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1. PROSTATE CANCER 

1.1. Anatomy and physiology of the prostate 

     The prostate is a gland of the male reproductive system. It does not have a 

proper capsule, but it is surrounded by an integral fibromuscular band. It is located in 

front of the rectum and just below the bladder. It is about the size of a chestnut and 

conical in shape, consisting of a base, an apex, an anterior, a posterior and two lateral 

surfaces. The base is directed upward near the inferior surface of the bladder. The apex 

is directed downward and is in contact with the superior fascia of the urogenital 

diaphragm [1,2].  

     The prostate weighs about 20 g, and it is 3 cm long, 4 cm wide and 2 cm thick [1,2]. 

     Three histological cell types of cells can be found in the gland: glandular cells, 

myoepithelial cells and subepithelial interstitial cells [3]. 

     The prostate can be sub-divided in two ways, by zone or by lobe [1,2]. 

     The “zone” classification is commonly adopted in pathology (fig. 1). On the basis of 

this classification, the prostate is composed of: 

• The peripheral zone: it is the largest area of the prostate, representing the 70% 

of the entire gland. It is the sub-capsular portion of the posterior side of the 

prostate, surrounding the distal urethra. It can be palpated through the rectum 

during the digital rectal exam. Almost 70-80% of prostate cancers (PCas) 

originate in this zone. 

• The transition zone: it surrounds the prostatic urethra. It represents about 5-

10% of the prostate volume but dramatically grows throughout life, sometimes 

leading to benign prostatic hyperplasia. 

• The central zone: it lies behind the transition zone and surrounds the ejaculatory 

ducts, representing 25% of the prostate volume. Only 2.5% of cancers start in 

this region but they tend to be more aggressive and metastatic. 

• The anterior fibromuscular stroma: this zone, wich surrounds the apex of the 

prostate, is composed of muscle fibers and fibrous connective tissue and does 

https://en.wiktionary.org/wiki/Capsule
https://api.seer.cancer.gov/rest/glossary/latest/id/5505a55fe4b0c48f31d6fd77
https://api.seer.cancer.gov/rest/glossary/latest/id/5523106ae4b0bc5c16c0989b
https://api.seer.cancer.gov/rest/glossary/latest/id/559d73fae4b084b72ee1fea1
https://en.wikipedia.org/wiki/Urethra
https://en.wikipedia.org/wiki/Benign_prostatic_enlargement
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not contain any glandular components. PCa is rarely found in this part of the 

prostate. 

     The “lobe” classification is generally used in anatomy. The prostate is divided into five 

lobes: 

• The posterior lobe roughly corresponds to the peripheral zone. 

• The anterior lobe roughly corresponds to part of the transition zone. 

• The median lobe roughly corresponds to part of the central zone. 

• The lateral lobes (right and left lobes) form the main mass of the gland and are 

located posteriorly. They are separated by the prostatic urethra. 

 
Fig. 1. Prostate anatomy. 

     The main function of the prostate is to secret the prostatic fluid through the ducts 

and into the urethra, where it mixes with sperm and is ejaculated as semen. Prostatic 

fluid forms about 20% of semen volume and contains spermine, spermidine, 

prostaglandins, zinc, citric acid, immunoglobulins, phosphatases and proteases [4]. 

     The prostatic urethra originates from the  pelvic portion of the urogenital 

sinus. Endodermal outgrowths develop from the prostatic urethra and grow into the 

https://api.seer.cancer.gov/rest/glossary/latest/id/55021d80e4b0c48f31d6182e
https://api.seer.cancer.gov/rest/glossary/latest/id/5520eecfe4b0bc5c16bfb7b9
https://api.seer.cancer.gov/rest/glossary/latest/id/55a8f3b3e4b05cd0cddc03af
https://en.wikipedia.org/wiki/Urogenital_sinus
https://en.wikipedia.org/wiki/Urogenital_sinus
https://en.wikipedia.org/wiki/Endodermal
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surrounding mesenchyme. The endodermal cells differentiate into the glandular 

epithelium, while the dense stroma and the smooth muscle of the prostate 

differentiates from the associated mesenchyme. The prostate glands represent the 

modified wall of the proximal part of the male urethra and develop by the ninth week 

of embryonic life. Fusion of mesenchyme, urethra and Wolffian ducts gives rise to the 

adult prostate gland [3,5].    

     Notably, androgens, particularly testosterone, are known to be essential for prostate 

development and function, as well as for proliferation and survival of cells within the 

gland [3,5]. 

1.2. Epidemiology of prostate cancer 

     The global burden of PCa is substantial, ranking among the top five cancers for both 

incidence and mortality [6]. In particular, PCa is characterized by striking geographical 

variation in both incidence and mortality rates. In this context, the analysis of PCa 

incidence and mortality across populations may clarify the role of individual risk factors 

in the epidemiology of this disease. 

1.2.1. Incidence 

     Globally, PCa is the most commonly diagnosed cancer in men, being particularly 

common in developed countries [7].  

     As mentioned above, PCa incidence is remarkable for its substantial global variation. 

There is a 40-fold difference in age-adjusted incidence rates between men with the 

highest (African-American men in the United States) and lowest (Asian men living in their 

native countries) incidence [8]. In part, this global variation can be related to differences 

in the prostate-specific antigen (PSA) screening frequency. Indeed, in the last forty years, 

age-adjusted incidence rates have generally increased across the world, a trend that has 

been accompanied by a crescent use of PSA testing in certain regions, including the 

United States, Europe and Australia. The emergence of PSA testing has also led to an 

increase in early diagnosis, with a higher number of men diagnosed with localized 

disease [9]; an increase in overdiagnosis (i.e., the diagnosis of tumors that would not 

https://en.wikipedia.org/wiki/Mesenchyme
https://en.wikipedia.org/wiki/Smooth_muscle_tissue
https://en.wikipedia.org/wiki/Mesenchyme
https://en.wikipedia.org/wiki/Urethra
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have cause symptoms or death in the absence of screening) has also been observed 

[10,11]. However, incidence rates have also increased in regions where PSA screening 

has not yet been widely used, such as in Japan and some other Asian and Eastern 

European countries [12]. The trend in these regions suggests that environmental or 

lifestyle factors, as discussed later in this chapter, may also influence PCa incidence. 

1.2.2. Mortality 

     PCa is the fifth most common cause of cancer death worldwide [7]. The highest PCa 

mortality rates are among populations in Middle and Southern Africa and in the 

Caribbean. On the contrary, the lowest PCa mortality rates are observed in Asia, 

particularly in Eastern and South-Central Asia. Interestingly, PCa mortality has been 

significantly reduced across various Westernized countries. The reasons underlying this 

decrease are unclear. However, the earlier identification of PCa through PSA screening 

and its subsequent earlier treatment could contribute to this reduction [13]. Indeed, it 

should be noted that some countries with low or no screening (e.g. Africa) are 

experiencing increased PCa mortality. 

     Considerable variability in the ratio of PCa incidence/mortality has been highlighted, 

with the highest ratio in North America (10:1), lower in Australia (2:1) and almost equal 

in some Caribbean and African countries (1.2:1). Again, these differences may be 

partially explained by a larger number of slow-growing tumors diagnosed in countries 

using PSA screening [14,15] and, conversely, by a later cancer presentation in countries 

with lower diagnostic intensity.  

     The high prevalence of PCa also reflects the magnitude of burden attributable to this 

disease. In fact, PCa has the highest 5-year prevalence of any cancer type, accounting 

for 25% of all prevalent cancers [6]. Importantly, more than four million men are PCa 

survivors living with a cancer diagnosis around the world [16]. This has important 

implications for the allocation of resources for men who are undergoing treatment or 

surveillance for this disease. 
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     As shown, numerous characteristics of PCa epidemiology can be gleaned from the 

analysis of incidence and mortality rates across countries and over time. The evidence 

for specific risk factors associated with PCa will be discussed in the following paragraph. 

1.2.3. Risk factors 

     Established risk factors for total PCa incidence include older age, African-American 

race and positive PCa family history. In addition, emerging evidence of genetic 

predisposition to PCa has been provided by genome-wide association studies (GWAS). 

In different ethnic groups, almost 200 genetic risk loci have been found [17,18]. 

Furthermore, it has been recently proposed that taller height can increase the risk of 

total PCa [19]. Although these factors are not modifiable, they are illustrative of the 

potential mechanisms involved in prostate tumorigenesis and could be used to stratify 

patients according to the risk of developing the disease. 

     Age is strongly associated with risk of total PCa. PCa is rare among men under 40 but 

it dramatically increases in men over 55, following a similar trend as other epithelial 

cancers. This trend is evident in global PCa rates, as well as in both low and highly 

developed regions [6]. 

     There are considerable differences in PCa incidence and mortality across racial and 

ethnic groups. For example, PCa incidence and mortality rates are almost 3 times higher 

among black men than among white men in the United States [8]. Moreover, the 

number of PCa cases and deaths is much lower among Asian/Pacific Islanders, American 

Indian/Alaskan Natives and Hispanic men compared with non-Hispanic white men [8]. 

Further studies are needed to explain the reasons of these disparities, although some 

evidence suggests that they can be due to differences in access to diagnostic tests and 

treatments [20]. As mentioned above, the differences in the prevalence of multiple PCa 

genetic risk loci across racial/ethnic groups [21] may also be responsible for the 

disparities in incidence rates. 

     A family history of PCa is known to enhance the risk of PCa. Compared with men with 

no PCa family history, men with a father or brother diagnosed with PCa have a two to 

threefold higher risk of developing the disease, and the risk is nearly ninefold higher for 



 
 

7 
 

men with both [22]. A similar association has also been found for lethal PCa: men with 

a father or brother who died of PCa are at twofold higher risk of dying from this tumor 

compared with men without a PCa family history [23]. Interestingly, twin studies have 

highlighted that shared genetic factors are mainly responsible for PCa familial 

aggregation, with a heritability of almost 57% [24,25]. The more than 105 PCa risk loci 

identified across multiple studies explain about one third of the heritability [17,26]. 

Most of these germline risk loci do not correlate with PCa aggressiveness [27,28], 

indicating that inherited factors may be implicated in earlier prostate tumorigenesis. 

1.3. Symptoms, diagnosis and prognosis of prostate cancer 

     The main signs and symptoms caused by PCa are: 

• Weak or interrupted ("stop-and-go") flow of urine. 

• Sudden urge to urinate. 

• Frequent urination (especially at night). 

• Trouble starting the flow of urine. 

• Trouble emptying the bladder completely. 

• Pain or burning while urinating. 

• Blood in the urine or semen. 

• A persistent pain in the back, hips or pelvis. 

• Shortness of breath, fast heartbeat, dizziness or pale skin caused by anemia. 

     It should be noted that other conditions may cause the same symptoms, such 

as benign prostatic hyperplasia. Moreover, some cancers can also be asymptomatic, 

especially in their early stages of development [29]. 

     PCa is generally diagnosed by transrectal ultrasound-guided biopsy, usually after 

abnormal PSA level changes and/or digital rectal examination. In particular, the PSA level 

at the time of diagnosis is also used as a prognostic factor, with higher PSA levels 

indicating a more aggressive disease. Similarly, the rate of PSA level increase is also an 

indicator of tumor aggressiveness: an increase of more than 2.0 ng/mL per year in PSA 

levels is often associated with a higher risk of PCa relapse after surgery or radiation 

therapy [29]. 

https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000750109/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000045022/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000270735/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046246/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000045360/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046509/
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     PCa stage is also determined using the tumor-nodes-metastasis (TNM) staging system 

[30]. In TNM staging, information about the tumor (T), nearby lymph nodes (N) and 

distant organ metastases (M) is combined, establishing the stage of the disease. In 

particular, the cancer stages are defined on the basis of tumor size and location: 

• T stage corresponds to a tumor locally advanced. 

• N stage represents the spread of PCa cells to the nearest lymph node through 

the lymphatic system. 

• M stage correlates with the invasion by PCa cells of distant tissues and organs 

through the lymphatic or blood system. PCa frequently metastasizes to brain and 

bones.  

     Another staging system commonly used to determine PCa stage is the Gleason grade, 

based on the evaluation of the anatomy/histology of the PCa cells. If different cell types 

compose the tumor, its stage is established according to the Gleason score, based on 

the Gleason grade of the two most prevalent cell types. The Gleason score ranges from 

2 to 10: tissues characterized by scores of 6 or less are supposed to look similar to normal 

tissues and to grow slowly; a score of 7 indicates an intermediate risk to develop an 

aggressive tumor; scores of 8 or higher describe poorly differentiated and metastatic 

cancers [30]. 

     In summary, PCa is characterized by four progression stages, from I to IV, which are 

determined by TNM, Gleason score and serum PSA level (fig. 2). Early PCas (stages I and 

II) are localized and noninvasive; stage III tumors are larger, with a high risk to 

metastasize; advanced PCas (stage IV) have already colonized other body tissues [29,30]. 
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Fig. 2. Prostate cancer staging. 

1.4. Molecular mechanisms in prostate cancer 

     Several oncosuppressor genes and oncogenes have been shown to be implicated in 

PCa development and progression. 

1.4.1. Androgen receptor 

     A number of studies indicates that PCa growth and progression are driven by the 

androgen receptor (AR), a ligand-dependent transcription factor and member of the 

nuclear receptor family [31,32]. The AR is encoded by the AR gene located on the X 

chromosome at Xq11-12 and displays a N-terminal regulatory domain, a DNA-binding 

domain (DBD), a ligand-binding domain (LBD) and a C-terminal domain. In the absence 

of androgens, particularly dihydrotestosterone (DHT) and testosterone, it is complexed 

with chaperone proteins in the cell cytoplasm. After ligand binding, it translocates into 

the nucleus, where it homodimerizes due to the interactions of dedicated motifs present 

in the DBD and in the LBD. In the cell nucleus, the dimerized AR recognizes cognate DNA 

response elements in regulatory regions located in proximal or more distal intra- and 

intergenic regions of androgen target genes [33,34]. It then recruits a number of 

coregulator proteins and epigenetic factors to generate a transcriptionally active 
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complex able to upregulate downstream gene expression [31,32]. Downregulation of 

gene activity after interaction with corepressors has also been observed but is less well 

characterized [35] (fig. 3).  

 

Fig. 3. A. Androgen receptor structure; B. Molecular  

mechanisms of androgen receptor function. 

