions in Remark 6.2.13. Our aim is now to prove the following

Proposition 6.2.3. In the present setting, with m ≥ 3, assume (6.2.1) and define the vector field Y ∈ X(M)
of components

Y k := Dφ
ijkfifj . (6.2.4)

Then, if (6.2.2) holds, we have

m− 2

2
|Dφ|2 + α

m− 2
|τ(φ)|2|∇f |2 = div(Y ). (6.2.5)

Proof. Observe that (6.2.1) componentwise reads

Bφijfi = 0. (6.2.6)

Contracting (6.1.16) against ∇f and using the symmetries of Wφ and Cφ we deduce

(m− 2)Bφijfi = [1 + (m− 2)µ]

(
Dφ
ijk,kfi −

α

m− 2
|τ(φ)|2fj

)
.

Since (6.2.2) and (6.2.6) hold, we infer from the above

Dφ
ijk,kfi −

α

m− 2
|τ(φ)|2fj = 0.

Contracting once again against ∇f we get

Dφ
ijk,kfifj −

α

m− 2
|τ(φ)|2|∇f |2 = 0. (6.2.7)

To proceed we first prove the identity

|Dφ|2 =
2

m− 2
Dφ
ijkR

φ
ijfk. (6.2.8)

It can be proved using the definition (6.1.4) of Dφ and its properties (6.1.6) and (6.1.7) as follows:

|Dφ|2 =Dφ
ijkD

φ
ijk

=
1

m− 2
Dφ
ijk

[
Rφijfk −Rφikfj +

1

m− 1
ft(R

φ
tkδij −Rφtjδik)−

Sφ

m− 1
(fkδij − fjδik)

]
=

1

m− 2

[
Dφ
ijk(R

φ
ijfk −Rφikfj) +

1

m− 1
ft(D

φ
iikR

φ
tk −Dφ

ijiR
φ
tj)−

Sφ

m− 1
(fkD

φ
iik − fjD

φ
iji)

]
=

1

m− 2
Dφ
ijkR

φ
ijfk −

1

m− 2
Dφ
ikjR

φ
ijfk

=
2

m− 2
Dφ
ijkR

φ
ijfk.
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To obtain (6.2.5) from (6.2.7) notice that, using (6.1.6), (6.0.1) and (6.1.7)

Dφ
ijk,kfifj =(Dφ

ijkfifj)k −Dφ
ijkfikfj −Dφ

ijkfifjk

=(Dφ
ijkfifj)k −Dφ

ijkfikfj

=(Dφ
ijkfifj)k +Dφ

ijkfijfk

=(Dφ
ijkfifj)k +Dφ

ijk(−R
φ
ij + µfifj + λδij)fk

=(Dφ
ijkfifj)k −Dφ

ijkR
φ
ijfk + µDφ

ijkfifjfk + λDφ
iikfk

=(Dφ
ijkfifj)k −Dφ

ijkR
φ
ijfk,

and thus we conclude using (6.2.4) and (6.2.8).

We are now ready to prove the first important result of this Section.

Theorem 6.2.9. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m with an Einstein-type
structure as in (6.0.1). Suppose that m ≥ 3, that α > 0, that (6.2.2) and (6.2.1) hold and that f is proper
and non constant. Then Dφ = 0 and φ is harmonic.

Proof. Let c be a regular value of f and let Σc and Ωc be its corresponding sublevel hypersurface and set,
that is

Ωc := {x ∈M : f(x) ≤ c}, Σc := {x ∈M : f(x) = c} = ∂Ωc. (6.2.10)
Integrating (6.2.5) on M , that holds since we are assuming the validity of (6.2.1), and applying the divergence
theorem

m− 2

2

ˆ
Ωc

|Dφ|2 + α

m− 2

ˆ
Ωc

|τ(φ)|2|∇f |2 =

ˆ
Σc

⟨Y, ν⟩,

where ν is the outward unit normal to Σc and Y is the vector field with components defined by (6.2.4). Since
ν is in the direction of ∇f and since, using (6.1.6)

⟨Y,∇f⟩ = Y kfk = Dφ
ijkfifjfk = 0,

we obtain
m− 2

2

ˆ
Ωc

|Dφ|2 + α

m− 2

ˆ
Ωc

|τ(φ)|2|∇f |2 = 0.

Since c is an arbitrary regular point of f we easily conclude, letting c→ +∞,

m− 2

2

ˆ
M

|Dφ|2 + α

m− 2

ˆ
M

|τ(φ)|2|∇f |2 = 0.

and since α > 0 and, using the second equation in (6.0.1), the vanishing of |τ(φ)|2|∇f |2 is equivalent to the
harmonicity of φ, the thesis follows at once.

Remark 6.2.11. Note that we can give the vector field Y the following remarkable form:

(m− 1)Y = Ricφ(∇f,∇f)∇f − |∇f |2Ricφ(∇f, ·)♯. (6.2.12)

Indeed, from the definition (6.1.4) of Dφ

Dφ
ijkfi =

1

m− 2

[
Rφijfifk −Rφikfifj +

1

m− 1
ft(R

φ
tkfj −Rφtjfk)−

Sφ

m− 1
(fkfj − fjfk)

]
=

1

m− 2

[(
1− 1

m− 1

)
Rφijfifk −

(
1− 1

m− 1

)
Rφikfifj

]
=

1

m− 1
fi(R

φ
ijfk −Rφikfj).
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Therefore we have
Y k = Dφ

ijkfifj =
1

m− 1
(Rφijfifjfk −Rφikfi|∇f |

2),

that is (6.2.12).
Remark 6.2.13. Observe that in the degenerate case where µ = − 1

m−2 , that is, when (M, ⟨ , ⟩) is a confor-
mally harmonic-Einstein manifold by Theorem 2.3.5, the condition (6.2.1) is always satisfied. It follows by
contracting the second integrability condition (2.3.4) against ∇f , using the skew symmetry of Wφ in the
first two indexes. Observe that a sufficient condition to guarantee (6.2.1) is that (M, ⟨ , ⟩) is φ-Bach flat,
that is, Bφ = 0. In case m ̸= 4 this requirement is quite strong, since from Proposition 1.2.52 it implies φ
is a harmonic map. On the contrary in case m = 4 it seems a reasonable assumption, since Bφ is trace-
less. Notice that if M is compact then f is always proper, then the only requirement is that the gradient
Einstein-type structure is non trivial (that is, f is non constant), while, if M is noncompact and proper then
f must be automatically non constant. Finally, one can prove that if µ = 0 and λ is constant in the gradient
Einstein-type structure then the potential function f is proper, proceeding as in Proposition 8.12 of [AMR].

6.3 The geometry of the level sets of f

Our aim is now to analize the consequences of Theorem 6.2.9, that is, the two simultaneous conditions

i) Dφ = 0, ii) τ(φ) = 0,

on the geometry of the level hypersurface Σc = ∂Ωc, defined as in (6.2.10), for a regular value of f . We fix
the indexes ranges

1 ≤ i, j, . . . ≤ m, 1 ≤ a, b, . . . ≤ m− 1, 1 ≤ A,B, . . . ≤ n.

With respect to a local orthonormal coframe on M we have, combining i) and ii) above with (6.0.1),
Rφij + fij = µfifj + λδij ,

φAii = 0 = φAi fi,

Dφ
ijk = 0.

(6.3.1)

The following Proposition provides the relation between the norm of Dφ and the curvature of the level
hypersurfaces of f , it uses only the first and the last equation of (6.3.1).

Proposition 6.3.2. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3 that satisfies the first
equation of (6.3.1). Let c be a regular value of f and let Σc be the corresponding level hypersurface. For
p ∈ Σc choose a local first order frame along f , that is a local orthonormal frame {ei} such that e1, . . . , em−1

are tangent to Σc and
em =

∇f
|∇f |

.

Then, at p,
(m− 2)2

2|∇f |2
|Dφ|2 = |̊h|2|∇f |2 + m− 2

m− 1
RφamR

φ
am, (6.3.3)

where h̊ is the traceless part of h, the second fundamental form of Σc.

Proof. Let c be a regular value of f , p ∈ Σc and {ei} a local first order frame along f , then

fa = 0, fm = |∇f |. (6.3.4)

Let h be the second fundamental form of Σc, then (see proof of Proposition 6.1 of [CMMR])

h = habθ
a ⊗ θb ⊗ ν,

105



where
ν =

∇f
|∇f |

= em

and
hab = −θma (eb) = − fab

|∇f |
. (6.3.5)

Using the first equation of (6.3.1), that holds by hypothesis,

hab =
1

|∇f |
(Rφab − µfafb − λδab) =

1

|∇f |
(Rφab − λδab). (6.3.6)

The mean curvature h is defined as
h :=

haa
m− 1

. (6.3.7)

Tracing (6.3.6) we deduce the validity of

h =
1

|∇f |

(
Sφ −Rφmm
m− 1

− λ

)
. (6.3.8)

We denote by h̊ the traceless part of h, that is,

h̊ab := hab − hδab.

Using (6.3.6) and (6.3.8) we obtain

|̊h|2 =|h|2 − (m− 1)h2

=
1

|∇f |2

[
|Ricφ|2 − 2RφamR

φ
am − m

m− 1
(Rφmm)2 − 1

m− 1
(Sφ)2 +

2

m− 1
SφRφmm

]
,

that is,

|∇f |2 |̊h|2 = |Ricφ|2 − 2RφamR
φ
am − m

m− 1
(Rφmm)2 − 1

m− 1
(Sφ)2 +

2

m− 1
SφRφmm. (6.3.9)

Then we compute |Dφ|2 on M . A long and tedius computation yields the validity, where ∇f ̸= 0, of the
following

(m− 2)2

2|∇f |2
|Dφ|2 =|Ricφ|2 − m

m− 1
RφmaR

φ
ma −

m

m− 1
(Rφmm)2 − 1

m− 1
(Sφ)2 +

2

m− 1
SφRφmm. (6.3.10)

Indeed, using the definition (6.1.4) of Dφ we obtain, simplifying and rearranging the terms,

(m− 2)2

2
|Dφ|2 =|Ricφ||∇f |2 − m

m− 1
(Rφ)2ijfifj −

1

m− 1
(Sφ)2|∇f |2 + 2

m− 1
SφRφijfifj ,

where
(Rφ)2ij = RφikR

φ
jk.

