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An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian
functions is presented. Integral expressions are derived for local operators that depend on the position vector
of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index
overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of
the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare
the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and
Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb and Gaussian-
type operators, that occur in range-separated hybrid functionals, are also included in the performance tests.
The speed-up with respect to the OS scheme is up to three orders of magnitude for both, integrals and
their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly
contracted basis sets.

I. INTRODUCTION

The rapid analytic evaluation of two-center Gaus-
sian integrals is important for many molecular simu-
lation methods. For example, Gaussian functions are
widely used as orbital basis in quantum mechanical (QM)
calculations and are implemented in many electronic-
structure codes.1–6 Gaussians are further used at lower
level of theory to model charge distributions in molecu-
lar mechanics7–15 (MM), semi-empirical16–18 and hybrid
QM/MM methods.19–21 The Gaussian-based treatment
of the electrostatic interactions requires the evaluation
of two-center Coulomb integrals.

The efficient evaluation of two-center integrals is also
important at the Kohn-Sham density functional theory
(KS-DFT) level, in particular for hybrid density func-
tionals. In order to speed-up the evaluation of the
Hartree-Fock exchange term, the exact evaluation of the
four-center integrals can be replaced by resolution-of-the-
identity (RI) approximations.22–25 Especially, when an
overlap metric is employed, the efficient evaluation of
two-center integrals is required. The interaction poten-
tial can take different functional forms dependent on the
hybrid functionals.26 The most popular potential is the
standard Coulomb operator employed in well-established
functionals such as PBE027–29 and B3LYP.30–32 A short-
range Coulomb potential is, e.g., employed for the HSE06
functional,33–35 whereas a combination of long-range
Coulomb and Gaussian-type potential is used for the
MCY3 functional.36

Gaussian overlap integrals, in the following denoted by
(ab), are computed in semi-empirical methods16 and QM
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approaches such as Hartree-Fock and KS-DFT. The effi-
cient computation of (ab) is not of major importance for
QM methods since their contribution to the total com-
putational cost is negligible. However, the efficient eval-
uation of the three-index overlap integrals (abã), where
two functions are located at the same center, is essential
for local RI approaches that use an overlap metric.37–39

Employing local RI in KS-DFT, the atomic pair densi-
ties are approximated by an expansion in atom-centered
auxiliary functions. In order to solve the RI equations,
it is necessary to calculate (abã) for each pair where a, b
refers to orbital functions at atoms A and B and ã to the
auxiliary function at A. The evaluation of (abã) is compu-
tationally expensive because the auxiliary basis set is 3-5
times larger than the orbital basis set. A rapid evaluation
of (abã) is important to ensure that the computational
overhead of the integral calculation is not larger than the
speed-up gained by the RI .

Two-center integrals with the local operator r2na (n ∈
N), where ra depends on the center of one of the Gaussian
functions, are required for special projection and expan-
sion techniques. For example, these integrals are used
for projection of the primary orbital basis on smaller,
adaptive basis sets.40

Numerous schemes for the evaluation of Gaus-
sian integrals have been proposed based on Cartesian
Gaussian,41–47 Hermite Gaussian48–51 and solid or spher-
ical harmonic Gaussian functions.51–58 For a review of
Gaussian integral schemes see Ref. 59. A very popu-
lar approach is the Obara-Saika (OS) scheme,42 which
employs a recursive formalism over primitive Cartesian
Gaussian functions. However, electronic-structure codes
utilize spherical harmonic Gaussians (SpHGs) since the
number of SpHGs is equal or smaller than the number
of Cartesian Gaussians, i.e. for fixed angular momentum
l, (2l + 1) SpHGs compare to (l + 1)(l + 2)/2 Cartesian
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Gaussians. Furthermore, Gaussian basis sets are often
constituted of contracted functions. Thus, the primitive
Cartesian integrals obtained from the OS recursion are
subsequently contracted and transformed to SpHGs.

In this work, we further develop an alternative inte-
gral scheme52–54,56 that employs contracted solid har-
monic Gaussians (SHGs). The latter are closely re-
lated to SpHG functions and differ solely by a con-
stant factor. The SHG integral scheme is based on
the application of the spherical tensor gradient operator
(STGO).60,61 The expressions resulting from Hobson’s
theorem of differentiation62 contain an angular momen-
tum term that is independent on the exponents and con-
traction coefficients. This term is obtained by relatively
simple recursions. It can be pre-computed and re-used
multiple times for all functions in the basis set with the
same l and m quantum number. The integral and deriva-
tive evaluation requires the contraction of a set of aux-
iliary integrals over s functions and their scalar deriva-
tives. The same contracted quantity is re-used several
times for the evaluation of functions with the same set
of exponents and contraction coefficients, but different
angular dependency m. Unlike for Cartesian functions,
subsequent transformation and contraction steps are not
required.

This work is based on Refs. 56 and 63, where the two-
index integral expressions for the overlap operator and
general non-local operators are given. We extend the
SHG scheme to the local operator r2na and derive formu-
las for the integrals (a|r2na |b). The latter are fundamen-
tal for the subsequent derivation of the three-index over-
lap integral (abã). The performance of the SHG method
is compared to the OS scheme. We also include inte-
grals with different non-local operators such as standard
Coulomb, modified Coulomb or Gaussian-type operators
in our comparison.

In the next section, the expressions for the integrals
and their Cartesian derivatives are given followed by
details on the implementation of the integral schemes.
The performance of the SHG scheme is then discussed
in terms of number of operations and empirical timings.
The derivations of the expressions for (a|r2na |b) are given
in Appendix A and B.

II. INTEGRAL AND DERIVATIVE EVALUATION

After introducing the relevant definitions and nota-
tions, we summarize the work of Giese and York56 in Sec-
tion II B. The integral expressions of (a|r2na |b) and (abã)
are then derived in Sections II C and II D, respectively.
Subsequently, the formulas for the Cartesian derivatives
are given (Section II E) as well as the details on the com-
putation of the angular-dependent term in the SHG in-
tegral expressions (Section II F).

A. Definitions and notations

The notations used herein correspond to Refs. 56, 64,
and 65 unless otherwise indicated. An unnormalized,
primitive SHG function is defined as

χl,m(α, r) = Cl,m(r) exp (−αr2) (1)

where the complex solid harmonics Cl,m(r),

Cl,m(r) =

√
4π

2l + 1
rlYl,m(θ, φ), (2)

are obtained by rescaling the spherical harmonics
Yl,m(θ, φ). Contracted SpHG functions ϕl,m(r) are con-
structed as linear combination of the primitive SHG func-
tions

ϕl,m(r) = Nl
∑
α∈A

cαχl,m(α, r), (3)

where {cα} are the contraction coefficients for the set of
exponents A = {α} and Nl is the normalization constant
given by66

Nl = Kl

[∑
α∈A

∑
α̂∈A

π1/2(2l + 2)!cαcα̂
22l+3(l + 1)!(α+ α̂)l+3/2

]−1/2
. (4)

The factor

Kl =

√
2l + 1

4π
(5)

is included in the normalization constant to convert from
SHG to SpHG functions.

In the following, the absolute value of the m quantum
number is denoted by

µ = |m|. (6)

Furthermore, we use the notations,

ra = r−Ra, rb = r−Rb, R2
ab = |Ra −Rb|2, (7)

where Ra references the position of the Gaussian center
A and Rb the position of center B. The scalar derivative
of X(r2) with respect to r2 is denoted by

X(k)(r2) =

(
∂

∂r2

)k
X(r2). (8)

B. Integrals (a|O|b)

In this section, the expression to compute the two-
center integral (a|O|b) is given which is defined as

(a|O|b) =

∫∫
ϕla,ma(r1 −Ra)O(r1 − r2)

× ϕlb,mb(r2 −Rb)dr1dr2.

(9)
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ϕla,ma(ra) and ϕlb,mb(rb) are contracted SpHG functions
as defined in Equation (3), which are centered at Ra and
Rb, respectively. O(r) is an operator that is explicitly in-
dependent on the position vectors Ra or Rb. Such opera-
tors are, e.g., the non-local Coulomb operatorO(r) = 1/r
or the local overlap O(r) = δ(r).

The derivation for an efficient expression to compute
(a|O|b) follows Ref. 56. It is based on Hobson’s theorem62

of differentiation, which states that

Cl,m(∇)f(r2) = 2lCl,m(r)

(
∂

∂r2

)l
f(r2), (10)

where the differential operator Cl,m(∇) is called STGO.
The differential operator is obtained by replacing r in
the solid harmonic Cl,m(r) by ∇ = (∂/∂x, ∂/∂y, ∂/∂z).
The derivation of the (a|O|b) integrals starts by noting
that exp(−αr2) is an eigenfunction of (∂/∂r2)l with the
eigenvalue (−α)l. Using Equation (10) and the definition
of primitive SHGs from Equation (1), the primitive SHG
at center Ra can be rewritten as

χl,m(α, ra) =
Cl,m(∇a) exp

(
−αr2a

)
(2α)l

, (11)

where Cl,m(∇a) acts on Ra. Inserting Equation (1) for
s functions, χ0,0(α, r) = exp

(
−αr2

)
, yields

χl,m(α, ra) =
Cl,m(∇a)χ0,0(α, ra)

(2α)l
. (12)

Inserting the STGO formulation of χl,m from Equa-
tion (12) in Equation (9) gives

(a|O|b) = Cla,ma(∇a)Clb,mb(∇b)Ola,lb(R2
ab). (13)

The contracted integral over s functions is denoted by

Ola,lb(R
2
ab) = NlaNlb

∑
α∈A

∑
β∈B

cαcβ
(2α)la(2β)lb

(0a|O|0b),

(14)
where cα and cβ are the expansion coefficients of
ϕla,ma(ra) and ϕlb,mb(rb), respectively, with correspond-
ing exponents α and β. The integral (0a|O|0b) over prim-
itive s functions is given by

(0a|O|0b) =

∫∫
χ0,0(α, r1 −Ra)O(r1 − r2)

× χ0,0(β, r2 −Rb)dr1dr2.

(15)

The analytic expressions of (0a|O|0b) for the overlap
and different non-local operators are given in Table S1,
see Supplementary Information (SI). Application of the
product and differentiation rules for the STGO52–54,67

finally yields

(a|O|b) =(−1)lbAla,maAlb,mb

×
min(la,lb)∑
j=0

2la+lb−jO
(la+lb−j)
la,lb

(R2
ab)

× (2j − 1)!!

j∑
κ=0

Bj,κQ
c/s,c/s
la,µa,lb,µb,j,κ

(Rab),

(16)

where the prefactors are

Al,m = (−1)m
√

(2− δm,0)(l +m)!(l −m)! (17)

Bj,κ =
1

(2− δκ,0)(j + κ)!(j − κ)!
. (18)

and n!! denotes the double factorial. The superscript on
Ola,lb(R

2
ab) in Equation (16) denotes the scalar derivative

with respect to R2
ab, see Equation (8) and (14),

O
(k)
la,lb

(R2
ab) =NlaNlb

∑
α∈A

∑
β∈B

cαcβ
(2α)la(2β)lb

×
(

∂

∂R2
ab

)k
(0a|O|0b).