 

     As discussed in the following sections of this thesis, PCa often progresses towards a 

condition where its growth is castration resistant. One of the mechanisms underlying 

this change is an increase in the expression of AR in the tumor cell. In particular, it has 

been shown that 28% of cancers resistant to androgen deprivation therapy display AR 

upregulation due to amplification of its gene [36]. Another mechanism responsible for 
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PCa androgen-independent growth is ligand promiscuity, which results from AR gene 

mutations that cause amino acid substitutions in the LBD, leading to reduced specificity 

and selectivity for ligands: the most common of them are T877A, L701H, W741L and 

F876L. These mutant AR proteins bind to other steroid hormones, such as estrogen, 

progesterone and glucocorticoids, which can activate the AR signaling pathway and 

promote PCa progression [37]. In addition, certain antiandrogens can induce an agonist 

conformation in mutated ARs, leading to their activation rather than inhibition: this has 

been observed in patients undergoing flutamide treatment. AR activation via ligand-

independent mechanisms represents the third mechanism of androgen-independent 

PCa development [38]. It has been found that tyrosine kinase receptor-activating 

ligands, such as insulin-like growth-factor-1 (IGF-1), keratinocyte growth factor (KGF) 

and epidermal growth factor (EGF), can activate the AR through the phosphoinositide 3-

kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. The AR can also be 

activated via crosstalk with other signaling pathways, such as the Src and Ack1 cascades 

[39-43]. Moreover, AR activation can also occur after binding to long non-coding RNAs, 

such as PCGEM1 and PRNCR1 [44]. Finally, various AR variants lacking the LBD have been 

recently reported: the AR NTD is constitutively active in the absence of the LBD and thus 

can promote castration resistant proliferation [45,46]. 

1.4.2. p53 

     The p53 gene is one of the most frequently mutated genes in human cancers. It is 

commonly known as “the guardian of genome”, due to its ability to block the synthetic 

phase of the cell cycle (phase S) and promote apoptosis in cells with damaged DNA. In 

primary PCa a relatively low incidence (10-20%) of p53 gene mutations has been 

observed, whereas it rises in advanced stages of the disease (42%) [47-49], being 

associated with high Gleason score [34], as well as with reduced survival after radical 

prostatectomy [50] and bone metastases [51]. 

1.4.3. PTEN 
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     About 5-27% of localized and 30-60% of metastatic PCas display PTEN mutations [52-

54]. This gene encodes a phospholipid phosphatase inhibiting the AKT signaling 

pathway, which plays a crucial role in cell cycle progression and cell proliferation [55]. 

PTEN can be found in normal prostatic epithelial cells and in cells with prostatic 

intraepithelial neoplasia (PIN), while its expression is downregulated in advanced 

cancers [34]. However, it has been demonstrated that common PTEN genetic variants 

do not significantly increase the risk of PCa [56]. On the other hand, PTEN modulates the 

expression of CDKN1B (p27), another oncosuppressor gene. 

1.4.4. CDKN1B (p27) 

     p27 is a cyclin dependent kinase inhibitor, whose levels are known to be decreased 

in more aggressive PCas, particularly in those with a poor prognosis [57-60]. This gene is 

located on chromosome 12p12-3 and the somatic loss of its sequences has been 

reported in 23% of localized PCas, in 30% of regional lymph node metastases and in 47% 

of distant metastases [61]. Reduced p27 expression may be due to both CDKN1B 

alterations and PTEN downregulation. 

1.4.5. NKX3.1 

     Homeobox protein NKX3.1 is a transcription factor that represses the PSA expression 

by binding to DNA [62]. This gene loss of function or deletion represents an early event 

in PCa [34], being present in androgen-sensitive cells but not in androgen-independent 

tumors [63]. In a recent study by Bowen et al. [64], NKX3.1 was shown to be absent in 

20% of PIN lesions, 6% of localized PCas, 22% of advanced PCas, 34% of androgen-

independent tumors and 78% of PCa metastases. Notably, the loss of this gene may be 

responsible for the increase in PSA levels observed during PCa progression. 

1.4.6. Retinoblastoma protein 

     Retinoblastoma protein (Rb) suppresses the cell ability to replicate DNA, blocking its 

progression from the G1 (first gap phase) to S phase of the cell division cycle. Rb 

mutations are common in both clinically localized and advanced PCas [65,66], with at 
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least 50% of them observed in metastatic PCa [67,68]. This gene appears also to be 

involved in the regulation of prostate cell apoptosis, especially in response to androgens 

[69,70]. 

1.4.7. Glutathione S-transferase 

     Glutathione S-transferases (GST) are a family of enzymes that catalyze the 

conjugation of reduced glutathione to different substrates, preventing oxidant and 

electrophilic DNA damage [70]. In 96% of PCas, GSTP1 is hypermethylated and thus 

inactivated [71,72]. However, no risk for sporadic or familial PCa appears to be 

correlated with polymorphism in codon 105 of the pi variant (GSTP1 I105v) [73]. 

Interestingly, the calculation of GSTP1 hypermethylation can be effectively used to 

detect the presence of tumor even in small prostate tissue samples, which makes it a 

promising PCa diagnostic marker [74]. 

1.4.8. Kruppel-like factor 6  

     Kruppel-like factor 6 (KLF6) is a tumor suppressor gene that acts upregulating p21 in 

a p53-independent manner, thus suppressing cell growth [75]. Alterations of this gene, 

including deletions and loss of function, are present in a minority of high grade PCas 

[75,76]. 

1.4.9. Annexins 

     Annexins are calcium-binding proteins involved in several cellular processes, 

including cell motility and vesicle transport. They are significantly downregulated in PCa 

cell lines [77,78].  

1.4.10. c-Myc 

     Myc is a family of regulator genes and proto-oncogenes encoding for transcription 

factors. The myc family consists of three related human genes: c-myc, l-myc (MYCL) and 

n-myc (MYCN). In cancer, c-myc is often constitutively expressed, promoting cell 

proliferation and transformation [34,79]. Its amplification and overexpression has been 
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reported in 8% of primary PCas and in about 30% of metastatic tumors [80,81]. Such 

overexpression is usually associated with high Gleason grade and poor prognosis in 

advanced PCa [81]. 

1.4.11. MX11  

     MX11 is a negative regulator of c-myc, which has been found to be mutated in PCa 

[82,83]. 

1.4.12. c-ErbB2 (Her-2 neu) 

     It is a member of the epidermal growth factor receptor (EGFR) family, encoding a 

plasma membrane-bound receptor tyrosine kinase. Its role in PCa progression is still a 

matter of debate: while some studies have highlighted that this gene is overexpressed 

in PCa, especially in the androgen-independent growing phase [84,85], other studies 

have not identified its amplification nor overexpression in PCa [86,87]. 

1.4.13. Bcl-2 

     This protein is generally expressed in PCa, whereas it is not present in the normal 

prostate [88]. It appears to be also involved in the progression towards metastatic PCa, 

because of its upregulation in the advanced stages of disease [89,90]. It has been 

proposed that androgen-mediated mechanisms may act through Bcl-2-related apoptotic 

pathways [91]. The overexpression of Bcl-2 prevents apoptosis in PCa cells [92,93]. 

1.4.14. Prostate stem cell antigen 

     Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI)-anchored cell 

surface protein. In a recent study by Reiter et al., it has been reported to be 

overexpressed in 80% of PCa specimens [94]. PSCA overexpression correlates with 

increasing Gleason score, disease stage and progression to androgen independence 

[95]. Notably, the administration of anti-PSCA monoclonal antibodies to mice 

successfully suppressed tumor growth and metastasis [96]. 

1.4.15. ERG and ETV1 
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     These two genes are ETS transcription factors commonly upregulated in both primary 

and metastatic PCa tissues. They are activated by fusion to the TMPRSS2, a prostate-

specific cell-surface serine protease, generating an androgen-responsive fusion 

oncoprotein [97,98]. 

1.4.16. Hepsin 

     This protein is a membrane bound serum protease playing a crucial role in cell 

proliferation. Its expression in PCa is associated with poor patient prognosis [99]. 

1.4.17. PIM1 

     It is a protein kinase known to be overexpressed in PCa [99]. 

1.4.18. ATFB1  

     ATFB1 is a transcription factor modulating α-fetoprotein expression [100], which 

appears to be involved in PCa growth. A study reported that 36% of the tumors tested 

had missense mutations inactivating the gene function [101].  

1.4.19. A-Methyl Coenzyme A racemase  

    This enzyme is involved in fatty acid oxidation [102-104]. A recent study by Shand et 

al. has reported that approximately 88% of PCas were positive to A-Methyl Coenzyme A 

racemase (AMACR) staining [105]. It has also demonstrated 97% of sensitivity and 100% 

of specificity as PCa tissue marker in biopsy specimens [103]. 

1.4.20. CYP17 

     The cytochrome P-450c 17α enzyme, which is responsible for the synthesis of 

testosterone, is encoded by CYP17 allele. CYP17 allele mutations have been found in 

cases of sporadic and hereditary PCas [34]. 

1.4.21. SRD5A2 
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     The allele SRD5A2 encodes for the enzyme 5α-reductase, which converts 

testosterone into 5-dihydrotestosterone (DHT) in the prostatic cell. Alleles that code for 

hyperactive enzymes have been shown to be associated with increased PCa risk [106]. 

1.4.22. CYP3A4 

     CYP3A4 is a member of the liver cytochrome P450 family of oxidizing enzymes, mainly 

involved in the metabolism of several xenobiotics, including various drugs. It plays an 

important role in the development of breast and prostate cancer by modulating the 

levels of sex hormone metabolites. In particular, CYP3A4 polymorphisms appear to 

confer a higher risk of PCa in men with benign prostatic hyperplasia. However, further 

studies are needed to confirm these data [107]. 

1.4.23. Vitamin D receptor 

     The vitamin D receptor (VDR) is an intracellular hormone receptor that specifically 

binds the active form of vitamin D (1, 25-dihydroxyvitamin D3 or calcitriol), which is 

known to induce differentiation and suppress the growth of PCa cells. A correlation 

between the best-characterized polymorphisms in the VDR variants (i.e., Cdx2, Fokl, 

Bsml, Apal, Taql and the poly-A microsatellite) and PCa has been demonstrated [106]. 

1.4.24. c-Kit 

    c-Kit is a receptor tyrosine kinase implicated in intracellular signaling, as well as in 

occurrence of some cancers. Recently, it has been found to be expressed in PCa cells, 

contributing to disease progression [108]. 

1.4.25. STAT5 

     This protein regulates PCa cell growth and division, as well as cell death. Its 

phosphorylation correlates with high histological grade of PCa [109,110]. 

1.4.26. Insulin-like growth factor-1  
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     Insulin-like growth factor-1 (IGF-1) is a hormone whose circulating levels have been 

strongly associated with PCa risk [111]. In particular, an IGF-I mRNA splice variant called 

IGF-IEc appears to regulate PCa growth via Ec peptide specific and IGF-IR/IR-

independent signaling; interestingly, it was detected in PCa biopsies, where its 

expression correlates with tumor stage [112,113]. 

1.4.27. Interleukin-6  

      It is a cytokine implicated in the regulation of proliferation and differentiation of 

different cancer cells, including PCa cells [114]. In particular, it is known to modulate the 

STAT and/or mitogen activated protein kinase (MAPK) cascades. IL-6 levels are increased 

in sera of patients with advanced PCa. Moreover, PCa growth is accelerated after long-

term exposure to IL-6 [115].  

1.4.28. Transforming growth factor β  

     This multifunctional protein regulates proliferation and differentiation in several 

tumor types, including PCa [114]. Transforming growth factor β (TGF-β) promotes 

malignant transformation along with TGF-α, and it stimulates angiogenesis along with 

vascular endothelial growth factor (VEGF) [116]. Although TGF-β1 acts as a potent 

inhibitor of normal prostate epithelial cell growth and TGF-β1 receptor I and II 

dysfunction is associated with tumor aggressiveness, intracellular and serum TGF-β1 

levels are elevated in PCa patients and further increased in patients with metastatic 

carcinoma [115]. 

1.5. Current therapies 

     In about 90% of cases, PCa is still organ-confined or only locally advanced at diagnosis, 

which makes it effectively treatable with prostatectomy or local radiotherapy. However, 

most of patients usually experience disease progression; in this phase, in which tumor 

growth is dependent on the presence of androgens, androgen-deprivation therapy, 

aimed at blocking androgen secretion/activity, represents the most effective treatment. 

This therapy includes chemical castration, which can be achieved by GnRH agonists, 
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given either alone or in combination with antiandrogens. However, after an excellent 

initial response, relapse occurs in most patients within a median of 2–3 years, and the 

tumor progresses towards a condition of resistance to castration [castration-resistant 

prostate cancer (CRPC)]. For CRPC patients the therapeutic options are still very limited, 

since taxane-based (i.e., docetaxel) treatment and immunotherapy, as well as the novel 

therapies with enzalutamide and abiraterone, usually provide a progression-free 

survival of a few months. The current treatment options for PCa patients are 

summarized in fig. 4. 

1.5.1. Surgery 

     Surgery, particularly radical prostatectomy and pelvic lymphadenectomy, is usually 

suggested in case of high-risk locally advanced PCa [117].  

     Traditionally, the use of radical prostatectomy for high-risk PCa treatment has been 

discouraged due to its several side effects, including high rates of positive surgical 

margins, risk of lymph node metastasis and high rates of PSA recurrence. However, 

surgery has been demonstrated to be more beneficial than watchful waiting in terms of 

mortality and risk of both local progression and metastasis [118]. Patients with a biopsy 

Gleason score ≤ 8 and the serum PSA level < 20 ng/ml are usually recommended to 

undergo surgery [119]; these criteria are currently suggested by the European Urology 

Association [120] for the treatment of advanced PCa [121].  

     Pelvic lymphadenectomy is generally performed during radical prostatectomy in case 

of high-risk PCa [118], since 15-40% of nodes would generally have positive results [122]. 

In this regard, pelvic lymphadenectomy is the most reliable strategy to detect the lymph 

node metastases in PCa; however, its therapeutic potential is still a matter of debate 

[123].  

1.5.2. Radiation therapy 

     After surgery, radiotherapy is considered as the second major therapeutic option for 

the treatment of localized high-risk PCa. In the last decades, external-beam radiotherapy 
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and brachytherapy have undergone considerable clinical and technological 

development and are now widely used in PCa management [124].  

 

 
Fig. 4. Treatment landscape in prostate cancer. 

     Patients without distant metastases and a life expectancy of at least 5-10 years can 

undergo external-beam radiotherapy [125]. A radiation dose of at least 74 Gy should be 

the standard of care for all men with localized PCa who choose treatment with external- 

beam radiotherapy [124]. However, the optimal dose of external-beam radiotherapy 

has not yet been established. Some randomized trials have highlighted the benefits of a 

dose escalation up to the total dose of 76-78 Gy, while others have shown the advantage 

of the addition of adjuvant antiandrogen therapy to external-beam radiotherapy for 

patients with locally advanced cancers. For increasing survival and reducing metastases 

risk, adjuvant postprostatectomy external-beam radiotherapy of the prostatic fossa with 

doses in the range of 60-66 Gy has also been suggested [125]. 

