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General introduction 

Since my personal original background was quite distant from the statistical 

bioinformatic approaches for data analysis, having a master degree in Sanitary 

Biotechnology and Molecular Medicine, my PhD fellowship was spent in building my 

skills in this field while studying and trying to contribute to the development of 

statistical and bioinformatic approaches to be applied in clinic, with a special focus on 

oncology, in the optic to contribute to the field of personalized medicine. 

Personalized medicine is indeed the ultimate goal for life sciences, particularly for 

oncology, and, in my opinion, a key aspect of the future wellness of humanity. 

Personalized medicine in the idea of developing the ability to identify the best 

therapeutic strategy for each unique person and its efficacy relies on having accurate 

diagnostic tests that identify patients who can benefit from targeted therapies. A 

striking example consists in the determination of the overexpression of the human 

epidermal growth factor receptor type 2 (HER2) in the routinely diagnosis of Breast 

Cancer (BC). HER2 is indeed associated with a worse prognosis but also predicts a 

better response to the medication trastuzumab; a test for HER2 was approved along 

with the drug (as a “companion diagnostic”) so that clinicians can better target 

patients' treatment [1]. 

In the following pages I present two projects that have mainly characterized my 

fellowship. Both projects rely on breast cancer (BC) and the objective of 

understanding the effects of chronic low inflammation, which has been studied in my 

projects as the leucocyte infiltration and the body mass index. 

The focus on BC derives from a practical aspect and an epidemiological aspect. The 

practical aspect consists on the fact that my group is part of a European research 

group, led by Christine Desmedt from Belgium, which allowed me to obtain unique 

data and to interact with experts of BC and bioinformatics from different countries. 

The epidemiological aspect is represented by the fact that breast cancer is actually a 

hot topic, being the second most common cancer worldwide and the first among 

women [2], but still open to investigations, since the complexity and variability of BC, 

reflected both at histopathological [3,4,5] and molecular level, have proven 

challenging to classify and therefore to effectively treat to the present day. 

The first project presented, the tumor microenvironment (TME) dissection project, 

occupied the first part of my fellowship. This project was conducted as a joint effort 

of numerous colleagues that composed a big European collaboration focused on BC 

and leaded by Christine Desmedt. This particular project was focused on the 

comparison of different and already existing tools and approaches used to analyze 



breast cancer TME. My role here was to review the methodological issues and 

properties of the methods proposed in literature by exploring the specific algorithms 

and codes according to the statistical and bioinformatic skill I acquired during my PhD. 

This work is considered of essential importance since one of the major issues related 

to the application of these methods is essentially a blind use without going into details 

of the quantitative statistical implication of the methods. 

This project consisted in a big European collaboration which tried to establish the 

reliability of bioinformatic tools in retrieving the TME composition by analyzing and 

comparing the obtained results to standard approaches, as the pathologist 

evaluation, and emerging methods as digital image analysis. 

This project led to the preparation of a paper and submission of the paper 

“Comprehensive evaluation of methods to 3 assess overall and cell-specific immune 

4 infiltrates in breast cancer”, of which I am first co-author together with Iris Nederlof, 

that has been recently accepted by Breast Cancer Research journal. 

The second project presented, the competing risk analysis through pseudo-values 

project, which characterized the third year of my PhD, is more focused on the 

statistical aspects of clinical data analysis and represent the arrival point of my studies 

of statistical methodology. The project consisted in the exploration of a forefront 

approach to the analysis of survival data based on pseudo-values, which has the 

desirable feature to generate measures with a clear and direct interpretation at a 

clinical level, becoming an invaluable tool for clinical decision making. This project 

represents a first step in a longer-term project that will led to the preparation of 

several papers in the future. 

The two projects are presented separately, with their own introduction, materials and 

methods, results and conclusion parts; only references are put together at the end of 

the manuscript. 

  



Tumor microenvironment dissection project 

 

Introduction 

Personalized medicine is actually the ultimate goal for life sciences, and particularly 

for oncology. The efficacy of personalized medicine relies on having accurate 

diagnostic tests that identify patients who can benefit from targeted therapies. A 

striking example consists in the determination of the overexpression of the human 

epidermal growth factor receptor type 2 (HER2) in the routinely diagnosis of Breast 

Cancer (BC). HER2 is indeed associated with a worse prognosis, but also predicts a 

better response to the medication trastuzumab; a test for HER2 was approved along 

with the drug (as a “companion diagnostic”) so that clinicians can better target 

patients' treatment [6]. 

The complexity and variability of BC, reflected both at histopathological [7, 8, 9] and 

at molecular level, have proven challenging to classify to the present day. 

In this context, in the past decades the role of tumor microenvironment (TME), 

composed of non-cancerous cells, steadily gained interest and has been studied along 

with a variety of methods to classify the immune infiltrate. The composition of the 

tumor and TME have proven to have a relevant clinical impact, as it can be observed 

studying the relationship between the TME and disease progression or therapy 

benefit in breast cancer patients. Tumor immunogenicity is defined by infiltration of 

tumor-reactive immune cells (or the lack), visibility of the tumor by presentation of 

(neo)antigens and sensitivity of the tumor to tumor-reactive immune cells [10]. 

The role of innate immune cells, like macrophages and neutrophils, have been 

associated with tumor progression and metastasis. In BC the presence of immune 

infiltrate and its composition have been showed to affect prognosis and treatment 

efficacy, including the response to novel immunotherapies [11,12,13,14,15]. 

Particularly, increased levels of stromal tumor infiltrating lymphocytes (sTIL) are 

associated with response to neoadjuvant chemotherapy and prognosis in triple 

negative BC (TNBC) patients [16, 17, 18, 19, 20, 21]. Moreover, sTIL has recently been 

recognized as a valid prognostic biomarker by the expert panel of the 16th St. Gallen 

Breast Cancer Conference. 

Reliable methods to estimate the amount and composition of the immune infiltrate 

are therefore critical, for cross study comparisons and further biomarker 

development. This would improve the read-out of TIL estimates, provide better 



information on the cell phenotypes contributing to TIL, and would ultimately lead to 

better stratification of patients in the future. 

Along with the development of methods to study the immune composition through 

the microscope [22, 23], the constant decrease of the costs of next-generation 

sequencing (NGS) technologies in the last years [10], enabled their use in routine 

oncology, promoting collaborations like the cancer genome atlas (TCGA) [24] and 

gaining access to an unprecedented amount of RNA sequencing (RNA-seq) data 

describing the tumor microenvironment composition, which, to the present day, has 

been studied mainly through immunohistochemistry (IHC), immune fluorescence (IF), 

and flow cytometry. 

In recent years, many groups have been working on the development of 

computational approaches capable to infer the composition of tumor-infiltrating 

immune cells from bulk tumor RNA-seq data, using well defined groups of immune-

specific marker genes or expression signatures [25]. 

Two main approaches for TME dissection exist. The most famous one, based on the 

analysis of marker genes, is gene set enrichment analysis (GSEA) [26]. Methods based 

on GSEA calculate an enrichment score which is higher if among the most expressed 

genes in the sample there are many specific for a certain cell type (i.e. the cell type is 

enriched in the sample) and low otherwise (Figure 1a). 

Unlike GSEA-based approaches, which score is just semi-quantitative, describing the 

enrichment of specific cell types in a sample, deconvolution methods are capable of 

calculating quantitative estimates of the relative fractions of the cell types of interest. 

The gene expression profile of a heterogeneous sample is considered by 

deconvolution algorithms as the convolution of gene expression levels of different 

cells and thus estimate the unknown cell fractions leveraging on a signature matrix 

describing the cell-type-specific expression profiles (Figure 1b) [25]. 

More recently, deconvolution methods that rely on methylation data have been 

presented; the usage of methylation data could be more reliable since specific cell 

type methylome is more stable than transcriptome, which is prone to fluctuations or 

could be little informative in case of non-highly transcribing cells, like secreting 

plasma cells.  



 

Figure 1: a GSEA approaches rank the genes according to their expression in a sample and then calculate an enrichment score (ES) 
based on the position of a set of cell-type-specific marker genes (black dots) in the ranked list. The ES is high when the marker genes 
are among the top highly expressed genes (red) and low otherwise (blue). b In the deconvolution approaches the expression of a gene 
in a mixture M is modeled as a linear combination of the expression of that gene in the different cell types, whose average expression 
profiles are stored in a signature matrix S, weighted by the relative fractions F of the cell types in the mixture. 
 

Since a comprehensive comparison of microscopic and computational methods is still 

missing, the primary objective of the current study was therefore to compare the 

estimations of overall and cell-specific immune infiltration obtained by microscopic, 

transcriptomic and methylomic methods in the ICGC breast cancer cohort [27, 28]. 

The secondary objective of this work was then to evaluate the ability of the different 

methods to classify tumors as “hot”, highly infiltrated, or “cold”, poorly or not 

infiltrated [20]. 

  



Materials and methods 

Dataset 

The cohort used in the study is the ICGC BASIS breast cancer cohort [26], which 

provided sequencing, expression and methylation data. Briefly, for 560 breast cancer 

patients with clinic-pathological data available, DNA and RNA were analyzed using 

WGS, DNA methylation profiling and RNA sequencing. The breast cancer dataset is 

hosted by the International Cancer Genome Consortium.  

From the original dataset of 560 patients, we excluded males (n=4), local relapses 

(n=7) and metastasis (n=1). Of the remaining 548 remaining subjects, 257 patients 

had available RNA sequencing data (all with more than 5 million counts assigned, 5 

subject with RNA data available were excluded because having less aligned reads) and 

318 have methylation data available  

Gene expression values were retrieved as FPKM and transformed to TPM (transcripts 

per million), providing expression data for 44558 genes. 

Besides sequencing, expression and methylation data, comprised in the original 

dataset, imaging analyses were performed for the first time by my group for this 

project. Overall infiltration was evaluated on hematoxylin and eosin (H&E) whole 

slides (WS, n=243), while immunohistochemistry was performed on either TMA’s 

(n=254) or whole slides (n=82).  

The TMA’s used in this work were constructed using formalin-fixed, and paraffin-

embedded primary invasive breast cancer samples from the BASIS cohort. From the 

selected (donor) blocks three cores of tumor with thickness of 0.6 mm were collected 

using a TMA instrument (Beecher Instruments, Silver Springs MD, USA) and inserted 

in a recipient block. Each block was sectioned at 4 μm, and dried overnight at 37ºC. 

For the Whole Slides, 4 μm sections were cut and dried overnight in a 37ºC incubator. 

All of the staining procedures were performed on a Ventana Benchmark XT 

automated staining instrument (Ventana Medical Systems). Sections were scanned at 

20× magnification using a Aperio Scanscope Scanner. 

Whole slides were incubated with primary antibodies specific for CD3 (SP7, Thermo 

Scientific), CD4 (SP35, Roche), CD8 (C8/144B, DAKO), CD20 (L26, DAKO), CD68 (PG-

M1, DAKO), FOXp3 (236A/E7, AbCam), and PD-L1 (22C3, DAKO).  

 

Assessment by pathologists 

Stromal and intratumoral overall immune infiltration (sTIL and itTIL respectively) was 

independently evaluated by two experienced pathologists (Hugo Horlings, Roberto 



Salgado) according to published guidelines [22] using SlideScore 

(www.slidescore.com), an online platform, on the 243 available H&E’s WS. Briefly, the 

relative proportion of stromal area to tumor area was determined from the 

microscopy slide of a given tumor region. TIL were reported for the stromal 

compartment (= percent sTIL) and intratumoral compartment (= percent itTIL). The 

denominator used to determine the percentage of sTIL and itTIL was the area of 

stromal tissue or intratumoral tissue, respectively. 

The same methodology was applied for evaluation of stromal and intratumoral 

infiltration of specific immune cell types on TMA (n=254) and WS (n=82). 

These values were used for the inter-observer evaluation. Hereafter, the pathologists 

re-evaluated all highly discordant stromal IHC (arbitrarily defined as >10% difference 

between pathologists) to strive for a better accuracy of immune characterization for 

further analysis. The geometric mean of the two scores was used. 

 

Assessment by digital pathology 

In addition, all TMA cores and the 82 WS were evaluated by digital imaging analysis 

using Visiopharm Integrator System software. Markers were quantified as the 

percentage of positive area on the total tissue area. Empty space was automatically 

excluded to avoid contributions from regions of no interest. Cores with artifacts were 

excluded post-processing and not included in the comparative analysis. 

 

Tumor microenvironment dissecting tools 

Gene set enrichment 

The original GSEA approach evaluates if a certain group of genes is differentially 

expressed between two biological states [26]. Briefly, the genes in the expression data 

set are ordered on the basis of the correlation between their expression and the 

condition considered. Thus, for each gene in the ranked list, a running-sum statistic is 

increased when one of the genes belonging to the query set is encountered and 

decreased otherwise. In the end, the Enrichment Score (ES) is calculated as the 

maximum deviation from zero of the running-sum statistic. 

Single-sample GSEA (ssGSEA), differently to the original GSEA method, orders the 

genes considering their absolute expression in a specific sample and, by integrating 

the differences between the empirical cumulative distribution functions of the gene 

ranks, computes ESs which represent the degree to which genes in a particular gene 

set are uniformly up- or down-regulated [29]. On this approach is based xCell, a 



recently published method which estimates the abundance scores of 64 immune cell 

types, through the use of a compendium of 489 gene sets collected from large-scale 

expression data from different projects and studies: FANTOM5 [30], ENCODE [31], 

Blueprint [32], Immune Response In Silico (IRIS) [33], Human Primary Cell Atlas (HPCA) 

[34], and Novershtern et al. [35]. 

For each cellular type considered, xCell calculates the abundance scores through four 

steps: (I) ssGSEA is used independently for each gene of the 489 gene sets using the 

GSVA R package [36]; (II) ES are averaged across all gene sets related to a certain cell 

type; (III) ES are converted in abundance scores in a platform-specific way; (IV) 

correlations between related cell types are corrected using a “spillover” approach 

similar to that used for flow cytometry data analysis. Abundance scores provided by 

xCell cannot be used directly as cell fractions, however a high correlation between 

them and the true cell proportion has been seen [37]. 

Among the 64 cell types considered in xCell, only those that could be compared with 

IHC markers were considered; Table 1 shows which of them were used for the 

comparisons. 

MCP-counter is a recently published GSEA method. Developed by the group of Becht 

[38], available as an R-package, MCP-counter consists in a method for the 

quantification of tumor-infiltrating immune cells, fibroblasts and epithelial cells based 

on a robust set of marker genes. For every cell type and sample, an abundance score 

is calculated as the geometric mean of the expression values of cell-type-specific 

genes. Because arbitrary units are used for the abundance scores, they cannot be 

directly interpreted as cell fractions, nor used to compare different cell types, 

although quantitative validation using well-defined cell mixtures showed high 

correlation between the estimated scores and the true cell fractions. In Table 2 the 

cell types used for the comparisons. 

  



Table 1: Cell types taken into consideration among the xCell ones. 

Cell types used for comparisons Corresponding cell types from xCell  

CD3_Tcells 

CD4 memory T cells  
CD4 naive T cells  
CD4 T cells  
CD4 Tcm  
CD4 Tem  
CD8 naive T cells  
CD8 T cells  
CD8 Tcm  
CD8 Tem  
Tgd cells  
Th1 cells 
Th2 cells  
Tregs 

CD4_Tcells 

CD4 memory T cells  
CD4 naive T cells  
CD4 T cells  
CD4 Tcm  
CD4 Tem  

CD8_Tcells 

CD8 naive T cells  
CD8 T cells  
CD8 Tcm  
CD8 Tem  

CD20_Bcells 
B cells  
Memory B cells 
naive.B.cells 

CD68_macrophages 
Macrophages, 
Macrophages M1, 
Macrophages M2 

FOXp3 Tregs 

 

 

Table 2: Cell types taken into consideration among the ones used by MCPCounter. 

Cell types used for comparisons Corresponding cell types from MCPCounter  

CD3_Tcells T cells 

CD4_Tcells NA 

CD8_Tcells CD8 T cells 

CD20_Bcells B lineage 

CD68_macrophages Monocytic lineage 

FOXp3 NA 

 

 

  



Deconvolution 

The deconvolution problem can be thought as a system formed by linear equations, 

each describing the expression of a gene as a linear combination of the expression 

levels of that gene in the different cell types present in the sample, weighted by their 

relative cell fractions (Figure 1b) [25]. Although the relationship between the 

expression levels of pure and heterogeneous samples is not strictly linear, the 

linearity assumption has been shown reasonable [39]. 