(19)

Since s functions contain no angular dependency,
(0a|O|0b) is a function of Rab (or equivalently, R2

ab), see
Table S1 (SI). Therefore, the derivative in Equation (19)
is well-defined. The integral Ola,lb(R

2
ab) can be inter-

preted as the monopole result of the expansion given in
Equation (16).

The expression given in Equation (16) depends further

on Q
c/s,c/s
la,µa,lb,µb,j,κ

(Rab), where µ = |m|. Positive m values

refer to a cosine (c) component and negative m to a sine
(s) component, i.e.

Qcca,b,j,κ(Rab) : ma,mb ≥ 0

Qcsa,b,j,κ(Rab) : ma ≥ 0,mb < 0

Qsca,b,j,κ(Rab) : ma < 0,mb ≥ 0

Qssa,b,j,κ(Rab) : ma,mb < 0 .

(20)

Note that we used the abbreviation a, b for the indices
(la, µa, lb, µb) in Equation (20). Details on the calculation

of Q
c/s,c/s
a,b,j,κ (Rab) can be found in Section II F.

C. Integrals (a|r2na |b)

The integrals (a|r2na |b),

(a|r2na |b) =

∫
ϕla,ma(ra)r2na ϕlb,mb(rb)dr , (21)

n ∈ N, are fundamental for the derivation of the over-
lap matrix elements (abã) with two Gaussians at center
Ra, which are discussed in the next section. Since the
operator r2na depends on the position Ra, Equations (14)
and (16) cannot be adapted by replacing (0a|O|0b) with
(0a|r2na |0b). Consequently, new expressions for comput-
ing (a|r2na |b) are derived in this section.

Since r2na depends on Ra, Cl,m(∇a) is acting on the
product of χl,m(α, ra) and r2na ,

χl,m(α, ra)r2na = Cl,m(ra) exp
(
−αr2a

)
r2na . (22)
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The expression of this product in terms of the STGO
Cl,m(∇a) is obtained using Hobson’s theorem,

χl,m(α, ra)r2na =
Cl,m(∇a)

(2α)l

n∑
j=0

(
n

j

)
(l + j − 1)!

(l − 1)!αj

× exp
(
−αr2a

)
r2(n−j)a .

(23)

The derivation of Equation (23) is given in Appendix A.

Inserting Equations (12) and (23) in Equation (21)
yields

(a|r2na |b) = Cla,ma(∇a)Clb,mb(∇b)Tla,lb(R2
ab), (24)

where Tla,lb(R
2
ab) = T

(0)
la,lb

(R2
ab) is again the monopole re-

sults for the integral given in Equation (25). The deriva-
tion follows now the same procedure as for the integrals
(a|O|b) and yields

(a|r2na |b) =(−1)lbAla,maAlb,mb

×
min(la,lb)∑
j=0

2la+lb−jT
(la+lb−j)
la,lb

(R2
ab)

× (2j − 1)!!

j∑
κ=0

Bj,κQ
c/s,c/s
la,µa,lb,µb,j,κ

(Rab),

(25)

where the scalar derivative of Tla,lb(R
2
ab) with respect to

R2
ab is

T
(k)
la,lb

(R2
ab) =NlaNlb

∑
α∈A

∑
β∈B

cαcβ
(2α)la(2β)lb

×
n∑
j=0

(
n

j

)
(la + j − 1)!

(la − 1)!αj
(0a|r2(n−j)a |0b)(k).

(26)

The integral over primitive s functions is

(0a|r2ma |0b) =

∫
χ0,0(α, ra)r2ma χ0,0(β, rb)dr (27)

=
π3/2 exp(−ρR2

ab)

2mcm+3/2

m∑
j=0

Iα,β,mj (R2
ab) (28)

with c = α+ β and ρ = αβ/c and

Iα,β,mj (R2
ab) = 2j

(2m+ 1)!!
(
m
j

)
(2j + 1)!!

β2j

cj
R2j
ab. (29)

The proof of Equation (28) is similarly elaborate as for
Equation (23) and is given in Appendix B. The deriva-
tives of (0a|r2ma |0b) are obtained by applying the Leibniz

rule of differentiation to Equation (28)

(0a|r2ma |0b)(k)

=
π3/2 exp(−ρR2

ab)

2mcm+3/2

min(m,k)∑
i=0

(
k

i

)
(−ρ)

k−i

×
m∑
j=i

(
∂

∂R2
ab

)i
Iα,β,mj (R2

ab).

(30)

D. Overlap integrals (abã)

The three-index overlap integral (abã) includes two
functions at center Ra and is defined by

(abã) =

∫
ϕla,ma(ra)ϕl̃a,m̃a(ra)ϕlb,mb(rb)dr. (31)

In traditional Cartesian Gaussian-based schemes, the
product of the two Cartesian functions at center Ra is
obtained by adding exponents and angular momenta of
both Gaussians, respectively. The result is a new Carte-
sian Gaussian at Ra. The integral evaluation proceeds
then as for the two-index overlap integrals (ab). In the
SHG scheme on the other hand, the product of two SHG
functions at the same center is obtained by a Clebsch-
Gordan (CG) expansion of the spherical harmonics. In
the following, the expression of this expansion in terms
of the STGO is derived and used to obtain the integral
formula.

Employing the definitions given in Equations (1) and
(2), the product of two primitive SHG functions at Ra

can be written as

χl,m(α, ra)χl̃,m̃(α̃, ra)

= Cl,m(ra) exp(−αr2a)Cl̃,m̃(ra) exp(−α̃r2a) (32)

= λ exp
(
−α′r2a

)
Yl,m(θ, φ)Yl̃,m̃(θ, φ)rl+l̃a (33)

where α′ = α+ α̃ and

λ =
4π√

(2l + 1)(2l̃ + 1)
. (34)

The product of two spherical harmonics can be expanded
in terms of spherical harmonics,

Yl,m(θ, φ)Yl̃,m̃(θ, φ) =
∑
L,M

GL,l,l̃M,m,m̃YL,M (θ, φ), (35)

where |l − l̃| ≤ L ≤ l + l̃. GL,l,l̃M,m,m̃ are the Gaunt

coefficients68 which are proportional to a product of CG
coefficients.69 The expansion given in Equation (35) is
valid since the spherical harmonics form a complete set of
orthonormal functions. A similar expansion for solid har-
monics Cl,m(r) is not possible because the latter are no
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basis of L2(R3). Inserting the CG expansion into Equa-
tion (33) [1], re-introducing solid harmonics [2] as defined
in Equation (2) and employing the definition given in
Equation (1) [3] yields

χl,m(α, ra)χl̃,m̃(α̃, ra)

[1]
= λ exp

(
−α′r2a

)∑
L,M

GL,l,l̃M,m,m̃YL,M (θ, φ)rl+l̃a (36)

[2]
= λ

∑
L,M

GL,l,l̃M,m,m̃KLCL,M (ra)

× exp
(
−α′r2a

)
rl+l̃−La (37)

[3]
= λ

∑
L,M

GL,l,l̃M,m,m̃KLχL,M (α′, ra)rl+l̃−La , (38)

where KL is defined in Equation (5). The L quantum
numbers of the non-vanishing contributions in the CG
expansion proceed in steps of two starting from Lmin =
|l− l̃| to Lmax = l+ l̃. Thus, l+ l̃−L is even and we can

express χL,M (α′, ra)rl+l̃−La in terms of the STGO using
Equation (23),

χl,m(α, ra)χl̃,m̃(α̃, ra)

= λ
∑
L,M

GL,l,l̃M,m,m̃KL
CL,M (∇a)

(2α′)L

×
p∑
j=0

(
p

j

)
(L+ j − 1)!

(L− 1)!(α′)j
exp

(
−α′r2a

)
r2(p−j)a

(39)

with p = (l + l̃ − L)/2.
The derivation of the integral expression for (abã) is

analogous to the (a|O|b) integrals. Inserting the STGO
formulations given in Equation (11) and Equation (39)
into Equation (31) yields

(abã) =
∑
La,Ma

GLa,la,l̃aMa,ma,m̃a
CLa,Ma(∇a)

× Clb,mb(∇b)PLa,la,l̃a,lb(R
2
ab)

(40)

with

PLa,la,l̃a,lb(R
2
ab)

= λKLaNlaNlbNl̃a

∑
α∈A

∑
β∈B

∑
α̃∈Ã

cαcβcα̃
(2α′)La(2β)lb

×
p∑
j=0

(
p

j

)
(La + j − 1)!

(La − 1)!(α′)j
(0a′ |r2(p−j)a |0b),

(41)

where the dependence of PLa,la,l̃a,lb on R2
ab originates

from the integrals over primitive s functions,

(0a′ |r2ma |0b) =

∫
χ0,0(α′, ra)r2ma χ0,0(β, rb)dr, (42)

see Equation (28). The derivation proceeds as for the
(a|O|b) and (a|r2na |b) integrals yielding the final formula,

(abã) = (−1)lbAlb,mb
∑
La,Ma

GLa,la,l̃aMa,ma,m̃a
ALa,Ma

×
min(La,lb)∑

j=0

2La+lb−jP
(La+lb−j)
La,la,l̃a,lb

(R2
ab)

× (2j − 1)!!

j∑
κ=0

Bj,κQ
c/s,c/s
La,|Ma|,lb,µb,j,κ(Rab),

(43)

where the coefficients Al,m and Bj,κ are given in Equa-
tions (17) and (18). See Section II F for the expres-

sions of Q
c/s,c/s
La,|Ma|,lb,µb,j,κ. The superscript (La−lb−j) on

PLa,la,l̃a,lb indicates the derivative as defined in Equa-

tion (8).
The integral (abã) can be considered as a sum of

(a|r2na |b) integrals, introducing some modifications due
to normalization and contraction.

E. Cartesian Derivatives

Cartesian derivatives are required for evaluating forces
and stress in molecular simulations. The Cartesian
derivatives of the integrals (a|O|b), (a|r2na |b) and (abã)
are obtained by applying the product rule to the R2

ab-
dependent contracted quantities [Equations (19),(26) and

(41)] and the matrix elements of Q
c/s,c/s
la,µa,lb,µb,j,κ

(Rab) .

The derivative of (a|O|b) [Equation (16)] with respect to
Ra is

∂

∂Ra,i
(a|O|b)

= 2(Ra,i −Rb,i)

×
min(la,lb)∑
j=0

O
(la+lb−j+1)
la,lb

(R2
ab)Q̃

c/s,c/s
la,µa,lb,µb,j

(Rab)

+

min(la,lb)∑
j=0

O
(la+lb−j)
la,lb

(R2
ab)

∂Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab)

∂Ra,i

(44)

with i = x, y, z and where we have introduced the nota-
tion

Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab)

= (−1)lbAla,µaAlb,µb2
la+lb−j(2j − 1)!!

×
j∑

κ=0

Bj,κQ
c/s,c/s
la,µa,lb,µb,j,κ

(Rab).