Using (6.3.4) we deduce immediately

(Rφ)2ijfifj = [RφamR
φ
am + (Rφmm)2]|∇f |2, Rφijfifj = Rφmm|∇f |2,

so that, from the above, we conclude the validity of (6.3.10).
By plugging (6.3.9) in (6.3.10) we deduce the validity of (6.3.3).
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Remark 6.3.11. In the assumptions of Proposition 6.3.2, using also the third equation of (6.3.1), that is,
Dφ = 0 then Σc is totally umbilical, that is

h̊ = 0,

or equivalently
hab =

1

|∇f |

(
Sφ −Rφmm
m− 1

− λ

)
δab, (6.3.12)

and for every a = 1, . . . ,m− 1
Rφam = 0. (6.3.13)

Then, by plugging (6.3.12) in (6.3.6) we obtain

1

|∇f |
(Rφab − λδab) =

1

|∇f |

(
Sφ −Rφmm
m− 1

− λ

)
δab,

that is,
Rφab =

Sφ −Rφmm
m− 1

δab. (6.3.14)

In the following Proposition also the second equation of (6.3.1) comes into play.

Proposition 6.3.15. In the assumptions and the notations above, that is all the equations of (6.3.1) are
satisfied and c is a regular value of f , the quantities |∇f |, Sφ and λ and the mean curvature h are constants
on Σc. In particular Σc is totally umbilical hypersurface of (M, ⟨ , ⟩) with constant mean curvature. Moreover
ΣcSψ is constant on Σc, where

ΣcSψ = ΣcS − α|dψ|2Σc

is the ψ-scalar curvature of the Riemannian manifold (Σc, ⟨ , ⟩Σc
), where ⟨ , ⟩Σc

is the metric induced on Σc
and ψ := φ|Σc

.

Proof. We use the notations of Proposition 6.3.2. Clearly, using (6.3.4),

|∇f |2a
2

= fiafi = fma|∇f |,

hence from the first equation of (6.3.1) we obtain

|∇f |2a
2

= (−Rφma + µfmfa + λδma)|∇f | = (−Rφma + µfmfa)|∇f |.

Using in it once again (6.3.4), together with (6.3.13) we deduce

|∇f |2a = 0. (6.3.16)

Hence |∇f | is a positive constant on Σc (it is positive because c is a regular value for f).
The fact that dφ(∇f) = 0 implies the validity

φAm = 0, (6.3.17)

indeed, using (6.3.4),
φAi fi = φAm|∇f |,

and since |∇f | is positive we conclude that (6.3.17) holds.
The fact that the immersion is totally umbilical gives

(m− 2)hb = Rmb. (6.3.18)

Indeed, by Codazzi equation (see, for instance, (1.145) of [AMR])

hab,c = hac,b −Rmabc, (6.3.19)
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hence summing on a = c we get
hab,a = haa,b −Rmaba,

that is, using (6.3.7),
hab,a = (m− 1)hb −Rmb

Since the immersion is totally umbilical
hab,a = hb,

hence the above relation reads
hb = (m− 1)hb −Rmb,

that is (6.3.18).
Using the definition (1.2.2), (6.3.13) and (6.3.17),

Rmb = Rφmb + αφAmφ
A
b = 0. (6.3.20)

hence from (6.3.18) we get that Σc has constant mean curvature h.
Using (6.1.2) with i = b and (6.3.4) we get

1

2
Sφb = Rφmb|∇f |+ µfmk|∇f |+ (m− 1)λb,

so that, using (6.3.13) and the first equation of (6.3.1) we conclude

1

2
Sφb = µ(−Rφmb + µfbfm + λδmb)|∇f |+ (m− 1)λb,

that is, using once again (6.3.13) and (6.3.4),

1

2
Sφb = (m− 1)λb.

It follows that
1

2
Sφ − (m− 1)λ (6.3.21)

is constant on Σc. In particular, if we show that Sφ is constant on Σc we can conclude also that λ is constant
on Σc. To show that Sφ is constant on Σc we first observe that (6.3.8) can be rewritten as

|∇f |h =
Sφ −Rφmm
m− 1

− λ, (6.3.22)

or equivalently

(m− 1)|∇f |h = Sφ −Rφmm − (m− 1)λ =

(
1

2
Sφ − (m− 1)λ

)
+

1

2
Sφ −Rφmm,

and since both |∇f |h and (6.3.21) are constants on Σc we can conclude that also

1

2
Sφ −Rφmm

is constant on Σc. Then it is sufficient to show that Rφmm is constant to obtain that Sφ is constant and then
conclude. For this purpose, observe that using the first equation of (6.3.1), (6.3.4), (6.3.14) and (6.3.22)

faa = −Rφaa + µfafa + λδaa = −
(
Sφ −Rφmm
m− 1

)
(m− 1) + (m− 1)λ = −(m− 1)|∇f |h,

that is,
faa = −(m− 1)|∇f |h, (6.3.23)
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hence faa is constant on Σc. Using (6.1.2) with i = m and (6.3.4) we can conclude

1

2
Sφm =Rφkmfk + µ(fkmfk −∆ffm) + (m− 1)λm

=Rφamfa +Rφmm|∇f |+ µ(famfa + fmm|∇f | −∆f |∇f |) + (m− 1)λm

=Rφmm|∇f |+ µ(fmm −∆f)|∇f |+ (m− 1)λm

=Rφmm|∇f | − µfaa|∇f |+ (m− 1)λm,

hence
1

2
Sφm −Rφmm|∇f | − (m− 1)λm

is constant on Σc. Then, using once again that |∇f | and (6.3.21) are constants on Σc,

0 =

(
1

2
Sφm −Rφmm|∇f | − (m− 1)λm

)
a

=

(
1

2
Sφ − (m− 1)λ

)
am

−Rφmm,a|∇f |

=−Rφmm,a|∇f |,

so that Rφmm is constant on Σc and the proof of the constancy of Sφ on Σc is concluded.
We denote by ψ the restriction of φ on Σc, that is,

ψ = φ ◦ ı, (6.3.24)

where ı : Σc →M is the inclusion. By definition

dψ = ψAa θ
a ⊗ EA,

where
ψ∗ωA = ψAa θ

a.

Observe that
ψAa = φAa , (6.3.25)

indeed, using (6.3.24) and φ∗ωA = φAi θ
i, we get

ψ∗ωA = ı∗φ∗ωA = ı∗(φAi θ
i) = φAi ı

∗θi = φAa θ
a,

where we used the standard identification
ı∗θa = θa

and the fact that
ı∗θm = 0.

Notice that, from (6.3.25) and (6.3.17),

|dψ|2Σc
= ψAa ψ

A
a = φai φ

a
i = |dφ|2.

As a consequence, the ψ-scalar curvature of Σc, endowed with the metric ı∗⟨ , ⟩ := ⟨ , ⟩Σc , is given by
ΣcSψ = ΣcS − α|dφ|2, (6.3.26)

where ΣcS is the scalar curvature of (Σc, ⟨ , ⟩Σc
).

The Gauss equations (see, for instance, (1.139) of [AMR]) are given by
ΣcRabcd = Rabcd + hachbd − hadhbc,

109



and since the immersion is totally umbilical, the above reads
ΣcRabcd = Rabcd + h2(δacδbd − δadδbc).

Then, summing on a = c
ΣcRbd = Rbd −Rmbmd + (m− 2)h2δbd. (6.3.27)

Summing the above on b = d
ΣcS = S − 2Rmm + (m− 2)(m− 1)h2. (6.3.28)

Using (6.3.26), (6.3.28) and the definition of φ-scalar curvature of (M, ⟨ , ⟩) we obtain
ΣcSψ = Sφ − 2Rmm + (m− 2)(m− 1)h2.

Moreover, using the definition (1.2.2) and (6.3.17),

Rφmm = Rmm − αφAmφ
A
m = Rmm,

and since we already showed that Rφmm, Sφ and h are constants on Σc we get from the above that ΣcSψ is
constant too, concluding the proof.

Our aim now it to show that (Σc, ⟨ , ⟩Σc
) is harmonic-Einstein with respect to α and ψ, for a regular

value c of f . In order to prove it we need the following result.

Proposition 6.3.29. In the assumptions above Cφ = 0 on {x ∈M : ∇f(x) ̸= 0}.

Remark 6.3.30. In the assumptions of Proposition 6.3.29, if the potential function f is real analytic in
harmonic coordinates, then (M, ⟨ , ⟩) is φ-Cotton flat. Indeed, since Cφ = 0 on {x ∈ M : ∇f(x) ̸= 0},
if {x ∈ M : ∇f(x) ̸= 0} is dense on M we get Cφ = 0 on M , by continuity. Assume by contradiction
{x ∈ M : ∇f(x) ̸= 0} is not dense on M , then there exists an open subset of M such that f is constant on
it. Then, since f is real analytic in harmonic coordinates, f is constant on all M . Contradiction.
Remark 6.3.31. Following the argument in Proposition 2.4 of [HPW] (inspired by Theorem 5.26 of [B], that
relies on the work of De Turk and Kazdan), it is easy to get that, for a general structure (6.0.1), g, f and dφ
are real analytic in harmonic coordinates, at least when λ is constant. Indeed, when µ ̸= 0, rewriting (6.0.1)
in terms of u := eµf we get 

µuRicφ − αµφ∗⟨ , ⟩N − Hess(u)− µλu⟨ , ⟩ = 0

uτ(φ) +
1

µ
dφ(∇u).

(6.3.32)

Since λ is constant, the Hamilton equation (7.1.8) holds, that in terms of u is given by

u∆u+
1− µ

µ
|∇u|2 + λu2 − Λ = 0, (6.3.33)

where Λ is a real constant. Coupling (6.3.32) and (6.3.33) we obtain the following system, in harmonic
coordinates (x1, . . . , xm), 

µu

2
gkt

∂2gij
∂xk∂xt

+
∂2u

∂xi∂xj
+ . . . = 0

ugkt
∂2u

∂xk∂xt
+ . . . = 0

ugkt
∂2φai
∂xk∂xt

+ . . . = 0,

where the dots denote lower order terms and, on the domain of (x1, . . . , xm),

g = gijdx
i ⊗ dxj , dφ = φai dx

i ⊗ ∂

∂ya
,
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where (y1, . . . , yn) are local coordinates on M . Proceeding as in the proof of Proposition 6.3.29 we conclude
that gij , u and φai are real analytic on the domain of (x1, . . . , xm). When µ = 0 we couple (6.0.1) with
(7.1.9), we set u = −f and we proceed as above.

Proof (of Proposition 6.3.29). We fix x ∈M such that ∇f(x) ̸= 0 and we set c := f(x). Since c is a regular
value we may take a local first order frame {ei} along f . By the first integrability condition (6.1.11), since
we are assuming the validity of the third equation of (6.3.1) we deduce

Cφijk = −ftWφ
tijk. (6.3.34)

Hence, contracting the above against ∇f , by the symmetries of Wφ and using (6.3.4)

0 = −fiftWφ
tijk = fiC

φ
ijk = Cφmjk|∇f |.