     High-dose rate brachytherapy involves a temporary insertion of applicators into the 

prostate, in order to target different zones of the gland and minimize the dose of 

radiation to the bladder and the bowel. It can be used as monotherapy or in combination 
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with external-beam radiotherapy, especially for patients with more locally advanced 

disease [126]. 

     In low-dose rate brachytherapy, radioactive seeds with a half-life of two months are 

permanently put into the prostate under a general anaesthetic or spinal anaesthetic. In 

a small randomized trial, surgery and low-dose rate brachytherapy produced equivalent 

outcomes, with a 5-year biochemical progression-free survival of 91.0% by surgery 

versus 91.7% by brachytherapy; on the contrary, they differed for the severity of the 

side effects, particularly as regards urinary and erective disorders [127]. Interestingly, 

these two treatments have similar cost profile in France [128]. 

1.5.3. Proton beam therapy 

     Proton beam therapy involves the use of a particle accelerator to target the tumor 

with a beam of protons, localizing the radiation dosage more precisely when compared 

to other types of radiotherapy. In particular, proton beam therapy offers an excellent 

dose distribution, with no exit dose. For these reasons, it represents an excellent choice 

for the treatment of PCa [129]. In a recent phase III trial [130], an increased dose with 

an external proton beam of 12.5% to 75.6% CGE (Cobalt Gray Equivalent) significantly 

improved local control of poorly differentiated PCas, when compared to a conventional 

dose. Over the last ten years, proton beam therapy has effectively increased the survival 

rate among PCa patients [131]. 

1.5.4. Cryosurgery 

     Cryosurgery consists of the application of extreme cold to an abnormal tissue, in 

order to destroy it. In this context, the supercooled liquid is sprayed on the tumor by 

using liquid nitrogen as the cooling solution. Focal cryotherapy has recently emerged as 

an effective therapeutic option for the treatment of localized low-risk PCa [132]. In 

particular, the efficacy and safety of PCa targeted cryoablation was reported in a series 

of 590 consecutive patients [133]. Compared to brachytherapy, cryotherapy was shown 

to be less irritative, with lower complication rates and improved urinary function after 

treatment [134]. In a randomized trial aimed at comparing cryoablation with external-
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beam radiotherapy in PCa patients, cryosurgery was found to produce better outcomes 

[135]. 

1.5.5. Hormonal therapy 

     Androgen deprivation therapy is regarded as the initial treatment for advanced PCa. 

The dramatic clinical effects obtained by suppressing serum testosterone levels in men 

with metastatic PCa were reported for the first time by Huggins et al. in 1941 [136]. 

Indeed, inhibition of various hormones, receptors or enzymes involved in the androgen 

synthesis pathway is at the basis of this treatment.  

GnRH agonists 

     GnRH agonists, including goserelin, leuprorelin and triptorelin, induce castrate levels 

of testosterone by binding to their associated receptors in the anterior pituitary. This 

leads to the downregulation of the receptors, decreasing the release of luteinising 

hormone (LH) from the pituitary and subsequently reducing the production of 

testosterone by Leydig cells in testes. Notably, castrate levels of testosterone (<1.74 

nmol/L (< 50 ng/dL)) are reached within four weeks. GnRH agonist side effects include 

hot flashes, loss of libido, erectile dysfunction, depression, muscle wasting, anemia and 

osteoporosis, as well as the flare phenomenon, where testosterone levels are initially 

increased due to GnRH receptor stimulation [137]. 

Anti-androgens 

     As mentioned above, the initial stimulation of the GnRH receptors may lead to an 

initial flare-up of testosterone level, lasting up to 10 days. For this reason, anti-

androgens are often administered among with GnRH agonists. This is a class of drugs 

that act mainly by inhibiting the androgen receptor signaling, sometimes by competing 

with testosterone and DHT for receptor binding. Inhibition of the AR cascade leads to 

apoptosis and suppression of PCa growth. There are two sub-classes of anti-androgens: 

steroidal (cyproterone acetate) and non-steroidal (bicalutamide, nilutamide, and 

flutamide) [137]. 
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Newer drugs 

     Abiraterone acetate is an irreversible inhibitor of CYP17A1, a 17–20 lyase and 17-α 

hydroxylase of the cytochrome P450 family, which converts pregnanes into steroid 

hormones, including androgen precursors [138]. Therefore, it can successfully suppress 

androgen synthesis in the testis and adrenal glands, as well as in PCa, thus blocking its 

growth. The main adverse events associated with abiraterone acetate treatment are 

related to the increase in the mineralocorticoid levels due to CYP17A1 inhibition; for this 

reason, prednisone or prednisolone are generally concomitantly administered. 

Abiraterone acetate was first approved by the Food and Drug Administration (FDA) in 

2011 for late-stage CRPC patients, and then in 2012 also for use prior to chemotherapy 

[138]. It is currently being tested in combination with various therapies, and it has 

recently demonstrated improved effectiveness when given along with androgen 

deprivation therapy in patients with locally advanced PCa [139-141]. Other CYP17A1 

inhibitors, including orteronel and galeterone, have been evaluated in clinical studies 

but did not reach their primary endpoint [142]. 

     Enzalutamide is a second-generation, competitive oral AR antagonist approved by the 

FDA for metastatic CRPC treatment post- and pre-chemotherapy in 2012 and 2014, 

respectively [143]. In addition, it significantly enhances metastasis-free survival in high-

risk non-metastatic CRPC patients. Toxic effects due to the penetration of the drug in 

the brain have been observed [144,145]. Combinations of enzalutamide with other 

drugs already approved for early- or late-stage PCa, including abiraterone acetate, 

docetaxel or radium-223 dichloride, are now under intensive study [146], and a phase 

III combination study with the PD-L1 antibody atezolizumab has also started [147].  

     Apalutamide is an oral AR antagonist structurally related to enzalutamide [148], 

which has recently been approved for non-metastatic CRPC treatment, based on a 24-

month longer metastasis-free survival [149]. Common side effects include rash, fatigue, 

arthralgia, weight loss, fails and fracture. Various clinical trials are currently evaluating 

the effectiveness and safety of combinations of apalutamide with GnRH ligands and 

abiraterone acetate. 
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     Darolutamide is a second-generation competitive oral AR antagonist with a novel 

chemical structure [150,151]. Unlike other AR antagonists, darolutamide does not 

penetrate the blood-brain barrier, displaying low toxicity [152]. Phase III studies are 

currently ongoing for darolutamide in addition to standard androgen deprivation 

therapy plus docetaxel in CRPC. 

     A strategy to overcome resistance associated with AR ligand-binding domain 

mutations is to target other AR regions. In this regard, a non-competitive AR antagonist 

binding to the N-terminal domain, named ralaniten acetate (EPI-506), has been tested 

in clinical phase I/II for the treatment of metastatic CRPC [153]. Other molecules 

targeting the AR binding function site 3 or DNA-binding domain have been identified 

[154,155]. 

1.5.6. Chemotherapy 

     The use of chemotherapy in CRPC patients has demonstrated significant 

improvements in pain and quality of life, as well as reductions in PSA levels [156]. The 

most used chemotherapeutic drugs include mitoxantrone, doxorubicin, vinblastine, 

paclitaxel and docetaxel.  

     Mitoxantrone is an anthracenedione anti-tumor agent. When given in combination 

with prednisone, it improves the quality of life but not the survival rate in patients with 

CRPC, thus being used as a second-line treatment [157].  

     Taxol is a well-known cytoskeletal drug that targets tubulin. In particular, it stabilizes 

the cell microtubules and prevents their disassembly, thus blocking the progression of 

mitosis and prolonging the activation of the mitotic checkpoint, ultimately leading to 

apoptosis or reversion to the G0-phase of the cell cycle without cell division. Several 

studies pointed out that the survival rate of men with CRPC is significantly higher after 

the treatment with docetaxel and prednisone than that with mitoxantrone and 

prednisone [158]. 

     Anthracyclines, doxorubicin or epirubicin, either alone or in combination with other 

agents, have been used extensively in the CRPC management, but the outcomes are still 

controversial [159]. 
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1.5.7. Immunotherapy 

     Sipuleucel-T is a cell-based cancer immunotherapy, which was approved for the 

treatment of CRPC in 2010 [160]. It involves the extraction of peripheral blood 

mononuclear cells from the patient by leukapheresis, followed by their incubation with 

recombinant prostatic acid phosphatase (PAP) coupled to granulocyte-macrophage 

colony-stimulating factor for maturation of antigen-presenting cells. The activated 

product is then reinfused into the patient in three courses at two-week intervals in order 

to eliminate PCa cells expressing high levels of PAP. Long-term clinical benefits with only 

mild, manageable side-effects have been reported [160]; however, till now the use of 

sipuleucel-T has been limited due to its high costs and complex procedure [161,162]. 

     PCa has a relatively low proportion of cancer-specific neoantigens, indicating that it 

may be less susceptible to treatments with immune checkpoint inhibitors [163,164]. 

However, based on the several benefits demonstrated by therapies with immune 

checkpoint inhibitors in many tumor types, the potential of immunotherapy has also 

been investigated in PCa [165,166]. The anti-CTLA4 antibody ipilimumab has shown 

some promising results in PCa patients, causing a complete tumor remission in some 

cases, although no enhanced overall survival was confirmed in larger studies [167,168]. 

Durable responses to the anti-PD-1 antibody pembrolizumab have been reported in 

patients with CRPC [165,166]. Importantly, pembrolizumab has been recently approved 

for the treatment of mismatch repair-deficient solid tumors, so that CRPC patients 

belonging to this group can be treated with this drug [169]. Coming to anti-PD-L1 

antibodies, early clinical studies with atezolizumab, durvalumab and avelumab are 

ongoing for CRPC treatment [165].  

1.5.8. Targeted alpha therapy approach 

     A targeted alpha therapy approach based on the intravenous administration of 

radium-223 dichloride has been approved for CRPC patients with bone metastases by 

the FDA in 2013. Radium-223 dichloride is able to mimic calcium, thus penetrating in 

osteoblastic bone metastases and binding to hydroxyapatite, a major component of 

bone [170,171].  
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     In vivo experiments performed in PCa-bearing mice have pointed out that, after being 

taken up into the bones, radium-223 dichloride induces cytotoxicity in tumor cells, 

osteoclasts and disease-promoting osteoblasts by triggering extensive DNA damage and 

fragmentation [172].  

     When given to CRPC patients, radium-223 dichloride significantly improves overall 

survival irrespective of prior docetaxel use, alleviating bone metastases-related pain 

without causing any toxicity [173-175]. Combination studies with enzalutamide, 

olaparib and niraparib are ongoing [174]. Moreover, radium-223 dichloride has been 

found to trigger T cell-mediated lysis in different tumor types, including PCa [176]. Thus, 

combination treatments with different immunotherapies, including the checkpoint 

inhibitors pembrolizumab and atezolizumab, are currently being tested. 

1.5.9. Dietary strategies 

     Like numerous other diseases, cancer development can be influenced by the 

interactions between individual genetic susceptibility and life style background. Thus, 

changes in diet may represent an effective strategy to prevent cancer, because some 

dietary factors may contribute to tumor progression, while others could reduce cancer 

growth.  

     Dietary fat and cholesterol play a crucial role in PCa development, thus avoiding them 

may help to control or prevent this disease [177]. In particular, ω-6 polyunsaturated 

fatty acids have been reported to exert pro-tumor effects during prostate 

carcinogenesis, while ω-3 polyunsaturated fatty acid-rich oils are known to suppress PCa 

growth [178].  

     A no-carbohydrate ketogenic diet has been shown to significantly reduce PCa 

progression and to prolong survival in xenograft model mice injected with PCa cells 

[179].  

     A vitamin D intake seems to reduce the risk of PCa, also improving the survival of 

patients with this disease. Similarly, vitamin B-6 has been found to enhance PCa survival 

among men with a diagnosis of localized-stage disease [180,181].  
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     As discussed in the following chapter of this thesis, several nutraceutical compounds 

are now under intense study for the treatment of different types of tumor, including 

PCa.  
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2. TOCOTRIENOLS 

2.1. Nutraceuticals  

     The term “nutraceutical” was coined in 1989 by Dr. Stephen De Felice, MD founder 

and chairman of the Foundation for Innovation in Medicine, who defined it as a “food, 

or parts of a food, that provide medical or health benefits, including the prevention and 

treatment of disease”. Thus, nutraceuticals may refer to naturally nutrient-rich or 

biologically active foods and herbs, such as blueberries or soybeans, or they may be 

specific food components or isolated nutrients and phytochemicals with medicinal 

properties, such as polyphenols, flavonoids and carotenoids [182]. 

     Numerous phytochemicals have been found to exert potent anti-cancer activities, 

and some of them, such as taxanes, vinca alkaloids and podophyllotoxin analogues, are 

currently used in chemotherapy.  

     Epigallocatechin gallate (EGCG), the ester of epigallocatechin and gallic acid, belongs 

to the catechin subclass of flavonoids. It is the major component of green tea and is a 

potent free-radical scavenger and antioxidant. In addition, several ongoing clinical trials 

have demonstrated its ability to synergistically increase the efficacy of conventional 

chemotherapy against PCa [183].  

     Curcumin is a polyphenol obtained from Curcuma longa, commonly known as 

turmeric. It is nontoxic and characterized by many therapeutic properties, particularly 

by antioxidant, anti-inflammatory and anti-microbial activities. Moreover, it exerts 

significant anti-tumor effects in both PCa cells and mouse models [183].  

     Resveratrol (trans-3,4’,5-trihydroxystilbene) is a grape-derived polyphenol that has 

been intensively studied for its chemopreventive potential. In the case of PCa, 

resveratrol has been found to suppress the proliferation of cancer cells [184].  

      Lycopene is a carotenoid naturally occurring in many red fruits and vegetables, such 

as tomatoes, watermelon and pink grapefruit. A combination of lycopene, vitamin E and 

selenium can inhibit PCa development and increase disease-free survival [183].  
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     Genistein (4’,5,7-trihydroxyisoflavone) is a phytoestrogen commonly found in 

soybeans. Its administration has been correlated with a decrease in the incidence of 

PCas [185].  

2.2. Triggering cell death with natural compounds 

     Accumulating evidence has highlighted the ability of numerous natural compounds 

to specifically trigger different pro-death systems, such as apoptosis, paraptosis, 

endoplasmic reticulum (ER) stress and autophagy, in a variety of cancer cells, including 

PCa models. 

2.2.1. Apoptosis 

     The term "apoptosis", from the Greek "απο" and "πτωσιζ" ("dropping off"), refers to 

a highly selective process in which a cell commits suicide after receiving certain stimuli. 

It was first described by Kerr et al. in 1972 and it was shown to play a key role in both 

physiological and pathological conditions [186].  