(45)

The derivatives of (a|r2na |b) are obtained from Equa-
tion (44) by substituting Ola,lb(R

2
ab) by Tla,lb(R

2
ab). For
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(abã), we replace Ola,lb(R
2
ab) by PLa,la,l̃a,lb(R

2
ab) consid-

ering additionally the CG expansion. The derivatives of

Q̃
c/s,c/s
la,µa,lb,µb,j

are constructed from (l− 1) terms, which is
explained in detail in Section II F.

F. Computation of Q
c/s,c/s
a,b,j,κ and its derivatives

Q
c/s,c/s
a,b,j,κ , introduced in Equation (20), are elements of

the 2×2 matrix Qa,b,j,κ, which is computed from the real
translation matrix Wl,m,j,κ

64,65

Qa,b,j,κ(Rab) =

(
Qcca,b,j,κ Qcsa,b,j,κ
Qsca,b,j,κ Qssa,b,j,κ

)
(Rab)

= Wla,µa,j,κ(−Rab)W
T
lb,µb,j,κ

(−Rab).

(46)

Note that we abbreviate the indices (la, µa, lb, µb) with
(a, b) in Qa,b,j,κ as in Equation (20). The real translation
matrix is a 2×2 matrix with the elements

Wl,m,j,κ(Rab) =

(
W cc
l,m,j,κ W cs

l,m,j,κ

W sc
l,m,j,κ W ss

l,m,j,κ

)
(Rab)

. (47)

The expressions for Wl,m,j,κ are given by65,

W cc
l,m,j,κ(Rab) =

(
1

2

)δκ0 [
Rcl−j,m−κ(−Rab)

+(−1)κRcl−j,m+κ(−Rab)
]

(48)

W cs
l,m,j,κ(Rab) = −Rsl−j,m−κ(−Rab)

+ (−1)κRsl−j,m+κ(−Rab) (49)

W sc
l,m,j,κ(Rab) =

(
1

2

)δκ0 [
Rsl−j,m−κ(−Rab)

+(−1)κRsl−j,m+κ(−Rab)
]

(50)

W ss
l,m,j,κ(Rab) = Rcl−j,m−κ(−Rab)

− (−1)κRcl−j,m+κ(−Rab). (51)

Here, we introduced the regular scaled solid harmonics
Rl,m(r) which are defined as

Rl,m(r) =
1√

(l −m)!(l +m)!
Cl,m(r), (52)

where the definition of the complex solid harmonics
Cl,m(r) from Equation (2) has been employed. The reg-
ular scaled solid harmonics are also complex and can be
decomposed into a real (cosine) and an imaginary (sine)
part as

Rl,m(r) = Rcl,m(r) + iRsl,m(r). (53)

The cosine and sine parts can be constructed by the fol-
lowing recursion relations64,65

Rc00 = 1, Rs00 = 0 (54)

Rcl+1,l+1 = −xR
c
ll − yRsll
2l + 2

(55)

Rsl+1,l+1 = −yR
c
ll + xRsll
2l + 2

(56)

R
c/s
l+1,m =

(2l + 1)zR
c/s
l,m − r2R

c/s
l−1,m

(l +m+ 1)(l −m+ 1)
, 0 ≤ m < l (57)

where r = (x, y, z). The usage of c/s in the last recur-
rence formula indicates that the relation is used for both,
Rcl,m(r) and Rsl,m(r). The recursions are only valid for
positive m. However, the regular scaled solid harmon-
ics are also defined for negative indices and satisfy the
following symmetry relations

Rcl,−m = (−1)mRcl,m, Rsl,−m = −(−1)mRsl,m. (58)

Note that these symmetry relations have to be employed

for the evaluation of R
c/s
l−j,µ−κ since µ − κ can be also

negative. Furthermore, only elements with l−j ≥ |µ±κ|
give non-zero contributions.

The elements of the transformation matrix Wl,m,j,κ

are also defined for negative m. The matrix elements of
Wl,m,j,κ obey the same symmetry relations with respect
to sign changes of m,

W
cc/cs
l,m,j,κ = (−1)mW

cc/cs
l,m,j,κ

W
sc/ss
l,m,j,κ = −(−1)mW

sc/ss
l,m,j,κ

(59)

where we have used the notation m = −m. These
symmetry relations are used for the derivatives of

Q
c/s,c/s
la,µa,lb,µbj,κ

.

The derivatives of Q
c/s,c/s
la,µa,lb,µb,j,κ

and equivalently of

Q̃
c/s,c/s
la,µa,lb,µb,j

from Equation (45) are obtained by em-

ploying the differentiation rules70 of the solid harmonics
Cl,m(r). The derivatives of Cl,m(r) are a linear combina-
tion of (l−1) solid harmonics. Therefore, the gradients of

Q̃
c/s,c/s
la,µa,lb,µb,j

are also linear combinations of lower order
terms,

∂Q̃
c/s,c/s
la,µa,lb,µb,j

∂Ra,x
=

Ala,µa
Ala−1,µa+1

Q̃
c/s,c/s
la−1,µa+1,lb,µb,j

− Ala,µa
Ala−1,µa−1

Q̃
c/s,c/s
la−1,µa−1,lb,µb,j

− Alb,µb
Alb−1,µb+1

Q̃
c/s,c/s
la,µa,lb−1,µb+1,j

+
Alb,µb

Alb−1,µb−1
Q̃
c/s,c/s
la,µa,lb−1,µb−1,j ,

(60)
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∂Q̃
c/s,c/s
la,µa,lb,µb,j

∂Ra,y
= (±1)ma

Ala,µa
Ala−1,µa+1

Q̃
s/c,c/s
la−1,µa+1,lb,µb,j

+(±1)ma
Ala,µa

Ala−1,µa−1
Q̃
s/c,c/s
la−1,µa−1,lb,µb,j

−(±1)mb
Alb,µb

Alb−1,µb+1
Q̃
c/s,s/c
la,µa,lb−1,µb+1,j

−(±1)mb
Alb,µb

Alb−1,µb−1
Q̃
c/s,s/c
la,µa,lb−1,µb−1,j ,

(61)

∂Q̃
c/s,c/s
la,µalb,µb,j

∂Ra,z
= 2

Ala,µa
Ala−1,µa

Q̃
c/s,c/s
la−1,µa,lb,µb,j

−2
Alb,µb
Alb−1,µb

Q̃
c/s,c/s
la,µa,lb−1,µb .

(62)

where (±1)m = 1 if m ≥ 0 and (±1)m = −1 if m < 0.
Note that the cosine part of the y derivatives are con-
structed from the sine part and vice versa. Furthermore,
the terms in Equations (60)-(62) with la/b − 1 < 0 are
zero. A special case has to be considered for the x, y
derivatives, when µ = 0. The matrix elements of the

type Q̃
c/s,c/s
la−1,−1,lb,µb,j and Q̃

c/s,c/s
la,µa,lb−1,−1,j are required for

the construction of the x and y derivatives if µa/b = 0,
see Equations (60) and (61). These matrix elements are
never calculated since µ is positive by definition, but they
can be obtained using the symmetry relations given in
Equation (59). For example if µa = 0, the following re-
lations are used for the x-derivative

Q̃
cc/cs
la−1,−1,lb,µb,j = (−1)Q̃

cc/cs
la−1,1,lb,µb,j (63)

and for the y derivative we employ the symmetry rela-
tions:

Q̃
sc/ss
la−1,−1,lb,µb,j = Q̃

sc/ss
la−1,1,lb,µb,j . (64)

III. IMPLEMENTATION DETAILS

Integrals of the type (a|O|b) have been implemented
for the overlap δ(r), Coulomb 1/r, long-range Coulomb
erf(ωr)/r, short-range Coulomb erfc(ωr)/r, Gaussian-
damped Coulomb exp(−ωr2)/r operator and the Gaus-
sian operator exp(−ωr2), where r = |r1 − r2|. The pro-
cedure for calculating these integrals differs only by the
evaluation of the s-type integrals (0a|O|0b) and their
derivatives with respect to R2

ab. The expressions for

the k-th derivatives (0a|O|0b)(k) have been derived from
Ref. 47 and are explicitly given in Table S1, see SI.

The pseudocode for the implementation of the SHG
integrals is shown in Figure 1. Our implementation is
optimized for the typical structure of a Gaussian basis
set, where Gaussian functions that share the same prim-
itive exponents are organized in so-called sets. Since the

For each atomic kind:

Calculate contraction matrix: Cla,α = Nlacα/(2α)la

lmax = MAX(la,max, lb,max)

For all 0 ≤ l ≤ lmax:

Tabulate Rcl,m(Rab) and Rsl,m(Rab)

For all 0 ≤ la/b ≤ la/b,max:

Calculate Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab)

If derivatives required:

Calculate ∂
∂Ra,i

Q̃
c/s,c/s
la,µa,lb,µb,j

(Rab), i = x, y, z

For all sets a/b:

nmax = la,max set + lb,max set

If derivatives required:

nmax = nmax + 1

For all exponents in set a/b:

Calculate (0a|O|0b)(k), 0 ≤ k ≤ nmax

For all shells in set a/b:

Contract: O
(k)
la,lb

(R2
ab) =

∑
α

∑
β Cla,αClb,β(0a|O|0b)(k)

For all shells in set a/b:

For all −la/b ≤ ma/b ≤ la/b:
Calculate (a|O|b) =

∑
j O

(la+lb−j)
la,lb

(R2
ab)Q̃

c/s,c/s
la,µa,lb,µb,j

(Rab)

If derivatives required:

Calculate ∂
∂Ra,i

(a|O|b), i = x, y, z

FIG. 1. Pseudocode for the calculation of the (a|O|b) inte-
grals for an atom pair using a basis set with several sets of
Gaussian functions as input. All functions that belong to one
set share the same Gaussian exponents. Each set consists of
shells characterized by the l quantum number and a set of
contraction coefficients.

matrix elements Q̃
c/s,c/s
la,µa,lb,µb,j

and their Cartesian deriva-
tives do not depend on the exponents, they are com-
puted only once for all l = 0, ..., lmax, where lmax is the
maximal l quantum number of the basis set. The ma-

trix elements Q̃
c/s,c/s
la,µa,lb,µb,j

are used multiple times for
all functions with the same l and m quantum number.
The integral and scalar derivatives (0a|O|0b)(k) are then
calculated for each set of exponents and subsequently
contracted in one step using matrix-matrix multiplica-
tions. The same contracted monopole and its derivatives

O
(k)
la,lb

(R2
ab) are used for all those functions with the same

set of exponents and contraction coefficients, but differ-
ent angular dependency m.