Then Cφmjk = 0. Since Σc is totally umbilical with constant mean curvature h is parallel, that is hab,c = 0.
Then, from Codazzi’s equation (6.3.19) we get

Rmabc = 0, (6.3.35)

But then, explicitating the decomposition (1.2.18)

Rmabc =Wφ
mabc +

1

m− 2

[
Rφmbδac −Rφmcδab +Rφacδmb −Rφabδmc −

Sφ

m− 1
(δmbδac − δmcδab)

]
,

and since (6.3.13) holds we conclude from the above equality and (6.3.35) that

Wφ
mabc = 0. (6.3.36)

Therefore, from (6.3.34), using (6.3.4) and (6.3.36) we obtain

Cφabc = −ftWφ
tabc = −fdWφ

dabc − |∇f |Wφ
mabc = 0.

By the symmetries of Cφ it remains only to prove

Cφamb = 0 (6.3.37)

First of all observe that
Rφam,kθ

k =
Sφ −mRφmm

m− 1
θma , (6.3.38)

in fact from the definition of covariant derivative, since (6.3.13) holds,

0 =dRφam

=Rφkmθ
k
a +Rφakθ

k
m +Rφam,kθ

k

=Rφbmθ
b
a +Rφmmθ

m
a +Rφabθ

b
m +Rφamθ

m
m +Rφam,kθ

k

=Rφmmθ
m
a +Rφabθ

b
m +Rφam,kθ

k

and thus, using also (6.3.14) from the above equality we obtain

Rφam,kθ
k =−Rφmmθ

m
a −Rφabθ

b
m

=−Rφmmθ
m
a − Sφ −Rφmm

m− 1
δabθ

b
m

=−Rφmmθ
m
a − Sφ −Rφmm

m− 1
θam

=
Sφ −mRφmm

m− 1
θma ,

111



that is (6.3.38). Now we are going to prove
Rφam,m = 0. (6.3.39)

Observe that, by taking i = a and j = m in the first equation of (6.3.1) we obtain

Rφam + fam = µfafm,

and thus, using (6.3.13) and (6.3.4), we deduce

fam = 0. (6.3.40)

Moreover, taking the covariant derivative of the first equation of (6.3.1) we infer

Rφij,k + fijk = µfikfj + µfifjk + λkδij

that for i = m = k and j = a reads as

Rφam,m + fmam = µfmmfa + µfmfam.

Using (6.3.40) and (6.3.4) into the above we immediately get (6.3.39).
From (6.3.39) and (6.3.38) we infer

Rφam,bθ
b = Rφam,kθ

k =
Sφ −mRφmm

m− 1
θma .

Using (6.3.5) in the above equality we deduce the validity of

Rφam,b =
Sφ −mRφmm

m− 1
θma (eb) =

1

|∇f |
mRφmm − Sφ

m− 1
fab. (6.3.41)

Then we finally obtain, using (1.2.42), (6.3.14) and (6.3.41)

Cφabm =Rφab,m −Rφam,b −
1

2(m− 1)
Sφmδab

=

(
Sφ −Rφmm
m− 1

δab

)
m

+
1

|∇f |
Sφ −mRφmm

m− 1
fab −

1

2(m− 1)
Sφmδab

=
Sφm −Rφmm,m

m− 1
δab −

1

2(m− 1)
Sφmδab +

1

|∇f |
Sφ −mRφmm

m− 1
fab

=
1

2(m− 1)
Sφmδab −

1

m− 1
Rφmm,mδab +

1

|∇f |
Sφ −mRφmm

m− 1
fab.

Moreover, since φ is harmonic, from (1.2.26),
1

2
Sφm = Rφim,i = Rφcm,c +Rφmm,m.

By inserting it in the above equality we deduce the validity of

Cφabm =
1

m− 1
Rφcm,cδab +

1

|∇f |
Sφ −mRφmm

m− 1
fab. (6.3.42)

Taking the trace of (6.3.41) and using (6.3.23) we have

Rφcm,c = −(mRφmm − Sφ)h. (6.3.43)

On the other hand, using (6.3.5) and the fact that the immersion is totally umbilical we obtain

1

|∇f |
Sφ −mRφmm

m− 1
fab = −S

φ −mRφmm
m− 1

hab =
mRφmm − Sφ

m− 1
hδab. (6.3.44)

Using (6.3.43) and (6.3.44) in (6.3.42) we conclude the validity of (6.3.37), then the proof is completed.

112



We are now able to prove the following Proposition, as announced before.

Proposition 6.3.45. In the assumptions above, for every regular value c of f , Σc is harmonic Einstein with
respect the induced metric ⟨ , ⟩Σc , α and the restriction ψ of φ on Σc, that is,ΣcRic − αψ∗⟨ , ⟩N =

ΣcSψ

m− 1
⟨ , ⟩Σc

Σcτ(ψ) = 0.

(6.3.46)

Proof. First of all we prove that ψ : (Σc, ⟨ , ⟩Σc
) → (N, ⟨ , ⟩N ) is harmonic. Taking the covariant derivative

of dφ(∇f) = 0 we get
φAijfi + φAi fij = 0.

Using (6.3.4) and (6.3.17) into the above we get

φAmj |∇f |+ φAa faj = 0.

By choosing j = m, since fam = 0 (see (6.3.40)), we get

φAmm|∇f | = 0,

that implies
φAmm = 0. (6.3.47)

Now, by definition of covariant derivative,

ψAabθ
b = dψAa − ψAb θ

b
a + ψBa ω

A
B (6.3.48)

and
φAaiθ

i = dφAa − φAi θ
i
a + φBa ω

A
B .

Using (6.3.17) into the above and we get

φAabθ
b + φAamθ

m = dφAa − φAb θ
b
a + φBa ω

A
B ,

restricting it to Σc, recalling (6.3.25), yields

φAabθ
b = dψAa − ψAb θ

b
a + ψBa ω

A
B . (6.3.49)

Comparing (6.3.48) with (6.3.49) we deduce

ψAab = φAab.

Using the above, that φ is harmonic and (6.3.47) we conclude that also ψ is harmonic, indeed

ψAaa = φAaa = φAii − φAmm = 0.

Equivalently one can prove that ψ is harmonic using formula (1.180) of [AMR], that is,
Σcτ(ψ) = ∇dφ(dı(ea), dı(ea)) + dφ(τ(ı)).

Indeed, since φ is harmonic and ∇dφ(∇f,∇f) = 0 (that is (6.3.47)),

∇dφ(dı(ea), dı(ea)) = ∇dφ(ea, ea) = τ(φ)− 1

|∇f |2
∇dφ(∇f,∇f) = 0,

and since ı is an isometric immersion

τ(ı) = haaem =
(m− 1)h
|∇f |

∇f,
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hence, using dφ(∇f) = 0 and that |∇f | and h are constants on Σc,

dφ(τ(ı)) =
(m− 1)h
|∇f |

dφ(∇f) = 0.

It only remains to prove that the traceless part of ψ-Ricci vanishes. Recall that Cφ = 0 on Σc, from
Proposition 6.3.29. Hence using also the third equation (6.3.1) the first integrability condition (6.1.11)
implies

0 = Cφijk + ftW
φ
tijk = |∇f |Wφ

mijk,

thus
Wφ
mijk = 0. (6.3.50)

From the decomposition (1.2.18), using (6.3.50) we obtain

Rmamb =
1

m− 2

(
Rφab +Rφmmδab −

Sφ

m− 1
δab

)
, (6.3.51)

indeed

Rmamb =W
φ
mamb +

1

m− 2
(Aφmmδab −Aφmbδam +Aφab −Aφmaδbm)

=
1

m− 2

(
Rφmmδab −

Sφ

2(m− 1)
δab +Rφab −

Sφ

2(m− 1)
δab

)
=

1

m− 2

(
Rφab +Rφmmδab −

Sφ

m− 1
δab

)
.

By plugging (6.3.14) into (6.3.51) we obtain

Rmamb =
1

m− 2

(
Sφ −Rφmm
m− 1

δab +Rφmmδab −
Sφ

m− 1
δab

)
=

Rφmm
m− 1

δab.

By Gauss formula (6.3.27), using the above and (1.2.2),

ΣcRbd = Rφbd + αφAb φ
A
d − Rφmm

m− 1
δbd + (m− 2)h2δbd.

By plugging (6.3.14) into the above and using (6.3.25),

ΣcRbd − αψAb ψ
A
d =

(
Sφ − 2Rφmm
m− 1

+ (m− 2)h2

)
δbd.

that implies the validity of the first equation of (6.3.46).

6.4 Main results
We are now ready to prove the most important results of this section.

Theorem 6.4.1. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 3 endowed with a
gradient Einstein-type structure as (6.0.1) for some α > 0, φ : M → (N, ⟨ , ⟩N ) smooth, µ ∈ R with (6.2.2)
and λ, f ∈ C∞(M) with f proper and non-constant. Assume that (6.2.1) holds.

For every regular level set Σ of f there exists a connected neighbourghood U of Σ, an open interval I ∋ 0
and an isometry ϕ : I ×e−2H Σ → U . Moreover φ ◦ ϕ = ψ ◦ πΣ on U , where ψ := φ|Σ and πΣ : I ×Σ → Σ is
the canonical projection. Furthermore, U is foliated by totally umbilical hypersurfaces Σr with constant mean
curvature H ′(r) with leaves that are harmonic-Einstein with respect to the induced metric, α and ψr := φ|Σr

,
where r ∈ I and Σ0 = Σ.
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Proof. Our assumptions permits to apply Theorem 6.2.9 to deduce that φ must be harmonic and Dφ must
vanish on M . Let Σ be a regular level set of f , that is |∇f | ̸= 0 on Σ (it exists by Sard’s theorem, since
f is non-constant). In a connected neighborhood U of Σ which does not contain any critical point of f the
potential function f only depends on the signed distance r to the hypersurface Σ. Hence, by a suitable
change of variable, we can express the metric tensor ⟨ , ⟩ as

dr ⊗ dr + gabθ
a ⊗ θb,

where gab = gab(r, x) and r ∈ I := (r∗, r
∗) for some maximal r∗ ∈ [−∞, 0) and r∗ ∈ (0,+∞], where

θ1, . . . , θm−1 is the local coframe on Σ induced by a local first order frame along f .
The change of variable is performed in the following way: the integral curves of vector field Y := ∇f

|∇f |
are unit speed geodesic orthogonal to Σ and the flow of Y gives rise to a smooth map ϕ : I × Σ → U , that
coincide with the normal exponential map of Σ. The map ϕ is an isometry when we endow I × Σ with the
metric

ϕ∗⟨ , ⟩ = dr ⊗ dr + (ϕr)
∗⟨ , ⟩Σ,

where ϕr : Σ →M is defined by ϕr(x) = ϕ(r, x).
In particular, since ϕ0 is the inclusion of Σ in M ,

gab(0, ·)θa ⊗ θb = (ϕ0)
∗⟨ , ⟩Σ = ⟨ , ⟩Σ,

that is,
gab(0, ·) = δab.