Morphology of Apoptosis 

     The main morphological changes associated with apoptotic cell death have been 

highlighted by light and electron microscopy [187]. During the early stages of apoptosis, 

cells undergo shrinkage and pyknosis, appearing smaller in size and with a dense 

cytoplasm, tightly packed organelles and condensed chromatin within the nucleus. In 

particular, cells stained with hematoxylin and eosin are round- or oval-shaped and show 

a dark eosinophilic cytoplasm and dense purple chromatin fragments aggregating 

peripherally under the nuclear membrane. Subsequently, extensive plasma membrane 

blebbing is observed, accompanied by karyorrhexis, the rupture of nuclear membrane 

and the release and degradation of its content, and budding, a process where the cell is 

fragmented into membrane-bound vesicles called “apoptotic bodies”. These bodies are 

then engulfed by macrophages and other phagocytic cells before they can release their 

content into the surrounding interstitial tissue. In particular, the removal of dying cells 
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by phagocytes occurs in an orderly manner without eliciting an inflammatory response. 

It should also be noted that apoptosis involves only single cells or small clusters of cells. 

Apoptotic pathways 

     The two best-characterized apoptotic pathways are the extrinsic (death receptor) 

pathway and the intrinsic (mitochondrial) pathway [188,189] (fig. 5).  

     The extrinsic pathway is mediated by cell surface death receptors belonging to the 

tumor necrosis factor receptor superfamily (TNFRS). They possess an extracellular 

cysteine-rich domain, a transmembrane domain and a cytoplasmic domain called “death 

domain”, which plays a crucial role in transmitting the death stimulus from the cell 

surface to the intracellular molecular pathways. To date, the best-known ligand/death 

receptor systems are FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4 and Apo2L/DR5. 

     The extrinsic pathway is activated by the binding of a specific death receptor with its 

extracellular ligand. The obtained composite then recruits death domain-containing 

protein (FADD) and pro-caspase-8, forming the death-inducing signaling complex (DISC). 

This results in the activation of pro-caspase-8, which leads to the cleavage of pro-

caspase-3, the main enzyme responsible for the execution of the apoptotic process 

[190,191]. 

     The intrinsic pathway is regulated by mitochondrial enzymes, particularly by those 

belonging to the Bcl-2 family [192]. This group is divided into two different sub-

categories of proteins, the pro-apoptotic proteins (e.g., Bax, Bak, Bad, Bcl-Xs, Bid, Bik, 

Bim and Hrk) and the anti-apoptotic proteins (e.g., Bcl-2, Bcl-XL, Bcl-W, Bfl-1 and Mcl-1). 

While the anti-apoptotic proteins block cell death by preventing the mitochondrial 

release of cytochrome c, the pro-apoptotic proteins stimulate such release, so the 

balance between them determines whether apoptosis would be initiated or not. In 

particular, when the pro-/anti-apoptotic protein ratio is increased, outer mitochondrial 

membranes become permeable to internal cytochrome c, which is released into the 

cytosol. Cytochrome c then recruits apoptotic protease activating factor-1 (Apaf-1) and 

pro-caspase-9 to compose the so-called “apoptosome”, which triggers a caspase-9/3 

signaling cascade, culminating in apoptosis [193–195]. 
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Fig. 5. Main features of apoptosis. 

The caspase cascade 

     Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent 

aspartate-directed proteases) are a family of protease enzymes implicated in apoptosis 

and inflammation. They are synthesized as inactive zymogens called “pro-caspases”, 

which are activated by post-translational modification only after proper stimulation, 

allowing a rapid and tight regulation of the enzyme. In particular, the caspase activation 

mechanism involves dimerization and often oligomerization of the pro-enzyme, 

followed by its cleavage into a small subunit and large subunit. The two subunits then 

associate with each other to form an active heterodimer complex. 

     Caspases have been broadly classified by their roles in apoptosis (caspase-2, -3, -6, -

7, -8, -9 and -10 in mammals) and in inflammation (caspase-1, -4, -5, -12 in humans and 

caspase-1, -11, and -12 in mice). Apoptotic caspases have been subdivided on the basis 

of their mechanism of action into initiator caspases (caspase-8 and -9) or executioner 

caspases (caspase-3, -6, and -7). The other caspases that have been identified include 

caspase-13, which is suggested to be a bovine gene, and caspase-14, which is selectively 
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expressed in the epidermis and the hair follicles, where it contributes to epidermal 

differentiation. 

     Caspases have proteolytic activity and are able to cleave proteins at aspartic acid 

residues. Common caspase targets are: mediators and regulators of apoptosis (e.g., Bid, 

Bcl-2 and Bcl-Xl); structural proteins (e.g., nuclear lamins, fodrin, gelsolin, keratins 18 

and 19, vimentin, β-catenin and plakoglobin γ-catenin); cellular DNA repair proteins 

(DNA- dependent protein kinase (DNA-PK), Rad51, ATM serine/threonine kinase, 

poly(ADP-ribose) polymerase (PARP)); cell cycle-related proteins (Cdc27, Wee1, Rb and 

the two Cdk inhibitors p21CIP1 and p27KIP1) [196,197]. 

Other biochemical features of apoptosis 

     Another biochemical hallmark of apoptosis is the expression of cell surface markers 

(“eat me” signals) that allows the recognition of dying cells by phagocytes, leading to a 

quick phagocytosis with minimal compromise to the surrounding tissue. This is achieved 

by the externalization of phosphatidylserine. In fact, while this phospholipid is normally 

confined to the cytoplasmic leaflet of the plasma membrane by a flippase, it is rapidly 

exposed on the cell surface by a scramblase in case of apoptosis. In addition to 

phosphatidylserine, recent studies have shown that other proteins are also externalized 

on the cell surface during the apoptotic cascade, such as Annexin I, a protein usually 

implicated in the regulation of the anti-inflammatory effects of glucocorticoids, and 

calreticulin, a Ca2+-binding chaperone that promotes protein folding and quality control 

in the ER lumen [198]. 

Apoptosis in cancer 

     Evasion of cell death is one of the main changes that occur in a cell during its 

malignant transformation. Interestingly, there are several mechanisms by which a tumor 

cell can acquire apoptosis resistance. For instance, downregulation and loss of function 

of different death receptors have been found in various tumor types, leading to 

impairment of the apoptotic extrinsic signaling. Moreover, a disrupted balance of pro-

apoptotic and anti-apoptotic proteins has been observed in several cancers: this appears 

to involve not only the Bcl-2 protein family but also p53 and the inhibitor of apoptosis 
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proteins (IAPs) [199]. Hence, triggering alternative pro-death pathways could represent 

an effective strategy to eliminate cancer cells unaffected by the apoptotic cascade [200]. 

In this context, paraptosis, ER stress and autophagy have recently gained increasing 

interest, mainly due to their involvement in the anti-cancer activity of various natural 

compounds. 

2.2.2. Paraptosis 

     Paraptosis was first reported by Sperandio et al. in 2000 [201]. It is a type of 

programmed cell death displaying cytoplasmic vacuolization, usually consisting in 

mitochondrial and/or ER swelling. It requires protein synthesis and can be successfully 

blocked by the translation inhibitor cycloheximide. Unlike apoptosis, paraptosis does 

not involve the activation of caspases or the formation of apoptotic bodies; indeed, it is 

not affected by caspase inhibitors or overexpression of Bcl-2-like anti-apoptotic 

proteins. On the other hand, paraptosis has been demonstrated to be dependent on 

mitogen-activated protein kinase (MAPK) family members, such as mitogen-activated 

protein kinase kinase 2 (MEK-2), c-Jun N-terminal protein kinase 1 (JNK1) and p38, and 

it can be inhibited by  the multifunctional adapter protein AIP-1/Alix [202]. As shown in 

the following paragraphs of this review, it is often accompanied by an alteration of Ca2+ 

and redox homeostasis, as well as by ER stress, a condition where unfolded and 

misfolded proteins accumulate in the ER lumen, ultimately leading to the activation of 

pro-death processes (fig. 6). However, these features are not always present in cells 

undergoing paraptosis. Hence, the term “paraptosis-like cell death” has been coined, to 

describe those types of programmed cell death resembling paraptosis but lacking one 

or more of its common characteristics [203]. 

     Paraptosis is known to occur during neural development, and it has also been 

observed in different neurodegenerative diseases and neurological disorders [204]. 

Moreover, it appears to be involved in retinal pathologies: it is activated after both 

glucocorticoid treatment [205,206] and reperfusion injury [207], as well as in the early 

phases of glaucoma [208]. 
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Fig. 6. Main features and inducers of paraptosis. 

     Established mediators of paraptotic cell death are insulin-like growth factor 1 

receptor (IGFR-1) [202], the neuropeptide substance P [209], TAJ/TROY, an orphan TNF 

receptor family member [210], epidermal growth factor (EGF) [211,212] and adenine 

nucleotide translocase 1 (ANT1), a multitask protein implicated in cell proliferation and 

metabolism [213]. Moreover, both membrane cholesterol and heme homeostasis have 

been demonstrated to play a crucial role in the regulation of paraptosis [214,215]. 

Finally, human glioma cells retrovirally transduced with the human gene for the 

membrane form of macrophage colony-stimulating factor (mM-CSF) were found to be 

eliminated by human monocytes through the paraptotic pathway [216–218]. 

     Coming to cancer treatment, many natural compounds have been shown to cause 

paraptosis in various human cancer cell lines. Among them, taxol, cyclosporine A, 

tunicamycin, procyanidins, curcumin, honokiol, ginsenosides, tocotrienols, celastrol, 
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ophobiolin A, hesperidin, morusin, 6-shogaol, chalcomoracin, gambogic acid, 

plumbagin, 8-p-hdroxybenzoyl tovarol, cis-nerolidol, manumycin A, DL-selenocystine, 

15-deoxy-Δ12,14-prostaglandin J2, yessotoxin and 1-desulfoyessotoxin have shown 

promise as pro-paraptotic agents [219]. 

2.2.3. Endoplasmic reticulum stress 

     The ER is a network of membranous tubules and sacs within the cytoplasm of all 

eukaryotic cells, continuous with the nuclear membrane. It is mainly involved in protein 

synthesis, folding, post-translational modifications and delivery, and it is also one of the 

most important Ca2+ stores. In particular, the maintenance of the homeostasis of this 

ion is warranted by the sarco/ER Ca2+-ATPase (SERCA), and it is fundamental since many 

ER chaperone proteins implicated in protein folding, such as BiP, calnexin, calreticulin 

and PDI, are Ca2+ dependent [220,221].  

     ER functions can be altered by many signals: physiologic or pathologic stimuli might 

increase the demand for protein synthesis, while stressful events might disrupt protein 

folding. For instance, an increment in protein synthesis is often observed in 

overproliferating tumor cells: if it is not coupled with an efficient protein folding, an 

excess of unfolded proteins accumulates in the ER. On the other hand, various stressful 

conditions, including hypoxia, glucose deprivation and oxidative stress, may cause an 

unfavorable environment for the maintenance of protein homeostasis. Cells initially 

respond with a defensive unfolded protein response (UPR), accompanied by an increase 

in the ER protein folding capacity and in the ER-associated protein degradation (ERAD) 

machinery; however, in case of severe or prolonged stress, unfolded and misfolded 

proteins may exceed the ER capacity and accumulate in its lumen, leading to the 

activation of a set of pro-death programs [220,221].  

     Three major proteins are known to act as stress sensors in the ER (fig. 7): double-

stranded RNA-dependent protein kinase PKR-like ER kinase (PERK), inositol-requiring 1α 

(IRE1α) and activating transcription factor 6 (ATF6). Each of these proteins possesses an 

ER luminal domain able to detect the presence of unfolded proteins in the ER, an ER-

transmembrane  domain  and  a  cytosolic  domain  that  transduces  the signals  to  the  
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Fig. 7. ER stress. 

cytoplasm. In normal physiological conditions, these sensors are inactivated by the 

association with the chaperon protein immunoglobulin-heavy-chain-binding protein 

(BiP, also known as GRP78). However, in case of unfolded protein overload, BiP 

dissociates from these complexes to bind to nascent polypeptides and promote their 

folding, thus triggering the activation of the three sensors and the induction of UPR: 

several emergency systems are activated in order to re-equilibrate protein homeostasis 

[220]. In particular, the dissociation of BiP from PERK induces the homodimerization and 

subsequent autophosphorylation of the kinase, that in turn phosphorylates the 

eukaryotic translation-initiation factor 2α (eIF2α), which blocks protein synthesis. 

Similarly, the dissociation of BiP from IRE1α leads to its activation via dimerization and 

autophosphorylation. IRE1α displays an endoribonuclease (RNase) domain, which 
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catalyzes the removal of a 26-nucleotide intron from the X box binding protein 1 (XBP1) 

mRNA: the spliced XBP1 (sXBP1) triggers the transcription of numerous UPR target 

genes. The RNase domain is also responsible for the cleavage of other mRNAs, further 

contributing to the downregulation of protein translation during ER stress. After BiP 

release, ATF6 is translocated to the Golgi and cleaved by the proteases S1P and S2P, 

generating a functional fragment that induces the transcription of UPR genes. Parallelly, 

ERAD of misfolded proteins is enhanced: this mechanism involves the retrograde 

translocation of proteins out of the ER and their subsequent degradation by cytosolic 

26s proteasomes. The activation of all these pathways results in the attenuation of 

protein synthesis, the induction of ER chaperones to fold newly synthesized 

polypeptides and the degradation of misfolded proteins. However, if these mechanisms 

fail to suppress the induced ER stress, apoptotic cell death is triggered [221].    

     The principal mediator of the ER stress-related apoptosis is the C/EBP homologous 

protein (CHOP), also known as DNA-damage-inducible-gene 153 (GADD153). 

Upregulation of CHOP is achieved downstream of the PERK pathway, through ATF4 

modulation. CHOP induces cell death by promoting protein synthesis and oxidation in 

the stressed ER, via GADD34 and ERO1α activation, respectively. Moreover, Bcl-2 

expression is suppressed by CHOP, with subsequent disruption of the balance between 

pro- and anti-apoptotic proteins [222].  

     Although IRE1 cascade has been characterized as a primarily pro-survival pathway, it 

has also been implicated in apoptosis following prolonged ER stress. This is mainly 

achieved through interaction of IRE1 with the tumor necrosis factor receptor associated 

factor 2 (TRAF2) and subsequent induction of JNK-mediated cell death [222].  

     Caspase-4 is also a major player in ER stress. This caspase is bound to the ER 

membrane where it is kept in an inactive state; its activation has been shown to be 

regulated by either ER-localized Bax and Bak proteins or by calpains, after intracellular 

Ca2+ storage perturbation [220]. 