The only difference for the implementation of the
(a|r2na |b) and (abã) integrals is the evaluation of the con-
tracted monopole and its scalar derivatives. For the
three-index overlap integrals (abã) we have additionally
to consider the CG expansion. The expansion coefficients
are independent on the position of the Gaussians and
are precalculated only once for all (abã) integrals. The

Gaunt coefficients GL,l,l̃M,m,m̃ are obtained by multiplying

Equation (35) by YL,M (θ, φ) and integrating over the an-
gular coordinates φ and θ of the spherical polar system.
The allowed values for L range in steps of 2 from |l − l̃|
to l + l̃. Note that not all terms with −L ≤ M ≤ L in
Equation (35) give non-zero contributions. For l, l̃ ≤ 2,
the product of two spherical harmonics is expanded in
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TABLE I. Specifications for the basis sets used for the per-
formance tests. Number of s, p, d, f, g, h and i functions and
their contraction length K.

basis set name functions K
TESTBAS-L0 5s 1,...,7
TESTBAS-L1 5p 1,...,7
TESTBAS-L2 5d 1,...,7
TESTBAS-L3 5f 1,...,7
TESTBAS-L4 5g 1,...,7
TESTBAS-L5 5h 1,...,7
H-DZVP-MOLOPT-GTH 2s1p 7
O-DZVP-MOLOPT-GTH 2s2p1d 7
O-TZV2PX-MOLOPT-GTH 3s3p2d1f 7
Cu-DZVP-MOLOPT-SR-GTH 2s2p2d1f 6
H-LRI-MOLOPT-GTH 10s9p8d6f 1
O-LRI-MOLOPT-GTH 15s13p12d11f9g 1
Cu-LRI-MOLOPT-SR-GTH 15s13p12d11f10g9h8i 1

no more than four terms. However, the number of terms
increases with l + l̃. A detailed discussion of the proper-
ties of the Gaunt coefficients can be found in Ref. 71 and
tabulated values for low-order expansions of real-valued
spherical harmonics are given in Ref. 63.

To assess the performance of the SHG integrals, an op-
timized OS scheme42 has been implemented. In the OS
scheme, we first compute the Cartesian primitive inte-
grals recursively. Subsequently, the Cartesian integrals
are contracted and transformed to SpHGs. An efficient
sequence of vertical and horizontal recursive steps is used
to enhance the performance of the recurrence procedure.
For the integrals (a|b), (a|r2na |b) and (abã), the recursion
can be performed separately for each Cartesian direction,
which drastically reduces the computational cost for high
angular momenta. The contraction and transformation is
performed in one step using efficient matrix-matrix oper-
ations. The three-index overlap integrals (abã) are com-
puted as described in Section II D by combining the two
Cartesian Gaussian functions at center Ra into a new
Cartesian function at Ra.

IV. COMPUTATIONAL DETAILS

The OS and SHG integral scheme have been imple-
mented in the CP2K2,72 program suite and are available
as separate packages. The measurements of the tim-
ings have been performed on an Intel Xeon (Haswell)
platform73 using the Gfortran Version 4.9.2 compiler
with highest possible optimization. Matrix-matrix mul-
tiplications are efficiently computed using Intel R© MKL
LAPACK Version 11.2.1.

Empirical timings have been measured for the integrals
(a|O|b), (a|r2na |b) and (abã) using the basis sets specified
in Table I. The basis sets at centers Ra and Rb are cho-
sen to be identical. The measurements have been per-
formed for a series of test basis sets with angular mo-
menta L = 0, ..., 5 and contraction lengths K = 1, ..., 7.

For example, the specification (TESTBAS-L1, K=7) in-
dicates that we have five contracted p functions at both
centers, where each contracted function is a linear combi-
nation of seven primitive Gaussians. Furthermore, tim-
ings have been measured for basis sets of the MOLOPT
type74 that are widely used for DFT calculations with
CP2K, see SI for details. The MOLOPT basis sets con-
tain highly contracted functions with shared exponents,
i.e. they are so-called family basis sets. A full contrac-
tion over all primitive functions is used for all l quan-
tum numbers. For the (abã) integrals, we use for the
second function at center Ra, ϕl̃a,m̃a , the corresponding
LRI-MOLOPT basis sets, see Table I. The latter is an aux-
iliary basis set and contains uncontracted functions, as
typically used for RI approaches.

V. RESULTS AND DISCUSSION

This section compares the efficiency of the SHG scheme
in terms of mathematical operations and empirical tim-
ings to the widely used OS method.

A. Comparison of the algorithms

Employing the OS scheme for the evaluation of SpHG
integrals, the most expensive step is typically the re-
cursive computation of the primitive Cartesian Gaussian
integrals. The recurrence procedure is increasingly de-
manding in terms of computational cost for large an-
gular momenta. The recursion depth is even increased
when the gradients of the integrals are required, since
the derivatives of Cartesian Gaussian functions are con-
structed from higher-order angular terms (l + 1). In
case of the TESTBAS-L5 basis set, the computational cost
for evaluating both, the Coulomb integral (a|1/r|b) and
its derivatives, is three times larger than for calculat-
ing solely the integral. The integral matrix of primi-
tive Cartesian integrals (and their derivatives) has to be
transformed to primitive SpHG integrals, which are then
contracted. The contribution of the contraction step to
the total computational cost is small for integrals with
non-local operators. However, the OS recursion takes a
significantly smaller amount of time for local operators,
when efficiently implemented, see Section III. Thus, the
contraction of the primitive SpHG integrals contributes
by up to 50% to the total timings for the integrals (ab),
(abã) and (a|r2na |b). The contraction step can be even
dominant when derivatives of these integrals are required
since it has to be performed for each spatial direction, i.e.
we have to contract the x, y and z Cartesian derivatives
of the primitive integral matrix separately. Details on
the contribution of the different steps to the overall com-
putational cost are displayed in Figures S1-S4 (a,b), SI.

The SHG method requires only recursive operations

for the evaluation of R
c/s
l,m [Equations (54)-(57)], which

do not depend on the Gaussian exponents and can be



9

TABLE II. Number of matrix elements that need to be
contracted for two-index integrals comparing the OS and
SHG method for integral (Int.) and integral+derivative
(Int.+Dev.) evaluation. The basis set specifications are given
in Table I.

Integral method
H-DZVP O-DZVP

Int. Int.+Dev. Int. Int.+Dev.
OS 784 3136 3969 15876
SHG 147 196 245 294

tabulated for all functions of the basis set. Furthermore,
a deeper recursion is not required for the derivatives of
the integrals because they are constructed from linear
combinations of lower-order angular terms, see Equa-
tions (60)-(62). Instead of contracting each primitive
SpHG, we contract an auxiliary integral of s functions
and its scalar derivatives. The number of scalar deriva-
tives is linearly increasing with l. If the gradients are
required, the increase in computational cost for the con-
traction is marginal. We have to contract only one ad-
ditional scalar derivative of the auxiliary integral. As
shown in Table II, the number of matrix elements, which
have to be contracted for the MOLOPT basis sets, is 1-2
orders of magnitude smaller for the SHG scheme. Note
that the numbers of SHG matrix elements refer to our im-
plementation, where actually more scalar derivatives of
(0a|O|0b) and (0a|r2na |0b) are contracted than necessary,
in order to enable library-supported matrix multiplica-
tions.

For both methods, we have to calculate the same num-
ber of fundamental integrals (0a|O|0b) and their scalar
derivatives with respect to R2

ab (SHG) and−ρR2
ab (OS),47

where ρ = αβ/(α + β). The time for evaluating these
auxiliary integrals is approximately the same for both
methods. In the SHG scheme, the evaluation of the lat-
ter constitutes the major contribution to the total tim-
ings for highly contracted basis sets with different sets
of exponents. The remaining operations are orders of
magnitudes faster than those in the OS scheme. Details
are given in Figures S1-S4 (c,d). The recursive proce-
dure to obtain regular scaled solid harmonics is negligi-
ble in terms of computational cost. The evaluation of

Q̃
c/s,c/s
la,µa,lb,µb,j

[Equation (45)] from the pretabulated R
c/s
l,m

contributes increasingly for large angular momenta. The
integrals (a|O|b) are finally constructed from the con-

tracted quantity O
(k)
la,lb

[Equation (19)] and Q̃
c/s,c/s
la,µa,lb,µb,j

as displayed Figure 1. This step becomes increasingly
expensive for large l quantum numbers and is in fact
dominant for family basis sets, where the fundamental
integrals are calculated only for one set of exponents.

B. Speed-up with respect to the OS method

Figure 2 displays the performance of the SHG scheme
as function of the l quantum number. The speed-up
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FIG. 2. Speed-up for different two-center integrals dependent
on the l quantum number at the fixed contraction length K =
7. The speed-up factor is defined as the ratio OS/SHG. Speed-
up for (a,b) integrals (a|O|b), (c,d) (a|r2na |b) and (e) (abã).
The solid line in (e) is the speed-up for the integrals and the
dashed line the speed-up for both, integrals + derivatives.

gained by the SHG method is presented for the basis
sets TESTBAS LX for a fixed contraction length. Gen-
erally, the ratio of the timings OS/SHG increases with
increasing l. For the (a|O|b) integrals, we observe speed-
ups between 40 and 400 for l = 5. For s functions, our
method can become up to a factor of two faster. The
smallest speed-up is obtained for the overlap integrals
since the OS recursion can be spatially separated. The
speed-up for the other operators depends on the compu-
tational cost for the evaluation of the primitive Gaussian
integrals (0a|O|0b). The SHG method outperforms the
OS scheme by up to a factor of 1000 (l = 5) when also
the derivatives of (a|O|b) are computed.

The computational cost for calculating (a|r2na |b) inte-
grals of h functions is up to two orders of magnitude
reduced compared to the OS scheme. The speed-up in-
creases with n. The SHG method is beneficial for all
l > 0 and also for l = 0 when n ≥ 3. The speed-up fac-
tor is generally slightly larger when also the derivatives
are required. However, the performance increase is not
as pronounced as for the derivatives of (a|O|b) which is
again due to the efficient spatial separation of the OS
recurrence.

The performance improvement for (abã) is comparable
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TABLE III. Speed-up for different two-center integrals. The speed-up is defined as the ratio of the timings OS/SHG. The
basis set specifications are given in Table I.

Integral type
H-DZVP O-DZVP O-TZV2PX Cu-DZVP

Int. Int.+Dev. Int. Int.+Dev. Int. Int.+Dev. Int. Int.+Dev.
(ab) 2.4 2.4 6.2 5.5 11.4 10.3 8.9 8.3

(a|1/r|b) 1.8 6.2 5.9 18.4 16.8 31.6 14.6 26.0

(a|erf(ωr)/r|b) 1.7 6.0 5.8 18.4 16.6 31.7 14.4 26.0

(a|erfc(ωr)/r|b) 1.7 5.4 5.2 16.3 14.9 29.5 12.9 24.8

(a| exp(−ωr2)|b) 1.8 6.7 6.4 19.7 18.0 32.5 16.0 27.4

(a| exp(−ωr2)/r|b) 1.6 5.0 4.4 14.1 12.3 25.4 10.8 22.0

(a|r2a|b) 2.6 2.7 9.7 8.8 22.9 18.6 19.7 15.8

(a|r4a|b) 4.0 4.0 16.0 14.0 39.4 29.3 34.7 25.2

(a|r6a|b) 6.6 6.3 25.3 21.6 59.5 44.3 56.1 38.9

(a|r8a|b) 9.1 8.1 34.7 29.6 79.3 61.4 73.4 54.6

(a|r10a |b) 11.8 10.5 44.7 36.7 105.2 79.9 97.5 72.2

(abã) 7.0 7.6 10.1 8.7 7.5 7.2 7.2 10.5
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FIG. 3. Speed-up for different two-center integrals dependent
on the contraction length K. The l quantum number is fixed
and set to l = 2. The speed-up factor is defined as the ratio
OS/SHG. Speed-up for (a,b) integrals (a|O|b), (c,d) (a|r2na |b)
and (abã).

to the (a|r2na |b) integrals. For the derivatives of (abã)
on the other hand, we get a significantly larger speed-up
due to the fact that it increases more than linearly with l
and that the OS recurrence has to be performed for larger

angular momenta. For instance, the derivatives of the h
functions require the recursion up to la + lã + 1 = 11.