Abbas et al. proposed an approach based on linear least square regression to solve 

the deconvolution problem, force all negative estimates to zero and re-normalize the 

cell fractions to sum up to one [40]. Linear least square regression approach is 

comprised as well in CellMix R package, selecting the lsfit method. 

Gong et al. presented a method based on constrained least squares and quadratic 

programming to identify the deconvolution solution with the lowest error while 

forcing the cell fractions to be non-negative and to sum up to one [41]. This approach 

is comprised in CellMix R package as qprog method. 

Moreover, CellMix package offer two more methods, discussed below: deconf and 

DSA. 

CellMix’s signature matrix comprise 17 cell types; in the following Table 3 are shown 

the specific cell types that were taken into consideration. 

Table3: Cell types taken into consideration among the ones used by CellMix. 

Cell types used for comparisons Corresponding cell types from CellMix  

CD3_Tcells 

T helper,  
T helper activated,  
T cytotoxic,  
T cytotoxic activated 

CD4_Tcells 
T helper,  
T helper activated 

CD8_Tcells 
T cytotoxic,  
T cytotoxic activated 

CD20_Bcells 
B cells, 
B cells activated 

CD68_macrophages 
monocytes,  
monocytes activated 

FOXp3 NA 

 

CIBERSORT takes into consideration 22 immune cell types, including also different 

functional states for the same phenotype, summarized in a signature matrix built from 

microarray data [42]. CIBERSORT estimates the cell fractions using nu support vector 

regression (ν-SVR), in Table 4 the cell types taken into consideration. For each sample, 



ν-SVR is run with three different ν values (0.25, 0.5, and 0.75) and the solution 

providing the lowest root-mean-square error (RMSE) between the true expression 

and the estimated expression 𝑀̂ = 𝑆 ∗ 𝐹̂ is selected. Also in this approach, the 

coefficients are forced to non-negative values and normalized to sum up to one. 

CIBERSORT is freely available online at https://cibersort.stanford.edu/. 

Table 4: Cell types taken into consideration among the ones used by CIBERSORT. 

Cell types used for comparisons Corresponding cell types from CIBERSORT  

CD3_Tcells 

T cells CD4 naïve,  
T cells CD4 memory resting,  
T cells CD4 memory activated,  
T cells CD8,  
T cells follicular helper,  
regulatory T cell,  
T cells gamma delta 

CD4_Tcells 

T cells CD4 naïve,  
T cells CD4 memory resting,  
T cells CD4 memory activated,  
T cells follicular helper,  

CD8_Tcells T cells CD8,  

CD20_Bcells 
B cells naive  
B cells memory 

CD68_macrophages 

Monocytes, 
Macrophages M0, 
Macrophages M1, 
Macrophages M2 

FOXp3 regulatory T cell 

 

Racle et al. recently developed a tool to Estimate the Proportion of Immune and 

Cancer cells (EPIC). EPIC is based on constrained least square regression, integrating 

in this way the non-negativity constraint into the deconvolution problem, and to 

impose that the sum of all cell fractions in each sample is lower than one. Is therefore 

possible to retrieve the estimate of the proportion of uncharacterized cells in the 

mixture, as the difference between 1 (i.e., 100% of the cells in the mixture) and the 

sum of the deconvoluted cell fractions. These uncharacterized cells are the cell types 

not taken into consideration by the signature matrix used for deconvolution and, in 

RNA-seq data from bulk tumors, represents the tumor content [43]. 

EPIC provides two RNA-seq-derived signature matrices, one describes the expression 

signature of six blood-circulating immune cell types, the second of five tumor-

infiltrating immune cell types plus endothelial cells and cancer-associated fibroblasts 

(CAF), whose expression signatures were extracted from melanoma single-cell RNA-

https://cibersort.stanford.edu/


seq data [44]. Our analyses have been performed using the second signature matrix; 

specific cell types considered for the comparisons are shown in Table 5. 

Table 5: Cell types taken into consideration among the ones used by EPIC. 

Cell types used for comparisons Corresponding cell types from EPIC  

CD3_Tcells 
CD4 T cells 
CD8 T cells 

CD4_Tcells CD4 T cells 

CD8_Tcells CD8 T cells 

CD20_Bcells B cells 

CD68_macrophages Macrophages 

FOXp3 NA 

 

quanTIseq is, currently, one of the most recent published deconvolution tool and is 

specifically developed for RNA-seq data [45]. quanTIseq is based on constrained least 

square regression (to consider the non-negativity and sum-to-one constraints) and on 

a novel signature matrix derived from a compendium of 51 RNA-seq data sets from 

purified or enriched immune cell types, including also Treg cells and classically (M1) 

and alternatively (M2) activated macrophages. Moreover, quanTIseq implements a 

series of functions to perform all the steps in the analysis of RNA-seq data, from read 

pre-processing to deconvolution of cell fractions in order to inconsistencies between 

the mixture and the signature matrix. In Table 6 are shown the specific cell types 

considered in the analysis.  

Table 6: Cell types taken into consideration among the ones used by quantiSeq. 

Cell types used for comparisons Corresponding cell types from quantiSeq  

CD3_Tcells 
T cells CD4, 
T cells CD8 

CD4_Tcells T cells CD4 

CD8_Tcells T cells CD8 

CD20_Bcells B cells 

CD68_macrophages 
Macrophages M1 
Macrophages M2 
Monocytes 

FOXp3 T regulatory 

 

Beyond these, which are called partial deconvolution methods, complete 

deconvolution approaches exist, which estimate relative cell fractions and 

simultaneously disentangle their expression profiles. 



Starting from the pioneering work of Venet et al. [46], several methods have 

leveraged on non-negative matrix factorization (NMF) to alternate least-square 

estimation of the cell proportions and expression profiles [47, 48, 49]. 

NMF is a completely unsupervised approach and thus it might decompose the mixture 

matrix into components that are not related to the cell types of interest. By using well-

defined mixtures of four hematological cancer cell lines, Gaujoux and colleagues were 

able to demonstrate that incorporating prior knowledge from cell-specific marker 

genes into NMF-based methods can dramatically improve the results of complete 

deconvolution. Deconf, a method based on this approach, is implemented in CellMix 

R package. 

DSA is another complete deconvolution approach that uses quadratic programming 

to calculate cell fractions and expression profiles in complex tissues leveraging on a 

set of marker genes that are highly expressed in specific cell types [50]. Also DSA is 

implemented in CellMix, but it gives back the same results as the “qprog” method, 

which is comprised in the same package. 

 

Methylation data 

Recently, a new approach based on methylation data has been proposed. 

MethylCIBERSORT is an R package which is capable to create a mixture matrix starting 

from normalized methylation data that can been then uploaded to the previously 

discussed online tool CIBERSORT, along with a signature matrix chosen between some 

provided within the package itself. A breast cancer specific signature matrix was 

available and used. Raw methylation data was normalized using preprocessQuantile() 

function in the R package minfi. To be noted, MethylCIBERSORT provides signature 

matrices that take into consideration also the tumor cell fraction, allowing also the 

evaluation of tumor purity [51]. The cell types taken into consideration using 

MethylCIBERSORT are shown in Table 7. 

Table 7: Cell types taken into consideration among the ones used by MethylCIBERSORT. 

Cell types used for comparisons Corresponding cell types from 
MethylCIBERSORT  

CD3_Tcells 
T cells CD4 effector, 
T cells CD8, 
T regulatory 

CD4_Tcells T cells CD4 effector 

CD8_Tcells T cells CD8 

CD20_Bcells CD19 positive cells 

CD68_macrophages NA 

FOXp3 T regulatory 



Addititional methods based on signatures 

To provide potential validation for the immune infiltration, gene signatures specific 

for inflammation or immune cell activity, including cytolytic activity (Cyt Act) 12, 

interferon-gamma signaling (IFNg) 13, lymphocyte signature 14, STAT1 immune 

signature (STAT1) 15, and two additional immune signatures ImmPerez 16 and TFH 

17, [52, 53, 54, 55, 56, 57], were used. 

In addition, the published methylome TIL (MethylTIL) signature 11 [58] to estimate 

TIL abundance from methylation level was used. 

Calculations of these latter additional methods were conducted by the colleague 

Bareche Yacine, one of the co-author with which the paper relative to this work is 

published, and therefore details are not provided. 

 

Statistical analyses 

Software 

All statistical analyses were performed using R version 3.5.1. 

 

Concordance Correlation Coefficient 

Also known as Lin’s coefficient [59], the Concordance Correlation Coefficient (CCC) is 

a correction of the Pearson’s correlation coefficient, which provides a measure of the 

extent to which the points in the scatter plot conform to the best fitting line. CCC 

modifies the Pearson’s correlation coefficient by assessing not only how close the 

data are about the line of best fit, but also how far that line is from the 45-degree line 

through the origin, which represent perfect agreement. 

CCC can be calculated as follow: 

𝐶𝐶𝐶 =  
2𝑟𝑠𝑥𝑠𝑦

𝑠𝑥
2 + 𝑠𝑦

2 + (𝑥̅ − 𝑦̅)2
 

Where r is the Pearson’s correlation coefficient, 𝑠𝑥
2 and 𝑠𝑦

2 are the estimated variances 

of x and y respectively, 𝑥̅  and 𝑦̅ are the means of x and y respectively. 

CCC is equal to 1 when all the point lies on the 45-degree line and there is perfect 

agreement. 

CCC was used as a summary measure of reproducibility. CCC was calculated using 

epi.ccc() function in the epiR package. 

 



Bland and Altman diagram 

The Bland and Altman diagram is a display of the differences between numeric pairs 

of readings that can offer an insight into the pattern and extent of the agreement.  

It is displayed by plotting the differences between pairs on the vertical axis against 

the mean between the pairs on the horizontal axis; moreover the average of the 

differences is displayed as an horizontal line, along with an upper and lower lines lying 

at 𝑑̅ ±  2𝑠𝑑 (where 𝑑̅ is the mean of the differences, and 𝑠𝑑  is the standard deviation) 

representing the limits of agreement [60]. 

We used log transformed values, which modify the Bland and Altman diagram: on the 

vertical axis are plotted the ratios of the pairs and on the horizontal axis the geometric 

mean. The log transformation has been used to display more clearly the differences 

between low values (as the majority of observations) and it is the only transformation 

giving back transformed differences which are easy to interpret [61]. 

Bland and Altman diagram was used for the comparisons between TMA and WS and 

between microscopic (assessed by pathologists) and digital analysis. 

 

Passing-Bablok 

Passing-Bablok [62] is an approach for the comparison of two measurement methods 

that should give the same values. Passing-Bablok regression is a robust, 

nonparametric method for fitting a straight line to two-dimensional data where both 

variables, X and Y, are measured with error. 

The comparison of the two methods is performed by estimating a linear regression 

line and testing whether the intercept is zero and the slope is one. The Passing-Bablok 

regression procedure fits the intercept (β0) and the slope (β1) of the linear equation 

𝑌 =  𝛽0 + 𝛽1𝑋. 

The slope’s estimate (β1) is calculated as the median of all slopes that can be formed 

from all possible pairs of data points, except those pairs that result in a slope of 0/0 

or -1. To correct for estimate bias caused by the lack of independence of these slopes, 

the median is shifted by a factor K which is the number of slopes that are less than      

-1. This creates an approximately unbiased estimator. The estimate of the intercept 

(β0) is the median of {𝑌𝑖 − 𝛽1𝑋𝑖 }.  

The intercept represents the systematic bias (difference) between the two methods. 

The slope measures the amount of proportional bias (difference) between the two 

methods. 



Passing-Bablok was used along with Bland and Altman diagram for the comparisons 

between TMA and WS and between microscopic (assessed by pathologists) and digital 

analysis, but also for the comparison between global, intratumoral and stromal TIL. 

Passing-Bablok regression was performed through the PBreg() function in MethComp 

package. 

 

Cohen’s kappa 

Cohen’s kappa is a statistical approach to evaluate agreement between two methods 

that measure binary variables [63]. 

Cohen’s kappa is calculated as follow: 

𝑘 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝐶ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
=  

𝜌0 − 𝜌𝐸

1 − 𝜌𝐸
 

Where 𝜌0 is the sum of the observed frequencies along the diagonal of the 

contingency table divided for the number of the subjects, while 𝜌𝐸  is the sum of the 

expected frequencies along the diagonal of the contingency table divided for the 

number of the subjects. 

When the agreement is perfect Cohen’s kappa is equal to 1, while a value of 0 suggest 

that agreement is no better than which that would be obtained by chance alone. 

Also for ordinal data with more than two categories, weighted Cohen’s kappa is used, 

which takes into consideration not only the agreement between the pairs of results, 

but also the extent to which there is disagreement between them: the disagreement 

is greater if for a subject the response of the two methods differ by two categories 

than by one category. 

Weighted kappa is calculated assigning weights to the frequencies in the non-diagonal 

cells of the contingency table according to their distance from the diagonal, with the 

magnitude of the weight diminishing the further the cell is from the diagonal [64]. 

Cohen’s kappa was used when comparing infiltration measures relative to 

Macrophages, since scored as 4 levels categorical variable. 

Cohen’s kappa was calculated through the ckap() function in package rel. 

 



Spearman’s rank correlation 

Spearman’s rank correlation is a non-parametric method to measure the linear 

association of two variables 𝑋1, 𝑋2 without making assumption on their distribution. 

It is calculated as following: 

𝜌𝑠 =  
𝐶𝑜𝑣(𝑟𝑘𝑋1

,   𝑟𝑘𝑋2
)

𝜎𝑟𝑘𝑋1
𝜎𝑟𝑘𝑋2

 

where 𝐶𝑜𝑣(𝑟𝑘𝑋1
,   𝑟𝑘𝑋2

) is the covariance between the ranks of the two variables,  

 𝑟𝑘𝑋1
, 𝑟𝑘𝑋2

 are the ranks of the two variables 𝑋1, 𝑋2 respectively and 𝜎𝑟𝑘𝑋1
𝜎𝑟𝑘𝑋2

 are 

the standard deviations of the two rank variables. 

Spearman’s rank correlation was used to compare cell-specific infiltration estimations 

by various methods and was calculated using the cor() function in R specifying the 

usage of only complete observations and the method “spearman”. 

 

Results 

In following pages, the results of the numerous comparisons are showed. 

First, in the paragraph titled “Assessment of immune cells on whole slides” the 

comparisons of the scores calculated from the two pathologists on WS (H&E and IHC) 

are showed. 

Secondly, in the “Comparison of tumor immune infiltration estimates between tissue 

micro arrays and whole slides” section, the scores calculated on TMA are compared 

to the ones from WS, for both pathologists’ and digital evaluations, however only for 

CD3 in the last case. Moreover, the comparison between pathologists’ and digital 

scores calculated on TMA is presented. 

Thirdly, in the “Comparison of microscopic, transcriptomic and methylomic 

evaluation of overall tumor immune infiltration” part, methods (microscophy-, 

transcriptomic-, methylomic-, immune signature-based) capable of estimating global 

infiltration are compared considering all samples and subgroups based on the 

presence of ER. 

Fourthly, in the “Comparison of microscopic, transcriptomic and methylomic 

evaluation of cell-specific immune infiltration”, the scores evaluating the infiltration 

of specific cell types produced by the various methods are compared. 



Finally, in the fifth section, “Classifying cold and hot tumors”, the capacity of the 

methods to distinguish between “cold” (i.e. with sTIL≤ 10%) and “hot” (i.e. sTIL≥60%) 

tumors is explored. 

 

Assessment of immune cells on whole slides 

Two experienced pathologists (HH and RS) scored itTIL, sTIL and 6 immune cell-types 

(CD3+, CD4+, CD8+, CD20+, CD68+, FOXP3+) in the International Cancer Genomics 

Consortium BC cohort using hematoxylin and eosin (H&E) whole slides (WS, n=243), 

immunohistochemistry (IHC)-stained tissue microarray (TMA, n=254) and WS (n=82). 

Regarding the overall infiltration, in line with previous reports [65, 66, 67, 68, 69], a 

high inter-observer CCC was observed both for sTIL and itTIL (0.84 and 0.85, 

respectively, Figure 2). The limits of agreement showed a fair relative precision 

between measurements, and no major constant (intercept) or proportional (slope) 

drift between the two pathologists (Figure 3). 