By definition of Lie derivative, using (6.3.5) and that every Σr := ϕ({r} × Σ) is totally umbilical with
constant mean curvature h(r), since, as proved in Proposition 6.3.15, it is a level set with respect to a regular
value of f , we obtain

∂gab
∂r

= (L∇r⟨ , ⟩)(ea, ea) = 2Hess(r)(ea, ea) = 2
fab
|∇f |

= −2hab = −2hgab,

that is,
∂gab
∂r

(r, θ) = −2h(r)gab(r, θ).

Thus we deduce the validity of

gab(r, ·) = e−2H(r)gab(0, ·), where H(r) =

ˆ r

0

h.

This proves that on U the metric ⟨ , ⟩ takes the form of a warped product metric

dr ⊗ dr + e−2H⟨ , ⟩Σ,

where H is a function on (r∗, r
∗).

Moreover, since dφ(∇f) = 0 then φ ◦ ϕ does not depend on r (using that U is connected). Hence φ ◦ ϕ
is the lifting to I × Σ of the map ψ = φ|Σ, that is, φ = ψ ◦ πΣ.

Notice, finally, that (Σr, ⟨ , ⟩Σr
) is harmonic-Einstein with respect to ψr by Proposition 6.3.45 for every

r ∈ I.

Remark 6.4.2. Notice that the vanishing of Dφ implies that the φ-Schouten tensor is a Codazzi tensor in
the conformal metric

⟨̃ , ⟩ = e−
2

m−2 f ⟨ , ⟩.
Moreover, it is easy to see that in this conformal metric the φ-Schouten tensor has at most two eigenvalues,
one of multiplicity 1 and the other of multiplicity m − 1. Indeed, proceeding as in the proof of Theorem
2.3.5,

R̃ic
φ
=

(
µ+

1

m− 2

)
df ⊗ df + e

2
m−2 f

(
∆ff

m− 2
+ λ

)
⟨̃ , ⟩,
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hence
Ãφ =

(
µ+

1

m− 2

)
df ⊗ df + η⟨̃ , ⟩,

where η is an appropriate smooth function on M .
The presence of a Codazzi tensor with two eigenvalues of multiplicity 1 and m − 1 with constant trace

forces the manifold to be locally a warped product of an m − 1-dimensional Riemannian manifolds on an
interval of R, this is a classical result by A. Derdzinski. In our situation we did not rely on this general result
because the trace of the φ-Schouten tensor is not constant, in general (but one can rely on the generalization
obtained in [Me] by G. Merton to obtain the local structure of a warped product).

When λ is constant we have

Theorem 6.4.3. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 3 endowed with a
gradient Einstein-type structure as (6.0.1) for some α > 0, φ :M → (N, ⟨ , ⟩N ) smooth, µ, λ ∈ R with (6.2.2)
and f ∈ C∞(M) with f non-constant and, in case µ ̸= 0, proper. Assume that (6.2.1) holds. Then

Cφ = 0, τ(φ) = 0, Bφ = 0

and
Wφ(Tφ) = 0, (6.4.4)

where Wφ is the endomorphism of S2
0(M) defined by (2.3.16). In particular, if Wφ is injective, then the

gradient Einstein-type structure (6.0.1) reduces to a harmonic-Einstein structure.

Proof. From Theorem 6.2.9 we have Dφ = 0 and τ(φ) = 0. Notice that, when µ = 0, f is proper from
Remark 6.2.13. Then, from Proposition 6.3.29, combined with Remark 6.3.30 and Remark 6.3.31, we have
Cφ = 0 on M . Then the first integrability (6.1.11) yields

Wφ
tijkft = 0. (6.4.5)

Moreover, from (6.1.16) we get that (M, ⟨ , ⟩) is φ-Bach flat. Then, from the definition of φ-Bach (1.2.50)
we get, using that φ is harmonic, Cφ = 0,

0 = (m− 2)Bφij =Wφ
tikjR

φ
tk − αRφkjφ

a
kφ

a
i .

Using the symmetries of Bφ, Ricφ and Wφ we also have

0 = (m− 2)Bφji =Wφ
tjkiR

φ
tk − αRφkiφ

a
kφ

a
j =Wφ

tikjR
φ
tk − αRφkiφ

a
kφ

a
j ,

so that, summing with the above

2Wφ
tikjR

φ
tk − αφak(R

φ
kjφ

a
i +Rφkiφ

a
j ) = 0. (6.4.6)

Then we conclude the validity of (6.4.4). Indeed, from (2.3.16) and (6.4.6), using the definition of Tφ and
(1.2.22),

Wφ(Tφ)ij =W
φ
tikjT

φ
tk −

α

2
φAt (φ

A
i δkj + φAj δki)T

φ
tk

=Wφ
tikjR

φ
tk −

Sφ

m
Wφ
kikj −

α

2
φAt (φ

A
i T

φ
tj + φAj T

φ
ti )

=
1

2

(
2Wφ

tikjR
φ
tk − αφAt (φ

A
i R

φ
tj + φAj R

φ
ti)
)
+
α

2

Sφ

m
φAt (φ

a
i δtj + φAj δti)−

Sφ

m
Wφ
kikj

=
α

m
SφφAi φ

A
j − α

m
SφφAi φ

A
j = 0.

If Wφ is injective then Tφ = 0, that is, since φ is harmonic, (M, ⟨ , ⟩) is harmonic-Einstein.
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Remark 6.4.7. Notice that in the assumption of the Proposition above we only required that Wφ is injective.
Assuming that φ is non-constant one may ask, equivalently, that the pair (⟨ , ⟩, φ) is generic in the sense
of Definition 2.3.17. This is due to the fact that, since φ is harmonic, by unique continuation it cannot be
constant on an open set unless it is constant on the whole M . Hence the zeros of dφ can be located only at
isolated points (and they are not of infinite order).

As an application of Theorem 6.4.3 and the results of Section 4.2 we obtain

Corollary 6.4.8. Let (M, ⟨ , ⟩) be a Riemannian manifold of dimension m ≥ 3 endowed with a non trivial
gradient Einstein-type structure as (6.0.1) for some α > 0, φ :M → (N, ⟨ , ⟩N ) smooth, µ, λ ∈ R with (6.2.2)
and f ∈ C∞(M). Assume that (6.2.1) holds and that Wφ is injective. Then M is non-compact.

Assume moreover that (M, ⟨ , ⟩) is complete and that f has exactly one critical point.

i) If µ = 0 then λ ̸= 0, φ is constant and (M, ⟨ , ⟩) is isometric to the Euclidean space Rm. Moreover f
is given by (4.2.21) for some b ∈ Rm and c ∈ R.

ii) If µ ̸= 0 and that f is proper then φ is constant, (M, ⟨ , ⟩) is isometric to the hyperbolic space of
constant sectional curvature κ = Sφ

m and of dimension m and λ is given by

λ = κ
(m− 1)µ+ 1

µ
.

Proof. Assume by contradiction that M is compact. From Theorem 6.4.3 we get that (M, ⟨ , ⟩) is harmonic-
Einstein. Then, using Corollary 4.2.32 if µ = 0 and Corollary 4.2.33 if µ ̸= 0, we conclude, among the other
things, that λ is non-constant. Contradiction. Now assume that (M, ⟨ , ⟩) is complete and, in case µ ̸= 0,
that f is proper. Then, once again using Theorem 6.4.3, (M, ⟨ , ⟩) is harmonic-Einstein. If µ = 0 we get the
validity of iii) a) of Theorem 4.2.19. Indeed, since λ is non-constant, i) and ii) cannot hold and, since f has
exactly one critical point, iii) b) cannot hold too. If µ ̸= 0, since λ is constant, we get the validity of ii) of
Theorem 4.2.25.
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Chapter 7

Einstein-type structures with λ
constant

In the following we consider a complete Riemannian manifold (M, ⟨ , ⟩) with a gradient Einstein-type struc-
ture of the form {

Ricφ + Hess(f)− µdf ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f),

(7.0.1)

where φ :M → (N, ⟨ , ⟩N ) is a smooth map, α ∈ R \ {0}, µ, λ ∈ R and f ∈ C∞(M).
We begin with Section 7.1 in which we generalize the classical Hamilton-type identities, a very important

tool in the study of Ricci solitons, to Einstein-type structures.
In Section 7.2 we deduce from the presence of a complete Einstein-type structure, that in turns imply

a lower bound on the generalized Bakry-Émery Ricci tensor, some restrictions on the volume growth of
geodesic balls. As a consequence, assuming eventually that the density energy of φ and |∇f |2 are bounded,
we obtain the validity of the maximum principle at infinity for the operator ∆f and also compactness or
f -parabolicity, under some additional assumptions on the parameters involved.

In Section 7.3, by applying the weak maximum principle, we provide estimates on the infimum of the
φ-scalar curvature in the complete case, when α > 0. We are to obtain those estimates only for 0 ≤ µ ≤ 1
and, if µ ̸= 0, eventually assuming that the potential (or the smallest eigenvalue of its hessian) is bounded
from above. In case µ = 0 we are able also to study also the generic case.

In the final Section, Section 7.4, we obtain a Bochner-type formula, dealing once again with the generic
case. Using this formula we prove that, under some assumptions on the parameters involved, the φ-scalar
curvature and eventually some integrability conditions, the Einstein-type structure reduces to a harmonic-
Einstein structure.

Some of the results of this Chapter are part of a joint work with Marco Rigoli.

7.1 Hamilton-type identities
In case µ = 0 and φ is constant (7.0.1) yields the Ricci soliton system

Ric + Hess(f) = λ⟨ , ⟩. (7.1.1)

In this situation we have the well known identity due to Hamilton,

∇S = 2Ric(∇f, ·)♯. (7.1.2)

The latter, in turns, gives rise to the celebrated Hamilton identity

S + |∇f |2 − 2λf = Λ, (7.1.3)
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for some constant Λ ∈ R. Note that in case λ ̸= 0 one can add a constant to f to obtain Λ = 0. We shall
generalize (7.1.2) and (7.1.3) to the Einstein-type structure (7.0.1). The equation corresponding to (7.1.2),
with λ non-constant, is given in a local orthonormal coframe by (3.1.16), which we report here for the sake
of convenience

1

2
Sφj = Rφkjfk − µ∆ffj + µfkfkj + (m− 1)λj . (7.1.4)

Observe that for µ = 0 and for λ and φ constants (7.1.4) reduces to (7.1.2). Next we extend (7.1.3) in the
following

Proposition 7.1.5. Let (M, ⟨ , ⟩) be a Riemannian manifold with an Einstein-type structure as in (7.0.1)
for α ∈ R \ {0}, µ, λ ∈ R, f ∈ C∞(M) and φ : M → (N, ⟨ , ⟩N ) smooth. Then there exists Λ ∈ R such that,
if µ ̸= 0:

Sφ − (µ− 1)|∇f |2 +
(
1

µ
−m

)
λ =

Λ

µ
e2µf , (7.1.6)

and if µ = 0:
Sφ + |∇f |2 − 2λf = mλ− Λ. (7.1.7)

As a consequence we have the validity of the following equations, if µ ≠ 0:

∆ff =
λ

µ
− Λ

µ
e2µf , (7.1.8)

and if µ = 0:
∆ff = Λ− 2λf. (7.1.9)

Remark 7.1.10. Observe that in (7.1.8) and (7.1.9) the map φ :M → (N, ⟨ , ⟩N ) and the constant α do not
appear. This observation enables us to extends some results on quasi-Einstein manifolds that relies on the
validity of generalized Hamilton-type identities to gradient Einstein-type structures.