Figure 3 shows the performance of the SHG scheme
as function of the contraction length K. The speed-up
increases with K for all integral types. A saturation
is observed around K = 6, 7 for (a|r2na |b) and some of
the (a|O|b) integrals, for example (a|1/r|b). The rea-
son is that the computation of the fundamental integrals
(0a|1/r|0b)(k) increasingly contributes with K to the to-
tal computational cost in the SHG scheme, whereas its
relative contribution to the total time is approximately
constant in the OS scheme, see Figure S3 (SI). For K = 7
and l = 2, the evaluation of (0a|1/r|0b)(k) is with 70%
the predominant step in the SHG scheme. Since the ab-
solute time for calculating the fundamental integrals is
the same in both schemes, the increase in speed-up levels
off. The saturation effect is less pronounced, for example,
for the overlap (ab) because the evaluation of (0a0b)

(k)

is computationally less expensive than for (0a|1/r|0b)(k).
Its relative contribution to the total time in the SHG
scheme is with 50% significantly smaller, see Figure S3
(d) for K = 7. However, the saturation for large K
is hardly of practical relevance because the contraction
lengths of Gaussian basis sets is typically not larger than
K = 7.

The speed-up for separate operations in the integral
evaluation can only be assessed for steps such as the con-
traction, which have an equivalent in the OS scheme.
The SHG contraction is increasingly beneficial for large
l quantum numbers, large contraction lengths and when
also derivatives are computed, see Figure S5 (SI).

Table III presents the performance of the SHG method
for the MOLOPT basis sets. We find that the SHG scheme
is superior to the OS method for all two-center integrals
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and basis sets. The smallest performance enhancement
is obtained for the DZVP basis set of hydrogen, where we
get a speed-up by a factor of 1.5-10 because only s and
p functions are included in this basis set. A performance
improvement of 1-2 orders of magnitude is observed for
the basis sets that include also f functions. The largest
speed-up is obtained for the (a|r2na |b) integrals followed
by the Coulomb and modified Coulomb integrals. The
SHG scheme is even more beneficial, at least for (a|O|b)
integrals, when also the derivatives are computed. For
the integrals (ab), (a|r2na |b) and (abã) on the contrary,
the speed-up for both, integrals and derivatives, is in-
stead a bit smaller than for the calculation of the inte-
grals alone. This behavior has to be related to the fact
that the MOLOPT basis sets are family basis sets. The OS
recursion is carried out for only one set of exponents.
Therefore, this part of the calculation is computationally
less expensive than for basis sets constituted of several
sets of exponents. Furthermore, the OS recursion is com-
putationally less demanding for integrals with local oper-
ators, see Section III, and the computational cost for the
recursion is in this case only slightly increased when addi-
tionally computing the derivatives. In the SHG scheme,
the construction of the derivatives from the contracted
quantity given in Equation (19) and Q̃

c/s,c/s
la,µa,lb,µb,j

[Equa-

tions (45)] and its derivatives [Equations (60)-(62)] is the
dominant step for family basis sets. This construction
step cannot be supported by memory-optimized library
routines and the relative increase in computational cost
upon calculating the derivatives is in this particular case
larger than for the OS scheme.

For the computation of molecular integrals in quan-
tum chemical simulations, the relation (a|O|b) =
(−1)lb−la(b|O|a) can be employed if we have the same
set of functions at centers Ra and Rb. This relation has
not been used for the measurements of the empirical tim-
ings, but is in practice useful when the atoms at center
Ra and Rb are of the same elemental type.

VI. CONCLUSIONS

Based on the work of Giese and York56, we used Hob-
son’s theorem to derive expressions for the SHG integrals
(a|r2na |b) and (abã) and their derivatives. We showed that
the SHG overlap (abã) is a sum of (a|r2na |b) integrals. Ad-
ditionally, two-center SHG integrals with Coulomb, mod-
ified Coulomb and Gaussian operators have been imple-
mented adapting the expressions given in Refs. 47 and
56.

In the SHG integral scheme, the angular-dependent
part is separated from the exponents of the Gaussian
primitives. As a consequence, the contraction is only
performed for s-type auxiliary integrals and their scalar
derivatives. The angular-dependent term is obtained by
a relatively simple recurrence procedure and can be pre-
computed. In contrast to the Cartesian Gaussian-based
OS scheme, the derivatives with respect to the spatial

directions are computed from lower-order (l − 1) terms.
We showed that the SHG integral method is superior

to the OS scheme by means of empirical timings. Per-
formance improvements have been observed for all inte-
gral types, in particular for higher angular momenta and
high contraction lengths. Specifically for the (a|r2na |b) in-
tegrals, the timings ratio OS/SHG grows with increasing
n. The speed-up is usually even larger for the computa-
tion of the Cartesian derivatives. This is especially true
for Coulomb-type integrals.
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SUPPLEMENTARY INFORMATION

Supplementary Material is available for the ana-
lytic expressions of (0a|O|0b)(k) employing the standard
Coulomb, modified Coulomb and Gaussian-type opera-
tors, see Table S1. Further information on integral tim-
ings is presented in Figures S1-S5. A detailed description
of the MOLOPT basis set is given in Tables S2-S8.

Appendix A: Proof of general formula for χl,m(α, ra)r
2n
a

In this appendix, we prove that Equation (23) is valid
for all n ∈ N. In the following, the label tbs indicates that
the identity of the left-hand side (lhs) and the right-hand
side (rhs) of the equation remains to be shown.

Definition 1. The product of a solid harmonic Gaussian
function at center Ra multiplied with the operator r2na is
defined as

χl,m(α, ra)r2na := Cl,m(ra) exp
(
−αr2a

)
r2na , (A1)

where Cl,m is the solid harmonic defined in Equation (2)
and n ∈ N.

Recall that Cl,m(∇a) is the spherical tensor gradient
operator (STGO) acting on center Ra. In the following
we generally drop all ‘passive’ indices, writing e. g. In
instead of Il,m,α,ran .

Theorem 1. Equation (23),

χl,m(α, ra)r2na =
Cl,m(∇a)

(2α)l

n∑
j=0

(
n

j

)
(l + j − 1)!

(l − 1)!αj

× exp
(
−αr2a

)
r2(n−j)a .

(A2)
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is valid for all n ∈ N .

Proof. Using Hobson’s theorem62 yields

Cl,m(∇a) exp
(
−αr2a

)
r2na

= (−2)lCl,m(ra)

(
d

dr2a

)l [
exp

(
−αr2a

)
r2na
]
.

(A3)

By applying Leibniz’s rule of differentiation we get(
d

dr2a

)l
exp

(
−αr2a

)
r2na

=

min(l,n)∑
j=0

(
l

j

)[(
d

dr2a

)l−j
exp (−αr2a)

][(
d

dr2a

)j (
r2a
)n]

=

min(l,n)∑
j=0

(
l

j

)
(−α)l−j exp (−αr2a)

n!

(n− j)!
(
r2a
)n−j

=

min(l,n)∑
j=0

(
n

j

)
l!

(l − j)!
(−α)l−j exp (−αr2a)

(
r2a
)n−j

.

(A4)

Inserting the last line of Equation (A4) in Equation (A3)
and writing out the term for j = 0 explicitly leads to

Cl,m(∇a) exp
(
−αr2a

)
r2na

= (−2)l(−α)l exp (−αr2a)
(
r2a
)n
Cl,m(ra)

+ (−2)l
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)l−j

× exp (−αr2a)
(
r2a
)n−j

Cl,m(ra).

(A5)

Employing Definition 1 and solving for χl,m(α, ra)r2na we
obtain

χl,m(α, ra)r2na

=
Cl,m(∇a)

(2α)l
exp

(
−αr2a

)
r2na −

min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!

× (−α)−j exp (−αr2a)
(
r2a
)n−j

Cl,m(ra).

(A6)

Introducing the notation

In := χl,m(α, ra)r2na (A7)

and recalling Definition 1, we obtain a recursion relation:

In =
Cl,m(∇a)

(2α)l
exp

(
−αr2a

)
r2na

−
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−jIn−j .

(A8)

Furthermore, it is easy to see (applying Hobson’s theorem
as done above for general n) that

I0 =
Cl,m(∇a)

(2α)l
exp

(
−αr2a

)
. (A9)

From here, the theorem can in principle be obtained by
using (A8) and (A9) recursively. This is made math-
ematically rigorous by an induction proof in Lemma 2
below.

Let us denote the rhs of (A2) by IIn,

IIn :=
Cl,m(∇a)

(2α)l

n∑
j=0

(
n

j

)
(l + j − 1)!

(l − 1)!αj
exp

(
−αr2a

)
r2(n−j)a .

(A10)
The following Lemma tells us that the recursive repre-
sentation (A8)-(A9) indeed has its closed form given by
IIn.

Lemma 2. For all n ∈ N we have

In = IIn. (A11)

Proof. This is proved by mathematical induction.
1. Basis: Recalling (A9), it obviously holds I0 = II0.
2. Induction Hypothesis: we assume that Ii = IIi for all
natural numbers i < n.
3. Inductive Step: We use the recursion relation (A8).
Since we sum over j ≥ 1, we can use the induction hy-
pothesis In−j = IIn−j to get

In =
Cl,m(∇a)

(2α)l
exp

(
−αr2a

)
r2na

−
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−jIIn−j .

(A12)

Inserting the definition of IIn−j (i. e. Equation (A10) for
n− j) this becomes

In =
Cl,m(∇a)

(2α)l
exp

(
−αr2a

)
r2na

−
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

Cl,m(∇a)

(2α)l

×
n−j∑
k=0

(
n− j
k

)
(l + k − 1)!

(l − 1)!αk
exp

(
−αr2a

)
r2(n−j−k)a .

(A13)

In the following, it is shown that Equation (A13) is in-
deed equal to IIn. All terms of In with j > 0 in Equa-
tion (A13) are denoted by

I′n :=−
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

Cl,m(∇a)

(2α)l

×
n−j∑
k=0

(
n− j
k

)
(l + k − 1)!

(l − 1)!αk
exp

(
−αr2a

)
r2(n−j−k)a

(A14)
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and the contributions with j > 0 to IIn in Equation (A10)
are in the following referred to as

II′n :=
Cl,m(∇a)

(2α)l

n∑
j=1

(
n

j

)
(l + j − 1)!