 

Figure 2: Forest plots representing estimated concordance correlation coefficients with 95% confidence interval (CI) for each pairing 
between pathologists (inter-observer agreement) on H&E and Whole Slides (WS). Cohen’s K for the macrophages staining (CD68) 
based on 4 infiltration categories (nil, mild, moderate and severe). 

 

Concerning cell specific infiltration evaluation, the inter-observer analysis 

demonstrated a fair CCC for the immunohistochemical (IHC) assessments, where 

stromal scoring performed overall better and more precisely than intratumoral 



scoring (Figure 2). All stromal IHC CCC values were lower for immune cell subtypes 

than for overall TIL assessment on H&E, ranging 0.63-0.66. The intratumoral IHC 

methods had a CCC below 0.6, except for itCD3 (CCC= 0.63). We therefore only 

considered the more reliable stromal estimates for further analysis. The Passing-

Bablok regression analysis further showed a rather fair slope for the more abundant 

stromal infiltrated markers (CD3+, CD4+, CD8+), while, the less abundant cells 

(FOXP3+ and CD20+) show a drifted slope and were therefore deemed less reliable 

(Figure 3). 

To evaluate the contribution of the itTIL and sTIL values to the global infiltration, a 

“global” TIL score was calculated as the arithmetic mean of the sTIL and itTIL scores 

for each sample. A good concordance was observed between stromal and global 

scores (CCC 0.84, Figure 4 a), while, on the other hand, a lower concordance between 

the intratumoral and global TIL scores was observed (CCC 0.37, Figure 4 b). These 

results show that immune infiltration in BC is mainly localized in the stromal 

compartment and is not greatly interfered by intratumoral infiltration. 

Since a fair overall concordance between the two pathologists was observed, a unique 

score for human evaluation, calculated as the mean of the two, was used in the 

comparison with other methods. 

 

 



 

Figure 3: For the inter-observer analysis, the stromal and intratumoral values are reported separately.  Bland-Altman Plots show the limits of agreement and are used to 
compare two observers (RS and HH), for the same variable. Passing-Bablok Regression show a nonparametric regression line for all markers (CD3, CD4, CD8, CD20, FOXp3 and 
CD68). The intercept is interpreted as the systematic bias (difference) between the two observers. The slope measures the amount of proportional bias (difference) between the 
two observers. 



 

Figure 4: The Passing-Bablok regression plot representing the comparisons between the global TIL and sTIL.scores (a) and between 
the global TIL and itTIL (b), respectively. 

 

Comparison of tumor immune infiltration estimates between tissue micro arrays 

and whole slides 

To investigate if the immune infiltrate is comparable when assessed on TMA or WS, 

infiltration of 6 immune cell-types (CD3+, CD4+, CD8+, CD20+, CD68+, FOXP3+) was 

characterized with both methods.  

The immune infiltrate scores were systemically higher on WS as compared to TMAs, 

as depicted in Figure 5 for all markers but CD68. The CCCs were globally low and 

ranged between 0.21 for CD4+ and 0.43 for FOXp3+ cells as summarized in figure 6. 

Concerning CD68, a Cohen’s kappa of 0.33 [0.16; 0.51] was calculated. 



 
Figure 5: Bland and Altman diagrams (above) and Passing-Bablok plots (below) comparing the scores generated by the two pathologists on WS and TMAs for, from the left, CD3, CD4, CD8, CD20 
and FOXp3. 

 

. 



 

Figure 6: Forest plots representing estimated concordance correlation coefficients with 95% confidence interval (CI) for each pairing 
between WS and TMA scores by pathologists. 

 

WS and TMA were further evaluated through digital pathology. The evaluation of CD3 

on WS by digital pathology was performed only on CD3 for technical reasons, the 

comparison of the estimates generated by digital pathology on WS and TMA for CD3 

are showed in Figure 7, confirming the higher level of immune infiltration observed 

on WS as compared to TMAs by the pathologists and highlighting the spatial 

heterogeneity of the tumor immune microenvironment. To be noted, the linear 

subset that appear in the plots may be explained considering that if the sample is low 

infiltrated, it is more difficult to distinguish the real signal from the noise and produce 

precise estimations; as consequence observations appear to be aligned when one 

method scores zeros and the other not. Moreover, should be considered the fact that 

for very low infiltrated samples, the evaluation of the smaller area through TMAs may 

prevent to appreciate the presence of few cells that instead are observed in WS. 



 

Figure 7: Bland and Altman diagram (left) and Passing-Bablok plot (right) showing the comparison between digital scores calculated 
on WS and TMA. 

 

Comparing human and digital estimation on TMAs, in line with previous reports [66], 

a fair concordance was observed when comparing human and digital assessment, as 

showed in Figure 8 for CD3, CD4 and CD8 (regarding the remaining markers, 

calculations were impossible to complete since digital pathology scored no or very 

low infiltration for the lower abundant (CD20+, CD68+, FOXp3+) cells types. Also for 

these comparisons a linear subset appears for lightly infiltrated samples, confirming, 

for both human and digital evaluation, the difficulty to make precise estimation when 

the signal is low. 



 

Figure 8: a) Balnd and Altman diagrams (above) and Passing-Bablok plots (below) showing the comparison of manual and digital 
TMA scores. b) Forest plot representing estimated concordance correlation coefficients with 95% confidence interval (CI) for the 
comparion of manual and digital TMA scores. 

 

Comparison of microscopic, transcriptomic and methylomic evaluation of overall 

tumor immune infiltration 

To evaluate if different data types could estimate overall immune infiltration 

consistently, several microscopic-, transcriptomic- and methylomic-based methods, 

listed in Table 8, were compared. 

Many important observations can be retrieved from this method comparison. First, 

while the Spearman correlations between microscopic and all methylomic or 

transcriptomic estimates were weak to moderate, our analysis showed that stromal 



infiltration correlates better with all other methods, including transcriptomic and 

methylomic methods, as compared to the intratumoral microscopy scores (Figure 9a). 

The possibility that higher intratumoral infiltration may lead to more pronounced 

inflammatory gene expression than stromal infiltration as intratumoral infiltration 

may have a crucial anti-tumor role as suggested by several studies [70, 71, 72, 73, 74] 

was investigated, but no higher correlation between intratumoral infiltration and 

inflammation or lymphocyte associated signatures scores was observed. Secondly, 

only a fair correlation was observed between stromal assessment on H&E and IHC-

stained WS, where the sum of T (CD3+) and B (CD20+) cells were considered (r=0.61). 

Thirdly, a slightly improvement was observed when the infiltrate was scored with 

digital pathology (Figure 9a), most probably because both methods do not distinguish 

between stromal and intratumoral infiltrates. Fourthly, as expected, methods using 

the same approach showed fair correlations. For example, several transcriptomic 

estimates were strongly correlated with each other (r >0.85), and methylCIBERSORT 

and the methylomic TIL score (Jeschke et al., 2017) showed a reassuring agreement 

(r=0.77). The correlation between transcriptomic and methylomic was variable, but 

methylCIBERSORT showed good correlations with CIBERSORT (r=0.75) and the TILrna 

signature (0.76), and similar observations could be made for meTIL and CIBERSORT 

(r=0.65) and TILrna(r=0.70). Fifthly, among the transcriptomic and methylomic 

methods, methylCIBERSORT and absoluteCIBERSORT showed the highest correlations 

with imaging scores, though the correlations were still not impressing with the highest 

being 0.53 considering sTIL on WS (methylCIBERSORT) and 0.53 with TMAs 

(absoluteCIBERSORT). These results were however in line with a recently published 

lung cancer study [75]. 

Finally, among the methods capable to predict global immune infiltration based on 

the transcriptome (green label in Figure 9a), absoluteCIBERSORT showed the highest 

correlations with the various immune gene signatures (pink label, ranging from 0.78 

till 0.94), while quanTIseq showed the poorest correlations (ranging from 0.12 till 

0.26). Similar analyses were further carried on separately for ER-negative and ER-

positive tumors (Figure 9 b and c). The correlations for the microscopic versus 

methylomic and transcriptomic-based methods were in general slightly higher in the 

ER-negative compared to the ER-positive subgroup. Nevertheless, compared to all 

samples, the ER-negative tumors did not necessarily show higher correlations. 

 



Table 8: Overview of used cell fractions for overall immune infiltration and specific immune subtypes. If multiple cell types are listed for a method, these were summed. 

 

Method Overall 
infiltration 

T cells CD4+ T cells CD8+ T cells Tregs B cells Macrophages 

TMA manual CD3+CD20 CD3 CD4 CD8 FOXp3 CD20 CD68 

TMA digital CD3+CD20 CD3 CD4 CD8 FOXp3 CD20 CD68 

WS CD3+CD20 CD3 CD4 CD8 FOXp3 CD20 CD68 

WS digital NA CD3 NA NA NA NA NA 

Absolute 
CIBERSORT  
(aCBS) 

T + B cells 

CD8, CD4.naive, 
CD4.memory.resting, 
memory.activated, 
follicular.helper, regulatory, 
gamma.delta 

CD4.naive, memory.resting, 
memory.activated, 
follicular.helper 

CD8 Regulatory naive, memory 

Monocytes, 
Macrophages.M0, 
Macrophages.M1, 
Macrophages.M2 

quanTIseq, lsfit 
(qSEQ) 

CD4+ CD8 + 
Treg +CD19 

T.cells.CD4 ,T.cells.CD8, 
Tregs 

T.cells.CD4 T.cells.CD8 Tregs B.cells 
Macrophages.M1, 
Macrophages.M2, 
Monocytes 

MCP-counter 
(MCP)  

NA T.cells Cytotoxic.lymphocytes CD8.T.cells NA B.lineage Monocytic.lineage 

xCell  NA 

CD4.memory, CD4.naive, 
CD4.T.cells, CD4.Tcm, 
CD4.Tem, CD8.naive, 
CD8.T.cells, CD8.Tcm, 
CD8.Tem, Tgd.cells, 
Th1.cells, Th2.cells, Tregs 

CD4.memory, CD4.naive, 
CD4.T.cells, CD4.Tcm, 
CD4.Tem 

CD8.T.cells, CD8.Tcm, 
CD8.Tem 

Tregs 
B.cells, 
Memory.B.cells, 
naive.B.cells 

Macrophages, 
Macrophages.M1, 
Macrophages.M2 

EPIC  
Bcells, 
CD4.Tcells, 
CD8.Tcells 

CD4.Tcells ,CD8.Tcells CD4.Tcells CD8.Tcells NA Bcells Macrophages 

MethylCIBERSO
RT (metCBS) 

CD8, CD19, 
CD4.Eff, 
Treg 

CD4.Eff ,CD8  ,Treg CD4.Eff CD8 Treg CD19 NA 

Cell signatures 
Davoli et al.  

NA NA CD4.Tcells CD8.Tcells Tregs B.cells Macrophages 

Cell signatures 
Danaher et al.  

NA NA Th1 CD8.Tcells Tregs B.cells Macrophages 

Cell signatures , 
Azizi et al.  

NA NA CD4 EM CD8 EM Treg B cells Macrophages 

Cell signatures, 
Tamborero et 
al.  

NA T EM T helper cells Activated CD8 T cells 
Regulatory T 
cells 

B cells Macrophages 



 

Figure 9: Methods to assess overall infiltration (A) Matrix plot of Spearman correlations for the methods providing information on 
overall immune infiltration; Tumor Infiltrating Lymphocytes (TIL) or T cells and B cells (the sum was taken to derive a TIL fraction). (B) 
Matrix plot for Spearman correlations of the methods providing information on overall immune infiltration in ER positive Tumors and 
(C) ER negative tumors. 
 Abbreviations: sTIL = stromal TIL on H&E, itTIL= intratumoral TIL on H&E, TMA= tissue micro array scored by pathologists, digTMA= 
tissue microarray scored by Visiopharm (digital analysis), WS = whole slide immunohistochemistry by pathologists, metCBS= 
MethylCIBERSORT(Chakravarthy et al., 2018), MethylTIL = methyl TIL score(Jeschke et al., 2017), aCBS=absolute CIBERSORT(Newman 
et al., 2015), TILrna= TIL score based on transcriptome(Massink et al., 2015), qSEQ=quanTIseq(Finotello et al., 2017), MCP = MCP-
counter(Becht et al., 2016), EPIC(Racle et al., 2017). 

 

 



Comparison of microscopic, transcriptomic and methylomic evaluation of cell-

specific immune infiltration 

Considering only those methods that could provide a quantitative measure of specific 

immune cell infiltration (see Table 8), several observations can be retrieved by the 

comparison trough spearman correlation (Figure 10), generated separately for each 

cell type. 

 

Figure 10: The matrix correlation plots for CD4 T cells (a), CD8 T cells (b), regulatory T cells (Tregs) (c), B cells (d), and Macrophages 
(e). 

 

Firstly, the correlations between the microscopic evaluations and the transcriptomic 

and methylomic data were always below 0.60, with CD8+ T cells showing the highest 

correlation between microscopic and methylomic or transcriptomic methods (Figure 

10b), while macrophages the lowest (Figure 10e). Interestingly, no systematic 

increase in the correlation coefficients when considering WS instead of TMA scores 

was observed. To be noted, when CCC between methods for specific cell types was 



considered, very weak concordance (<0.3) was found for all methods (data not 

shown). Secondly, most omics-derived methods showed large inconsistencies 

between cell types regarding their correlation with microscopy. For example, while 

quanTIseq showed a poor correlation with sTIL (0.09; Figure 9a) and CD4+ cells (0.01, 

WS evaluation; Figure 10b), the correlations for CD8+ were better (0.54, WS 

evaluation, Figure 10a). Altogether these results underline the fluctuating correlation 

between the different omics-derived methods and visual assessments, which further 

varies according to the immune cell-type. 

Classifying cold and hot tumors 

Finally, considering the classification and thresholds developed by Denker and 

colleagues that showed to have a relevant clinical impact on the response of BC 

patients to immunotherapy [20], the ability of the methods to identify cold (sTIL 

≤10%) and hot (sTIL≥60%) tumors, was investigated through a receiver operating 

characteristic (ROC) curve analysis (Figure 11 a, b), which results are summarized in 

the forest plot depicted in Figure 12. 

 

Figure 11: The ROC curves for the different TIL methods to classify (a) lowly infiltrated/cold, tumors compared to the 
intermediate/hot tumors, and (b) to classify hot tumors compared to the intermediate/cold tumors. 

 



 

Figure 12: Forest plot showing the AUCs (and relative 95%CI) corresponding to curves depicted in Figure 11. 

 

AUC can be interpreted as the probability of a test to correctly classify an individual; 

an AUC of 0.5, which is represented in Figure 11 by the grey straight line with 45° 

slope, indicate a method which is correct only in 50% of the cases and therefore not 

useful. As showed in Figure 11a and by the blue boxes in Figure 12, most methods 

performed poorly in recognizing cold versus intermediate/hot tumors. The itTIL score 

showed the highest area under the curve (AUC, Figure 12 blue boxes), and the 

methylomic-based TIL scores had a slightly higher AUC as compared to the 

transcriptomic-based methods, although their confidence intervals are overlapping. 

On the other hand, ROC analyses showed that most methods were capable to more 

accurately identify hot tumors as compared to cold tumors. Here, the highest AUCs 

were still retrieved from the microscopy methods, but also methylomic and 

transcriptomic-based methods showed fair to high AUCs (Figre 11b, Figure 12 red 

boxes).  

When examining the distribution of the various estimates according the cold, 

intermediate and hot categories (Figure 13), it is of interest to note for all but not the 

pathology-based methods, the spread of the various estimates in the cold tumors. 

Although hot tumors have the highest expression of inflammatory immune 

signatures, including interferon-g and cytolytic activity, high signature values could be 

observed in “cold” tumors. An important spread of estimates provided by the omics 

methods was also observed in hot tumors (Figure 13). 



 

Figure 13: The distribution of TIL scores for the TIL methods and inflammatory signatures is depicted in (D) for the cold (≤10%), 
intermediate(11-59%) and hot (≥60%) tumors according to stromal TIL scores. 

  



Discussion 

The aim of this study was to evaluate the reliability of methods already existing in 

retrieving the composition of TME. 