Proof. In the assumptions above, but with λ ∈ C∞(M), we claim the validity of the following equation

(∆ff + (m− 2)λ)j − 2fj(µ∆ff − λ) = 0. (7.1.11)

Towards this aim we trace the first equation of (7.0.1) to obtain

mλ = Sφ +∆f − µ|∇f |2. (7.1.12)

Taking the covariant derivative and inserting into (7.1.4) we deduce

1

2
Sφj = Rφkjfk − µ∆ffj + µfkfkj − λj + (Sφ +∆f − µ|∇f |2)j ,

that is,
1

2
Sφj + (∆f)j +Rφijfi = µ∆ffj + µfijfi + λj .

Contracting the first equation of (7.0.1) against ∇f we infer

Rφijfi + fijfi = µ|∇f |2fj + λfj ,

and replacing into the above yields

1

2
Sφj + (∆f)j − fijfi + µ|∇f |2fj + λfj = µ∆ffj + µfijfi + λj ,

that is,
Sφj = −2(∆f)j + 2(1 + µ)fijfi − 2µ|∇f |2fj − 2λfj + 2µ∆ffj + 2λj (7.1.13)
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The covariant derivative of (7.1.12) yields

Sφj + (∆f)j = 2µfifij +mλj , (7.1.14)

and by plugging (7.1.13) in (7.1.14) we obtain

−2(∆f)j + 2(1 + µ)fijfi − 2µ|∇f |2fj − 2λfj + 2µ∆ffj + 2λj + (∆f)j = 2µfifij +mλj ,

that implies (7.1.11).
Now, assuming λ constant (7.1.11) can be rewritten as

(∆ff)j − 2fj(µ∆ff − λ) = 0. (7.1.15)

• If µ ̸= 0 from (7.1.15) we deduce(
∆ff − λ

µ

)
j

− 2µfj

(
∆ff − λ

µ

)
= 0.

It follows that the function
v :=

(
∆ff − λ

µ

)
e−2µf

is a constant, say −Λ
µ , where Λ ∈ R, on M . Indeed, using the above

vj =

[(
∆ff − λ

µ

)
j

− 2µfj

(
∆ff − λ

µ

)]
e−2µf = 0.

Observe that since v = −Λ
µ we have the validity of (7.1.8). To deduce the validity of (7.1.6) it is

sufficient to plug (7.1.12), that is,

∆ff = −Sφ + (µ− 1)|∇f |2 +mλ, (7.1.16)

into (7.1.8).

• If µ = 0 then (7.1.15) becomes
(∆ff)j + 2λfj = 0,

and thus, since λ is constant,
(∆ff + 2λf)j = 0.

Then the function
v := ∆ff + 2λf

is constant on M , say it is equal to Λ for some Λ ∈ R. Hence (7.1.9) holds. By plugging (7.1.16) into
(7.1.9) we get the validity of (7.1.7).

Remark 7.1.17. It is worth to observe that when m ≥ 3 and

µ = − 1

m− 2
, (7.1.18)

or equivalently when (M, ⟨ , ⟩) is conformally harmonic-Einstein, equations (7.1.6) and (7.1.8) holds for
λ ∈ C∞(M), see Theorem 2.3.5. This can also be seen directly, in fact from the proof of the Proposition
above, in case (7.1.18) holds, equation (7.1.11) becomes

(∆ff + (m− 2)λ)j − 2fj

(
− 1

m− 2
∆ff − λ

)
= 0,
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that is,
(∆ff + (m− 2)λ)j +

2

m− 2
fj(∆ff + (m− 2)λ) = 0.

Then, setting
v := (∆ff + (m− 2)λ)e

2
m−2 f ,

it is easy to see that v is constant on M .
Remark 7.1.19. During the proof of the Proposition above, in case µ ̸= 0 the choice of the constant Λ
may seems unpleasant. The motivation the choice we made is contained in Theorem 2.5.26. Indeed, in the
assumptions and notations of Theorem 2.5.26, the constant Λ is the Einstein constant of the space (F, ⟨ , ⟩F ).
Compare (7.1.8) with (2.5.30), where µ = 1

d .

7.2 Weighted volume growth for gradient Einstein-type structures
The validity on a complete Riemannian manifold (M, ⟨ , ⟩) of dimension m of a system of the type

Ric + Hess(v)− 1

γ
dv ⊗ dv ≥ −(γ +m− 1)G ◦ r⟨ , ⟩, (7.2.1)

where r(x) := distM (x, o) is the geodesic distance of x ∈ M to a fixed origin o ∈ M , for some v ∈ C∞(M),
γ ∈ R+ and some continuous function G : R+

0 → R+
0 , implies some restriction on the weighted volume growth

of geodesic balls. The same applies to the system

Ric + Hess(v) ≥ −(γ +m− 1)G ◦ r⟨ , ⟩,

that, for the sake of brevity, we shall indicate as the case γ = +∞.
Indeed, in case γ > 0, the left hand side of (7.2.1) is the generalized Bakry-Emery Ricci tensor Ricγv of

(M, ⟨ , ⟩) introduced by Z. Qian in [Q], so that we can write (7.2.1) in the form

Ricγv ≥ −(γ +m− 1)G ◦ r⟨ , ⟩. (7.2.2)

Inequality (7.2.2) enables us to estimate from above the weighted volume of geodesic balls

volv(Br) :=
ˆ
Br

e−v,

via Theorem 2.4 of [MRS] whenever G has an appropriate behaviour at infinity. Of course in the estimate
will enter the parameter γ. Indeed, let g be a positive solution (if any) of{

g′′ −Gg ≥ 0 on R+
0

g(0) = 0, g′(0) = 1.
(7.2.3)

Then (7.2.2), together with completeness of (M, ⟨ , ⟩), implies via Theorem 2.4 of [MRS], for r large enough,

volv(Br) ≤ C

ˆ r

0

gγ+m−1, (7.2.4)

for some constant C > 0. Note that, and this is important, the upper bound in (7.2.4) only depends on G
via g but not on v.

In case γ = +∞, that is,
Ricv ≥ −(m− 1)G ◦ r⟨ , ⟩,

the estimates corresponding to (7.2.4) are given in Proposition 8.11 of [AMR], that is,

volv(∂Br) ≤ eC(r−ε)+
´ r
ε (
´ t
ε
(m−1)G)dt

122



for some constants ε, C > 0 and r ≥ ε and as a consequence

volv(Br) ≤ D +

ˆ r

0

eCs+
´ s
ε (
´ t
ε
(m−1)G)dtds (7.2.5)

with C, ε as above, D > 0 a constant and r ∈ R+
0 .

In particular, when G ≡ Σ for some Σ ∈ R, γ = +∞ and G ≡ Σ for some Σ ∈ R, that is,

Ricv ≥ −(m− 1)Σ⟨ , ⟩ (7.2.6)

from (7.2.5) we obtain the estimate

volv(Br) ≤ D +B

ˆ r

0

e
(m−1)Σ

2 t2+Ctdt for r >> 1 (7.2.7)

and some constants B,C,D > 0.
We point out that for if γ > 0 and Σ < 0, Qian, Theorem 5 in [Q], shows that the complete manifold

(M, ⟨ , ⟩) satisfying
Ricγv ≥ −(γ +m− 1)Σ⟨ , ⟩

has to be compact. For γ = +∞ and Σ < 0 a complete Riemannian manifold (M, ⟨ , ⟩) satisfying (7.2.7) can
be non-compact (to see this it is sufficient to consider the Gaussian shrinker gradient Ricci soliton structure
on the Euclidean space). Nevertheless, the following Proposition holds.

Proposition 7.2.8. Let (M, ⟨ , ⟩) be a complete Riemannian manifold such that (7.2.6) holds for some
v ∈ C∞(M) and for some constant Σ < 0. Then (M, ⟨ , ⟩) is v-parabolic.

Recall that (M, ⟨ , ⟩) is said to be v-parabolic if every bounded above v-subharmonic function (that is,
subharmonic with respect to ∆v) on M is constant. To prove the above Proposition we observe that Theorem
A of [RS] can be easily adapted in the weighted setting, obtaining

Theorem 7.2.9. Let (M, ⟨ , ⟩) be a complete Riemannian manifold, let v ∈ C∞(M) and assume that

volv(∂Br)−1 /∈ L1(+∞). (7.2.10)

Then M is parabolic with respect to ∆v.

Proof (of Proposition 7.2.8). Our assumptions implies the validity of (7.2.7). Notice that (7.2.10) is implied
by

r

volv(Br)
/∈ L1(+∞).

To prove the above observe that, using (7.2.7), for r >> 1,
r

volv(Br)
≥ r

D +B
´ r
0
e

(m−1)Σ
2 t2+Ctdt

and that, using L’Hôpital’s rule and Σ < 0,

lim
r→+∞

r

D +B
´ r
0
e

(m−1)Σ
2 t2+Ctdt

= lim
r→+∞

Be−
(m−1)Σ

2 r2−Cr = +∞,

concluding the proof.

For Σ ≥ 0 we have

Proposition 7.2.11. Let (M, ⟨ , ⟩) be a complete Riemannian manifold and v ∈ C∞(M). Assume (7.2.6)
holds for some Σ ∈ R. Then the weak maximum principle at infinity for ∆v holds. As a consequence, the
L1-Liouville property for v-subharmonic functions holds.
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Recall that the L1-Liouville property for v-subharmonic functions holds if every u ∈ Liploc(M) solution
of ∆vu ≤ 0 on M and satisfying 0 ≤ u ∈ L1(M, e−v) is constant.

Proof. From Theorem 3.11 of [PRS] (see Theorem 9 of [PRiS] and the discussion above), the validity of the
weak maximum principle at infinity for ∆v is guaranteed in case

r

log volv(Br)
/∈ L1(+∞). (7.2.12)

As remarked above (7.2.6) yields (7.2.7) for some constants B,C,D > 0, so that, by a computation we
obtain that (7.2.12) holds. Now the validity of the L1-Liouville property for v-subharmonic functions follows
immediately from the validity of the weak maximum principle for ∆v, see for instance Theorem 24 of
[PRiS].

Remark 7.2.13. The Proposition above appears also in [W], see Lemma 3.8.
In the presence of a gradient-Einstein type structure on a complete Riemannian manifold we naturally

have the validity of a system of the type (7.2.1), as we now show.