(l − 1)!αj
exp

(
−αr2a

)
r2(n−j)a .

(A15)
To prove that In = IIn, it is sufficient to show that I′n =
II′n. Both sides are reduced to

−
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

×
n−j∑
k=0

(
n− j
k

)
(l + k − 1)!

αk
r2(n−j−k)a

tbs
=

n∑
j=1

(
n

j

)
(l + j − 1)!

αj
r2(n−j)a

(A16)

where we denote the lhs by

I′′n := −
min(l,n)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

×
n−j∑
k=0

(
n− j
k

)
(l + k − 1)!

αk
r2(n−j−k)a .

(A17)

In order to sort by the exponents of r2a in expression I′′n,
the Kronecker delta δm,j+k is introduced.

I′′n =

n∑
m=1

r2(n−m)
a

(
−

min(l,m)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

×
n−j∑
k=0

(
n− j
k

)
(l + k − 1)!

αk
δm,j+k

)
.

(A18)

The range of the newly introduced sum is m = 1, ..., n
since for the lower bound of summation we find that m =
j + k ≥ 1 + 0 = 1 and for the upper bound m = j + k ≤
j+ (n− j) = n. For the inner sum over indices j, it must
be considered that k = m− j is negative if j > m while
the lower bound of the k-sum is in fact k ≥ 0. Thus,
the upper range of the summation of the j-sum has to be
changed to min(l, n,m), which is equivalent to min(l,m)
because m ≤ n. The summation ranges for the innermost
sum are not modified since k = m − j ≤ n − j. In the
next step, the k-sum is eliminated replacing k by m− j,

I′′n =

n∑
m=1

(
−

min(l,m)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

×
(
n− j
m− j

)
(l +m− j − 1)!

αm−j

)
r2(n−m)
a .

(A19)

Renaming the summation index on the rhs of Equa-
tion (A16), we get

II′′n :=

n∑
m=1

(
n

m

)
(l +m− 1)!

αm
r2(n−m)
a . (A20)

We are done if we can show that I′′n = II′′n. We do this by
comparing summand by summand, i. e. we have to show
that for each m = 1, . . . , n,

−
min(l,m)∑
j=1

(
n

j

)
l!

(l − j)!
(−α)−j

(
n− j
m− j

)
× (l +m− j − 1)!

αm−j

tbs
=

(
n

m

)
(l +m− 1)!

αm
.

(A21)

Expansion of the binomial coefficients and further reduc-
tion gives

min(l,m)∑
j=1

(−1)j+1

(
l

j

)
(l +m− j − 1)!

(m− j)!
tbs
=

(l +m− 1)!

m!
.

(A22)
The term on the rhs is in fact the negative of the ‘missing’
summand j = 0 on the lhs and thus we have

min(l,m)∑
j=0

(−1)j+1

(
l

j

)
(l +m− j − 1)!

(m− j)!
tbs
= 0. (A23)

The lhs is indeed zero, which is easily rationalized by
dividing Equation (A23) by (−1) and assuming that
min(l,m) = l,

l∑
j=0

(−1)j
(
l

j

)
(l +m− j − 1)!

(m− j)!
tbs
= 0, (A24)

which is true by Lemma 3. In order to show that the
lhs of Equation (A23) is also zero for min(l,m) = m,
Equation (A22) is reformulated

min(l,m)∑
j=1

(−1)j+1

(
m

j

)
(l +m− j − 1)!

(l − j)!
tbs
=

(l +m− 1)!

l!

(A25)
The term on the rhs is again the ‘missing’ summand for
j = 0 leading to

m∑
j=0

(−1)j
(
m

j

)
(l +m− j − 1)!

(l − j)!
tbs
= 0, (A26)

which is again true by Lemma 3 for m ≤ l.

It remains to prove the following combinatoric identity,
which we used in the proof of Lemma 2.
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Lemma 3. For all l,m ∈ N, l ≤ m it holds that

0 =

l∑
j=0

(−1)j
(
l

j

)
(l +m− j − 1)!

(m− j)!
. (A27)

Proof. For all l ∈ N and x ∈ R we can employ the bino-
mial formula (

1 +
1

x

)l
=

l∑
j=0

(
l

j

)
1

xj
. (A28)

Multiplication with xl+m−1 on both sides yields

xl+m−1
(

1 +
1

x

)l
=

l∑
j=0

(
l

j

)
xl+m−j−1. (A29)

The procedure is as follows: we take the (l−1)-th deriva-
tive with respect to x on both sides and then set x = −1.
The lhs of Equation (A29) is in the following denoted as

III(x) := xl+m−1
(

1 +
1

x

)l
(A30)

and the rhs is

IV(x) :=

l∑
j=0

(
l

j

)
xl+m−j−1. (A31)

Applying the Leibniz rule of differentiation to III yields(
d

dx

)l−1
III(x) =

l−1∑
j=0

(
l − 1

j

)[(
d

dx

)l−1−j
xl+m−1

]

×

[(
d

dx

)j (
1 +

1

x

)l]
(A32)

Each of the terms in this sum contains a factor (1 +
1/x)p where p ≥ 1, p ∈ N since we take no more than
l − 1 derivatives. Setting x = −1, the factor (1 + 1/x)p

becomes zero, i.e.(
d

dx

)l−1
III(−1) = 0. (A33)

Taking the (l − 1)-th derivative of IV yields(
d

dx

)l−1
IV(x) =

l∑
j=0

(
l

j

)
(l +m− j − 1)!

(m− j)!
xm−j .

(A34)
Notice that m−j ≥ 0 since m ≥ l and j ≤ l. By inserting
x = −1, we get(

d

dx

)l−1
IV(−1) =

l∑
j=0

(
l

j

)
(l +m− j − 1)!

(m− j)!
(−1)m−j .

(A35)
Putting the lhs, Equation (A33), and the rhs, Equa-
tion (A35), together and dividing both sides by (−1)m

yields Equation (A27).

Appendix B: Proof of general formula for (0a|r2ma |0b)

In this appendix, we prove that Equation (28) is valid
for all m ∈ N.

Theorem 4. Equation (28),

(0a|r2ma |0b) =
π3/2 exp(−ρR2

ab)

2mcm+3/2

m∑
j=0

Iα,β,mj (R2
ab)

is valid for all m ∈ N.

Proof. The matrix element (0a|r2ma |0b) as given in Equa-
tion (27) can be rewritten as

(0a|r2ma |0b) = exp(−ρR2
ab)

∫
exp(−cr2p)r2ma dr, (B1)

where ρ = αβ/c, c = α+ β, rp = r−Rp and

Rp =
αRa + βRb

c
. (B2)

This is clear by inserting Equation (1) and Y0,0(θ, φ) =
1√
4π

into Equation (27) and applying the Gaussian prod-

uct rule

exp(−αr2a) exp(−βr2b ) = exp(−ρR2
ab) exp(−cr2p). (B3)

Now we define the integral over a primitive s function at
center Rp multiplied with the operator r2ma as

Vm :=

∫
exp(−cr2p)r2ma dr, (B4)

where m ∈ N. Note that we have dropped the indices
writing Vm instead of Vα,β,ra,rb

m . In the remainder of
this proof, we explicitly calculate this Gaussian integral.

We start by rewriting the operator r2ma in expression
Vm in terms of Rpa = Rp −Ra,

Vm =

∫
exp(−cr2p) |r−Rp + Rp −Ra|2m dr (B5)

=

∫
exp(−cr2p)

[
r2p + 2rp ·Rpa +R2

pa

]m
drp. (B6)

where Rpa = |Rpa|. Employing a trinomial expansion
yields

Vm =

∫
exp(−cr2p)

∑
i+j+k=m
i,j,k∈N

(
m

i, j, k

)
r2ip

× 2j(rp ·Rpa)jR2k
padrp,

(B7)

where the multinomial coefficient is defined as(
m

i, j, k

)
:=

m!

i!j!k!
. (B8)
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Introducing the unit vector R̂pa in direction of Rpa yields

Vm =
∑

i+j+k=m

2j
(

m

i, j, k

)
R2k
pa|Rpa|j

×
∫

exp(−cr2p)r2ip (rp · R̂pa)jdrp.

(B9)

Because of rotational symmetry, the integral can not de-
pend on the direction of Rpa. So without loss of gener-

ality we can take R̂pa = ez, where ez is the unit vector
in z direction. In order to remove parameter c from the
integral, we substitute rc :=

√
crp,

Vm =
∑

i+j+k=m

2j
(

m

i, j, k

)
R2k+j
pa c−

3
2−i−

j
2

×
∫

exp(−r2c )r2ic (rc · ez)jdrc.
(B10)

Vm is non-zero only for even j (since for odd j the in-
tegrand is odd with respect to the reflection of rc onto
−rc) and so we can rewrite Equation (B10) as follows,

Vm =
∑

i+2j+k=m

22j
(

m

i, 2j, k

)
R2k+2j
pa c−

3
2−i−j

×
∫

exp(−r2c )r2ic (rc · ez)2jdrc.
(B11)

We introduce spherical coordinates with θ being the angle
between rc and the z-axis, i.e. rc · ez = rc cos θ,

Vm =
∑

i+2j+k=m

22j
(

m

i, 2j, k

)
R2k+2j
pa c−

3
2−i−j

∫ 2π

0

dφ

×
∫ π

0

sin θ(cos θ)2jdθ

∫ ∞
0

r2c exp(−r2c )r2ic r2jc drc .

(B12)

The integrals over θ, φ and rc are evaluated explicitly.
The integral over θ is obtained by substitution and the
integral over rc is tabulated, for example, in Ref 75.

Vm =
∑

i+2j+k=m

2j
(

m

i, 2j, k

)
R2k+2j
pa c−

3
2−i−j

× π3/2

1 + 2j

(1 + 2i+ 2j)!!

2i
.

(B13)

Employing that Rpa = β(Rb −Ra)/c yields

Vm =
∑

i+2j+k=m

2j
(

m

i, 2j, k

)
c−

3
2−i−3j−2k

π3/2

1 + 2j

× (1 + 2i+ 2j)!!

2i
β2k+2jR2k+2j

ab .

(B14)

In order to sort the sum by powers of R2
ab, we introduce

the Kronecker delta,

Vm =

m∑
l=0

∑
i+2j+k=m

δl,k+j2
j

(
m

i, 2j, k

)
c−

3
2−m−l

× π3/2

1 + 2j

(1 + 2i+ 2j)!!

2i
β2lR2l

ab ,

(B15)

where we have also used that m = i+2j+k and k = l−j
to manipulate the exponent of c. In the next step, the
k-sum is eliminated by replacing k by l − j

Vm =

m∑
l=0

∑
i+j=m−l
i,j≥0;j≤l

2j
(

m

i, 2j, l − j

)
c−

3
2−m−l

× π3/2

1 + 2j

(1 + 2i+ 2j)!!

2i
β2lR2l

ab .