This study demonstrated that methods of the same modality (microscopy, 

transcriptomic or methylomic-based) show fair correlations when estimating overall 

infiltration, however correlations drop down when different modalities are 

compared. Moreover, beyond quantifying overall immune infiltration, specific 

immune cell types infiltration was quantified using microscopic, transcriptomic and 

methylomic-based methods. A strong heterogeneity in the correlations between the 

microscopic and omics-based estimates was observed, as well as between the 

different omics-based estimates. This work clearly highlights that different 

transcriptomic and methylomic methods have limitations in estimating immune 

infiltration, as correlations with microscopy-based methods do not exceed 0.6. Since 

the pathology assessment of TIL has reached level 1B evidence with new studies 

confirming its value for patients [15], the fact that correlations are not high may call 

for extra caution when using non-pathology methods as these may measure different 

characteristics of the tumor immune infiltrate. These results might be explained by 

the fact that transcriptomic and methylomic data are not perfectly representing 

protein expression of immune cells. Moreover, regular bulk transcriptome or 

methylome analysis does not detect heterogeneity within a sample and ignore the 

localization of specific cells [76]. To be noted, transcriptomic or methylomic methods 

may be biased towards a specific cell-state of immune cells, since they are often 

derived from cells stressed with experimental processes (e.g. tissue digestion or flow 

cytometry) or from different origin (e.g. peripheral blood or different tumors), and 

this may partially explain the differences observed with microscopy. 

A deeper understanding of immune cell profiles in BC [77, 78, 79] may improve the 

assessment of immune cells. However inferring which genetic information from bulk 

sequencing descents from which cell type, might still prove difficult and remain a 

mere estimation. Nevertheless, the information from bulk sequencing techniques, 

may guide the profiling of tumors into immunologically and clinically relevant 

subtypes, as described by a recent study for six immune subtypes [80]. More research 

focused on the contribution and spatial distribution of specific immune cells is needed 

to understand beneficial and deleterious immune cell profiles in the context of clinical 

outcome. Spatially resolved omics methods, measuring genetic and phenotypic 

diversity, would support advances for clinical studies [81]. In addition, deep learning 

approaches may be useful, in the future, to identify spatial features of immune-cells 

identified by pathologists. Integration of deep learning approaches with 



morphological features identified by pathologists, in conjunction with genomic-

derived data will probably be needed to derive a full comprehensive evaluation of the 

immune-environment in solid tumors. 

This work is based on an extensive microscopy-based characterization of a large BC 

cohort, and this data provided insightful observations that can guide future research 

using (digital) image analysis. Stromal evaluation of several immune cell types, 

including regulatory T cells, macrophages and CD8+ T cells, was showed to be reliable 

with an acceptable concordance observed between pathologists. 

Percentages may also be estimated through a digital approach which could be 

practical for high-throughput analysis in the context of larger clinical cohorts. 

However, in line with other studies, a lower estimation was systematically observed 

for digital imaging methods compared to standard pathology estimates [66]. Stromal 

infiltration showed a higher accuracy by pathologists compared to intratumoral 

assessment of immune cells. To be noted, small punches of the tumor may lack of 

some information of infiltration as WS showed overall a higher infiltration than TMA; 

however, this could partly be explained by the fact that these TMAs were not 

constructed to specifically investigate the tumor microenvironment. This 

phenomenon was previously reported and it was concluded that the cores in the 

TMAs may not be taken close enough to the invasive tumor front, suggesting WS are 

more informative for assessing immune parameters [82]. In addition, also intra-tumor 

heterogeneity most probably contributes to the observations. These results therefore 

call for caution when evaluating immune markers on TMA (or biopsies) and are in 

contrast with several studies which support that TMAs are reliable for the evaluation 

of several prognostic epithelial-based tumor markers [83, 84, 85, 86, 87]. 

The second objective of this project was to evaluate the capability of the methods in 

identifying hot and cold tumors. Although immune infiltration is a continuous 

variable, we used here cutoff points previously described to investigate the extreme 

categories, the hot and cold tumors. In the previous sections was showed that the 

majority of the methods are much better in recognizing hot as compared to cold 

tumors. The lower accuracy in identifying cold tumors may be problematic as the 

majority of the breast tumors will have infiltration above 0% but far below 60%, as 

shown by Loi et al. [15] in early TNBC. These results should be considered when 

developing inclusion and stratification criteria, as well as endpoints in the context of 

clinical trials where patients are treated with immunotherapies. Moreover, despite 

accuracy for the identification of hot tumors, a higher immune cell presence did not 

necessarily mean anti-tumor activity, as not all tumor infiltrating T cells harbor a T-

cell receptor repertoire with intrinsic capacity to recognize tumor antigens [88, 89] or 



the tumor specific T cells can be suppressed [90] or exhausted [91]. Therefore, being 

able to distinguish tumors that are cold by suppression or cold by absence or exclusion 

represents important ongoing research topic that will support personalized medicine. 

An important limitation of this work is represented by the fact that tissue analysis and 

DNA/RNA isolation were not performed on the exact same area from the tumor, as 

nucleic acids extractions were performed using the frozen sample and H&E and IHC 

staining using the FFPE samples. Infiltration may be heterogeneous and this partially 

explains the correlations not exceeding 0.6. However, multiple cores spread 

throughout the tumor in the TMA and large sections of the tumors in WS were 

analyzed, far exceeding the area usually evaluated with biopsies. Moreover, a recent 

study suggested that a single WS was sufficient to assess the spatial immune 

heterogeneity of a breast tumor using anti-CD3+, CD8+ and CD20+ stained slides[92]. 

Nevertheless, correlation with various omics-based methods did not systematically 

increase when considering WS versus TMA. Another limitation is that the omics-based 

methods do not consider the localization of the cells in the tumors, which may be 

crucial as demonstrated in a previous study in which was showed that for instance 

CD8+ T cells may need to be localized at the core of the tumor for immunotherapy to 

be effective [93]. In this context, a study suggesting that transcriptomics data might 

have the potential to derive this spatial information [94] was recently published. Last, 

this cohort does not provide follow-up or therapy response data. Future studies may 

test superiority of specific measures and guide precision medicine strategies to 

enhance clinical response.  

In conclusion, these analyses bring out an important heterogeneity in the estimates 

of immune infiltrates in BC provided by various methods and calls for caution when 

used in clinical context. At the present day, there is an urgent need for the 

development of international guidelines to categorize breast tumors according to 

their immune infiltrate in both a quantitatively and a qualitatively manner. Combining 

the valuable information from multiple approaches, e.g. the spatial information from 

pathology and transcriptomic information on cellular activity or the transcriptomic 

and methylomic information, may elucidate the role of immune infiltration in disease 

progression in a more accurate manner. 

 

  



Pseudo-values survival analyses project 

 

Introduction 

When performing survival analyses on advanced diseases, usually the end-point of 

interest is the time to death by any cause. However, if the topic of the study is a non-

aggressive disease occurred in middle-aged patients where long follow-ups are 

available, patients may die for causes not related to the disease. In this case, the event 

of interest is usually the time to disease progression; the occurrence of death without 

the occurrence of disease progression (i.e. for causes not related to the disease) 

prevents the observation of the event of interest. In oncology, besides these 

circumstances, which are particularly frequent (e.g. breast or colon cancer), 

researchers may be interested in a particular type of event, which could be masked 

by the occurrence of other failure event such as local recurrences, distant metastases 

or other primary tumors in different sites. A usual approach in this context is to focus 

the attention on the first occurring event, considering the first evidence of treatment 

failure, because the subsequent clinical management complicates the interpretation 

of the following patient’s clinical history [95]. To investigate treatment effect or 

prognostic role of clinical and pathological variables, regression models for cause-

specific hazards (CSH) for each event through Cox approach, treating competing 

causes of failure as censored times, is a commonly used method [96, 97]. However, 

although CSH is useful when investigating biological hypothesis on the disease 

dynamics, the crude cumulative incidence (CCI) is a more suitable measure when the 

purpose is to provide an aid to clinical decision making. CCI is the probability of the 

occurrence of a certain event of interest as the first in presence of competing risks. 

Regression modeling techniques related to CCI are based on sub-distribution hazard 

[95, 96]. The most common approaches to study CCI and to perform hypothesis 

testing are based on non-parametric estimates and on the semi-parametric 

proportional subdistribution hazard model proposed by Fine and Gray, similar to the 

Cox model [95]. A different, more general approach is based on transformation 

models [100,101], such that a function of CCI, the so-called link function, is linearly 

related to a model predictor as in generalized linear models. An alternative and 

interesting estimation procedure based on the usage of pseudo-observations has 

been proposed by Klein and Andersen. This approach is based on the usage of pseudo-

values obtained from a jackknife non-parametric estimate of the CCI in a generalized 

linear model [102]. The most common link function is “complementary log log” [102]. 

An extension of this approach, regarding the usage of different link functions, has 



been proposed in paper published by my research group [95]. This approach has many 

advantages derived from the properties of the pseudo-observations, but above all, it 

allows to directly interpret regression coefficients as measures of clinical relevance, 

such as relative risk (RR), cumulative subdistribution hazard ratio (CSDHR), odds ratio 

(OR) and absolute risk reduction (ARR), through the application of suitable link 

functions. 

The primary aim of this work is indeed the exploration of the capabilities of this 

method to easily retrieve clinical useful measures in presence of censored data and 

competing risks, as previously proposed in the paper of my research group [95]. To 

this goal, the method is applied to a breast cancer dataset, on which survival analyses 

were performed in order to explore the recurrence dynamics of breast cancer (BC) in 

another work of my group [103]. The secondary aim of this work is to clarify the role 

of relevant covariates in BC and especially of body mass index (BMI), which is of 

particular interest. 

High BMI is indeed an important risk factor for many pathologies such as diabetes, 

cardiovascular and kidney diseases, but has also been linked to the development of 

breast cancer, particularly the estrogen receptor positive tumors in postmenopausal 

women [104]. 

Many studies (reviewed in Jiralerspong and Goodwin [105]) have investigated the role 

of BMI in BC considering various end-points and, although discrepancies have 

emerged, which may be explained by the heterogeneity of the studies, most of them 

have reported an adverse association between elevated BMI and survival. 

The work presented in the following pages represents a first step in a wide project 

that will be carried out by my group after the conclusion of my PhD. 

  



Materials and methods 

Dataset 

The dataset used for these analyses is composed of patients from the phase III Belgian 
study, which was designed to compare three treatment regimens: high dosage of 
epirubicin-cyclophosphamide (HDE), low dosage of epirubicin-cyclophosphamide 
(SDE) and cyclophosphamide, methotrexate and fluorouracil (CMF), the standard 
treatment. 

The original dataset included 777 patients [106] with age 70 or younger and node-

positivity, who were randomly assigned to one of the three treatment regimens 

between March 1988 and December 1996. The original study did not highlight an 

advantage in the usage of high dosage of epirubicin-cyclophosphamide over classical 

CMF in the adjuvant therapy of node-positive pre- and postmenopausal women with 

breast cancer. In addition, the study confirmed that the response to epirubicin is dose 

dependent. 

Of the original 777 patients, only 734 (95%) had weight and height information and, 

among these, one subject had missing failure time and was therefore not considered. 

Because the effect of BMI was of primary interest and the failure time was necessary 

to the estimation of the cumulative incidence function, the dataset considered for the 

analyses in this study was composed of 733 patients. Moreover, the complete model 

included also included treatment, ER, menopausal status and tumor dimension; 

complete data on these variables was available only for 535 subjects. The 

characteristics for all 733 patients are shown in Table 9, while for the subset of 535 

patients in Table 10; these two tables shows that no particular unbalancing was 

generated by using the subset with complete data. 

Baseline BMI was calculated as the weight in kilograms divided by the square of the 

height in meters at the beginning of the follow-up and divided in categories following 

the World Health Organization guidelines [107], although a two classes division, which 

contraposed underweight and normal-weight patients on one side and overweight 

and obese on the other side was considered in the following analyses. 

Drug dosages were calculated from patients’ body surface without any cap. As for the 

analyses described by Biganzoli et al [103], ER status was re-established with respect 

of the original study, considering ER-positive tumors as those that show any 

expression of ER. 

Various types of failure event, such as controlateral tumors, distant metastasis, 

locoregional metastasis and second primary tumors were considered in the original 

study [106]. However, for these analyses a unique composite event indicating 



treatment failure was considered, opposed to the competing event of death without 

evidence of disease (NEDdeath). 

 

Survival analysis 

Survival analysis is a group of statistical techniques specifically developed to analyze 

survival data, which is mainly constituted of random variables T, which represent the 

time between the entrance of a subject in the study until the observation of the event 

of interest; this kind of random variables is non-negative and called as “time to event”, 

“failure time” or “survival time”. 

This kind of data is particular and requires specific analytical techniques. The 

distinctive trait of this type of variable derives from the way it is generated. While for 

other types of data, the responses are measured instantaneously and independently 

of the size of the response, the event time variable is measured sequentially from the 

beginning of the study, meaning that retrieving large responses (i.e. long times to 

event) requires more time than smaller ones. As a consequence of this trait is the  

Table 9: Clinical features regarding the complete dataset composed of 733 patients. 

  All BMI<25 25≤BMI<30 BMI≥30 

  n (%) n (%) n (%) n (%) 

Age (n=733) <50 y 396 (54) 262 (65) 94 (44) 40 (29) 
 ≥50 y 337 (46) 141 (35) 119 (56) 77 (71) 

Menopausal status (n=732) Pre 428 (58) 275 (68) 106 (50) 47 (34) 
Post 304 (42) 127 (32) 107 (50) 70 (66) 

Positive lymph nodes (n=733) 1-3 432 (59) 250 (62) 122 (57) 60 (51) 
>3 301 (41) 153 (38) 91 (43) 57 (49) 

Tumor size (n=614) <2 cm 238 (39) 141 (42) 69 (38) 28 (28) 
≥2 cm 376 (61) 192 (58) 113 (62) 71 (72) 

ER status (n=629) ER- 166 (26) 98 (28) 37 (20) 31 (31) 
ER+ 463 (74) 247 (72) 146 (80) 70 (69) 

PgR status (n=627) PgR- 203 (32) 115 (33) 50 (28) 38 (38) 
PgR+ 424 (68) 231 (67) 130 (72) 63 (62) 

Neu-Fish (n=330) non contributive 264 (80) 149 (81) 67 (74) 48 (89) 
weakly amplified 16 (5) 7 (4) 8 (9) 1 (2) 
strongly amplified 50 (15) 29 (16) 16 (18) 5 (9) 

Histological subtype (n=293) Ductal 200 (68) 124 (73) 50 (62) 26 (62) 
Lobular 73 (25) 37 (22) 23 (28) 13 (31) 
other 20 (7) 9 (5) 8 (10) 3 (7) 

Grade (n=624) I 143 (23) 84 (24) 34 (18) 25 (26) 
II 329 (53) 186 (54) 96 (52) 47 (49) 
III 152 (24) 74 (22) 54 (29) 24 (25) 

Treatment arm (n=733) CMF 242 (33) 141 (35) 72 (34) 29 (25) 
 SDE 251 (34) 131 (33) 78 (37) 42 (36) 
 HDE 240 (33) 131 (33) 63 (30) 46 (39) 



Table10: Clinical features regarding the subset of 535 patients with complete data. 