Proposition 7.2.14. Let (M, ⟨ , ⟩) be a complete Riemannian manifold with a gradient Einstein-type struc-
ture as in (7.0.1) for some f ∈ C∞(M), φ :M → (N, ⟨ , ⟩N ), α ∈ R \ {0} and µ, λ ∈ R. Let o ∈M be a fixed
origin and r(x) := distM (x, o) the geodesic distance of x ∈ M from o. Let K,F : R+

0 → R+
0 be such that, if

α < 0
|dφ|2 ≤ K ◦ r (7.2.15)

and if µ < 0
|∇f |2 ≤ F ◦ r. (7.2.16)

Then, denoting for every t ∈ R

t+ :=

{
t if t ≥ 0

0 if t < 0
t− :=

{
0 if t ≥ 0

t if t < 0

we have
Ricf ≥ −(m− 1)G ◦ r⟨ , ⟩, (7.2.17)

where
G = −λ+ µ−F + α−K

+m− 1
. (7.2.18)

Proof. The following inequalities, in the sense of quadratic forms, hold:

0 ≤ φ∗⟨ , ⟩N ≤ |dφ|2⟨ , ⟩.

Hence using the first equation of (7.0.1) we obtain, in case α > 0

Ric + Hess(f)− µdf ⊗ df ≥ λ⟨ , ⟩

while in case α < 0, using (7.2.15),

Ric + Hess(f)− µdf ⊗ df ≥ (λ+ αK ◦ r)⟨ , ⟩.

In conclusion, for every α ∈ R \ {0},

Ric + Hess(f)− µdf ⊗ df ≥ (λ+ α−K ◦ r)⟨ , ⟩. (7.2.19)

In case µ ≥ 0, (7.2.19) gives
Ricf ≥ (λ+ α−K ◦ r)⟨ , ⟩.
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Notice that
df ⊗ df ≤ |∇f |2⟨ , ⟩.

Hence, in case µ < 0 we get, from (7.2.19), using (7.2.16),

Ricf ≥ (λ+ α−K ◦ r + µF ◦ r)⟨ , ⟩.

We then conclude the validity of (7.2.17).

As a consequence of Proposition 7.2.14 and the Propositions above we have

Proposition 7.2.20. Let (M, ⟨ , ⟩) be a complete Riemannian manifold with a gradient Einstein-type struc-
ture as in (7.0.1) for some f ∈ C∞(M), φ : M → (N, ⟨ , ⟩N ), α ∈ R \ {0} and µ, λ ∈ R. In case α < 0
assume

(|dφ|2)∗ := sup
M

|dφ|2 < +∞

and in case µ < 0 assume
(|∇f |2)∗ := sup

M
|∇f |2 < +∞.

Then

i) The weak maximum principle at infinity for ∆f and the L1-Liouville property for f -subharmonic
functions hold;

ii) M is compact in case µ > 0 and either α, λ > 0 or α < 0 and λ > |α|(|dφ|2)∗;

iii) (M, ⟨ , ⟩) is f -parabolic in case µ = 0 and either α, λ > 0 or α < 0 and λ > |α|(|dφ|2)∗;

iv) (M, ⟨ , ⟩) is f -parabolic in case µ < 0 and either α > 0 and λ > |µ|(|∇f |2)∗ or α < 0 and

λ > |µ|(|∇f |2)∗ + |α|(|dφ|2)∗.

Proof. From Proposition 7.2.14, by choosing K ≡ (|dφ|2)∗ in case α < 0 and K ≡ (|dφ|2)∗ in case µ < 0, we
have

Ricf ≥ −(m− 1)Σ⟨ , ⟩ (7.2.21)

with
Σ := −λ+ (α(|dφ|2)∗)− + (µ(|∇f |2)∗)−

m− 1
∈ R (7.2.22)

(where we are using the convention (+∞)− = 0). Then i) follows from Proposition 7.2.11, ii) from Theorem
5 of [Q] and finally iii) and iv) follows from Proposition 7.2.8.

7.3 φ-scalar curvature estimates
Assume (M, ⟨ , ⟩) is a Riemannian manifold of dimension m ≥ 2, φ : M → (N, ⟨ , ⟩N ) a smooth map,
X ∈ X(M), α ∈ R \ {0}, λ ∈ R such thatRicφ +

1

2
LX⟨ , ⟩ = λ⟨ , ⟩

τ(φ) = dφ(X).
(7.3.1)

Recall that the Einstein-type structure (7.3.1) is trivial if X = 0. For for the sake of the reader we report
here (3.1.14), that is,

1

2
∆XS

φ + |Tφ|2 + α|τ(φ)|2 + Sφ

m
(Sφ −mλ) = 0, (7.3.2)
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where Tφ denotes the traceless part of the φ-Ricci tensor

Tφ := Ricφ − Sφ

m
⟨ , ⟩.

Taking the trace of the first equation of (7.3.1) we get

Sφ + div(X) = mλ. (7.3.3)

In the next Proposition we obtain the φ-scalar curvature estimates in the complete case, when α > 0.

Proposition 7.3.4. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 with an Einstein-
type structure as in (7.3.1) with φ :M → (N, ⟨ , ⟩N ) a smooth map, X ∈ X(M), α > 0 and λ ∈ R. Denoting
Sφ∗ := infM Sφ we have Sφ∗ > −∞. Moreover

i) If λ < 0 then
mλ ≤ Sφ∗ ≤ 0.

If there exists x0 ∈M such that Sφ(x0) = mλ then the structure (7.3.1) reduces to a harmonic-Einstein
structure and X is a vertical Killing vector field. Furthermore, if M is compact then (7.3.1) is trivial.
If Sφ∗ = 0 then either Sφ > 0 on M or (M, ⟨ , ⟩) is flat and φ is a constant map;

ii) If λ = 0 then
Sφ∗ = 0.

Then either Sφ > 0 on M or (M, ⟨ , ⟩) is φ-Ricci flat and X is a vertical Killing vector field. Further-
more, if M is compact then X is parallel;

iii) If λ > 0 then
0 ≤ Sφ∗ ≤ mλ.

If there exists x0 ∈M such that Sφ(x0) = 0 then (M, ⟨ , ⟩) is flat and φ is a constant map.
If Sφ∗ = mλ either Sφ > mλ or the structure (7.3.1) reduces to a harmonic-Einstein structure, X is a
vertical Killing vector field and M is compact.

Proof. The proof of this Theorem follows closely the proof of Theorem 8.2 of [AMR]. Since α > 0 we have

RicX ≥ Ricφ +
1

2
LX⟨ , ⟩ = λ⟨ , ⟩,

hence from the results of Section 8.2 of [AMR] we deduce the validity of the Omori-Yau maximum principle
for the operator ∆X on M . Moreover, since α > 0, from (7.3.2) we deduce the validity of

1

2
∆XS

φ ≤ −S
φ

m
(Sφ −mλ). (7.3.5)

We set u := −Sφ so that (7.3.5) gives
1

2
∆Xu ≥ λu+

u2

m
.

We are in position to apply Theorem 3.6 of [AMR] with the choices

F (t) = t2, φ(u, |∇u|) = λu+
u2

m
.

As consequences u∗ <∞ and

λu∗ +
(u∗)2

m
≤ 0,

that is, u∗ is included between 0 and −mλ and thus Sφ∗ is included between 0 and mλ.
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• Assume λ < 0. Then mλ ≤ Sφ∗ ≤ 0.
Assume that for some x0 ∈ M we have Sφ(x0) = mλ. Then Sφ ≥ Sφ∗ ≥ mλ so that the function
v := Sφ −mλ is non-negative on M . Using (7.3.5) we obtain

1

2
∆Xv =

1

2
∆XS

φ ≤ −S
φ

m
(Sφ −mλ) = −v +mλ

m
v = −v

2

m
− λv ≤ −λv,

that is,
1

2
∆Xv + λv ≤ 0,

An application of the minimum principle in [GT], exactly as in Theorem 8.2 of [AMR], gives that v ≡ 0
on M , that is, Sφ ≡ mλ on M . Then from (7.3.2) we infer the validity of

|Tφ|2 + α|τ(φ)|2 = 0, (7.3.6)

and, since α ∈ R+, (M, ⟨ , ⟩) is harmonic-Einstein. Moreover, since Sφ = mλ we deduce from the
first equation of (7.3.1) that X is a Killing vector field and from the second that is vertical, that is,
dφ(X) = 0. From Proposition 4.1.21, since Sφ is negative, we get that X = 0 if M is compact.
Now assume that Sφ∗ = 0. Then or Sφ > 0 on M or otherwise there exists x0 ∈ M such that
Sφ(x0) = Sφ∗ = 0. In the latter case Sφ ≥ Sφ∗ = 0 ≥ mλ and, from (7.3.5),

1

2
∆XS

φ ≤ −S
φ

m
(Sφ −mλ) ≤ 0.

Applying the strong minimum principle Sφ ≡ 0 on M . Then, as before, the structure (M, ⟨ , ⟩) is
harmonic-Einstein. In particular

1

2
LX⟨ , ⟩ = λ⟨ , ⟩.

By a result known to Tashiro, Theorem 4.1 of [T], (M, ⟨ , ⟩) is flat. Then S ≡ 0 on M and, since also
Sφ ≡ 0, we obtain

0 = Sφ = S − α|dφ|2 = −α|dφ|2.

Since α ∈ R+, φ must be a constant map.

• Assume λ = 0, then Sφ∗ = 0 and thus or Sφ > 0 on M or otherwise Sφ(x0) = 0 for some x0 ∈ M . In
the latter case, proceeding as above we get Sφ ≡ 0 on M , hence (M, ⟨ , ⟩) is harmonic-Einstein with
vanishing φ-scalar curvature, or equivalently, φ-Ricci flat. Since λ = 0, X is a vertical Killing vector
field. From Proposition 4.1.21 we get that X is parallel if M is compact.

• Assume λ > 0, then 0 ≤ Sφ ≤ mλ.
Assume there exists x0 ∈M such that Sφ(x0) = Sφ∗ = 0. Then, using (7.3.5) we obtain

1

2
∆XS

φ ≤ −S
φ

m
(Sφ −mλ) = − (Sφ)2

m
+ λSφ ≤ λSφ,

that is,
1

2
∆XS

φ − λSφ ≤ 0,

hence from the minimum principle of [GT] we obtain Sφ ≡ 0 on M . Then, as above, (M, ⟨ , ⟩) is
harmonic-Einstein and X is a vertical homothetic vector field. Moreover, once again by the result
known to Tashiro, we obtain that (M, ⟨ , ⟩) is flat and φ is constant.
Now assume there exists x0 ∈M such that Sφ(x0) = Sφ∗ = mλ. Then Sφ ≥ Sφ∗ = mλ ≥ 0 so that the
function v := Sφ −mλ is non-negative on M . Using (7.3.5) we obtain

1

2
∆Xv =

1

2
∆XS

φ ≤ −S
φ

m
(Sφ −mλ) ≤ 0.
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The strong minimum principle gives that v ≡ 0 on M , that is, Sφ ≡ mλ on M . Then, as before, we
get that (M, ⟨ , ⟩) is harmonic-Einstein and X is a vertical Killing vector field. Finally, since α > 0
we have Ric ≥ Ricφ and since (M, ⟨ , ⟩) is harmonic-Einstein with Sφ > 0, by Myer’s theorem, we get
that M is compact.