(B16)

Then the sum over i = 0, ...,m is eliminated due to the
constraint i = m− j − l,

Vm =

m∑
l=0

min(l,m−l)∑
j≥0

2j
(

m

m− j − l, 2j, l − j

)
c−

3
2−m−l

× π3/2

1 + 2j

(1 + 2m− 2l)!!

2m−j−l
β2lR2l

ab .

(B17)

To complete the proof, we have to show that (B17) can
be simplified as

m∑
l=0

min(l,m−l)∑
j≥0

2j
(

m

m− j − l, 2j, l − j

)
c−

3
2−m−l

× π3/2

1 + 2j

(1 + 2m− 2l)!!

2m−j−l
β2lR2l

ab

tbs
=

π3/2

2mcm+3/2

m∑
l=0

2l
(2m+ 1)!!

(2l + 1)!!

(
m

l

)
β2l

cl
R2l
ab.

(B18)

It is sufficient to show that each summand l on the lhs
is identical to the summand l on the rhs, i.e. after some
reduction of both sides we have

(1 + 2m− 2l)!!

min(l,m−l)∑
j=0

22j
(

m

m− j − l, 2j, l − j

)
1

1 + 2j

tbs
=

(2m+ 1)!!

(2l + 1)!!

(
m

l

)
.

(B19)

This is easily shown employing Lemma 5 and the identity

(2n+ 1)!! = (2n+1)!
2nn! .

The following identity was used for the proof of Theo-
rem 4.
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Lemma 5. It holds for all m, l ∈ N and l ≤ m that

min(l,m−l)∑
j=0

22j
(

m

m− j − l, 2j, l − j

)
1

1 + 2j

=
(2m+ 1)!

(2l + 1)!(1 + 2m− 2l)!
.

(B20)

Proof. The hypergeometric function 2F1 is defined as

2F1(a, b; c; z) =

∞∑
j=0

(a)j(b)j
(c)j

zj

j!
, (B21)

for a, b, c, z ∈ R, |z| < 1. Note that this series is also
convergent for z = 1, if c > 0 and c > max(a, b, (a+ b)).
The notation (q)j in Equation (B21) is the Pochhammer
symbol which is defined for j ∈ N as

(q)j =

{
1 j = 0

q(q + 1) . . . (q + j − 1) j ≥ 1
. (B22)

For negative integers q = −n, n ∈ N, the Pochhammer
symbol simplifies to

(−n)j =


1 j = 0

(−1)jn!/(n− j)! 1 ≤ j ≤ n
0 j ≥ n+ 1

. (B23)

For positive real values x ∈ R>0, the Pochhammer sym-
bol is given by

(x)j =
Γ(x+ j)

Γ(x)
, (B24)

where the Gamma function for t ∈ R>0 is defined as

Γ(t) =

∫ ∞
0

xt−1e−x dx . (B25)

For positive integers n ∈ N>0, the Gamma function eval-
uates to

Γ(n) = (n− 1)! . (B26)

Moreover, a duplication identity76 holds for t ∈ R>0,

Γ
(
t+ 1

2

)
=

21−2t
√
π Γ(2t)

Γ(t)
. (B27)

We denote the lhs of (B20) by VIm,l,

VIm,l :=

min(l,m−l)∑
j=0

22j
(

m

m− j − l, 2j, l − j

)
1

1 + 2j
,

(B28)
and rewrite Equation (B28) recalling l ≤ m:

VIm,l =

(
m

l

)min(l,m−l)∑
j=0

l!
(l−j)!

(m−l)!
(m−l−j)!

2−2j (2j+1)!
j!

1

j!
. (B29)

Rewriting Equation (B29) yields

VIm,l
(B23)−(B27)

=

(
m

l

) ∞∑
j=0

(−l)j(−(m− l))j(
3
2

)
j

1

j!
(B30)

(B21)
=

(
m

l

)
2F1

(
−l,−(m− l); 3

2 ; 1
)
. (B31)

Since (−l)j = 0 for j > l and (−(m − l))j = 0 for j >
m − l, see Equation (B23), we can replace the upper
bound min(l,m − l) by ∞ in Equation (B30). We use
Gauss’ hypergeometric theorem77 with a, b ∈ R, c > 0
and c > max(a, b, (a+ b)),

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (B32)

to evaluate 2F1

(
−l,−(m− l); 3

2 ; 1
)

from Equation (B31):

2F1

(
−l,−(m− l); 3

2 ; 1
)

(B32)
=

Γ
(
3
2

)
Γ
(
3
2 +m

)
Γ
(
3
2 + l

)
Γ
(
3
2 +m− l

) (B33)

(B27)
=

Γ(2)

Γ(1)

Γ(2m+ 2)

Γ(m+ 1)

Γ(2l + 2)

Γ(l + 1)

Γ(2m− 2l + 2)

Γ(m− l + 1)

(B34)

(B26)
=

(
m

l

)−1
(2m+ 1)!

(2l + 1)!(2m− 2l + 1)!
. (B35)

By inserting Equation (B35) into Equation (B31), we
obtain

VIm,l =
(2m+ 1)!

(2l + 1)!(1 + 2m− 2l)!
. (B36)
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40O. Schütt and J. VandeVondele, “Machine Learning Adaptive
Basis Sets for efficient large scale DFT simulation,” J. Chem.
Theory Comput., submitted (2016).

41M. Dupuis, J. Rys, and H. F. King, “Evaluation of molecular
integrals over Gaussian basis functions,” J. Chem. Phys. 65, 111–
116 (1976).

42S. Obara and A. Saika, “Efficient recursive computation of molec-
ular integrals over Cartesian Gaussian functions,” J. Chem. Phys.
84, 3963–3974 (1986).

43M. Head-Gordon and J. A. Pople, “A method for two-electron
Gaussian integral and integral derivative evaluation using recur-
rence relations,” J. Chem. Phys. 89, 5777–5786 (1988).

44R. Lindh, U. Ryu, and B. Liu, “The reduced multiplication
scheme of the Rys quadrature and new recurrence relations for
auxiliary function based two-electron integral evaluation,” J.
Chem. Phys. 95, 5889–5897 (1991).

http://dx.doi.org/http://dx.doi.org/10.1063/1.2173256
http://dx.doi.org/http://dx.doi.org/10.1063/1.2363374
http://dx.doi.org/10.1002/jcc.20574
http://dx.doi.org/10.1002/jcc.20574
http://dx.doi.org/10.1021/ct700134r
http://dx.doi.org/10.1021/ct700134r
http://dx.doi.org/10.1021/ct900348b
http://dx.doi.org/10.1021/ct900348b
http://dx.doi.org/ 10.1021/ct300630u
http://dx.doi.org/ 10.1021/ct300630u
http://dx.doi.org/ http://dx.doi.org/10.1063/1.4873920
http://dx.doi.org/10.1021/jp5051657
http://dx.doi.org/10.1021/ct5007983
http://dx.doi.org/ http://dx.doi.org/10.1016/j.commatsci.2009.07.013
http://dx.doi.org/ 10.1103/PhysRevB.66.075212
http://dx.doi.org/ 10.1103/PhysRevB.66.075212
http://dx.doi.org/http://dx.doi.org/10.1063/1.2080007
http://dx.doi.org/http://dx.doi.org/10.1063/1.2080007
http://dx.doi.org/http://dx.doi.org/10.1063/1.2778428
http://dx.doi.org/http://dx.doi.org/10.1063/1.2778428
http://dx.doi.org/10.1021/ct400698y
http://dx.doi.org/10.1021/ct400698y
http://dx.doi.org/10.1021/acs.jctc.6b00198
http://dx.doi.org/10.1021/acs.jctc.6b00198
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2828533
http://dx.doi.org/10.1021/ct5008586
http://dx.doi.org/10.1021/ct5008586
http://stacks.iop.org/1367-2630/17/i=9/a=093020
http://stacks.iop.org/1367-2630/17/i=9/a=093020
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2931945
http://dx.doi.org/ 10.1103/PhysRevLett.77.3865
http://dx.doi.org/ 10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO;2-S
http://dx.doi.org/http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/ http://dx.doi.org/10.1063/1.2741248
http://dx.doi.org/http://dx.doi.org/10.1016/0301-0104(73)80059-X
http://dx.doi.org/ 10.1007/s002140050353
http://dx.doi.org/ 10.1007/s002140050353
http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/ http://dx.doi.org/10.1063/1.432807
http://dx.doi.org/ http://dx.doi.org/10.1063/1.432807
http://dx.doi.org/http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/http://dx.doi.org/10.1063/1.455553
http://dx.doi.org/ http://dx.doi.org/10.1063/1.461610
http://dx.doi.org/ http://dx.doi.org/10.1063/1.461610


18

45P. Bracken and R. J. Bartlett, “Calculation of Gaussian integrals
using symbolic manipulation,” Int. J. Quantum Chem. 62, 557–
570 (1997).

46P. M. W. Gill, A. T. B. Gilbert, and T. R. Adams, “Rapid eval-
uation of two-center two-electron integrals,” J. Comput. Chem.
21, 1505–1510 (2000).

47R. Ahlrichs, “A simple algebraic derivation of the Obara-Saika
scheme for general two-electron interaction potentials,” Phys.
Chem. Chem. Phys. 8, 3072–3077 (2006).

48L. E. McMurchie and E. R. Davidson, “One- and two-electron
integrals over cartesian gaussian functions,” J. Comput. Phys.
26, 218–231 (1978).