  All BMI<25 25≤BMI<30 BMI≥30 

  n (%) n (%) n (%) n (%) 

Age (n=535) <50 y 282 (53) 185 (64) 72 (46) 25 (29) 
 ≥50 y 253 (47) 106 (36) 85 (54) 62 (71) 

Menopausal status (n=534) pre 305 (57) 194 (67) 80 (51) 31 (36) 
post 229 (43) 96 (33) 77 (49) 56 (64) 

Positive lymph nodes (n=535) 1-3 303 (57) 174 (60) 85 (54) 44 (51) 
>3 232 (43) 117 (40) 72 (46) 43 (49) 

Tumor size (n=535) <2cm 208 (39) 126 (43) 58 (37) 24 (28) 
≥2cm 327 (61) 165 (57) 99 (63) 63 (72) 

ER status (n=535) ER- 138 (26) 81 (28) 32 (20) 25 (29) 
ER+ 397 (74) 210 (72) 125 (80) 62 (71) 

PgR status (n=534) PgR- 168 (32) 95 (33) 41 (27) 32 (37) 
PgR+ 364 (68) 196 (67) 113 (73) 55 (63) 

Neu-Fish (n=277) Non-contributive 220 (79) 120 (79) 60 (75) 40 (89) 
weakly amplified 14 (5) 5 (3) 8 (10) 1 (2) 
strongly amplified 43 (16) 27 (18) 12 (15) 4 (9) 

Histological subtype (n=208) Ductal 143 (69) 91 (74) 33 (60) 19 (63) 
Lobular 53 (25) 26 (21) 18 (33) 9 (30) 
other 12 (6) 6 (5) 4 (7) 2 (7) 

Grade (n=465) I 110 (24) 65 (25) 24 (18) 21 (28) 
II 244 (52) 138 (54) 71 (53) 35 (47) 
III 111 (24) 54 (21) 38 (29) 19 (25) 

Treatment arm (n=535) CMF 179 (33) 106 (36) 52 (33) 21 (24) 
 SDE 181 (34) 85 (29) 63 (40) 33 (38) 
 HDE 175 (33) 100 (34) 42 (27) 33 (38) 

 

occurrence of censored data. An event time is said censored if it is not observed 

during the follow-up, but all it is known is that it occurred before the beginning of the 

study (left censoring, not common) or after the end of the follow-up (right censoring, 

more common). An important assumption for all survival analyses is that censoring is 

independent or non-informative, which means that, at each time point, subjects who 

remain in the study have the same future risk of the occurrence of the event as those 

subjects that have been censored, as if losses to follow-up were random and thus 

non-informative. 

In the presence of right censoring, survival data may be described by a pair of 

variables (T, δ), where T is the observed time since the entrance in the study and δ is 

an indicator of failure, taking values of 𝛿 = 1 if the event of interest is observed and 

𝛿 = 0 if the time is censored. Formally, suppose V indicates the true time to event 

that one would like to investigate but not always observed, and W is the potential 

censoring time. Then, the observed time is: 



𝑇 = min(𝑉, 𝑊) and 𝛿 = 1 𝑖𝑓 𝑉 ≤  𝑊 𝑜𝑟 𝛿 = 0 𝑖𝑓 𝑉 > 𝑊 

that is, 𝑇 = 𝑉 only when the observation is not censored. To be noted, here it is 
assumed that every subject would experience the event if observed for long enough 
time. 

In our study to apply the standard survival analysis a composite event i.e. all disease 
progression evidence and death without evidence of disease progression should be 
considered being censoring (i.e lost to follow-up without event or survived without 
disease progression at the end of the study) considered as independent. 

To analyze survival data in basic settings, the following functions are commonly used: 

1) Cumulative distribution 
𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) 

It describes the probability of subjects to have the event in the time interval 
[0, 𝑡], which is also called (cumulative) incidence. It is a non-decreasing 
function such that: 
 𝐹(0) =  0 
 lim

𝑡→∞
𝐹(𝑡) = 1 

2) Survival function 
𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) 

It gives the probability for a subject to survive without event up to time t. It 
is a non-increasing function such that: 
 𝑆(0) = 1 
 lim

𝑡→∞
𝑆(𝑡) = 0 

Survival function can be estimated non parametrically from data through 
the Kaplan-Meier estimator: 

𝑆̂(𝑡) =  ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡

 

where ti is the i-th event time, ni is the risk set, i.e the decreasing number of 
subjects at risk just before ti , and di is the number of events at ti. 
An estimate of the incidence function can be obtained as the complement 

to 1 of the Kaplan-Meier estimate  𝑆̂(𝑡). 

3) Hazard function 

ℎ(𝑡) =  lim
∆𝑡 →0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡 | 𝑇 ≥  𝑡)

∆𝑡
 

It describes the instantaneous risk of an event at time t, given that it has not 
occurred prior to t, and the dynamics of the occurrence of the event, in the 
sense that describes the changing of the hazard of the occurrence of the 
event with respect to time.  



Although the quantity ℎ(𝑡)∆𝑡 can be thought as an approximate conditional 
probability of an event in the interval [t, t + ∆𝑡), the hazard function is not 
a probability itself, but it can be thought as the rate for which the risk of an 
event changes with time. 

 

Competing risks 

In survival analyses, particularly when concerning a biomedical subject, competing 
risks often occur. A competing risk is an event whose occurrence prevents the 
observation of the event of interest [108]. For example, in a study examining the time 
to tumor recurrence, death due to non-treatment/non-tumor related death is a 
competing event. 

Conventional statistical approaches do not consider competing risks and treat the 
occurrence of a competing event by censoring. However, this strategy is not correct 
because it may violate the assumption of non-informative censoring and lead to an 
overestimation of the incidence of the event of interest [108]. 

Suitable approaches are adopted to analyze survival data in presence of competing 

risks. A common strategy, used particularly in biomedical studies, is to focus the 

attention on the first event occurring, since the following clinical management may 

complicate the clinical interpretation of the subject’s subsequent event history [95]. 

From a mathematical/theoretical point of view it is useful to think that, at the 
beginning of the study, each patients is at risk of K failure events at potential times of 
occurrence (𝑉1, … , 𝑉𝑘 , … , 𝑉𝐾) called latent failure times, assuming that each event 
would be occurring if other types of event are removed and the subject is observed 
for long enough time. Formally, adapting the previous definition of the event time 
variable, suppose V is the true event time one wishes to investigate, given that 𝑉 =
𝑚𝑖𝑛(𝑉1, … , 𝑉𝑘 , … , 𝑉𝐾) and W is the potential censoring time. Then, the observed time 
is: 

𝑇 = min(𝑉, 𝑊) = min (𝑉1, … , 𝑉𝑘 , … , 𝑉𝐾 , 𝑊)  

and 𝛿 = 𝑘 𝑖𝑓 𝑉 = 𝑉𝑘 ≤  𝑊 𝑜𝑟 𝛿 = 0 𝑖𝑓 𝑉 > 𝑊 

 

The most important functions for analyzing competing risks data are: 

1) Cause-specific hazard (CSH) function 

ℎ𝑘
𝑐𝑠(𝑡) =  lim

∆𝑡 →0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘 |𝑇 ≥ 𝑡) 

∆𝑡
 

where D is the cause of failure, i.e. 𝑇 = 𝑉𝑘. It describes the instantaneous rate 
of occurrence of the event k in subjects which are event-free right before time 
t; this means that all subject that have not experienced any event are 



considered at risk. 
 

2) Subdistribution hazard function 

ℎ𝑘
𝑠𝑑(𝑡) =  lim

∆𝑡 →0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘 |𝑇 ≥ 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐷 ≠ 𝑘) )

∆𝑡
 

It describes the instantaneous rate of occurrence of the event k in subjects 
which had not experienced the event k; this means that subjects for which an 
event different from the k-th has occurred are considered at risk. 

 

3) Crude cumulative incidence (CCI) 
𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘) 

It represents the probability for a patient to experience the event k before 
time t or before the occurrence of another event ≠ 𝑘. The relationship 
between the subdistribution hazard function and the crude cumulative 

incidence is ℎ𝑘
𝑠𝑑(𝑡) =  −𝑑 log{1 − 𝐹𝑘(𝑡)}/𝑑𝑡. The CCI can be thought as an 

analogous of the cumulative distribution function, but in this case 𝐹𝑘(𝑡) ≠

1 − 𝑆𝑘
∗(𝑡), where 𝑆𝑘

∗(𝑡) =  𝑒𝑥𝑝 [− ∫ ℎ𝑘
𝑐𝑠(𝑢)𝑑𝑢

𝑡

0
] is the cause specific (i.e. the 

survival function where all events but k are considered censures) and 
lim
𝑡→∞

𝐹𝑘(𝑡) ≠ 1, because the occurrence of competing events prevent the 

observation of the k-th event for all the patients. 
An important propriety of CCI is that the sum of all the CCIs calculated for 
each competing events equals the CCI calculated for the composite event 
defined as any event.  
The cumulative incidence function can be estimated through the Aalen-
Johansen estimator, which is approximately unbiased [109] 

𝐹̂𝑘(𝑡) =  ∫ ∏ (1 − 
∑ 𝑑𝑁𝑘(𝑣)𝐾

𝐷=1

𝑌(𝑣)
)

𝑣<𝑢

𝑡

0

𝑑 𝐻̂𝑘(𝑢) 

where 𝑌(𝑡) describe the risk set at time t, 𝑁𝑘(𝑡) is a counting process that 

returns the number of individuals that fail for cause k and 𝐻̂𝑘(·) is the Nelson-
Aalen estimator for the cause-specific cumulative hazard function. 

It is important to notice that, although the 𝐹𝑘(𝑡) can be written as 𝐹𝑘(𝑡) =

 ∫ ℎ𝑘
𝑐𝑠(𝑢)𝑆(𝑢)𝑑𝑢

𝑡

0
, cause-specific hazard function has no direct connection with the 

incidence function and the quantity 1 − 𝐹𝑘(𝑡) ≠ 𝑒𝑥𝑝 [− ∫ ℎ𝑘
𝑐𝑠(𝑢)𝑑𝑢

𝑡

0
] is difficult to 

interpret, and surely not as survival function. This means that, while cause-specific 
hazard function is useful to quantify the instantaneous risk for subjects still alive, it is 
not adequate to calculate summary measures [110]. On the other hand, a direct 
connection exists for the subdistribution hazard function, particularly: 



1 − 𝐹𝑘(𝑡) = exp [− ∫ ℎ𝑘
𝑠𝑑(𝑢)𝑑𝑢

𝑡

0

] 

In our study only two times to event are considered: time to the composite event of 

disease progression (𝑉𝑃) and time to NEDdeath (𝑉𝑛), besides to time to right censoring 

(W). We are interested in 𝑉𝑃. 

𝑇 = min(𝑉, 𝑊) = min (𝑉𝑝, 𝑉𝑁 , 𝑊)  

and 𝛿 = 𝑃 𝑖𝑓 𝑉 = 𝑉𝑃 ≤  𝑊 𝑜𝑟 𝛿 = 0 𝑖𝑓 𝑉 > 𝑊 

ℎ𝑃
𝑠𝑑(𝑡) =  lim

∆𝑡 →0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑃 |𝑇 ≥ 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐷 ≠ 𝑃) )

∆𝑡
 

𝐹𝑃(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑃) 
 

Regression models 

The main objective of survival analyses is often to understand the effect of covariates 
(for example the usage of different treatments or some clinical characteristic of 
patients, such age, BMI, smoke habits, etc) on the survival expectance. 

To this aim, different regression models, based on different functions are available. 

One of the most popular is the Cox proportional hazard model, which relates the 
hazard function to a set of covariates. In the absence of competing risks, it can be 
written as 

log[ℎ(𝑡, 𝐱)] = log[ℎ0(𝑡)] + 𝛃𝑇𝐱  

where ℎ0 indicates the baseline hazard function, 𝛃 the regression coefficient vector 
and x the covariate vector. Because of the logarithmic transformation, the covariates 
have a multiplicative effect on the hazard function and regression coefficients are 
interpreted as log-hazard ratios (i.e. hazard ratios log-transformed). 

In the presence of competing risks, the hazard function can be substituted with the 
CSH function or the SDH function. Considering the vector 𝐱𝟎 as baseline level for 
covariates, two different models can be defined: 

1) Cause-specific hazard models 

log[ℎ𝑘
𝑐𝑠(𝑡, 𝐱)] = log[ℎ𝑘

𝑐𝑠(𝑡, 𝐱𝟎)] + 𝛃ℎ𝑐𝑠
𝑇 (𝐱 − 𝐱𝟎) 

which has been suggested to be more useful when one is interested in studying 
the etiology of diseases [111]. 

2) Subdistribution hazard models 

log[ℎ𝑘
𝑠𝑑(𝑡, 𝐱)] = log[ℎ𝑘

𝑠𝑑(𝑡, 𝐱𝟎)] +  𝛃
ℎ𝑠𝑑
𝑇 (𝐱 − 𝐱𝟎) 



which allow to extend the results of the effect of the covariate on the CCI. For 
this reason, the subdistribution hazard model is more useful in predicting 
individual risk [111] and prognosis [112] and thus is better suited to develop 
clinical prediction models and risk-scoring systems [108]. 

A different and more general approach, related to transformation models, has been 
proposed by Fine [113, 114] to allow inference directly from the CCIs. Particularly, 
these are nonlinear models which use a linear relationship between covariates and a 
nonlinear transformation g( ) of the CCI. 

The model can be written as: 

𝑔[𝐹𝑘(𝑡, 𝐱)] =   𝛼(𝑡) + 𝛈𝑇𝐱  

where 𝛼(𝑡) is the failure probability of the reference category, η is the regression 
coefficient vector and x is the covariate vector.  

In our study the model should be  

g[FP(t, 𝐱)] =   α(t) + 𝛈T𝐱  

where 𝐱 is the vector of patient covariates: treatment (dummy variables xCS i.e.SDE 
treatment vs CMF, xCH i.e. the HDE treatment vs CMF), BMI (xBMI i.e. overweight and 
obese vs normal weight), hormonal status (xERpre i.e. ER positivity and 

premenopausal status vs ER negativity, xERpost i.e. ER positivity and postmenopausal 

status vs ER negativity), tumor dimension (xdim, i.e. tumor with diameter greater than 
2 cm vs smaller tumor) , first order interactions between variables and time 
dependent effects.  

In particular when g( ) = log(− log(FP(t, x)))  the proportional subdistribution 

hazard model can be retrieved.  

 

Pseudo-values 

Pseudo-values were used in regression analyses. 

Pseudo-values were proposed by Andersen [115] as an extension of the jackknife 
method introduced by Miller [116], to be used in generalized regression analyses for 
survival data.  

In the original proposal by Fine, the estimation procedure does not allow to consider 
time-varying effects. Recently, Klein and Andersen [114] have proposed an alternative 
estimating procedure based on pseudo-values derived from the CCI. 

 

The definition of pseudo-values is the following: 



Let X1, ..., Xn be independent and identically distributed survival time random variables 

and 𝜃(𝑋) be an unbiased (or approximately unbiased) estimator of the parameter 𝜃 =
𝜃(𝑋) = 𝐸[𝜙(𝑋)], for a certain function 𝜙. For each Xj the pseudo-observation is 
defined by 

𝜃𝑗(𝑋) = 𝑛𝜃(𝑋) − (𝑛 − 1)𝜃−𝑗(𝑋) 

where 𝜃−𝑗(·) is an estimator similar to 𝜃𝑗(·) based on the observations i ≠ j. 

Practically, the pseudo-observation 𝜃𝑗 may be interpreted as the contribution of the 

j-th observation to the estimate of 𝐸[𝜙(𝑋)] based on the entire sample of size n. 

Andersen’s intuition of using pseudo-values in regression comes from the fact that 

the expected values of the pseudo observation 𝜃𝑗(𝑋) as function of the covariates 𝑍𝑗 

is equal to the conditional mean 𝜃𝑗(𝑍𝑗), where 𝑍 𝑗 = [𝑍𝑗1, … , 𝑍𝑗𝑝]𝑇  is the covariate 

vector for subject j and 𝜃𝑗(𝑍𝑗) = 𝐸𝑥[𝜙(𝑋)|𝑍𝑗]. 

 

Pseudo-values in competing risks survival analyses 

In competing risks survival analyses, the parameter 𝜃 = 𝜃(𝑋) = 𝐸[𝜙(𝑋)] to be 
estimated is the cumulative incidence function for the specific cause k 𝐹𝑘(𝑡) and the 
𝜙(·) function is given by: 

𝜙(𝑋) =  𝜙𝑡𝑘(𝑋) = 1[𝑋 ≤ 𝑡 , 𝐷 = 𝑘] 

 

𝐹̂𝑗𝑘(𝑡) is the unbiased estimator of 𝐹𝑘(𝑡), as described in [126]. 

The j-th pseudo-value corresponding to 𝐹𝑘(·) at time t is then given by 

𝜃𝑗𝑘(𝑡) =  𝑛𝐹̂𝑘(𝑡) − (𝑛 − 1) 𝐹̂𝑘
−𝑗(𝑡), 𝑘 = 1, … , 𝐾 

In our model the crude cumulative incidence is 𝐹𝑃̂ as above described. 