     It should be noted that ER stress is also often associated with cytoplasmic 

vacuolization and paraptosis induction [223].    
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     As mentioned above, several natural compounds have been shown to trigger both 

apoptosis and paraptosis in tumor cells by activating ER stress. In particular, 

thapsigargin, an irreversible SERCA inhibitor derived from the Mediterranean 

umbrelliferous plant T. garganica, and tunicamycin, an inhibitor of N-acetylglucosamine 

transferase originally isolated from S. lysosuperificus, have been investigated in 

preclinical settings [224,225]. Similarly, polyphenols, organosulfur compounds, 

terpenoids, saponins and alkaloids have shown promise as ER stress inducers in various 

tumor types, including PCa [226]. 

2.2.4. Autophagy 

     Autophagy is an evolutionarily conserved catabolic process that is used to deliver 

cytoplasmic material, such as damaged organelles and protein aggregates, to the 

lysosome for degradation. It is characterized by the formation of double-membrane 

vesicles, the autophagosomes, that fuse with lysosomes for cytoplasmic cargo recycling. 

It responds to a variety of cellular stresses, including not only organelle damage and 

abnormal protein accumulation but also nutrient deprivation and hypoxia [227,228]. In 

fact, in case of starvation, autophagy is activated to maintain a provision of proteins and 

other nutrients, thus promoting cell survival [229]; during hypoxia, autophagy is induced 

to alleviate the oxidative stress caused by low levels of oxygen [230,231]. 

     The mechanisms underlying the autophagic flux are regulated by a series of proteins. 

The mTOR pathway is associated with cell growth and cancer progression. mTOR 

consists of two complexes, mTORC1 and mTORC2, each of which displays distinct 

functions and localization [232-234]. Activated mTORC1 plays a crucial role in the 

phosphorylation of autophagy-related proteins (ATGs), thus suppressing autophagy. 

When mTORC1 is inhibited, such as in case of energy depletion or organelle damage, 

autophagy is stimulated. In particular, after mTORC1 inhibition, the Unc-51-like 

autophagy-activating kinase (ULK) complex is activated via dephosphorylation [235]. 

The activated ULK complex localizes to the phagophore and activates the class III PI3K 

[236], allowing beclin-1 to recruit different proteins implicated in the autophagosome 

maturation and elongation [237]. This process is mainly regulated by ATGs. ATG5–
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ATG12/ATG16L complexes recruit microtubule-associated protein 1 light chain 3 (LC3), 

which is converted to the active cytosolic isoform LC3 I by ATG4B and to LC3 II via 

interactions with phosphatidylethanolamine (PE), ATG3 and ATG7. LC3 II is located in 

the inner and outer membrane of the autophagosome, enabling it to bind to degraded 

substrates [238-240]. Mature autophagosomes then fuse with lysosomes to form 

autolysosomes, which selectively eliminate misfolded proteins and damaged organelles 

[241] (fig. 8). 

     The p62 protein, also called sequestosome 1 (SQSTM1), is a ubiquitin-binding scaffold 

protein, which is able to polymerize via an N-terminal PB1 domain and can interact with 

ubiquitinated proteins via the C-terminal UBA domain. It can also bind directly to LC3 

and GABARAP family proteins through a specific sequence motif. The protein is 

degraded during autophagy and plays a crucial role in linking ubiquitinated proteins to 

the autophagic machinery to promote their degradation in the lysosome [242]. 

     In cancer biology, autophagy plays dual roles in tumor promotion and suppression. 

For example, a reduced autophagic flux is unable to successfully degrade damaged 

organelles or proteins in oxidative-stressed cells, resulting in their malignant 

transformation. Moreover, BIF-1 proteins, well-known autophagy modulators related to 

beclin-1, have been found to be mutated or absent in different tumor types, including 

colorectal and gastric cancer [243-245]. Similarly, mutations of UVRAG proteins, 

established autophagy regulators, suppress the autophagic flux, leading to increased cell 

proliferation in colon cancer [246]. On the other hand, a high basal-level of autophagy 

is observed in several types of RAS-mutated tumors, such as pancreatic cancer [247]. 

Autophagy inhibition in these tumors suppresses cancer growth and progression [248]. 

     The dual role of autophagy is also reflected in cancer treatment. Several studies have 

revealed that cancer resistance to chemotherapy can be mediated by autophagy 

[249,250].  For example, in various cancer cells the efficacy of treatment with 5-

fluorouracil (5-FU) is restricted, due to the induction of protective autophagy [251-253]. 

In addition, in cisplatin-treated ovarian cancer cells autophagy contributes to drug 

resistance via modulation of the ERK pathway and overexpression of beclin-1 [254,255]. 

Similarly,         cisplatin         treatment         promotes         ATG7-mediated         protective  
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Fig. 8. The autophagic flux. 

autophagy in esophageal cancer [256,257]. On the contrary, some autophagy regulators, 

such as rapamycin, rapamycin water-soluble derivatives (everolimus and temsirolimus),  

chloroquine and hydroxychloroquine have shown promise in cancer therapy. Indeed, 

everolimus and temsirolimus, which inhibit mTORC1 and induce autophagy, have been 

approved by FDA for cancer treatment: while everolimus is used to treat breast cancer 

and progressive neuroendocrine tumors of pancreatic origin (PNET) [258], temsirolimus 

is used for the treatment of relapsed or refractory mantle-cell lymphoma in the 

European Union [259-261]. Similarly, preclinical studies have demonstrated that the 

autophagy inhibitors chloroquine and hydroxychloroquine can suppress bladder cancer 

and pancreatic adenocarcinoma growth [262,263]. As mentioned above, it should be 

noted that several nutraceuticals have been found to induce cancer cell death via 

autophagy [264]. 

2.2.5. Mitochondrial dysfunction 

     As reported above, mitochondria play a crucial role in both the apoptotic and 

paraptotic pathways. Moreover, they can be involved in both ER stress and autophagy. 

     The ER and mitochondria form a highly dynamic interconnected network implicated 

in the control of Ca2+ homeostasis. Ca2+ release from ER is regulated by ryanodine 



 
 

40 
 

receptors (RyRs) [265,266], the inositol 1,4,5-triphosphate receptor-gated channels 

(IP3Rs) and the translocon [267]. As discussed above, restocking of the ER with Ca2+ is 

executed by SERCA [268-270]. Ultimately, the Na+/Ca2+ exchanger and Ca2+ ATPase 

located on the plasma membrane participate to Ca2+ removal from the cell [271]. 

Mitochondria take up Ca2+ via the outer mitochondrial membrane voltage-dependent 

anion channel 1 (VDAC1). VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to 

the mitochondrial intermembrane space [272]. Intramitochondrial Ca2+ controls energy 

metabolism by enhancing the rate of NADH production through modulation of critical 

enzymes in the tricarboxylic acid cycle and fatty acid oxidation. However, once 

cytoplasmic and intramitochondrial Ca2+ rises above a certain threshold, as frequently 

observed in case of ER stress, the voltage- and Ca2+-dependent high-conductance 

channel in the inner membrane, known as the mitochondrial permeability transition 

pore (mPTP), opens, leading to cell death by apoptosis [273,274]. Similarly, cell Ca2+ 

overload has been associated with mitochondrial swelling and paraptotic cell death 

[223].  

     The selective degradation of mitochondria by autophagy is called mitophagy. It often 

occurs to eliminate stressed or damaged mitochondria. There are several pathways 

regulating mitophagy: so far, the PTEN-induced kinase 1 (PINK1)/Parkin pathway is the 

best characterized. PINK1 is a 64-kDa protein displaying a mitochondrial targeting 

sequence (MTS), which allows its recruitment to the mitochondria. In healthy organelles, 

it is imported through the outer membrane via the TOM complex and partially through 

the inner mitochondrial membrane via the TIM complex. The process leads to the 

protein cleavage into a 52-kDa fragment, which is then degraded by the mitochondrial 

proteases; this keeps the concentration of PINK1 in check in healthy mitochondria [275]. 

In stressed or damaged mitochondria, the inner mitochondrial membrane depolarizes. 

Since this membrane potential is necessary for the TIM-mediated protein import, PINK1 

is no longer transferred into the inner membrane in unhealthy organelles, and its 

concentration increases in the outer mitochondrial membrane. PINK1 can then recruit 

the cytosolic E3 ubiquitin ligase Parkin and activate it via phosphorylation at S65 [276-

278]. Parkin ubiquitylates proteins in the outer mitochondrial membrane [279], 
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particularly mitofusins 1 and 2 (Mfn1 and 2) [277]. The ubiquitylation of mitochondrial 

surface proteins brings in mitophagy initiating factors. In particular, Parkin promotes 

ubiquitin chain linkages on both K63 and K48. K48 ubiquitination initiates protein 

degradation, leading to passive mitochondrial degradation. K63 ubiquitination is 

thought to recruit the autophagy mediator LC3, which induces mitophagy.  

      It should be noted that mitochondrial impairment often leads to metabolic 

dysfunction and redox homeostasis alteration in the cell. Indeed, mitochondria play a 

key role in the regulation of bioenergetic metabolism by generating ATP through 

electron transport and oxidative phosphorylation (OXPHOS) in conjunction with the 

oxidation of metabolites by tricarboxylic acid (TCA) cycle and catabolism of fatty acids 

by β-oxidation. In addition, they are involved in the control of ROS production [280-284]. 

In this regard, ROS generation is often increased in cancer cells. This makes them more 

susceptible to further redox status alterations. Indeed, in cancer, ROS overproduction is 

known to be involved in both apoptosis and paraptosis, as well as in mTOR-mediated 

autophagy [285-288]. 

     Mitochondria can not only undergo swelling and autophagic degradation, but also 

fragmentation. In fact, they constantly undergo fusion and fission [289]. 

     Mitochondrial fusion is regulated by the pro-fusion proteins Mfn 1 and 2 and optic 

atrophy 1 (OPA1). Mfn 1 and 2 are large GTPases located on the outer mitochondrial 

membrane, while OPA1 is a dynamin-related GTPase that plays a crucial role in inner 

membrane fusion. Eight OPA1 isoforms exist, and they are obtained by alternative 

splicing and alternative processing at two cleavage sites located between the N-terminal 

transmembrane domain and the first heptad repeat. In normal conditions, these 

isoforms are constitutively cleaved by the intermembrane space AAA protease Yme1, so 

that the short and long forms of OPA1 (S- and L-OPA1) are generated [290]. In case of 

mitochondrial impairment, such as after treatment with the mitochondrial uncoupler 

CCCP, L-OPA1 is further cleaved by an inducible metalloprotease called OMA1. This 

cleavage leads to mitochondrial fragmentation by preventing mitochondrial fusion 

[291,292]. 
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     Similar to mitochondrial fusion, mitochondrial fission requires a dynamin-related 

GTPase known as Drp1. Drp1 is a cytosolic protein, but it can be recruited to the surface 

of mitochondria to trigger mitochondrial fission [293,289]. 

2.3. Tocotrienols and cancer 

     Vitamin E was discovered by Herbert Evans and Katharine Bishop in 1922 [294] and 

isolated by Evans and Gladys Emerson in 1935 [295]. Its hydrophobic components are 

divided into two groups: α-, β-, γ- and δ-tocopherols (TPs) and α-, β-, γ- and δ-

tocotrienols (TTs). The critical chemical structural difference between them is that the 

chromanol ring, common to both groups, is linked to a saturated isoprenoid side chain 

in TPs and to an unsaturated isoprenoid side chain in TTs. Moreover, each isoform of 

both TPs and TTs differs from others in the number and position of methyl groups on 

the chromanol ring: the α and β isomers are trimethylated, the γ isomers are 

dimethylated and the δ isomers are monomethylated (fig. 9). 

 

Fig. 9. Chemical structure of vitamin E derivatives. A. Tocopherols; B. Tocotrienols. 
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     The metabolism of TTs is still not clear. They are absorbed in the small intestine in the 

presence of bile salts and transported to body tissues through the blood after α‐TP 

transport protein-mediated sequestration into liver lipoproteins. However, TTs seem to 

have lower affinity than TPs for α‐TP transport protein, and various studies have pointed 

out that TPs can interfere with TTs benefits by lowering their intestinal absorption and 

increasing their catabolism in the liver [296,297]. Despite these observations, preclinical 

trials have reported high activity of these compounds after oral administration, without 

significant side effects and toxicity [298,299]. High bioavailability and safety of TTs were 

also demonstrated in healthy human subjects and patients with breast and pancreatic 

cancer [300-302]. 

     In nature, TTs are present in many plants, cereals, seeds, nuts and grains, as well as 

in the oils derived from them. They are particularly abundant in palm oil, which 

represents the main source of TTs and in particular of γ-TT [303], annatto (Bixa 

orellana L.) seeds, which contain about 150 mg δ‐TT/100 g dry seeds with no TPs [304], 

and rice bran, containing high levels of α- and γ-TT [305,306]. Other sources of TTs are 

wheat germ, grapefruit, hazelnuts, olive oil, sunflower oil and flaxseed oil [307,308]. 

     In recent years, TTs have emerged as one of the most effective class of natural 

compounds for preventing and ameliorating cardiovascular and neurodegenerative 

diseases, as well as hyperlipidemia, inflammation, diabetes and osteoporosis [309-312]. 

In addition, they have demonstrated promising potential as anti-cancer agents (fig. 10). 

2.3.1. Tocotrienols in prostate cancer 

     TTs were reported to exert anti-proliferative and pro-apoptotic effects in different 

PCa cell lines by targeting several signaling pathways, such as PI3K/AKT/mTOR, STAT, 

TFGβ receptor and NF‐κB cascades, as well as cyclins and the cell cycle inhibitors p27 

and p21 [313-317]. 

     It is known that cancer stem cells (CSCs) represent only a small subpopulation of 

cancer cells within a tumor mass. However, their self-renewal ability and their capacity 

to differentiate into the entire heterogeneous tumor cell bulk make them important 

therapeutic  targets.  Moreover,  they   appear  to  be  implicated  in  the  resistance  to  
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Fig. 10. Anti-cancer effects of tocotrienols. 

standard cancer treatments, also promoting tumor recurrence and metastasis [318]. It 

has been shown that γ‐TT significantly decreases the expression of CD133 and CD44 CSC 

markers in PC3 and DU145 castration‐resistant PCa cells, also suppressing their 

anchorage-independent growth and spheroidogenic ability. Moreover, γ‐TT 

pretreatment of PCa cells resulted in the inhibition of tumor initiation after their 

inoculation in nude mice. Finally, despite the high resistance of CD133‐positive PC3 cells 

to docetaxel treatment, they were as sensitive to γ‐TT as the CD133‐depleted population 

[319]. Similar studies were performed by Lee et al., who confirmed the γ‐TT ability to 

specifically target the CSC subpopulation in different PCa cell lines and mouse models, 

leading to a significant suppression of the proliferation of the castration‐resistant 

tumors [320]. 
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     Recent evidence suggests that also δ‐TT can inhibit the proliferation of prostate CSCs 

under hypoxic conditions, by specifically inactivating the HIF-1α cascade [321]. 