49T. Helgaker and P. R. Taylor, “On the evaluation of derivatives
of Gaussian integrals,” Theor. Chim. Acta 83, 177–183 (1992).
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1 Integrals (0a|O|0b)
The expressions for the s-type basic integrals and their scalar derivatives with respect to the square
separation R2

ab are displayed in Table S1. We use the following abbreviations

ρ =
αβ

α + β
(1)

and
T = ρR2

ab. (2)

The Boys function Fn(x), which is defined as

Fn(x) =

∫ 1

0
exp(−xt2)t2ndt, (3)
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Table S1: Expressions for the two-center integrals (0a|O|0b) and their n-th derivative (0a|O|0b)(n) with respect
to R2

ab for different operators. See Reference S3. Fn(x) is the Boys function [Equation 3].

operator (0a|O|0b)

δ(r)
(

π
α+β

)3/2
e−T

1/r 2π5/2

αβ
√
α+β

F0(T )

erf(ωr)/r 2π5/2

αβ
ω√

α+β
√
ω2+ρ

F0

(
ω2T
ω2+ρ

)

erfc(ωr)/r 2π5/2

αβ
√
α+β

[
F0(T ) − ω√

ω2+ρ
F0

(
ω2T
ω2+ρ

)]

exp(−ωr2)/r
(

π
α+β

)3/2 2π
ρ+ω

exp
(
− ωT
ρ+ω

)
F0

(
Tρ
ρ+ω

)

exp(−ωr2)
(

π2

(α+β)(ρ+ω)

)3/2
exp

(
− ωT
ρ+ω

)

operator (0a|O|0b)(n)

δ(r) (−ρ)n
(

π
α+β

)3/2
e−T

1/r 2π5/2

αβ
√
α+β

(−ρ)nFn(T )

erf(ωr)/r 2π5/2ω

αβ
√
α+β
√
ω2+ρ

(
− ω2ρ

ω2+ρ

)n
Fn

(
ω2T
ω2+ρ

)

erfc(ωr)/r 2π5/2

αβ
√
α+β

[
(−ρ)nFn(T ) − ω√

ω2+ρ

(
− ω2ρ

ω2+ρ

)n
Fn

(
ω2T
ω2+ρ

)]

exp(−ωr2)/r
(

π
α+β

)3/2 2π
ρ+ω

exp
(
− ωT
ρ+ω

)∑n
j=0

(
n
j

) (
− ωρ

ρ+ω

)n− j (− ρ2

ρ+ω

) j
F j

(
Tρ
ρ+ω

)

exp(−ωr2)
(

π2

(α+β)(ρ+ω)

)3/2 (
− ωρ

ρ+ω

)n
exp

(
− ωT
ρ+ω

)

is computed as explained in Reference S1. The derivativeS2 of the Boys function is given by

dFn(x)
dx

= −Fn+1(x). (4)
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2 Detailed integral timings

Figure S1: Time for single operations toperation relative to the total computational cost ttotal for evaluating
spherical harmonic Gaussian integrals comparing the (a,b) OS and (c,d) SHG method. Timings are presented
for the computation of the (a,c) Coulomb and (b,d) overlap integrals dependent on the l quantum number at
fixed contraction length K = 7. Employing the OS method, the fundamental integrals (0a|O|0b) and the aux-
iliary integrals (−ρ)−n(0a|O|0b)(n) have to be calculated, see Ref. S3 for details. Furthermore, the recursive
procedure to obtain the primitive Cartesian integrals and the subsequent transformation and contraction step
contribute significantly to the total computational cost. For the SHG method, the evaluation of (0a|O|0b)(n),
their contraction, the evaluation of the matrix elements Q̃c/s,c/s

la,µa,lb,µb, j
and the construction of the integrals from

the contracted monopole result O(k)
la,lb

and Q̃c/s,c/s
la,µa,lb,µb, j

mainly contribute to the overall computational cost, see
Figure 1 in the main text. Note that the absolute time for evaluating (0a|O|0b)(n) is the same in both schemes
and that the maximal derivative is nmax = la,max + lb,max.
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Figure S2: Time for single operations toperation relative to the total computational cost ttotal comparing the
(a,b) OS and (c,d) SHG method. Timings are presented for the computation of the (a,c) Coulomb and (b,d)
overlap integrals and their derivatives dependent on the l quantum number at fixed contraction length K = 7.
For the OS method, the construction of the derivatives of the primitive Cartesian integrals is part of the
recursive procedure. For the SHG method, the derivatives of Q̃c/s,c/s

la,µa,lb,µb, j
have to be additionally computed

since they are required to construct the derivatives of the integrals as shown in Equation (44) in the main
text.
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Figure S3: Time for single operations toperation relative to the total computational cost ttotal comparing the
(a,b) OS and (c,d) SHG method. Timings are presented for the computation of the (a,c) Coulomb and (b,d)
overlap integrals dependent on contraction length K with fixed angular momentum l = 2. Note that for both,
the SHG and the OS method, the timing measurements for the contraction step are ambiguous for K = 1
since the contraction routines have been optimized for contracted basis sets calling LAPACK routines for
matrix-matrix multiplications. For K = 1, the time measured for this step is due to the initialization of the
LAPACK routines and the corresponding arrays.
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Figure S4: Time for single operations toperation relative to the total computational cost ttotal comparing the
(a,b) OS and (c,d) SHG method. Timings are presented for the computation of the (a,c) Coulomb and (b,d)
overlap integrals and their derivatives dependent on contraction length K with fixed angular momentum
l = 2. Note that for both, the SHG and the OS method, the timing measurements for the contraction step are
ambiguous for K = 1 since the contraction routines have been optimized for contracted basis sets calling
LAPACK routines for matrix-matrix multiplications. For K = 1, the time measured for this step is due to
the initialization of the LAPACK routines and the corresponding arrays.
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Figure S5: Speed-up of the contraction step dependent on the l quantum number for the (a) two- and (b)
three-index integrals at the fixed contraction length K = 7. Speed-up of the contraction step dependent on
the contraction length K for the (c) two- and (d) three-index integrals. The l quantum number is fixed and
set to l = 2. The speed-up factor is defined as the ratio OS/SHG. The solid line is the speed-up for the
integrals and the dashed line is the speed-up for both, integrals + derivatives. Note that the contraction step
for the two-index integrals (a|O|b) is independent on the operator O(r). Further note that for the OS method,
the transformation to primitive spherical harmonic Gaussians and the contraction of the latter is done in one
matrix-matrix multiplication step, i.e. we actually compare the contraction step of the SHG method to the
contraction and transformation step of the OS method.
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3 Basis sets

Table S2: H-DZVP-MOLOPT-GTH. Double-ζ valence plus polarization basis set for hydrogen.

Contraction coefficients
Exponents s s p

11.478000339908 0.024916243200 -0.012512421400 0.024510918200
3.700758562763 0.079825490000 -0.056449071100 0.058140794100
1.446884268432 0.128862675300 0.011242684700 0.444709498500
0.716814589696 0.379448894600 -0.418587548300 0.646207973100
0.247918564176 0.324552432600 0.590363216700 0.803385018200
0.066918004004 0.037148121400 0.438703133000 0.892971208700
0.021708243634 -0.001125195500 -0.059693171300 0.120101316500

Table S3: O-DZVP-MOLOPT-GTH. Double-ζ valence plus polarization basis set for oxygen.

Contraction coefficients
Exponents s s p p d

12.015954705512 -0.060190841200 0.065738617900 0.036543638800 -0.034210557400 0.014807054400
5.108150287385 -0.129597923300 0.110885902200 0.120927648700 -0.120619770900 0.068186159300
2.048398039874 0.118175889400 -0.053732406400 0.251093670300 -0.213719464600 0.290576499200
0.832381575582 0.462964485000 -0.572670666200 0.352639910300 -0.473674858400 1.063344189500
0.352316246455 0.450353782600 0.186760006700 0.294708645200 0.484848376400 0.307656114200
0.142977330880 0.092715833600 0.387201458600 0.173039869300 0.717465919700 0.318346834400
0.046760918300 -0.000255945800 0.003825849600 0.009726110600 0.032498979400 -0.005771736600

Table S4: O-TZV2PX-MOLOPT-GTH. Triple-ζ valence plus double polarization basis set for oxygen.

Contraction coefficients
Exponents s s s p p p d d f

12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400 -0.013843410500 0.002657486200
5.108150287385 -0.129597923300 0.110885902200 0.080644802300 0.120927648700 -0.120619770900 0.009852349400 0.068186159300 0.016850210400 -0.007708463700
2.048398039874 0.118175889400 -0.053732406400 -0.067639801700 0.251093670300 -0.213719464600 0.001286509800 0.290576499200 -0.186696332600 0.378459897700
0.832381575582 0.462964485000 -0.572670666200 -0.435078312800 0.352639910300 -0.473674858400 -0.021872639500 1.063344189500 0.068001578700 0.819571172100
0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200 0.911407510000 -0.075845376400
0.142977330880 0.092715833600 0.387201458600 -0.521378340700 0.173039869300 0.717465919700 -0.436184043700 0.318346834400 -0.333128530600 0.386329438600
0.046760918300 -0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500 -0.005771736600 -0.405788515900 0.035062554400

Table S5: Cu-DZVP-MOLOPT-SR-GTH. Double-ζ valence plus polarization short-range basis set for copper.

Contraction coefficients
Exponents s s p p d d f

5.804051150731 0.020918100390 0.045720931893 -0.004381592772 -0.021109803873 0.275442696345 -0.101811263028 -0.016523760157
2.947777593081 -0.106208582202 -0.094026024883 0.017185613995 0.020960301873 0.351705110927 -0.207670618594 0.055142365254
1.271621207972 0.307397740339 -0.110623536813 -0.089805629814 0.233442747472 0.331635969640 -0.224161904198 -0.286656089760
0.517173767860 0.240805274553 -0.742218346329 0.054415126660 0.369266430953 0.259386540456 0.176105738988 -0.502349311598
0.198006620331 -0.798718095004 2.208107372713 0.446326740476 -1.405067129701 0.151105835782 0.210534119173 -0.508940020577
0.061684232135 -0.738671023869 -1.720016262377 0.468516012555 1.042169799071 0.030634833418 0.902456275117 0.682110135764
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Table S6: H-LRI-MOLOPT-GTH. Auxiliary basis set of hydrogen for the MOLOPT basis sets. Uncontracted
basis set.

# of functions
Exponents s p d f

22.956000679816 1 0 0 0
11.437045132575 1 1 0 0
5.6981180297480 1 1 1 0
2.8388931498100 1 1 1 0
1.4143817790300 1 1 1 1
0.7046675275490 1 1 1 1
0.3510765846560 1 1 1 1
0.1749119456700 1 1 1 1
0.0871439169550 1 1 1 1
0.0434164872680 1 1 1 1

Table S7: O-LRI-MOLOPT-GTH. Auxiliary basis set of oxygen for the MOLOPT basis sets. Uncontracted basis
set.

# of functions
Exponents s p d f g

24.031909411024 1 0 0 0 0
16.167926705922 1 0 0 0 0
10.877281929506 1 1 0 0 0
7.3178994639200 1 1 1 0 0
4.9232568311730 1 1 1 1 0
3.3122151985280 1 1 1 1 0
2.2283561263540 1 1 1 1 1
1.4991692049680 1 1 1 1 1
1.0085947567100 1 1 1 1 1
0.6785514136050 1 1 1 1 1
0.4565084419100 1 1 1 1 1
0.3071247857670 1 1 1 1 1
0.2066240738900 1 1 1 1 1
0.1390102977340 1 1 1 1 1
0.0935218366000 1 1 1 1 1

Table S8: Cu-LRI-MOLOPT-SR-GTH. Auxiliary basis set of copper for the MOLOPT basis sets. Uncontracted
basis set.

# of functions
Exponents s p d f g h i

11.608102301462 1 0 0 0 0 0 0
8.3905970460850 1 0 0 0 0 0 0
6.0649119865960 1 1 0 0 0 0 0
4.3838545937940 1 1 1 0 0 0 0
3.1687485559560 1 1 1 1 0 0 0
2.2904426221370 1 1 1 1 1 0 0
1.6555833675850 1 1 1 1 1 1 0
1.1966928402980 1 1 1 1 1 1 1
0.8649964611020 1 1 1 1 1 1 1
0.6252388687580 1 1 1 1 1 1 1
0.4519366963750 1 1 1 1 1 1 1
0.3266699940390 1 1 1 1 1 1 1
0.2361244082660 1 1 1 1 1 1 1
0.1706760253360 1 1 1 1 1 1 1
0.1233684642700 1 1 1 1 1 1 1
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