In practice, pseudo-values were calculated as following: 

- The cumulative incidence function for the composite event at 15 years was 
calculated through the cuminc() function in R package cmprsk 

- To allow good performance of the program without losing information, 
estimates were then extracted at specific timepoints selected (on complete 
dataset) so that at least 10 failure events occurred in each interval as suggested 
by Ambrogi et al. [95] 

- Pseudo-values were then calculated for each subject at each timepoint as the 
estimate from the total dataset minus the estimate obtained without that 
subject, as described above 



Since 32 timepoints were considered, 23,456 pseudo-values were calculated when 
considering the total dataset (n=733) and 17,120 pseudo-values when considering the 
subset with complete data (n=535). 

 

Regression models based on pseudo-values 

Regression models based on pseudo values has been used to overcome some 
limitation of the method based on the hazard function. 

Consider the generalized linear model 

𝑔(𝜃𝑗) =  𝛼 + 𝛃𝑇𝐙𝑗 

where 𝑔(·) is some link function and 𝜃𝑗(𝐙𝑗) = 𝐸𝑥[𝜙(𝑋)|𝑍𝑗]. 

Andersen et al. [115] proposed to replace the function 𝜙(·) by a pseudo-value and 
then estimate the unknown parameters through the generalized estimation equation 
(GEE). 

To be noted, the parameter 𝜃𝑗 may be multivariate, that is 𝜃𝑗 = [𝜃𝑗1, … , 𝜃𝑗𝐿]𝑇, i.e. for 

each subject, there is a distinct parameter for each timepoint. Thus, for each 𝜃𝑗𝑙, l = 1 

, … , L , one may specify a model as  

𝑔(𝜃𝑗𝑙) =  𝛼𝑙 + 𝛃𝑇𝐙𝑗 

Where the notation 𝛼𝑙 indicates that the intercept may depend on the time 𝑡𝑙. 

As an example the proportional subdistribution hazard model can be obtained 
considering complementary log log as link function: 

log (− log(𝜃(𝑡)) = log(− 𝑙𝑜𝑔(𝐹𝐾(𝑡))) =  𝛼𝑙 + 𝛃𝑇𝐙𝑗 

which is Fine and Grey subdistribution hazard model. Other link functions are 
described below. 

 

Parameter estimation 

Following the proposal by Andersen, generalized estimating equations (GEE) were 
used to estimate regression parameters. 

The GEE approach was developed by Liang and Zeger to estimate the parameters of 
a generalized linear model with a possible unknown correlation between the 
response variables [117], which may arise with longitudinal studies or when data is 
collected as repeated measures. 

When analyzing data with an intrinsic correlation, if the parameter estimation is done 
without accounting for this correlation, the estimates could result biased and 



inefficient. GEE estimates are more correct and efficient because the method allows 
to specify a correlation structure. 

GEEs belong to a class of regression techniques that are called semiparametric 
because they rely on specification of only the first two moments. They constitute an 
alternative to the likelihood–based generalized linear models which are more 
sensitive to variance structure specification [118]. Their usage is common in large 
epidemiological studies, especially multi-site cohort studies, because they can handle 
many types of unmeasured dependencies between outcomes.  

An attractive feature of GEE method is that, under non strictly regularity conditions, 
its estimates are consistent even when the covariance structure is not correctly 
specified [117]. 

After defining the model of interest, it is possible to specify estimating equations 
which are consistent estimators of regression coefficients β. 

The generic form of an estimating equation is: 

(
𝜕𝛍

𝜕𝛃
 )

𝑇

𝐕−1(𝐲 −  𝛍) =  0 

where µ is a vector of length n of the mean expected responses, whose element 𝜇𝑖 =
𝐸(𝑌𝑖) is given by 𝑔−1(𝛃𝑻𝐱𝒊), and V is the working covariance matrix, i.e. the element 
accounting for the covariance. 

The GEE can be solved through the following iterative procedure: 

- Step 0: Computing an initial estimate of β, 𝜷̂(1), using for example GLM 

- Step 1: Compute the working covariance matrix 

- Step 2: Update 𝜷̂(𝑠𝑡𝑒𝑝) with: 

𝜷̂(𝑠𝑡𝑒𝑝+1) =  𝜷̂(𝑠𝑡𝑒𝑝) − [(
𝜕𝛍

𝜕𝛃
 )

𝑇

𝐕−1
𝜕𝛍

𝜕𝛃
 ]

−1

[(
𝜕𝛍

𝜕𝛃
 )

𝑇

𝐕−1(𝐲 −  𝛍)]  

- Step 3: Repeat steps 1 and 2 until convergence or reaching the maximum 
number of iterations. 

In the case of pseudo-values the GEE to estimate regression parameters can be 
rewritten as: 

∑ (
𝜕

𝜕𝛃
𝑔−1(𝛃𝑇𝐙𝑗) )

𝑇

𝐕𝑗
−1

𝑛

𝑗=1

(𝛉̂𝑗 − 𝑔−1(𝛃𝑇𝐙𝑗)) =  0 



where 𝛉̂𝑗 =  (𝜃̂𝑗1, … , 𝜃𝑗𝑙 , … , 𝜃𝑗𝐿 ) is the vector of pseudo-values for subject j at each 

time point, while 𝑍𝑗 is the covariate matrix for subject j including the spline bases 

𝑍𝑗1, … , 𝑍𝑗𝐿 and 𝑉𝑗  is the working covariance matrix. 

In their original proposal, Klein and Andersen [102] proposed three feasible 
covariance matrices: the identity matrix; an exact working covariance, which cannot 
be easily obtained in standard softwares; and the empirical working covariance 
matrix. They did not observe a substantial difference in the usage of the three possible 
matrices and therefore the simple independence working covariance matrix has been 
used in this work. 

 

QIC 

To compare and select models, and particularly to choose the number of knots of the 
spline functions, the quasi-likelihood information criterion (QIC) was used. 

QIC was proposed as an extension of the well-known Akaike’s Information Criterion 
(AIC) [119] by Pan [120]. AIC is common approach that measures the quality of an 
estimation, taking into account the goodness of fit and the complexity of the model 
(which can be though as the number of the covariates considered).  

Given a model M with m estimable parameters, its AIC can be defined as: 

𝐴𝐼𝐶𝑀 =  −2𝑙(𝛃̂𝑀) +  2𝑚 

where 𝑙(𝛃̂𝑀) is the value of the maximized log-likelihood for the model M, and 2m is 

a penalty term which account for the number of parameters considered. 

Since AIC is based on likelihood and the asymptotic properties of the maximum 
likelihood estimator, it cannot be applied to GEE because in this approach no 
distribution is assumed and therefore no likelihood can be computed.  

Pan’s proposal consist in substituting the likelihood function 𝑙(𝛃̂𝑀) with the quasi-

likelihood function constructed from the estimating equation [121], along with a 
modification of the penalty term. 

Pan’s QIC can be therefore defined as: 

𝑄𝐼𝐶𝑀 =  −2𝑄(𝛃̂𝑀) + 2 𝑡𝑟𝑎𝑐𝑒(Г𝛗) 

where 𝑄(𝛃̂𝑀) is the value of the quasi-likelihood under the independence 

assumption, computed on the GEE estimate of β, while the second term represent 
the effective degrees of freedom of the model taking into account the clustered 
structure of the repeated observation for each subject. For the technical details 
please refer to the original publication of Pan. 



In practice, the 𝑄(𝛃̂𝑀) value was obtained as 

𝑄(𝛃̂𝑀) =  −0.5 (𝛉 − 𝛉̃)2 

where 𝛉 is the vector containing the observed pseudo-values for each patients at each 

time point considered and  𝛉̃ is the vector containing the corresponding prediction by 
the regression model. On the other hand 𝑡𝑟𝑎𝑐𝑒(Г𝛗) is the trace of the matrix 
obtained by multiplicating the naïve variance matrix Г with the robust variance matrix 
𝛗, both calculated by GEE. 

 

Splines 

The proposed method allows to evaluate the presence of time-varying effects by 
including interactions terms between covariates and time [102]. To include a 
reasonable number of regressors in the model, the usage of a smoothing function (for 
example a spline) is recommended to model the failure probability in the reference 
class. To this aim a common procedure, used in this work, is to include into regression 
model spline functions. 

Splines are particular piecewise polynomials used to approximate complex curves. 
The domain of the variable of interest (in this case time) is divided in intervals 
delimited by the so called knots and allowing the curve to be a different polynomial 
of degree d in each interval, although the condition is imposed that at each knot the 
value of polynomials and their derivatives up to the d-1 order agree. 

 

The simplest spline function is a linear spline function that can be represented as a 
broken line with angles at the knots. However, although linear splines are simple and 
can be used to approximate many common relationships, they are not smooth and 
do not fit well highly curved functions. 

Cubic splines have been found to have useful properties and can fit sharply curved 
shapes. 

With k knots there are k+1 cubic polynomials and 4(k+1) coefficients. Imposing the 3k 
continuity conditions up to the second derivative, the number of independent 
coefficients to be estimated is restricted to k+4. Thus, chosen k knots 𝜉1, … , 𝜉𝑘 , each 
cubic spline with can be expressed as a linear combination of a basis of k+4 
independent spline functions. 

The simplest spline basis is the “truncated power” one, with elements: 
1, 𝑥, 𝑥2, 𝑥3, (𝑥 − 𝜉1)+

3 , … , (𝑥 − 𝜉𝑘)+
3 ,  

where: 



(𝑥 − 𝜉𝑖)+
3 = {

0              𝑖𝑓 𝑥 < 𝜉𝑖

(𝑥 − 𝜉𝑖)3 𝑖𝑓 𝑥 ≥ 𝜉𝑖 .
 

The choice of the number and position of the knots is main characteristic of the spline. 
Concerning the position, has been suggested [125] that truncated power splines 
shapes is not lightly influenced by the knot’s position and the strategy used is to place 
knots in the percentiles of the time to event distribution: the outer knots are placed 
at the 5th and 95th percentiles and the remaining at equidistant percentiles. 

Cubic B-spline bases are more complex: bases are defined by a recursive formula and 
each basis function spans on 4 consecutive intervals [122]. Additionally, “boundary 
knots” need to be specified, even if they are generally placed at the minimum and 
maximum of the observed values. B-splines are in principle more numerically stable 
than truncated power splines.  

The difference between truncated power and B-Splines basis is the definition of 
boundary knots, while inner knots are placed equidistantly as for truncated power. 

In this study, cubic B-splines and Restricted Cubic Splines (RCS) were taken into 
consideration. 

To overcome the problem of the bad behavior of cubic splines in the tails i.e. before 
the first knot and after the last, a linear restriction in these regions is often adopted.  

The generic RCS function with k knots 𝜉1 … 𝜉𝑘, can be written as: 

𝑓(𝑋) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑘−1𝑋𝑘−1  

where 𝑋1 = 𝑋 and for 𝑗 = 1, … , 𝑘 − 2, 

𝑋𝑗+1 =   (𝑋 −  𝑡𝑗)+
3 − 

(𝑋− 𝜉𝑘−1)+
3 (𝜉𝑘− 𝜉𝑗)

(𝜉𝑘− 𝜉𝑘−1)
+ 

(𝑋− 𝜉𝑘)+
3 (𝜉𝑘−1− 𝜉𝑗)

(𝜉𝑘− 𝜉𝑘−1)
 . 

 

To include the spline function for time, the model can be therefore rewritten as: 

𝑔(𝜃𝑗𝑙) =  𝛅𝑇𝐛𝑙 + 𝛃𝑇𝐙𝑗 

where 𝐛𝑙 is the vector of the bases of the spline and 𝛅 is the corresponding vector of 
regression coefficients.  

The model can be furthermore extended to include time-varying effects by adding 
interaction terms between covariates and spline bases (𝐬𝑏𝑙𝑥𝑗

): 

𝑔(𝜃𝑗𝑙) =  𝛅𝑇𝐛𝑙 + 𝛃𝑇𝐙𝑗 + 𝛏𝑇𝐬𝑏𝑙𝑥𝑗
 

B-splines were modelled through the bs() function, while the RCS with the rcs() 
function, implemented respectively in the splines and rms R packages. 



As the number of the knots is more crucial than their position, we focused our 
attention in the choice of the latter. 

As restricted and natural cubic splines with different number of knots are not 
hierarchical is not possible to compare different models with statistical formal tests 
and thus inflation criteria, in these case we used QIC, need to be used. 

As truncated powers are more easily to implement and to interpret, when results of 
the truncated power smoothed hazard function did not show particularly differences 
in performances (measured through the QIC discussed above) compared to B-splines, 
truncated power bases functions results were reported. 

 

Link functions 

One of the most relevant features of this approach is the possibility to easily retrieve 
clinically useful measures regarding the impact of covariates by applying specific link 
functions and eventually exponentiating the estimated coefficients. 

For the sake of clarity, let 𝐱1 and 𝐱0 be two covariate vectors, with 𝐱0 the reference 
category and 𝐹𝑟(𝐱0, 𝑡) ≥  𝐹𝑟(𝐱1, 𝑡) for any t (i.e. 𝐱1has a protective effect, since the 
relative incidence function is less than 𝐹𝑟(𝐱0, 𝑡)); moreover it is supposed that no 
time-dependent effects are present and therefore the model  

𝑔(𝜃𝑗𝑙) =  𝛅𝑇𝐛𝑙 + 𝛃𝑇𝐙𝑗 

is used. 

By applying a different link function g(·) it is possible to interpret the estimated 
coefficients (eventually after exponentiation, depending on the link function used) as 
measures of the clinical impact of the covariates. 

The measures taken into consideration in this project, as functions of the CCIs, are 
showed in Table 11, along with the link functions g(·) to be used in the transformation 
model to retrieve the estimates of the measures directly from the coefficients.  

Applying the cloglog link function allows to interpret a regression coefficient, after 
exponentiation, as the cumulative subdistribution hazard ratio (CSDHR), which is the 
same quantity estimated by the Fine and Gray model and can be therefore be 
compared. 

The relative risk (RR), which represents the reduction of incidence of patients with 
covariates 𝑥1 with respect to patients have covariates 𝑥0, is obtained by applying the 
log link function. From the RR is it possible to obtain the relative risk reduction (RRR) 
which can be thought as the proportional reduction of risk for patients having 
covariates 𝑥1 with respect to the reference and can be calculated as 1-RR. 

 



Table 11: Definition of the clinically useful measure in term of CCI. The link functions to be used in the model and the coefficient 
transformation to obtain the corresponding clinically useful measures are showed. CSDHR, cumulative subdistribution hazard ratio; 
RR, relative risk; OR, odds ratio; ARR, absolute risk reduction. x0 represent the reference covariate pattern [Table 2 from Ambrogi F 

et al. - Statist. Med. 2008]. In our study 𝐹𝑟 = 𝐹𝑃 i.e. the crude cumulative incidence function of disease progression. 

Measure Definition Link function 𝑔(·) Coefficient 
transformation 

CSDHR 
∫ ℎ𝑟

𝑠𝑑(𝑢, 𝐱1)𝑑𝑢
𝑡

0

∫ ℎ𝑟
𝑠𝑑(𝑢, 𝐱0)𝑑𝑢

𝑡

0

 
cloglog 

log [−log(1 − 𝐹𝑟(𝑡, 𝐱))] 
exp [𝛄𝑇(𝐱1 − 𝐱0)] 

RR 𝐹𝑟(𝑡, 𝐱𝟏) 𝐹𝑟(𝑡, 𝐱𝟎)⁄  
log 

log (𝐹𝑟(𝑡, 𝐱)) 
exp [𝛄𝑇(𝐱1 − 𝐱0)] 

OR [
𝐹𝑟(𝑡, 𝐱1)

1 − 𝐹𝑟(𝑡, 𝐱1)
] [

𝐹𝑟(𝑡, 𝐱0)

1 −  𝐹𝑟(𝑡, 𝐱0)
]⁄  

logit 

log [
𝐹𝑟(𝑡, 𝐱)

1 −  𝐹𝑟(𝑡, 𝐱)
] 

exp [𝛄𝑇(𝐱1 − 𝐱0)] 

ARR 𝐹𝑟(𝑡, 𝐱0) −  𝐹𝑟(𝑡, 𝐱1) 
Identity 

𝐹𝑟(𝑡, 𝐱) 
𝛄𝑇(𝐱1 − 𝐱0) 

 

The odds ratio (OR), which is a relative measure of the odds, commonly used in case-
control studies, is obtained by applying the logit transformation. 