     In PCa, TTs were reported to potentiate the anti-tumor activity of lovastatin in 

vitro [322]. A combination treatment with δ‐TT and geranylgeraniol was also shown to 

synergistically suppress the viability of DU145 PCa cells, inducing a significant 

downregulation of the expression of HMG-CoA reductase, as well as an interesting 

reduction in membrane K-RAS protein levels [323]. 

2.1.1. Tocotrienols in other tumors 

Tocotrienols in breast cancer 

     γ‐TT was found to exert both anti-proliferative and pro-apoptotic activity in breast 

cancer cells. In particular, it was shown to reduce the levels of cyclin D1 and cyclin‐

dependent kinases (CDK) 2, 4 and 6 and to increase the expression of CDK inhibitors 

[324,325]; to suppress both the PI3K/Akt/mTOR and the Ras/Raf/MEK/ERK signaling 

pathways and to decrease c‐Myc levels [326]; to induce intrinsic apoptosis accompanied 

by cytochrome c release, mitochondrial membrane depolarization, caspase activation, 

DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage [327,328]; to 

trigger the extrinsic apoptotic pathway by activation of caspase-8  [329]. 

     δ‐TT was also demonstrated to exert potent anti-tumor effects in mammary cancer 

cells, by reducing proliferation through downregulation of the HMG‐CoA reductase 

activity and inhibition of cholesterol synthesis [330] and by inducing oxidative stress-

related mitochondrial apoptosis [331]. 

    The HER-2 receptor normally promotes breast cell proliferation. Amplification of this 

oncogene occurs in 30% of breast tumors, thus representing an important biomarker 

and target for therapy [332]. Alawin et al. demonstrated that HER-2 receptors and TTs 

specifically accumulate in breast cancer cell lipid raft microdomains. Moreover, they 

found that TTs profoundly alter the composition of the lipid rafts, with subsequent 

disruption of their integrity and inactivation (due to reduced dimerization and 

phosphorylation) of the associated HER-2 receptors and of the downstream signaling 

pathways [333]. 
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     Almost 70% of human breast cancers are estrogen-dependent and estrogen receptor-

positive. TTs were shown to promote the nuclear translocation of the anti-proliferative 

Estrogen Receptor (ER) β and to decrease the tumorigenic ERα expression [334]. On the 

other hand, Khallouki et al. suggested that δ‐TT can induce cytotoxic effects in breast 

cancer cells independently of their ER status [330]. 

     As illustrated above, different natural compounds were reported to induce ER stress- 

and autophagy-mediated death in cancer cells: among them, γ‐TT specifically triggered 

both of these pro-apoptotic pathways in breast cancer cells [335-339]. 

     In breast cancer, TTs exhibited both anti-metastatic and anti-angiogenic properties, 

associated with the inhibition of Met/hepatocyte growth factor receptor and 

Rac1/WAVE2 cascade and the downregulation of VEGF expression, respectively [340-

343]. 

     TTs were shown to specifically eliminate the breast CSCs subpopulation, alone or in 

combination with simvastatin [344,345]. 

     In +SA mammary tumor cells TTs treatment synergistically increased the anti-cancer 

activity of synthetic drugs, such as tyrosine kinase inhibitors (erlotinib and gefitinib), 

statins (simvastatin, mevastatin and lovastatin) and the COX-2 selective nonsteroidal 

anti-inflammatory agent celecoxib, through suppression of HERB2-4 receptors 

expression levels and inhibition of AKT and MAPK pathways [346-348]. Furthermore, in 

multidrug-resistant MCF-7/ADR cells γ-TT significantly reduced the expression of P-gp, 

leading to enhanced accumulation of doxorubicin in cells and subsequent G2/M cell 

cycle arrest and apoptosis [349]. Similar synergistic effects were shown by TTs when 

given in combination with several natural compounds: in murine malignant mammary 

epithelial cells, the co-treatment with sesamin, a lignan contained in sesame seeds and 

oil, not only improved TTs bioavailability by reducing their metabolic degradation but 

also exhibited a synergistic inhibitory effect on the EGF-dependent proliferative 

pathway [350-352]; the addition of a polyphenol, such EGCG or resveratrol, potentiated 

the γ-TT-induced downregulation of cyclin D1 and Bcl-2 expression in MCF-7 human 

breast cancer cells, and the triple combination of these compounds synergistically up-

regulated the expression of NAD(P)H Quinone Dehydrogenase 1 (NQO1), an enzyme 
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activated in case of redox imbalance [353]; a combination of TTs and oridonin caused a 

significant additive effect in decreasing +SA cell viability through suppression of 

AKT/mTOR signaling and elevation of apoptosis (caspase-3 and Bax/Bcl-2 ratio) and 

autophagy (Atg and Beclin-1) markers [354]. 

     It should be noted that also semisynthetic redox-silent TT oxazine derivatives were 

found to successfully inhibit breast tumor growth, both in vitro and in vivo [355-357]. In 

particular, they successfully counteracted the CoCl2-induced increase of HIF‐1α levels, 

with a parallel inactivation of the AKT/mTOR pathway and of its downstream targets 

p70S6K and eIF-4E1. In addition, TT oxazine derivative treatment resulted in a blockade 

of the CoCl2-mediated VEGF overexpression. 

     A five-year double‐blinded and placebo‐controlled clinical trial was conducted in 250 

women with early breast cancer to investigate the TTs adjuvant potentials when given 

in combination with tamoxifen [358]. The patients, 40-60 years old, with either stage I 

or II estrogen receptor-positive breast cancer, were non-randomly assigned to two 

groups: the treatment group was administered 400mg/day TRF plus tamoxifen while the 

control group was given placebo plus tamoxifen. The 5‐year breast cancer‐specific 

survival was 98.3% in the treatment group and 95% in the control group, while the 5‐

year disease‐free survival was 86.7% and 83.3%, respectively. The mortality risk was 60% 

lower in the TRF group versus controls but it was not statistically significant, probably as 

a result of the small sample size of the experiment. 

Tocotrienols in cervical cancer 

     TTs were reported to inhibit HeLa cervical cancer cell proliferation through 

downregulation of the expression of cell cycle-related proteins, such as cyclin D3, p16 

and CDK6. Moreover, the induction of HeLa cell death by TTs appeared to be associated 

with the upregulation of Interleukin-6 (IL-6) [359]. 

     Comitato et al. demonstrated that γ- and δ-TT induce apoptosis in cervical cancer 

cells, by triggering molecular signals associated with ER stress, such as IRE-1α 

phosphorylation, XBP-1 alternative splicing and CHOP enhanced transcription [360]. 

Furthermore, they observed significant Ca2+ release from the ER membranes to the 
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cytoplasm, as well as an interesting modulation of isoprenoid, sterol and steroid 

biosynthesis and metabolism, with SCD, LPIN and SREBPF1-2 downregulation. 

     γ‐TT was found to specifically target Src homology 2 domain-containing phosphatase 

2 (SHP2) and the RAS/ERK signaling pathway in spheres from cervical cancer, inhibiting 

the CSC subpopulation growth [361]. 

Tocotrienols in colon cancer 

     In RKO human colon cancer cells, a TRF preparation triggered intrinsic apoptosis 

correlated with p53 and caspases activation, Bax/Bcl‐2 ratio modulation, chromatin 

condensation, DNA fragmentation and cell membrane shrinkage [362]. Moreover, γ-TT 

was reported to profoundly alter sphingolipid metabolism in HCT-116 cells through 

suppression of dihydroceramide desaturase activity and activation of sphingomyelin 

hydrolysis, ultimately leading to autophagy and apoptosis [363]. 

     It has been recently demonstrated that TTs can trigger paraptosis in SW620 and HCT-

8 human colon carcinoma cells through inhibition of the Wnt signaling pathway and 

downregulation of c-jun, cyclin D1 and β-catenin levels [364,365]. 

     A synergistic antitumor activity of γ‐TT and different synthetic and natural anti-cancer 

agents was observed: the co-treatment with capecitabine synergistically decreased Ki-

67, cyclin D1, NF-κB, CXCR4 and MMP-9 expression levels in a nude mouse xenograft 

model of human colorectal cancer [366]; addition of atorvastatin to tocotrienol 

treatment enhanced the disruption of RhoA signal transduction in HT29 and HCT116 

human colon cancer cells, and a triple combination with celecoxib resulted in a 

synergistic induction of G0/G1 phase cell cycle arrest and apoptosis [367]; 6-gingerol, 

the bioactive constituent of ginger, potentiated the γ‐TT pro-apoptotic activity in HT29 

and SW837 human colorectal cancer cell lines, inducing caspase-3 activation and 

significant morphological changes, such as cell shrinkage and pyknosis [368]. 

     δ‐TT was shown to suppress hypoxia-induced VEGF, IL-8 and COX-2 synthesis in DLD-

1 human colorectal adenocarcinoma cells [369], as well as to inhibit tube formation, 

migration and adhesion of HUVEC cells grown in DLD-1 conditioned medium [370]. 

These results were also confirmed by in vivo experiments [370,371]. 
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     Rice bran is not only enriched in δ-TT but also in ferulic acid. Eitsuka et 

al. demonstrated that co-treatment with both these natural compounds significantly 

increased the intracellular concentration and anti-tumor activity of δ-TT in DLD-1 cells, 

suggesting that ferulic acid improves the bioavailability as well as the therapeutic 

effectiveness of δ-TT [372]. In particular, this combination treatment was shown to 

synergistically down-regulate the expression of Human Telomerase Reverse 

Transcriptase (hTERT), the catalytic subunit of telomerase, thus suppressing its 

proliferative activity. 

Tocotrienols in gastric cancer 

     γ‐TT was first demonstrated to induce intrinsic apoptosis in human gastric cancer cells 

through the suppression of the MAPK signaling [373,374]. 

     γ‐TT was also found to exert potent anti-metastatic and anti-angiogenic activity in 

gastric cancer. In particular, it inhibited cell migration and invasion capability, by 

reducing the expression of the matrix metalloproteinases MMP‐2 and MMP‐9 and by 

increasing the levels of tissue inhibitor of metalloproteinase‐1 (TIMP‐1) and TIMP‐2 

[375], and significantly counteracted the hypoxia-mediated HIF‐1α overexpression and 

VEGF synthesis by modulation of the ERK signaling pathway [376]. Furthermore, it 

significantly decreased the expression of VEGFR-2 in HUVEC cells grown in a conditioned 

medium of gastric adenocarcinoma cells [377]. 

     In addition to its pro-apoptotic, anti-metastatic and anti-angiogenic effects, γ‐TT was 

reported to enhance the antitumor activity of capecitabine in human gastric cancer cell 

lines, as well as in nude mice xenografted with human gastric cancer cells [378]. 

Tocotrienols in lung cancer 

     MicroRNAs (miRNAs) are endogenous, ~22 nucleotides, non-coding RNAs that play 

key regulatory roles in animals and plants by inducing transcriptional silencing through 

mRNAs cleavage or translational arrest. miRNAs may function as either oncogenes or 

tumor suppressors (oncomirs), depending on the specific cancer type [379]. Ji et al. 

observed that δ‐TT could inhibit nonsmall cancer cell growth and invasiveness through 

upregulation of miR-34a, which resulted in decreased expression of Notch-1 and its 
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downstream targets, such as Hes-1, cyclin D1, survivin and Bcl-2 [380]. Moreover, they 

found that δ‐TT exhibited a significant synergistic anti-cancer effect when given in 

combination with cisplatin. This was related to a reduction of the NF-κB DNA binding 

activity and to an increase in cleaved caspase-3 and PARP expression [381]. 

     TTs were also shown to potentiate lovastatin-mediated cell growth arrest in the A549 

human lung carcinoma cell line [382]. 

Tocotrienols in pancreatic cancer 

     Anti-proliferative and pro-apoptotic effects of δ‐TT, mediated by p27Kip1-dependent 

cell cycle arrest [383], inhibition of HMG-CoA reductase activity [384] or HER2 [385] and 

EGR-1/Bax pathway activation [386], were shown in pancreatic cancer cells. Similar 

results were obtained after γ‐TT treatment [387]. 

     TTs significantly suppressed the invasive behavior through downregulation of specific 

epithelial-mesenchymal transition (EMT) biomarkers (such as N-cadherin, vimentin and 

MMP9) in L3.6pl and Mia PaCa-2 cells, both in vitro and in vivo [388]. 

     δ‐TT successfully targeted and eliminated pancreatic ductal adenocarcinoma (PDAC) 

stem‐like cells, decreasing the expression of CSC self-renewal-promoting transcription 

factors, Oct4 and Sox2, and delaying tumor onset in mice [388]. 

     Promising results were reported in pancreatic cancer cells treated with polyethylene 

glycol (350 and 1000) succinate derivatives of TTs [389]. In addition, in vitro studies 

pointed out that entrapment of gemcitabine/γ-tocotrienol or paclitaxel/γ-tocotrienol 

lipid conjugates into nanoemulsions significantly enhanced their anti-tumor effects 

when compared to the free drug [390,391]. 

     Springett et al. investigated δ‐TT efficacy and safety in patients with PDAC [302]. In 

this phase I preoperative clinical trial, 25 patients were given crescent oral doses of δ‐

TT (from 200 to 3200 mg) daily for 13 days before surgery and one dose on the day of 

surgery. Except for one case of drug-related grade 1 diarrhea registered at the higher 

daily dose level, the treatment was well tolerated, with no dose-limiting toxicity. δ‐TT 

exhibited an effective half-life of about 4 hours, rapidly reaching bioactive levels in blood 

and inducing apoptosis-associated caspase-3 cleavage in cancer cells. In particular, the 

most effective δ‐TT dose was between 400 and 1600 mg. 



 
 

51 
 

Tocotrienols in skin cancer 

     We recently demonstrated that δ‐TT induces ER-stress-mediated apoptosis in human 

melanoma cells in vitro and in tumors in vivo, through the activation of the PERK/p-

eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches [392]. Moreover, we 

observed that, unlike vemurafenib, it can selectively target and eliminate the melanoma 

ABCG2-positive CSC subpopulation, successfully inducing disaggregation of A375 

melanospheres and reducing the spheroid formation ability of sphere-derived cells 

[393]. 

     γ‐TT also exhibited apoptosis-inducing and invasion-suppressing activity in malignant 

melanoma cells. In particular, it was reported to inhibit NF-κB, EGF-R and Id family 

proteins, to activate the JNK signaling pathway, to decrease different mesenchymal 

markers levels and to restore E-cadherin and γ-catenin expression [394]. 