In the gradient case we can be more specific, combining the Theorem above with Theorem 4.2.19.

Theorem 7.3.7. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2, φ :M → (N, ⟨ , ⟩N )
a smooth map, f ∈ C∞(M), α > 0, λ ∈ R such that{

Ricφ + Hess(f) = λ⟨ , ⟩
τ(φ) = dφ(∇f).

(7.3.8)

Denoting Sφ∗ := infM Sφ we have Sφ∗ > −∞. Moreover

i) If λ < 0 then
mλ ≤ Sφ∗ ≤ 0.

If there exists x0 ∈M such that Sφ(x0) = mλ then f is constant.
If Sφ∗ = 0 then either Sφ > 0 on M or (M, ⟨ , ⟩) is isometric to the euclidean space Rm and φ is a
constant map. Moreover, the potential f can be expressed on Rm as f(x) = λ

2 |x|
2 + ⟨b, x⟩+ c for some

b ∈ Rm and c ∈ R, for every x ∈ Rm.

ii) If λ = 0 then
Sφ∗ = 0.

Then either Sφ > 0 on M or, if f is non constant, (M, ⟨ , ⟩) splits as the Riemannian product of R
with a totally geodesic ψ-Ricci flat hypersurface Σ, where ψ := φ|Σ. Moreover φ = ψ ◦ πΣ on R× Σ,
where πΣ : R× Σ → Σ is the canonical projection and the function f can be expressed on R× Σ as

f(t, x) = at+ b for every t ∈ R and x ∈ Σ, (7.3.9)

for some a > 0 and b ∈ R such that Σ = f−1({b}).

iii) If λ > 0 then
0 ≤ Sφ∗ ≤ mλ.

If there exists x0 ∈M such that Sφ(x0) = 0 then (M, ⟨ , ⟩) is isometric to the euclidean space Rm and
φ is a constant map. Moreover, the potential f can be expressed on Rm as f(x) = λ

2 |x|
2 + ⟨b, x⟩ + c

for some b ∈ Rm and c ∈ R, for every x ∈ Rm.
If Sφ∗ = mλ either Sφ > mλ or M is compact and f is constant.

Proof. We can apply Proposition 7.3.4 with X = ∇f . The only thing we need to observe to prove the
Theorem is that, from Theorem 4.2.19, the only possibility when λ is constant and Sφ ̸= 0 to have that
(7.3.8) reduces to a harmonic-Einstein manifold is that f is constant. The other cases follows from a) and
b) of iii) in Theorem 4.2.19.

Now we deal with the case µ ̸= 0. As a consequence of (3.1.17) we provide an estimate on Sφ∗ := infM Sφ,
assuming α > 0 and 0 < µ ≤ 1. Precisely we prove

Theorem 7.3.10. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m with a gradient Einstein-
type structure as in (7.0.1) with α > 0, 0 < µ ≤ 1, λ ∈ R, f ∈ C∞(M) and φ : M → (N, ⟨ , ⟩N ) a smooth
map. If λ ≤ 0 assume that f∗ > −∞, where f∗ is the infimum of f on M , or that the smallest eigenvalue
of Hess(f) is bounded from below. Denoting Sφ∗ := infM Sφ we have Sφ∗ > +∞. Moreover
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i) If λ > 0 then M is compact and

(m− 1)µ

1 + (m− 1)µ
mλ ≤ Sφ∗ ≤ mλ.

If µ ̸= 1, then
(m− 1)µ

1 + (m− 1)µ
mλ < Sφ∗ ≤ mλ

and Sφ∗ = mλ, that is, Sφ(x0) = Sφ∗ for some x0 ∈M , if and only f is constant.

ii) If λ = 0 then
Sφ∗ = 0.

Moreover, if µ ̸= 1, or Sφ > 0 on M or otherwise f is constant.

iii) If λ < 0 then

mλ ≤ Sφ∗ ≤ (m− 1)µ

1 + (m− 1)µ
mλ.

If µ ̸= 1, then Sφ(x0) = mλ for some x0 ∈M if and only f is constant.

Proof. The proof of this theorem follows closely the proof of Theorem 3 of [R]. Equation (3.1.17) can be
written, since λ is constant and µ > 0, as

1

2
∆(1+2µ)fS

φ =(µ− 1)(α|τ(φ)|2 + |Tφ|2)− (m− 1)µ+ 1

m
(Sφ −mλ)

(
Sφ − (m− 1)µm

1 + (m− 1)µ
λ

)
. (7.3.11)

We set u := −Sφ so that (7.3.11) takes the form

1

2
∆(1+2µ)fu =(1− µ)(α|τ(φ)|2 + |Tφ|2) + (m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
. (7.3.12)

Since µ ≤ 1 we deduce

1

2
∆(1+2µ)fu ≥ (m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
on M . We now set

g := (1 + 2µ)f

so that
1

2
∆gu ≥ (m− 1)µ+ 1

m
(u+mλ)

(
u+

(m− 1)µ

1 + (m− 1)µ
mλ

)
, (7.3.13)

or equivalently, in terms of Sφ,

1

2
∆gS

φ ≤ − (m− 1)µ+ 1

m
(Sφ −mλ)

(
Sφ − (m− 1)µ

1 + (m− 1)µ
mλ

)
. (7.3.14)

i) If λ > 0 then, from µ > 0 and Theorem 5 of [Q], M is compact and since Sφ∗ = Sφ(x0) for some
x0 ∈M we deduce, from (7.3.14), that

(m− 1)µ

1 + (m− 1)
mλ ≤ Sφ∗ ≤ mλ.

We now show that the left inequality above is strict if µ ̸= 1. Indeed, assume by contradiction
Sφ∗ = (m−1)µ

1+(m−1)µmλ. Because of (7.3.14) the non-negative function

v := Sφ − (m− 1)µ

1 + (m− 1)µ
mλ
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satisfies

1

2
∆gv ≤ − (m− 1)µ+ 1

m

(
v − 1

1 + (m− 1)µ
mλ

)
v = − (m− 1)µ+ 1

m
v2 + λv ≤ λv.

Since M is compact v attains its minimum, that is zero, and from the minimum principle, see page 35
of [GT], we deduce that v vanishes identically. Hence

Sφ ≡ (m− 1)µ

1 + (m− 1)µ
mλ. (7.3.15)

From (7.3.11) we then have
(1− µ)(α|τ(φ)|2 + |Tφ|2) = 0,

so that, since µ < 1 and α > 0, (M, ⟨ , ⟩) is a harmonic-Einstein manifold. To obtain the contradiction,
since λ is constant, we use Corollary 4.2.33 combined with the fact that f cannot be constant. Indeed,
if f is constant then Sφ = mλ, that is impossible since (7.3.15) holds.
Suppose now that Sφ∗ = mλ; then

Sφ ≥ Sφ∗ = mλ ≥ (m− 1)µ

1 + (m− 1)µ
mλ,

hence from (7.3.14) we deduce
1

2
∆gS

φ ≤ 0.

Since M is compact we infer that Sφ ≡ Sφ∗ . Once again from (7.3.11) we obtain that (M, ⟨ , ⟩) is
harmonic-Einstein. Then f is constant because, if by contradiction f is non-constant from Corollary
4.2.33 we deduce that also λ is non-constant, a contradiction.

If λ ≤ 0 we show that the weak maximum principle hold for ∆g if either f∗ > −∞ or the smallest eigenvalue
of Hess(f) is bounded from below.

• Assume at first f∗ > −∞. We want to prove that
r

log volgBr
/∈ L1(+∞),

and then conclude as in the proof of Proposition 7.2.11. From the definition of g we immediately obtain
volg(Br) ≤ e−2µf∗volf (Br) and since (M, ⟨ , ⟩) we know, from the proof of Proposition 7.2.11, that

r

log volfBr
/∈ L1(+∞),

we are able to conclude the validity of the weak maximum principle at infinity for ∆g.

• Now suppose that the smallest eigenvalue of Hess(f) is bounded from below. The first equation of
(7.0.1) can be written in terms of g as

Ric + Hess(g)− µ

(1 + 2µ)2
dg ⊗ dg = λ⟨ , ⟩+ 2µHess(f) + αφ∗⟨ , ⟩N ,

so that, using that α, µ > 0 and that the smallest eigenvalue of Hess(f) is bounded from below,

Ricγg ≥ λ⟨ , ⟩, γ :=
(1 + 2µ)2

µ
> 0.

Then, from Proposition 7.2.20, the weak maximum principle for ∆g also holds in this case.
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Using Theorem 3.6 of [AMR] we conclude that u∗ := supM u < +∞ and that

− (m− 1)µ

1 + (m− 1)µ
mλ ≤ u∗ ≤ −mλ,

and as a consequence we immediately get the bounds on Sφ∗ .

ii) Let λ = 0, the bounds on Sφ∗ gives Sφ∗ = 0. In this case (7.3.14) gives ∆gS
φ ≤ 0 so that either Sφ > 0

on M or Sφ ≡ 0. In the latter case, if µ ̸= 1, from (7.3.11), we obtain that the Einstein-type structure
(7.0.1) reduces to a harmonic-Einstein structure. From iii) of Theorem 4.2.25, since λ is constant, we
conclude that f is constant.

iii) Let λ < 0. If Sφ(x0) = mλ for some x0 ∈ M then, from (7.3.14), the function v := Sφ − mλ is
non-negative and satisfies,

1

2
∆gv ≤ − (m− 1)µ+ 1

m
v

(
v +

1

1 + (m− 1)µ
mλ

)
= − (m− 1)µ+ 1

m
v2 − λv ≤ −λv,

that is,
∆gv + 2λv ≤ 0,

so that, since v attains its minimum, from the minimum principle v ≡ 0. Then Sφ ≡ mλ and, from
(7.3.11), the Einstein-type structure (7.0.1) reduces to a harmonic-Einstein structure in case µ ̸= 1.
Assume, by contradiction, f is non-constant. Since λ is constant, from ii) of Theorem 4.2.25 we obtain

λ =
Sφ

m

µ(m− 1) + 1

µ(m− 1)
,

that contradicts Sφ ≡ mλ.

7.4 Some triviality results
Formula (7.4.3), contained in the Proposition below, is a Bochner-type formula for Einstein-type structures.