The absolute risk reduction (ARR) measures the incidence difference between 
patients with 𝐱1 and 𝐱0. The reciprocal of the ARR is the average number of patients 
need to be treat (NNT) to prevent one failure event, which is a common indicator to 
evaluate the treatment effects (in this case, the measure is called NNTB, number need 
to treat to benefit); if the NNT refers to a deleterious factor, NNT can be interpret as 
the number of subjects to be exposed to have one more failure event (NNTH, number 
need to treat to harm). 

The 95% confidence intervals are calculated for CSDHR, RR and OR as follows from 
the exponentiation of the estimated coefficients: 

95% 𝐼𝐶 = [𝑒𝑥𝑝(𝑙𝑙𝑜𝑤𝑒𝑟), 𝑒𝑥𝑝(𝑙𝑢𝑝𝑝𝑒𝑟)] 

where 𝑙𝑙𝑜𝑤𝑒𝑟 , 𝑙𝑢𝑝𝑝𝑒𝑟 =  𝛄̂𝑇(𝐱1 − 𝐱0) ± 1.96 𝑠𝑡. 𝑒𝑟𝑟𝑜𝑟(𝛄̂𝑇(𝐱1 − 𝐱0)) and 𝜸̂ is the 

regression coefficient vector estimated by the model comparing 𝐱1 and 𝐱0. 

In the case of ARR, since obtained through identity link, the confidence interval is 
derived without exponentiation: 

95% 𝐼𝐶 = [𝑒𝑥𝑝(𝑙𝑙𝑜𝑤𝑒𝑟), 𝑒𝑥𝑝(𝑙𝑢𝑝𝑝𝑒𝑟)] 

A different situation arises for NNT. As suggested by Altman in a comment on a paper 
by Hutton [123], the confidence interval for NNT should be interpreted as an 



alternative to present results of ARR. A NNT value of 1 represent the largest possible 
effect (corresponding to 𝐴𝑅𝑅 → ∞), while if the treatment has no effect, NNT is ±∞; 
on the other side, the most harmful effect is expressed by NNT as -1. When treatment 
or the covariate has a significant ARR, confidence interval can be built as  

95% 𝐼𝐶 = [
1

𝑙𝑢𝑝𝑝𝑒𝑟
 ,

1

𝑙𝑙𝑜𝑤𝑒𝑟
] 

while, when ARR is about 0 and, therefore, NNT approaches infinite, the confidence 
interval for NNT, as outlined by Altman [124], should be written as 

95% 𝐼𝐶𝑁𝑁𝑇 = [−∞,
1

𝑙𝑙𝑜𝑤𝑒𝑟
] ∪ [

1

𝑙𝑢𝑝𝑝𝑒𝑟
, +∞] 

where 𝑙𝑙𝑜𝑤𝑒𝑟  and 𝑙𝑢𝑝𝑝𝑒𝑟  refer to confidence limits for ARR. 

 

Wald test 

Following the procedure proposed in the paper of my colleagues [95], Wald test was 
used, along with the QIC, to evaluate the presence of interactions between time and 
other covariates in the model; interaction between BMI and tumor dimension was 
also evaluated. 

Wald test is used to evaluate the presence of an effect of the covariate, i.e. if there is 
a relevant statistical connection between the response variable and the independent 
variable. For example, if in a regression analysis 𝛽 represents the coefficient of the 

effect of the independent variable 𝑋1 on the response variable 𝑌, the estimated 𝛽̂ can 
be tested against the value proposed by the null hypothesis, typically 0, or 1 in the 
case of a ratio. 

In practice, under the assumption that the estimate and the difference between the 
former and the value proposed by the null hypothesis are normally distributed, is it 
possible to calculate the following test statistic 

(𝛽̂ − 𝛽0)
2

𝑉𝑎𝑟(𝛽̂)
 ~ 𝜒1

2 

which has an approximately chi-squared distribution with 1 degree of freedom under 
the null hypothesis [125]. 

The robust variance calculated in the GEE step was used in the calculations. 

The agreement between Wald test and QIC is not guarantee. Particularly in the results 
parts relative to logit and identity link functions, QIC and Wald test did not agree on 



the presence of interaction between BMI and tumor dimension; in these cases, results 
relative to both the model with and without interaction are presented. 

 

Software used 

All analyses were conducted using R software (https://www.r-project.org/) version 
3.5.2.  

CIFs were calculated through the cuminc() function in the R package cmprsk. The 
cuminc() function requires as input two vectors: one with event times and one with 
the corresponding status, indicating the type of event or the occurrence of censoring. 
The function gives back the estimated incidence for each of the competing event at 
each time unit, along with an estimation of the variance. 
Two competing events were considered: 

- A composite event defined as any event indicating treatment failure; in 
particular controlateral tumors(CT), distant metastasis (DM), locoregional 
metastasis (LM) and second primary tumors (SP) were considered. 

- Death without evidence of disease (NEDdeath)  
 

GEE parameter estimation was performed using the gee() function in the R package 
gee. Starting estimates of the parameter were provided through the glm() function 
using the same formula and parameters. 

RCS and B-splines were calculated through rcs() function from package rms and bs() 
function from package splines respectively. 

  

https://www.r-project.org/


Results 

Complete information at 15 years (the median follow-up calculated by reverse 
Kaplan-Meier in complete data) was available for 535 subjects. At 15 years, 23 CTs, 
185 DMs, 37 LMs and 21 SPs were observed, for a total of 266 composite events, along 
with 25 NEDdeaths and 244 censored observations. 

In the following pages, clinically useful measures obtained by applying the four 
different link functions to the complete model are showed separately. 

Means of fitted incidence values retrieved by the model were calculated at the 32 
timepoints, overall and by treatment arm, and used for a visual comparison with the 
observed incidence as a non parametric CCI curve (obtained through the cuminc() 
function). 

The following strategy was used for each link function separately. 

 

1_Definition of baseline model 

As a first step, regression models with only the spline functions for time were built 
separately for each treatment group for a preliminary evaluation of the type (RCS vs 
B-splines) and complexity (number of knots) of the spline needed for an adequate 
model fitting and to evaluate a possible difference in the shape among treatments. 

As a second step, spline complexity was re-evaluated considering all dataset (i.e. all 
treatments arms together) and only RCS was used, since more simple and no relevant 
difference was observed compared to B-splines. The number of knots of the splines 
were selected by minimum QIC among models with splines function having from 3 to 
7 knots. Models with 7 knots emerged as the best behaving for log, cloglog and logit 
link functions, while for identity function the model with 4 knots spline resulted the 
most efficient. 

As a third step of this first part, a model including the selected spline function for time, 
dummy variables for treatment and the interaction between spline for time and 
treatment was evaluated. The presence of the interaction was evaluated both by QIC 
and Wald test. 

 

2_Inclusion of BMI, hormonal status and tumor dimension into the “baseline 

model” 

Separately for the four link functions, more complex models were evaluated. 
Covariates included comprehend ER and menopausal status, BMI, treatment and 



tumor dimension; these variables were included since commonly considered feature 
in the evaluation of BC.  

BMI was considered as a 2 levels categorical variable, comparing 
underweight/normalweight (BMI < 25) and overweight/obese (BMI ≥ 25) patients; 
this decision was made because underweight patients consisted in few patients and 
because in preliminary analyses (data not shown) emerged that the usage of two 
classes led to more clear results. Hormonal status considered 3 classes: ER-negative, 
ER-positive and pre-menopausal, ER-positive and postmenopausal, while tumor 
dimension as 2 levels variable, comparing tumors below and above 2 cm of diameter. 

Interaction between BMI, hormonal status, tumor dimension and time and between 
BMI e tumor dimension were evaluated by both QIC and Wald test. 

 

3_Graphical Evaluation of the goodness of fit 

To evaluate the ability of the final models to predict the incidence, graphical 
evaluation of the goodness of fit was considered. Non parametric incidence curve, 
obtained through the cuminc() function was plotted against the fitted values retrieved 
by each model. 

 

Link cloglog 

Table 12 shows the QICs obtained for RCS and B-splines separately in the three arms 
of treatment, while Table 13 shows the QICs obtained considering all dataset and only 
RCS. 

Table 12: QICs obtained for link cloglog (𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the three 
arms of treatment separately for RCS and B-splines considering from 3 to 7 knots 

Spline_type Nr. of knots CMF SDE HDE 

RCS 3 476.121 571.381 404.875 
RCS 4 474.987 569.051 404.587 
RCS 5 474.799 569.031 404.484 
RCS 6 474.519 569.083 404.516 
RCS 7 474.522 569.128 404.525 

B-splines 3 474.535 569.117 404.529 
B-splines 4 474.509 569.154 404.569 
B-splines 5 474.537 569.185 404.562 
B-splines 6 474.565 569.213 404.586 
B-splines 7 474.564 569.240 NA 

 

 

 



Table 13: QICs obtained for link cloglog (𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the 
complete dataset considering from 3 to 7 knots. 

Spline_type Nr. of knots QIC 

RCS 3 4178.451 
RCS 4 4165.136 
RCS 5 4162.908 
RCS 6 4162.762 
RCS 7 4162.733 

 

RCS with 7 knots was used to model time when using cloglog link function. 

Wald test did not highlight an interaction between time and treatment (p=0.11); 
coherently, the model considering the interaction between time and treatment was 
associated to a QIC of 4159.407, while QIC associated to the model without this 
interaction was 4157.146. 

No interaction between covariates was observed in the complete model, therefore 

the model is a proportional hazard ratio model and regression coefficients, can be 

used to calculate, through exponentiation, hazard ratios, showed in Table 14 along 

with the corresponding 95%ICs. For the sake of completeness, although without 

interpretation, coefficients associated to the intercept and to spline bases are 

reported, without exponentiation, in Table 15. Figure 14 shows the graphical 

evaluation of the goodness of fit of the model considering the whole dataset and the 

three treatments separately. 

Although not significant, as confirmed by the inclusion of value 1 in the confidence 

interval, regimen treatment SDE shows a tendency to a worse prognosis compared to 

CMF, while HDE shows a tendency in the opposite direction. For what concerns the 

hormonal status, generally having a tumor positive to ER seams to lead to a better 

prognosis with respect to ER-negative, although only the ER-positive and 

postmenopausal status results significant, having both the boundaries of confidence 

interval below 1. Concerning BMI and tumor dimension, having a BMI above 25 and 

having a tumor diameter at diagnosis greater than 2 cm are both significant risk 

factors. 

CSDHRs obtained through pseudo-values, correspond to estimates obtainable 

through the Fine and Gray model, which are showed in Table 16. 

It is easy to see that results obtained through the two methods are quite similar and 

consistent. 

 



Table 14: Subdistribution hazard ratios obtained through the cloglog link function. HRs were obtained through the exponentiation of 
regression coefficient calculated after the application of the cloglog (𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of 

disease progression) link function. 95% confidence intervals (CIs) are also showed. 

 Estimate [95% CI] 

Treatment: SDE vs CMF 1.17 [0.85; 1.59] 
Treatment: HDE vs CMF 0.84 [0.60; 1.17] 
ERpos_premenopusal vs ERneg 0.83 [0.61; 1.14] 
ERpos_postmenopusal vs ERneg 0.64 [0.45; 0.91] 
BMI: Overweight/Obese vs Normalweight 1.37 [1.05; 1.80] 
dimTum: >=  2cm vs <2 cm 1.46 [1.10; 1.93] 

 

Table 15: Regression coefficient associated to the intercept and to spline bases when applying the cloglog (𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is 
the crude cumulative incidence of disease progression)  link function. 

 Estimate 

(Intercept) -5.42 
splinetime 0.17 
splinetime' -3.56 
splinetime'' 7.4 
splinetime''' -3.5 
splinetime'''' -0.28 
splinetime''''' -0.06 

 

  



Figure 14: Graphical evaluation of the goodness of fit in the whole dataset and separately in the three arms of treatment for 

cloglog(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model. PV fit: Pseudo-values fit; NP fit: 

Non Parametric fit. 

 

Table 16: CSDHR of disease progression obtained through the Fine and Gray model. 

 exp(coef) [95% CI] 

Treatment: SDE vs CMF 1.25 [0.93; 1.67] 

Treatment: HDE vs CMF 0.88 [0.64; 1.20] 

ERpos_premenopusal vs ERneg 0.90 [0.67; 1.21] 

ERpos_postmenopusal vs ERneg 0.69 [0.50; 0.96] 

BMI: Overweight/Obese vs Normalweight 1.24 [0.97; 1.60] 

dimTum: >=  2cm 1.46 [1.12; 1.88] 

 

Link log 

Table 17 shows the QICs obtained for RCS and B-splines separately in the three arms 
of treatment, while Table 18 shows the QICs obtained considering all dataset and only 
RCS. 

RCS with 7 knots was used to model time when using log link function. 



Table 17: QICs obtained for link log(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the three 
arms of treatment separately for RCS and B-splines considering from 3 to 7 knots. 

Spline_type Nr. of knots 
Treatment arm 

CMF SDE HDE 

RCS 3 475.966 571.035 404.815 
RCS 4 474.943 569.019 404.575 
RCS 5 474.781 569.03 404.479 
RCS 6 474.511 569.083 404.516 
RCS 7 474.519 569.127 404.525 

B-splines 3 474.537 569.118 404.529 
B-splines 4 474.511 569.154 404.569 
B-splines 5 474.537 569.186 404.562 
B-splines 6 474.565 569.213 404.586 
B-splines 7 474.564 569.24 NA 

 

Table 18: QICs obtained for link log(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the complete 
dataset considering from 3 to 7 knots. 

Spline_type Nr. of knots QIC 

RCS 3 4180.898 
RCS 4 4165.642 
RCS 5 4162.981 
RCS 6 4162.793 
RCS 7 4162.737 

 

Wald test did not highlight an interaction between time and treatment (p=0.12); 
coherently, the model considering the interaction between time and treatment was 
associated to a QIC of 4159.404, while QIC associated to the model without this 
interaction was 4157.449. 

As in the previous case, no interaction between covariates was observed in the 

complete model, therefore the model is a proportional relative risk model and 

regression coefficients can be used to calculate relative risks, showed in Table 19 

along with the corresponding IC95. Table 20 shows, without exponentiation, the the 

coefficients associated to the intercept and to the spline bases. Figure 15 shows the 

graphical evaluation of the goodness of fit of the model considering the whole dataset 

and the three treatments separately. 

  



Table 19: Relative risks obtained through the log(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link 
function. RRs were obtained through the exponentiation of regression coefficient calculated after the application of the log link 

function. IC95 burdens are also showed. 

 Estimate [95% CI] 

Treatment: SDE vs CMF 1.13 [0.90; 1.42] 
Treatment: HDE vs CMF 0.87 [0.67; 1.13] 
ERpos_premenopusal vs ERneg 0.89 [0.71; 1.11] 
ERpos_postmenopusal vs ERneg 0.72 [0.56; 0.94] 
BMI: Overweight/Obese vs Normalweight 1.27 [1.04; 1.55] 
dimTum: >= 2cm 1.34 [1.07; 1.67] 

 

Table 20: Regression coefficient associated to the intercept and to spine bases when applying the log(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the 
crude cumulative incidence of disease progression) link function. 

 Estimate 

(Intercept) -5.33 
splinetime 0.16 
splinetime' -3.57 
splinetime'' 7.49 
splinetime''' -3.61 
splinetime'''' -0.25 
splinetime''''' -0.06 

 

As with the cloglog function, regimen treatment SDE shows a tendency to a worse 

prognosis compared to CMF, while HDE shows a tendency in the opposite direction, 

although without being significant, since their IC95 comprehend the value 1. 

Concerning the hormonal status, positivity to ER seems to be associated to a risk 

reduction, although only the ER-positive and postmenopausal status results 

significant, having both the boundaries of confidence interval below 1. Relative to BMI 

and tumor dimension, having a BMI above 25 and having a tumor diameter at 

diagnosis greater than 2 cm are both significant risk factors. 

From RR estimates, RRR measures, showed in Table 21, were calculated.  

  



 

Figure 15: Graphical evaluation of the GoF in the whole dataset and separately in the three arms of treatment for log(𝐹𝑃(𝑡))  
(where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model. PV fit: Pseudo-values fit; NP fit: Non Parametric 

fit 

 

Table 21: Relative risk reduction of disease progression measures obtained from RRs. 