     The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which 

controls many biological and physiological processes in response to aromatic 

hydrocarbons, such as cellular proliferation and differentiation, tissue development, 

immune and toxic response and skin barrier homeostasis. Upon ligand binding to AhR, 

the activated complex translocates to the cell nucleus, where it forms a functional 

heterodimer with the AhR nuclear translocator (ARNT), with subsequent interaction 

with DNA and transcriptional activation of several target genes (in particular p21 and 

Bax) by binding to the xenobiotic responsive element [395]. Yamashita et 

al. demonstrated that γ‐TT induces AhR expression in a dose-dependent manner in B16 

mouse melanoma cells and enhances its sensitivity to baicalein, a flavone particularly 

abundant in the roots of Scutellaria baicalensis and Scutellaria lateriflora, which can 

inhibit tumor cell growth by acting as a ligand of AhR and thus upregulating p21 and Bax 

levels [396]. 

     Synergistic antitumor activity of TTs and lovastatin was evidenced in murine B16 

melanoma cells, as well as in C57BL6 mice bearing B16 xenografts [382]. 

     Improved anti-proliferative effectiveness against A431 and SCC-4 human 

keratinocyte cancer cells in vitro was shown by a hybrid-nanoemulsified TTs delivery 

system and it was associated with better yield in physicochemical parameters, as well 
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as stability in chemical and structural composition [397]. Interestingly, an orally 

administered γ-TT nano-formulation also exhibited enhanced radioprotection compared 

to γ-TT alone in CD2F1 mice exposed to total body γ radiation [398]. 

     Transferrin receptors are frequently expressed in tumor cells, thus representing a 

potential target for the delivery of anti-cancer drugs into the tumor mass. Karim et 

al. reported that α‐TT entrapped in transferrin‐bearing multilamellar vesicles possesses 

potent growth-suppressing activity in A431 human epidermoid carcinoma cancer cells 

and B16-F10 murine melanoma cells. Moreover, the intravenous administration of these 

vesicles to mice bearing A431 and B16-F10 tumors successfully inhibited cancer 

progression, without visible side effects [399]. 
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AIMS 
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     PCa is the most commonly diagnosed malignancy and the second leading cause of 

cancer-related deaths among men in Western countries [400]. This pathology initially 

responds to androgen deprivation therapy, but often progresses into CRPC, a condition 

where cancer cells acquire the ability to escape cell death and become resistant to 

current therapies, particularly to docetaxel-based chemotherapy [401]. Thus, new 

therapeutic approaches for this disease are urgently needed. 

     In the last decade, the interest in natural compounds has increased, because of their 

anti-tumor properties and their lesser toxicity with respect to standard therapies. TTs, 

vitamin E components, were reported to exert significant anti-cancer activities in 

different tumors. Thus, the aim of this work was to assess the effects of δ-tocotrienol 

(δ-TT) on the viability of human CRPC cell lines (PC3 and DU145), together with the 

molecular mechanisms associated with its activity. 

     Apoptosis is commonly induced by natural products, including TTs, in a variety of 

tumors [316,327-329,360,373,374,384-387,392]. Moreover, δ-TT has been recently 

demonstrated to trigger paraptosis, a non-conventional type of programmed cell death, 

in human colon cancer cells [363-364]. For these reasons, the first task of this project 

was to assess the role of apoptotic and paraptotic cell death in the δ-TT-mediated 

cytotoxicity in CRPC cells. 

     ER stress and autophagy are implicated in the pathogenesis of various diseases, 

including cancer [402, 403]. Emerging evidence indicates that pharmacological targeting 

of these two molecular pathways may represent an effective therapeutic strategy to 

treat tumors [402,404]. Different natural compounds have been shown to induce ER 

stress- and autophagy-mediated cell death in cancer [220, 405]. As second task of this 

project, we investigated the involvement of ER stress and autophagy in the δ-TT anti-

tumor activity in CRPC. 

     Mitochondria play a critical role in the generation of metabolic energy in eukaryotic 

cells, and they are also involved in the regulation of redox homeostasis. In addition, they 

are known to be implicated in both apoptosis and paraptosis, as well as in ER stress and 

autophagy. The last task of this project was then focused on the clarification of the 

molecular mechanisms underlying the pro-death pathways activated in δ-TT-treated 
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CRPC cells, with special regard to mitochondrial functional and structural impairment 

(i.e., metabolic dysfunction, mitochondrial dynamics, Ca2+ overload and ROS 

production). 
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MATERIALS AND METHODS 
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Chemicals 

     -TT was purified from a commercial extract of Annatto seeds (Bixa orellana) (kindly 

provided by American River Nutrition Inc., Hadley, MA, USA), as previously described 

[406].  

   The following primary antibodies were utilized: caspase 3 (9656), cleaved caspase 3 

(9664), PARP (9542), BiP (3177), eIF2α (5324), p‐eIF2α (3398), ATF4 (11815), CHOP 

(2895), IRE1α (3294), PDI (3501)AMPK (5832), p-AMPK (5832), OPA1 (80471), MFN2 

(9482), Drp1 (14647), JNK (9252), p-JNK (4668), P38 (8690), p-P38 (4511), AKT (2938), p-

AKT (9271), mTOR (2983), p-mTOR (5536), PINK (6946) (all from Cell Signaling 

Technology Inc., Danvers, MA, USA), cytochrome c (sc‐13560) (Santa Cruz Biotechnology 

Inc, Santa Cruz, CA, USA) LC3 (L8918) and -tubulin (T6199) (both from Sigma-Aldrich, 

Milano, Italy), p62/SQSTM1 (PA5-20839) (from Thermo Fisher Scientific, Rodano, 

Milano, Italy), Total OXPHOS (ab110411) (from Abcam, Cambridge, UK). Most of the 

antibodies were utilized at the concentration 1:1000; cleaved caspase 3 at 1:500 and 

LC3 at 1:2500. 

     Horseradish-peroxidase-conjugated secondary antibody and enhanced 

chemiluminescence reagents were from Cyanagen (Bologna, Italy).  

     Alexa Fluor 488 and 594 secondary antibodies were from Thermo Fisher Scientific.  

     Z‐VAD‐FMK (the pan‐caspase inhibitor; FMK001) was from R&D System Inc 

(Minneapolis, MN). The ER stress inhibitors salubrinal (Sal) and 4‐PBA (4‐

phenylbutyrate), the autophagy inhibitors CQ (chloroquine) and Baf (bafilomycin), the 

translation inhibitor cycloheximide, and analytical grade solvents were from Sigma‐

Aldrich; 3‐MA (3‐methyladenine) was from Selleckchem (Munich, Germany).  DIDS 

(disodium 4,4′-diisothiocyanostilbene-2,2′-disulfonate), the blocker of the 

mitochondrial Ca2+ overload, NAC (N-acetyl-L-cysteine), the known ROS scavenger, and 

dichlorofluorescin (2',7'-dichlorofluorescin diacetate, DCFDA), the oxidant-sensing 

probe for the detection of ROS levels, were from Sigma-Aldrich. 

Cell lines and cell culture 
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     Normal prostate epithelial RWPE‐1 (provided by Dr N. Zaffaroni; IRCCS, National 

Institute of Cancer, Milano, Italy) and cancer (DU145 and PC3) cell lines were from 

American Type Culture Collection (ATCC, Manassas, VA, USA). RWPE‐1 cells were 

cultured in keratinocyte‐SFM medium supplemented with Bovine Pituitary Extracts and 

EGF (2.5 μM) (Thermo Fisher Scientific), DU145 and PC3 cells in RPMI medium 

supplemented with FBS (7.5% and 5% respectively), glutamine and antibiotics. Cells 

were cultured in humidified atmosphere of 5% CO2/95% air at 37°C. Original stocks of 

cells were stored frozen in liquid nitrogen; after resuscitation, cells were kept in culture 

for no more than 10-12 weeks. Cells were detached through trypsin-EDTA solution and 

passaged once/week. Cell lines were recently authenticated by Short Tandem Repeat 

(STR) analysis as described in ANSI Standard (ASN-0002) by ATCC Standards 

Development Organization (SDO). 

MTT viability assay 

     Cells were seeded at a density of 3 × 104 cells/well in 24‐well plates for 24 hours and 

then exposed to the specific compounds. The medium was then changed with MTT 

solution (0.5 mg/ml) in RPMI without phenol red and FBS; cells were incubated at 37 °C 

for 15-45 min and violet precipitate was dissolved with isopropanol. Absorbance at 550 

nm was measured through an EnSpire Multimode Plate reader (PerkinElmer, Milano, 

Italy). 

Trypan blue exclusion assay 

     Cells were plated (5 × 104 cells/dish) in 6‐cm dishes. After 48 hours, cells were treated 

with δ‐TT (5‐20 μg/mL, 24 hours). Adherent (viable) and floating (dead) cells were 

harvested, stained with Trypan blue 0.4% (1:1 v/v) and counted by Luna automated cell 

counter (Logos Biosystems, Annandale, VA, USA). 

Colony formation assay 

     Cells were seeded (100‐250 cells/well, depending on the cell type) in 6‐well plates. 

After each treatment, a colony formation assay was performed to assess dimensions 
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and numbers of colonies. Colonies were fixed with 70% methanol and stained with 

Crystal Violet 0.15%. Images of stained colonies were captured by a Nikon photo camera. 

Western blot assay 

     Cells were seeded at 5 × 105 cells/dish in 10‐cm dishes. After each treatment, cells 

were lysed in RIPA buffer; protein preparations (15‐40 μg) were resolved on SDS‐PAGE 

and transferred to nitrocellulose (or PVDF for the Western blot of LC3) membranes. 

Membranes were incubated with the specific primary antibodies. Detection was done 

using horseradish peroxidase‐conjugated secondary antibodies and enhanced 

chemiluminescence (Westar Etac Ultra 2.0, XLS075,0100; Cyanagen Srl). α-Tubulin was 

utilized as a loading control. 

Immunofluorescence assay 

     Cells were seeded at 3 × 104 cells/well in 24‐well plates on polylysine‐coated 13‐mm 

coverslips for 48 hours before treatments. After each treatment, cells were fixed and 

stained with the specific primary antibodies, followed by secondary antibodies. Labelled 

cells were examined under a Zeiss Axiovert 200 microscope with a 63 × 1.4 objective 

lens linked to a Coolsnap Es CCD camera (Roper Scientific‐Crisel Instruments, Roma, 

Italy). 

Morphological analysis 

     Cells were seeded at 3 or 4 × 104 cells/dish in 6‐cm dishes, respectively, and treated 

with δ‐TT. Cytoplasmic vacuolization was analyzed by light microscopy from different 

fields under a Zeiss Axiovert 200 microscope with a 20 or 32 × 0.4 objective lens linked 

to a Coolsnap Es CCD camera (Roper Scientific‐Crisel Instruments).  

     For TEM analysis, cell pellets were fixed overnight in a solution containing 2% of 

paraformaldehyde and 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.3). 

Samples were post‐fixed in 1% osmium tetroxide in cacodylate buffer at 0°C for 

90 minutes, washed, dehydrated and embedded in Epon‐Araldite resin. Ultrathin 
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sections were cut by a Leica Supernova ultramicrotome (Reichert Ultracut E) and stained 

with lead citrate. TEM was performed with a Zeiss EM10 electron microscope. 

Flow cytometry analysis 

     After the indicated treatments, flow cytometry analysis was utilized to analyze: 

mitochondrial activity (using the fluorescent Mitotracker Orange CMTMRos dye; 

ThermoFisher Scientific);  cytosolic and mitochondrial Ca2+ levels (after staining the cells 

with  the Fluo-3 AM and Rhod-2 AM fluorescent probes, respectively; Invitrogen Life 

Technologies, Monza, Italy); intracellular ROS levels (using the fluorescent probe 

dichlorofluorescin, DCFDA; Invitrogen Life Technologies). The flow cytometry analyses 

were performed with a Novocyte3000 instrument (ACEA Biosciences, San Diego, CA). 

Data were analyzed with Novoexpress software.  

Oxygen consumption 

   The analysis of OCR (oxygen consumption rate) on whole cells after -TT treatments 

was performed using a Clark oxygen electrode (DW1 electrode chamber, Hansatech 

Instruments Ltd, Norfolk, UK), as previously described [407]. DU145 and PC3 cells were 

rinsed in pre-warmed (37 °C) PBS and suspended in coupled respiration buffer (2% free-

fatty acid BSA, 25 mM D-glucose, 1 mM Na-pyruvate, 40 μg/ml digitonin) or electron 

flow buffer (2% free-fatty acid BSA, 2 mM malate, 10 mM Na-pyruvate, 40 μg/ml 

digitonin, 4 μM carbonyl cyanide m-chlorophenyl hydrazine, CCCP). Then, samples were 

transferred to the electrode chamber for the measurement of OCR. After the 

measurement of basal respiration, uncoupled and maximal respiration were analyzed 

by adding oligomycin (10 μM) and CCCP (10 μM), respectively. 

 

ATP measurement 

   The effects of -TT treatments on ATP production in PC3 and DU145 cells were 

investigated using a specific ATP colorimetric/fluorimetric assay kit (GeneTex, Alton 

Pkwy Irvine, CA, USA). Luminescence was analyzed to quantify ATP production. 
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Statistical analysis 

     Statistical analysis was performed with a statistic package (GraphPad Prism5, 

GraphPad Software San Diego, CA, USA). Data are represented as the mean ± SEM of 

three‐four independent experiments. Differences between groups were assessed by t-

test or one‐way analysis of variance (ANOVA) followed by Dunnet's or Bonferroni's test. 