Proposition 7.4.1. Let (M, ⟨ , ⟩) be an m-dimensional Riemannian manifold with an Einstein-type structure
as Ric + 1

2
LX⟨ , ⟩ − µX♭ ⊗X♭ − αφ∗⟨ , ⟩N = λ⟨ , ⟩

τ(φ) = dφ(X),
(7.4.2)

with λ ∈ C∞(M), X ∈ X(M), µ ∈ R, α ∈ R \ {0} and φ :M → (N, ⟨ , ⟩N ) smooth. Then

1

2
∆X |X|2 = |∇X|2 + α|τ(φ)|2 + [(2µm− 1)λ− 2µSφ]|X|2 + µ(2µ− 1)|X|4 − (m− 2)⟨∇λ,X⟩, (7.4.3)

Proof. The generalized Bochner formula is given by, see Lemma 8.1 of [AMR],

1

2
∆|X|2 = |∇X|2 + div(LX⟨ , ⟩)(X)− ⟨∇div(X), X⟩ − Ric(X,X). (7.4.4)

Taking the trace of the first equation of (7.4.2) we get

div(X) = −Sφ + µ|X|2 +mλ. (7.4.5)

Then
⟨∇div(X), X⟩ = −⟨∇Sφ, X⟩+ µ⟨∇|X|2, X⟩+m⟨∇λ,X⟩. (7.4.6)
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By definition of the φ-Ricci tensor we have

Ric(X,X) = Ricφ(X,X) + α|dφ(X)|2, (7.4.7)

so that, using (7.4.2) and
LX⟨ , ⟩(X,X) = ⟨∇|X|2, X⟩

we infer
Ric(X,X) = −1

2
⟨∇|X|2, X⟩+ µ|X|4 + λ|X|2 + α|τ(φ)|. (7.4.8)

Finally, using the first equation of (7.4.2) we obtain

div(LX⟨ , ⟩)(X) = −2div(Ricφ)(X) + 2µdiv(X♭ ⊗X♭)(X) + 2⟨∇λ,X⟩.

From the generalized Schur’s identity (1.2.26) and the second equation of (7.4.2) we deduce

div(Ricφ)(X) =
1

2
⟨∇Sφ, X⟩ − α|τ(φ)|2,

so that from the above relation and

div(X♭ ⊗X♭)(X) = div(X)|X|2 + 1

2
⟨∇|X|2, X⟩

we get

div(LX⟨ , ⟩)(X) = −⟨∇Sφ, X⟩+ 2α|τ(φ)|2 + µ⟨∇|X|2, X⟩+ 2µdiv(X)|X|2 + 2⟨∇λ,X⟩. (7.4.9)

By plugging (7.4.6), (7.4.8) and (7.4.9) in (7.4.4) we have

1

2
∆|X|2 = |∇X|2 + α|τ(φ)|2 + 2µdiv(X)|X|2 − (m− 2)⟨∇λ,X⟩+ 1

2
⟨∇|X|2, X⟩ − µ|X|4 − λ|X|2,

that is (7.4.3), using once again (7.4.5) and the definition of ∆X .

Proposition 7.4.10. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m ≥ 2 with an
Einstein-type structure as in (7.4.2) with X ∈ X(M), λ ∈ R, µ > 1

2 , α > 0 and φ :M → (N, ⟨ , ⟩N ) smooth.
If

(Sφ)∗ := sup
M

Sφ < +∞, (7.4.11)

then

(|X|2)∗ := sup
M

|X|2 ≤ 2
(Sφ)∗ −

(
m− 1

2µ

)
λ

2µ− 1
. (7.4.12)

As a consequence, if
(Sφ)∗ ≤

(
m− 1

2µ

)
λ, (7.4.13)

then (3.0.2) reduces to a harmonic-Einstein structure.

Proof. First of all observe that the Omori-Yau maximum principle holds for ∆X . Indeed, since µ, α > 0,
from the first equation of (3.0.2) we deduce

RicX ≥ λ⟨ , ⟩. (7.4.14)

As shown in Proposition 8.7, and the discussion above, of [AMR], (7.4.14) is sufficient to obtain the validity
of the Omori-Yau maximum principle for ∆X . Since λ is constant and α > 0, (7.4.3) gives

1

2
∆X |X|2 ≥ [(2µm− 1)λ− 2µSφ]|X|2 + µ(2µ− 1)|X|4.
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Moreover, using (7.4.11) and µ > 0 in the above and setting u := |X|2 we get

1

2
∆Xu ≥ [(2µm− 1)λ− 2µ(Sφ)∗]u+ µ(2µ− 1)u2.

Since µ > 1
2 the constant µ(2µ− 1) is positive, hence from Theorem 3.6 of [AMR], with the choices

F (t) = t2 for every t ∈ R, φ(u, |∇u|) := [(2µm− 1)λ− 2µ(Sφ)∗]u+ µ(2µ− 1)u2,

we conclude u∗ < +∞ and

[(2µm− 1)λ− 2µ(Sφ)∗ + µ(2µ− 1)u∗]u∗ ≤ 0.

Hence, from the above,

u∗ ≤ 2
(Sφ)∗ −

(
m− 1

2µ

)
λ

2µ− 1
,

that is, (7.4.12). Clearly, if (7.4.13) holds, from (7.4.12) we immediately get that X = 0.

Remark 7.4.15. Assume that ⟨ , ⟩ is a complete φ-static metric on M , in the sense of Definition 2.5.54, that
is, {

Ricφ + Hess(f)− df ⊗ df = λ⟨ , ⟩
τ(φ) = dφ(∇f)

(7.4.16)

with f ∈ C∞(M), λ ∈ R, α > 0 and φ :M → (N, ⟨ , ⟩N ) smooth and

∆ff = λ. (7.4.17)

From Remark 2.5.57 we know that if f is non constant then M is non-compact. Taking the trace of the first
equation of (7.4.16),

Sφ +∆ff = mλ,

so that, using (7.4.17),
Sφ = (m− 1)λ.

As a consequence of the above the condition (7.4.13), with X = ∇f , is satisfied if and only if λ ≥ 0. Then,
if (7.4.16) is non-trivial, that is, f is non constant, then (M, ⟨ , ⟩) is non-compact and λ < 0.

Now we provide some triviality results for gradient Einstein-type structure with potential function f
satisfying the integrability condition (7.4.22) below for some 1 < p < +∞. To prove the next Proposition
we shall use a modification of Theorem 1.1 of [PRS05], that we report here for the sake of the reader,

Theorem 7.4.18. Let (M, ⟨ , ⟩) be a complete Riemannian manifold and let f ∈ C∞(M). Assume that
u ∈ Liploc(M) satisfy

u∆fue
−f ≥ 0 weakly on M. (7.4.19)

If, for some p ∈ (1,+∞), (ˆ
∂Br

|u|pe−f
)−1

/∈ L1(+∞), (7.4.20)

then u is constant.

Proposition 7.4.21. Let (M, ⟨ , ⟩) be a complete Riemannian manifold of dimension m with a gradient
Einstein-type structure as in (7.0.1) with α ∈ R \ {0}, µ, λ ∈ R, f ∈ C∞(M) and φ : M → (N, ⟨ , ⟩N ) a
smooth map. We denote by (Sφ)∗ and Sφ∗ , respectively, the supremum and the infimum of Sφ on M . Suppose

|∇(e−
f
p )| ∈ Lp(M), (7.4.22)

for some p ∈ (1,+∞), α > 0 and that one the following conditions hold

133



i) µ = 1
2 , (Sφ)∗ < (m− 1)λ;

ii) µ = 0, λ < 0;

iii) µ < 0, Sφ∗ ≥
(
m− 1

2µ

)
λ.

Then f is constant and (M, ⟨ , ⟩) is harmonic-Einstein.

Proof. Since λ ∈ R and X = ∇f equation (7.4.3) becomes

1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(φ)|2 + (2µλm− λ− 2µSφ)|∇f |2 + µ(2µ− 1)|∇f |4. (7.4.23)

Recall that, from Kato’s inequality,

|∇|∇f ||2 ≤ |Hess(f)|2 weakly on M.

Then we infer
1

2
∆f |∇f |2 = |∇f |∆f |∇f |+ |∇|∇f ||2 ≤ |∇f |∆f |∇f |+ |Hess(f)|2 weakly on M.

Combining the above with (7.4.23) and using α > 0, we obtain

|∇f |∆f |∇f | ≥ (2µmλ− 2µSφ − λ)|∇f |2 + µ(2µ− 1)|∇f |4 weakly on M.

If anyone of i), ii) or5 iii) hold it is easy to prove the validity of, for some positive constant c and q ∈ {2, 4}:

|∇f |∆f |∇f | ≥ c|∇f |q ≥ 0 weakly on M. (7.4.24)

Then we are in position to apply Theorem 7.4.18 with the choice of u = |∇f |. Indeed, (7.4.22) is equivalent
to |∇f | ∈ Lp(M, e−f ) and the latter guarantees the validity of (7.4.20). Moreover also (7.4.19) holds. As a
consequence of Theorem 7.4.18 we have that |∇f | is constant and, since (7.4.24) holds, the only possibility
is that f is constant. Then (M, ⟨ , ⟩) is harmonic-Einstein.

Remark 7.4.25. To prove Proposition 7.4.21 we may consider, instead of one of the assumptions i), ii) or iii)
the assumption

iv) µ > 0, λ < 0, Λ < 0 and

f∗ ≥ 1

2µ
log

(
λ

2Λ

)
,

where f∗ := infM f and Λ is the constant appearing in (7.1.8).

Indeed, (7.4.23) can be rewritten, using the trace of the first equation in (7.0.1), as

1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(φ)|2 + |∇f |2(2µ∆f − λ− µ|∇f |2),

or equivalently,
1

2
∆f |∇f |2 = |Hess(f)|2 + α|τ(φ)|2 + |∇f |2(2µ∆ff + µ|∇f |2 − λ).

Proceeding as in the proof of the Proposition we get

|∇f |∆f |∇f | ≥ |∇f |2(2µ∆ff + µ|∇f |2 − λ) weakly on M. (7.4.26)

We use (7.1.8) to obtain, from (7.4.26),

|∇f |∆f |∇f | ≥ (λ− 2Λe2µf + µ|∇f |2)|∇f |2 weakly on M.
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The hypothesis iv) guarantees the validity of

λ− 2Λe2µf ≥ 0,

hence from the above we get
|∇f |∆f |∇f | ≥ µ|∇f |4 weakly on M,

and thus we can conclude, as in the proof of the Proposition.
Notice that if f is constant, from (7.1.8) we have

Λe2µf = λ.

Hence λ = 0 if and only if Λ = 0 and, if this is the case, f can be an arbitrary constant. On the other hand,
if λ is different from zero then λΛ > 0 and

f =
1

2µ
log

(
λ

Λ

)
.
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