 Estimate [95% CI] 

Treatment: SDE vs CMF -0.13 [-0.42; [0.10] 
Treatment: HDE vs CMF 0.13 [-0.13; 0.33] 
ERpos_premenopusal vs ERneg 0.11 [-011; 0.29] 
ERpos_postmenopusal vs ERneg 0.28 [0.06; 0.44] 
BMI: Overweight/Obese vs Normalweight -0.27 [-0.55; -0.04] 
dimTum: >= 2cm -0.34 [-0.67; -0.07] 

 

Link logit 

Table 22 shows the QICs obtained for RCS and B-splines separately in the three arms 
of treatment, while Table 23 shows the QICs obtained considering all dataset and only 
RCS. 

RCS with 7 knots was used to model time when using logit link function. 

In the case of link logit, QIC and Wald test did not agree regarding the presence of 

interaction between BMI and tumor diameter: Wald test couldn’t detect the presence 



of interaction (p=0.16) but QIC relative to the model with interaction was slightly 

lesser than the QIC relative to the model without interaction (2987.040 <

2987.045). 

Table 22: QICs obtained for link logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the three 
arms of treatment separately for RCS and B-splines considering from 3 to 7 knots. 

Spline_type Nr. of knots CMF QDE HDE 

RCS 3 475.966 571.035 404.815 
RCS 4 474.943 569.019 404.575 
RCS 5 474.781 569.03 404.479 
RCS 6 474.511 569.083 404.516 
RCS 7 474.519 569.127 404.525 

B-splines 3 474.537 569.118 404.529 
B-splines 4 474.511 569.154 404.569 
B-splines 5 474.537 569.186 404.562 
B-splines 6 474.565 569.213 404.586 
B-splines 7 474.564 569.24 NA 

 

Table 23: QICs obtained for link logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the complete 
dataset considering from 3 to 7 knots. 

Spline_type Nr. of knots QIC 

RCS 3 4176.386 
RCS 4 4164.706 
RCS 5 4162.846 
RCS 6 4162.737 
RCS 7 4162.730 

 

Table 24 shows the regression coefficients obtained through the model without 

interaction after exponentiation, which can be therefore be interpreted as OR, while 

Table 25 shows the coefficient associated to the intercept and spline bases not 

exponentiated. Figure 16 shows the graphical evaluation of the goodness of fit of the 

model considering the whole dataset and the three treatments separately. 

When not considering the interaction, results are consistent with the previous cases.  

Still not significant, including the value 1 in the confidence interval, regimen 

treatment SDE shows a tendency to a worse prognosis compared to CMF, while HDE 

shows a protective tendency. For what concerns the hormonal status, having a tumor 

positive to ER confirms its protective role, although once again only the status which 

consider ER positivity and being postmenopausal results significant. Concerning BMI 

and tumor dimension, having a BMI above 25 and having a tumor diameter at 

diagnosis greater than 2 cm are both significant risk factors, having OR and their 

whole confidence intervals over 1. 



Table 24: Odds ratios obtained through the logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link 
function and the model without interaction. ORs were obtained through the exponentiation of regression coefficients calculated 

after the application of the logit link function to the model without interaction. IC95burdens are also shown. 

 Estimate [95% CI] 

trtmSDE 1.20 [0.81; 1.79] 
trtmHDE 0.80 [0.53; 1.21] 
subgrER-positive_pre 0.78 [0.52; 1.17] 
subgrER-positive_post 0.56 [0.36; 0.88] 
BMI_Nw_vs_OwOb 1.49 [1.05; 2.10] 
dimTUM>=2cm 1.60 [1.13; 2.26] 

 

Table 25: Regression coefficient associated to the intercept and to spine bases when applying the logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the 
crude cumulative incidence of disease progression) link function to the model without interaction. 

 Estimate 

(Intercept) -5.54 
splinetime 0.18 
splinetime' -3.56 
splinetime'' 7.29 
splinetime''' -3.34 
splinetime'''' -0.33 
splinetime''''' -0.06 

 

If the model with interaction is considered, results showed in Table 26 are obtained, 

along with the coefficient associated to intercept and spline bases, showed in Table 

27. 

Table 26: Odds ratios obtained through the logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link 
function and the model with interaction. ORs were obtained through the exponentiation of regression coefficients calculated after 

the application of the logit link function to the model with interaction. 

 Estimate [95% CI] 

Treatment: SDE vs CMF 1.19 [0.80; 1.78] 
Treatment: HDE vs CMF 0.78 [0.52; 1.19] 
ERpos_premenopusal vs ERneg 0.78 [0.52; 1.16] 
ERpos_postmenopusal vs ERneg 0.57 [0.36; 0.89] 
BMI: Overweight/Obese vs Normalweight 1.05 [0.59; 1.88] 
dimTum: >=  2cm 1.26 [0.79; 2.00] 
interaction_BMI:dimTum 1.65 [0.82; 3.31] 

 

  



Table 27: Regression coefficient associated to the intercept and to spine bases when applying the logit(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the 
crude cumulative incidence of disease progression) link function to the model with interaction. 

 Estimate 

(Intercept) -5.35 
splinetime 0.17 
splinetime' -3.51 
splinetime'' 7.2 
splinetime''' -3.3 
splinetime'''' -0.31 
splinetime''''' -0.06 

 

 

 

Figure 16: Graphical evaluation of the GoF in the whole dataset and separately in the three arms of treatment for logit(𝐹𝑃(𝑡))  
(where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model without interaction. PV fit: Pseudo-values fit; NP 

fit: Non Parametric fit 

 

If interaction is considered, for a patient with BMI > 25, having also a tumor diameter 

greater than 2 cm results in an OR of exp(0,23 +  0,50) ≅ 2,08 (95% 𝐶𝐼 =

[1,01 ; 3,14]), where 0,23 and 0,50 are the raw coefficients (i.e. not exponentiated) 

estimated by the model for tumor dimension greater than 2 cm and interaction 



respectively. Changing perspective, for a patient with a tumor with diameter greater 

than 2 cm, being also overweight or obese is associated with an OR of 

exp(0,05 +  0,50) ≅ 1,73 (95% 𝐶𝐼 = [0,52 ; 2,95]), where 0,05 and 0,50 are the 

raw coefficients for BMI>25 and interaction respectively. 

Figure 17 shows the graphical evaluation of the goodness of fit of the model with 

interaction. 

 

Figure 17: Graphical evaluation of the GoF in the whole dataset and separately in the three arms of treatment for logit(𝐹𝑃(𝑡))  
(where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model with interaction. PV fit: Pseudo-values fit; NP fit: 

Non Parametric fit. 

 

 

Link identity 

Table 28 shows the QICs obtained for RCS and B-splines separately in the three arms 
of treatment, while Table 29 shows the QICs obtained considering all dataset and only 
RCS. 



Table 28: QICs obtained for link identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) in the three 
arms of treatment separately for RCS and B-splines considering from 3 to 7 knots. 

Spline_type Nr. of knots CMF SDE HDE 

RCS 3 475.024 569.494 404.378 
RCS 4 474.556 569.012 404.424 
RCS 5 474.565 569.057 404.471 
RCS 6 474.458 569.076 404.518 
RCS 7 474.494 569.126 404.525 

B-splines 3 474.54 569.118 404.536 
B-splines 4 474.519 569.148 404.567 
B-splines 5 474.534 569.186 404.562 
B-splines 6 474.565 569.213 404.586 
B-splines 7 474.564 569.24 NA 

Table 29: Regression coefficient associated to the intercept and to spine bases when applying the identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is 
the crude cumulative incidence of disease progression) link function to the model without interaction. 

Spline_type Nr. of knots QIC 

RCS 3 4165.032 
RCS 4 4162.563 
RCS 5 4162.876 
RCS 6 4162.880 
RCS 7 4162.825 

 

RCS with 4 knots was used to model time when using identity link function. 

In the case of link identity, QIC and Wald test did not agree on the presence of 

interaction between BMI e tumor diameter: Wald test couldn’t detect the presence 

of interaction (𝑃 = 0.085) but QIC relative to the model with interaction was lesser 

than the QIC relative to the model without interaction ( 2988.039 <  2991.373). 

Table 30 shows the regression coefficients obtained through the model without 

interaction, which can be directly interpreted as ARR, while Table 31 shows the 

coefficients associated to the spline bases. Figure 18 shows the graphical evaluation 

of the goodness of fit of the model considering the whole dataset and the three 

treatments separately. 

Table 30: Absolute risk reductions obtained through the identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease 
progression) link function. ARRs were obtained directly without exponentiation from the regression coefficient calculated after the 

application of the identity link function to the model without interaction. 

 Estimate [95% CI] 

trtmSDE 0.03 [-0.04; 0.10] 
trtmHDE -0.04 [-0.11; 0.03] 
subgrER-positive_pre -0.05 [-0.12; 0.02] 
subgrER-positive_post -0.1 [-0.18; -0.02] 
BMI_Nw_vs_OwOb 0.07 [0.01; 0.13] 
dimTUM>=2cm 0.08 [0.02; 0.13] 

 



Table 31: Regression coefficient associated to the intercept and to spine bases when applying the identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is 
the crude cumulative incidence of disease progression) link function to the model without interaction. 

 Estimate 

(Intercept) -0.08 
splinetime 0.01 
splinetime' -0.03 
splinetime'' 0.05 

 

As for the previous link functions, measures relative to treatments are not significant, 

being their ARRs approximately around 0; the tendency of SDE treatment to lead to a 

worse prognosis and the tendency of HDE to a better prognosis, compared to 

reference CMF, are visible also in this case. Once again, patients with tumor positive 

to ER show a reduction of incidence, although only in the case of the postmenopausal 

subgroup this reduction is significant, having both burdens of IC below 0. Tumor 

dimension and BMI confirm their significant deleterious effect. 

 

 

Figure 18: Graphical evaluation of the GoF in the whole dataset and separately in the three arms of treatment for identity(𝐹𝑃(𝑡))  
(where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model without interaction. PV fit: Pseudo-values fit; NP 

fit: Non Parametric fit. 



From ARR measures, it is possible to retrieve NNTs, which are shown in Table 32. 

In the cases of treatment SDE, treatment HDE and subgroup “ER-positive and 

premenopausal”, since their ARR was around 0, NNT estimates cannot be interpreted. 

For subgroup “ER-positive and postmenopausal”, since its protective effect, NNT can 

be interpreted as NNTB, indicating that every around 10 patients with ER positive 

tumor and postmenopausal, 1 adverse event can be prevented on average. On the 

other hand, since their deleterious effect, NNTs relative to BMI and tumor dimension 

can be interpreted as NNTH: every around 15 patients with BMI above 25 or every 

around 13 patients with tumor diameter bigger than 2 cm, 1 more failure is observed 

on average. 

Table 32: Number of patients Need to Treat to prevent disease progression and Number of patients Need to be exposed  to have one 
more harmful event. 

 Estimate [95% CI] 

trtmSDE vs CMF 37.57 [10.30; ∞] 
trtmHDE vs CMF 24.70 [9.27; ∞] 
subgrER-positive_pre vs ER-negative 20.03 [8.12; ∞] 
subgrER-positive_post vs ER-negative 9.89 [5.60; 42.30] 
BMI_Nw_vs_OwOb 15.01 [7.98; 126.68] 
dimTUM<2cm vs >=2cm 12.76 [7.43; 45.38] 

 

If the interaction between BMI and tumor diameter is considered, the results 

obtained relative to the coefficients and to the intercept and spline bases are showed 

in Table 33 and Table 34 respectively. Figure 19 shows the graphical evaluation of the 

goodness of fit of the model with interaction. 

Table 33: Absolute risk reductions obtained through the identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease 
progression) link function. ARRs were obtained directly without exponentiation from the regression coefficient calculated after the 

application of the identity link function to the model with interaction. 

 Estimate [95% CI] 

trtmSDE 0.03 [-0.04; 0.10] 
trtmHDE -0.04 [-0.11; 0.02] 
subgrER-positive_pre -0.05 [-0.12; 0.02] 
subgrER-positive_post -0.10 [-0.18; -0.02] 
BMI_Nw_vs_OwOb 0.00 [-0.08; 0.09] 
dimTUM>=2cm 0.04 [-0.04; 0.11] 
BMI_Nw_vs_OwOb:dimTUM>=2cm 0.10 [-0.01; 0.21] 

 

 

 

 



Table 34: Regression coefficient associated to the intercept and to spine bases when applying the identity(𝐹𝑃(𝑡))  (where (𝐹𝑃(𝑡) is 
the crude cumulative incidence of disease progression) link function to the model with interaction. 

 Estimate 

(Intercept) -0.05 
splinetime 0.01 
splinetime' -0.03 
splinetime'' 0.05 

 

Considering the interaction leads in this case to results difficult to interpret. 

Particularly interesting is that most of the effect of BMI and tumor dimension 

covariates is taken by the interaction coefficient; IC95s relative to both original 

variables now comprise the 0. 

 

Figure 19: Graphical evaluation of the GoF in the whole dataset and separately in the three arms of treatment for identity(𝐹𝑃(𝑡))  
(where (𝐹𝑃(𝑡) is the crude cumulative incidence of disease progression) link model with interaction. PV fit: Pseudo-values fit; NP fit: 

Non Parametric fit. 

 

Since the two covariates showed a deleterious effect through the analyses, one can 

expect that is difficult that they could have a protective effect; thus the interaction 

can be interpreted as follows. For a patient with BMI > 25, having also a tumor 



diameter greater than 2 cm results in a risk augmentation (since >0) of 0,04 +

 0,10  ≅  0,14 (95% 𝐶𝐼 = [−0,04 ;  0,30]), while for a patients which already have a 

big tumor, being also overweight or obese lead to a risk augmentation of 0,00 +

 0,10  ≅  0,10 (95% 𝐶𝐼 = [ −0,08 ;  0,29]). 

 

  



Conclusions 

Differentially from standard regression survival models, the approach presented in 
this work allow to obtain measures of covariate effects which can be directly 
interpreted in clinic. 

Traditional regression models are based on sub-distribution hazard, which are not 
useful to describe disease dynamics and have no direct clinical interpretation. Even 
when considering the cloglog transformation, which model cumulative sub-
distribution hazard, the only obtainable information is whether two cumulative 
incidence curves are different or not, but one cannot quantify this difference. 

The pseudo-values based model allows the usage of different link functions in order 
to quantify the difference, retrieving different clinical useful measures. 

One of the most used clinical measure in longitudinal studies, like the one presented, 
is RR, which can be calculated by applying the log link function. RRs obtained showed 
a relative risk for patients who received SDE of 1.13, meaning an augmented risk, 
compared to the standard treatment with CMF, of 13% to fail within 15 years, while 
HDE showed a reduction of the risk, having a RR of 0.87. Having a tumor positive for 
ER, which constitute an important therapy target, has a protective effect in both 
premenopausal and postmenopausal women, which have a 0.89 and 0.72 RR 
respectively, although only the latter is a significant result. BMI confirms its well-
known deleterious effect in the context of BC, which in this case correspond to an 
estimated RR of 1.27. Lately, tumor dimension brings a RR of 1.34 which is the 
strongest effect measured; this is not surprisingly, since a big tumor at diagnosis 
indicates that it is in already advanced status and then more difficult to treat. 

Visual comparisons showed that each model, despite the different link functions 

adopted, was capable to predict correctly the incidence, since curves drawn with 

fitted values were almost overlapping the non-parametric cause-specific CCI. This 

aspect represents a first proof demonstrating that the pseudo-values approach is 

coherent with common methods. 

This can be seen also through the comparison of CSDHR calculated through the 

pseudo-values method and the cloglog link function with the estimates obtained 

through the Fine and Gray model, showing that the measures estimated are quite 

similar: for example CSDHRs calculated for treatments effect through pseudo-values 

are 1.17 for SDE and 0.84 for HDE, while the corresponding measures from the Fine 

and Gray model are 1.25 and 0.88; the estimates for the effect of tumor dimension 

are identical. 

Covariate effects estimated are coherent through the different link functions: all 
models are concordant in evaluating the protective effects of having an ER-positive 



tumors and being in menopause and the deleterious effect of being overweight or 
obese and having a tumor with diameter above 2 cm. Coherently, treatment regimen 
and having ER–positive tumor while being pre-menopausal remain not significant 
throughout the analyses. 

 

All together, these results show that the pseudo-values based method is reliable to 
directly retrieve measures and to quantify covariates effects on them, thus proposing 
itself as a powerful and useful instrument to guide and support clinical decisions. 
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