A P value < 0.05 was considered statistically significant. 
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RESULTS 
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δ‐TT reduces cell viability and exerts a cytotoxic effect in prostate cancer 

cells  

     DU145 and PC3 or normal RWPE‐1 prostate epithelial cells were treated with δ‐TT (5‐

20 μg/mL, 24 hours); cell viability was measured (MTT assay). δ‐TT decreased the 

number of viable CRPC cells in a dose‐dependent way being significantly effective at 10‐

20 μg/mL. The IC50 values were 2.91 × 10−5 M and 3.22 × 10−5 M for DU145 and PC3 

cells, respectively. The same treatment affected the growth of RWPE‐1 cells only slightly 

and at the highest dose (20 μg/mL; Figure 1A). CRPC cells were treated with δ‐TT (5‐20 

μg/mL, 24 hours), then dying (floating) and living (adherent) cells were harvested, 

stained with Trypan blue and counted. In both cell lines, δ‐TT significantly and dose‐

dependently decreased the number of viable cells and increased the number of dead 

cells (Figure 1B). To obtain growth curve kinetics beyond 24 hours, CRPC cells were 

treated with δ‐TT (15 μg/mL, 36‐72 hours); cell viability was then measured. δ‐TT 

significantly and dose‐dependently decreased the number of viable cells at each time 

point (Figure 1C), confirming results reported in Figure 1A. The cytotoxic activity of δ‐TT 

was investigated by colony formation assay. CRPC cells were treated with δ‐TT (15 

μg/mL, 48 hours) and left to grow for 11‐12 days in the absence of the treatment, 

according to the cell line‐specific proliferation rate. We analyzed (a) the ability of the 

cells to form colonies (dimensions of colonies) and (b) the survival of colony‐forming 

cells (number of colonies). We observed that untreated cells grew forming colonies 

while none of δ‐ TT‐treated cells survived to the treatment; moreover, the ability of the 

cells to form colonies was prevented by the treatment, supporting a cytotoxic effect of 

δ‐TT (Figure 1D). 
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FIGURE 1. δ‐TT decreases cell viability and exerts a cytotoxic effect on DU145 and PC3 prostate cancer cells. A, 

RWPE‐1 normal epithelial prostate cells and DU145 and PC3 prostate cancer (PCa) cells were treated with δ‐TT (5‐20 

μg/mL) for 24 h. Cell viability was then evaluated by MTT assay. The IC50 values were 2.91 × 10−5 M and 3.22 × 10−5 

M for DU145 and PC3 cells, respectively. B, PCa cells were treated with δ‐TT (5‐20 μg/mL) for 24 h. Total, live and 

dead cells were evaluated by Trypan blue exclusion assay. C, DU145 and PC3 cancer cells were treated with δ‐TT (15 

μg/mL) for 36‐72 h. Cell viability was then evaluated by MTT assay. D, PCa cells were treated with δ‐TT (15 μg/mL) for 

48 h and then, after withdrawal of the treatment, were left to grow for 11‐12 d, dependently on the cell line‐specific 

proliferation rate. A colony formation assay was performed to evaluate the ability of the cells to form proliferating 

colonies (dimensions of colonies) and the survival of colony‐forming cells (number of colonies). Each experiment was 

repeated three times. Data in A‐C represent mean values ± SEM and were analyzed by Dunnet's test after one‐way 

analysis of variance. *P < 0.05 vs 0, controls (vehicle). 
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δ‐TT triggers apoptosis in prostate cancer cells  

     DU145 and PC3 cells were treated with δ‐TT (5‐20 μg/mL, 24 hours); the levels of 

active (cleaved) caspase 3 and PARP were increased by δ‐TT treatment (15 and 20 

μg/mL) in both cell lines (Figure 2A, left panels). Moreover, active caspase 3 and PARP 

levels increased in both cell lines at 18‐24 h of treatment (15 μg/mL) (Figure 2A, right 

panels). Immunofluorescence studies were performed to confirm the involvement of 

intrinsic apoptosis in the activity of δ‐TT (15 μg/ mL, 18 hours). It was observed that, 

after treatment, cytochrome c was diffused in the cytosol and no overlapping with 

mitochondria could be observed demonstrating its release from mitochondria (Figure 

2B). CRPC cells were treated with Z‐VAD‐FMK, the pan‐caspase inhibitor (50 μM, 4 

hours) before the treatment with δ‐TT (15 μg/mL, 24 hours). Cell viability was 

significantly reduced by δ‐TT. Z‐VAD‐ FMK, given alone, did not modify cell viability; 

however, pretreament of both cell lines with Z‐VAD‐FMK significantly (even if not 

completely) reverted the anti-tumor effect of δ‐TT (Figure 2C). 
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FIGURE 2. δ‐TT triggers apoptosis in DU145 and PC3 prostate cancer cells. A, DU145 and PC3 cells were treated with 

δ‐TT (5‐20 μg/mL) for 24 h (left panels) or with δ‐TT (15 μg/mL) for 6‐24 h (right panels). Western blot analysis was 

carried out to analyze the expression levels of cleaved caspase 3 and PARP. Tubulin expression was evaluated as a 

loading control. 0 and C, controls (vehicle). One representative of three different experiments, for each of the analyses 

performed, is shown. B, DU145 and PC3 cells were treated with δ‐TT (15 μg/mL) for 18 h; the intracellular localization 

of cytochrome c was then evaluated by immunofluorescence analysis. One representative of three experiments 

performed is shown. Scale bars are 20 μm. The arrow indicates the cytochrome c‐mitochondrial colocalization in 

controls cells. C, to confirm the involvement of apoptosis in the anti-tumor activity of δ‐TT, DU145 and PC3 cells were 

treated with the pan‐caspase inhibitor Z‐VAD‐FMK (50 μM) for 4 h before the tocotrienol (15 μg/mL for 24 h). Cell 

viability was then evaluated by MTT assay. Each experiment was repeated three times. Data represent mean values 

± SEM and were analyzed by Bonferroni's test after one‐way analysis of variance. *P < 0.05 vs controls (vehicle). #P < 

0.05 vs δ‐TT‐treated cells. 
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δ‐TT triggers ER stress in prostate cancer cells  

     CRPC cells were treated with δ‐TT (15 μg/mL, 1‐24 hours). The expression of ER stress 

markers (BiP, eIF2α, p‐eIF2α, IRE1α, PDI) and markers of ER stress‐related apoptosis 

(ATF4 and CHOP) were analyzed by Western blotting. δ‐TT increased the levels of BiP 

(18‐24 hours) in DU145 and PC3 cells. The levels of peIF2α (but not eIF2α) increased in 

DU145 (6‐18 hours) and PC3 cells (1‐24 hours). The expression of IRE1α was increased 

at 18‐24 hours in DU145 and at 1‐24 hours in PC3 cells. On the other hand, the levels of 

the chaperone protein PDI was unaffected in both cell lines. Finally, ATF4 levels were 

increased at 18‐24 hours in DU145 cells and at 6‐24 hours in PC3 cells, while those of 

CHOP increased at 18‐24 hours in both CRPC cell lines (Figure 3A). The intracellular 

localization of the transcription factors involved in the ER stress‐mediated apoptosis was 

analyzed in CRPC cells treated with δ‐TT (15 μg/mL, 18 hours) by immunofluorescence. 

In untreated cells, the levels of ATF4 and CHOP were almost undetectable in both cells 

lines (confirming the results obtained by Western blot). δ‐TT treatment triggered the 

expression of these transcription factors together with their nuclear localization 

(overlapping staining between TRITC‐conjugated antibodies and DAPI; Figure 3B). To 

confirm the specificity of the effects of δ‐TT on ER stress‐related proteins, CRPC cells 

were treated with the tocotrienol (15 μg/mL, 24 hours), either in the absence or in the 

presence of two ER stress inhibitors: salubrinal (Sal, 20 μM) or 4‐PBA (2 mM), for 4 and 

1 hours, respectively. Figure 3C confirms that δ‐TT induces the expression of CHOP and 

ATF4 (as in Figure 3A); pretreatment with both ER stress inhibitors significantly reduced 

the expression of both proteins. These results support that δ‐TT triggers ER stress in 

CRPC cells.  
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FIGURE 3. δ‐TT triggers ER stress in DU145 and PC3 prostate cancer cells. A, DU145 and PC3 cells were treated with 

δ‐TT (15 μg/mL) for 1‐24 h. Western blot analysis was performed to investigate the expression levels of ER stress‐

related proteins (BiP, eIF2α, p‐ eIF2α, ATF4, CHOP, IRE1α, PDI). Tubulin expression was evaluated as a loading control. 

B, DU145 and PC3 cells were treated with δ‐TT (15 μg/mL) for 18 h. The expression levels and intracellular localization 

of the key transcription factors involved in the ER stress‐mediated apoptosis (ATF4 and CHOP) were evaluated by 

immunofluorescence analysis. C, controls (vehicle). Scale bars are 20 μm. C, CRPC cells were pretreated with the ER 

stress inhibitors salubrinal (Sal; 20 μM) or 4‐PBA (2 mM), for 4 and 1 h, respectively, before treatment with δ‐TT (15 

μg/mL) for 24 h. The effects of the treatments were analyzed on CHOP and ATF expression levels by Western blot. 

Tubulin expression was evaluated as a loading control. One representative of three different experiments performed 

is shown. 
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ER stress mediates the anti-tumor activity of δ‐TT in prostate cancer cells 

     Data from the literature support that ER stress is involved in the anti-tumor activity 

of δ‐TT in cancer cells. To confirm this hypothesis in PCa cells, DU145 and PC3 cells were 

treated with two ER stress inhibitors: salubrinal (20 μM) or 4‐PBA (2 mM), for 4 and 1 

hours, respectively, before δ‐TT treatment (15 μg/mL, 24 hours). δ‐TT markedly 

increased the expression levels of cleaved caspase 3 and PARP, confirming the results 

reported in Figure 2A. Salubrinal and 4‐PBA, given alone, did not modify the expression 

of these proteins; however, they significantly counteracted the effects of the tocotrienol 

on the expression of the cleaved forms of both caspase 3 and PARP (Figure 4A). Figure 

4B shows that cell viability was significantly suppressed by δ‐TT treatment. Salubrinal 

and 4‐PBA alone did not influence the viability of cancer cells; however, they significantly 

reverted (although not completely) the cytotoxic activity of δ‐TT, in both cell lines. These 

results demonstrate that ER stress is involved in the anti‐cancer activity of δ‐TT.  
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FIGURE 4. ER stress mediates the pro-apoptotic activity of δ‐TT in DU145 and PC3 prostate cancer cells. DU145 and 

PC3 cells were pretreated with the ER stress inhibitors salubrinal (Sal; 20 μM) or 4‐PBA (2 mM), for 4 and 1 h, 

respectively, before treatment with δ‐TT (15 μg/mL) for 24 h. A, the expression levels of cleaved caspase 3 and PARP 

were evaluated by Western blot analysis. Tubulin expression was evaluated as a loading control. One representative 

of three different experiments performed is shown. B, cell viability was assessed by MTT assay. Each experiment was 

repeated three times. Data represent mean values ± SEM and were analyzed by Bonferroni's test after one‐way 

analysis of variance. *P < 0.05 vs controls (vehicle). #P < 0.05 vs δ‐TT‐treated cells. 
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δ‐TT triggers autophagy in PC3 prostate cancer cells  

     To assess whether δ‐TT might trigger the autophagic pathway in CRPC cells, DU145 

and PC3 cells were treated with δ‐TT (15 μg/ mL, 24 hours). We demonstrated that the 

tocotrienol markedly increases the expression levels of the autophagy‐related proteins 

LC3‐II (increased LC3‐II/LC3‐I ratio) and SQSTM1/p62 in PC3 cells (at 6‐24 and 1‐24 

hours, respectively) but not in DU145 cells (Figure 5A). In line with this observation, by 

immunofluorescence analysis, we observed that, in basal conditions, LC3 is poorly 

expressed in both cell lines; δ‐TT induced the cytoplasmic accumulation of LC3 (LC3 

puncta) and p62 bodies formation in PC3 but not in DU145 cells (Figure 5B). These 

results are in agreement with data reporting that DU145 cells are autophagy‐defective 

due to an alternative splicing of ATG5 transcript and lack of a full‐length ATG5 protein 

[408]. Thus, further studies investigating the involvement of autophagy in δ‐TT anti‐

cancer activity were performed in PC3 cells.  
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FIGURE 5. δ‐TT triggers autophagy in PC3 but not in DU145 prostate cancer cells. DU145 and PC3 cells were treated 

with δ‐TT (15 μg/mL) for 1‐24 h. A, Western blot analysis was performed to investigate the expression levels of 

autophagy‐related proteins (LC3‐II/LC3‐I, SQSTM1/p62). Tubulin expression was evaluated as a loading control. B, the 

expression levels and intracellular localization of LC3 and SQSTM1/p62 were evaluated by immunofluorescence. One 

representative of three different experiments performed is shown. C, controls (vehicle). Scale bars are 20 μm. 
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δ‐TT triggers ER stress‐related autophagy in PC3 prostate cancer cells  

     To confirm the activation of an autophagic flux in PC3 cells, we investigated the 

presence of autophagosomes in δ‐TT‐treated (15 μg/ mL, 18 hours) cells by TEM. Figure 

6A shows that, at variance with control cells (left panel), autophagosomes containing 

entire organelles surrounded by multilamellar membranes are present in tocotrienol‐

treated cells (middle panel, boxed area) and localize at the lysosomal level forming 

autophagolysosomes containing remnants of digested structures (right panel, boxed 

area). Moreover, cells were pretreated with 3‐MA (10 mM), or with CQ (10 μM) or Baf 

(10 nM) and then with the tocotrienol (15 μg/mL, 24 hours). Pretreatment of the cells 

with 3‐MA (inhibitor of early stage autophagy) inhibited LC3‐II expression (decreasing 

the LC3‐II/LC3‐I ratio; Figure 6B); on the contrary, CQ and Baf (inhibitors of the late 

phase of autophagy) significantly potentiated the effect of δ‐TT on the accumulation of 

LC3‐II (LC3‐II/LC3‐1 ratio; Figure 6C). Similar results were obtained on the expression 

levels of SQSTM1/62 (Figure 6B, C). Normally, the activation of autophagy determines a 

decrease in the expression of SQSTM1/p62, because of its accumulation in 

autophagosomes and the final degradation into lysosomes. However, SQSTM1/p62 

upregulation, and at least transient increases in the amount of this protein, is seen in 

some situations, such as starvation and ER stress, where there is an increase in its 

transcription. The results obtained indicate that the levels of SQSTM1/p62 are elevated, 

but the autophagic flux is not impaired. To assess the involvement of the ER stress in δ‐

TT‐induced autophagy, PC3 cells were pretreated with salubrinal (20 μM, 4 hours) or 4‐

PBA (2 mM, 1 hours), before treatment with δ‐TT (15 μg/mL, 24 hours). We showed that 

both ER stress inhibitors counteracted the tocotrienol‐triggered increase of the LC3‐

II/LC3‐I ratio as well as that of SQSTM1/p62 expression (Figure 6D, E). In conclusion, in 

PC3 cells (but not in autophagy‐defective DU145 cells), δ‐TT‐induced autophagy is 

related to the upstream activation of the ER stress pathways (ER stress‐autophagy axis).  
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Autophagy mediates the anti-tumor activity of δ‐TT in PC3 prostate cancer 

cells 

     To assess whether autophagy might mediate the pro-apoptotic activity of δ‐TT in PC3 

cells, cells were pretreated with 3‐MA (10 mM, 4 hours) before δ‐TT (15 μg/mL, 24 

hours). Caspase 3 and PARP cleavage and cell viability were investigated (Western blot 

and MTT assay). Figure 6F shows that δ‐TT increased the expression of cleaved caspase 

3 and PARP, as previously observed. 3‐MA, given alone, did not affect the levels of these 

proteins; on the other hand, 3‐MA significantly counteracted the effects of δ‐TT on the 

expression levels of cleaved caspase 3 and PARP (Figure 6F). As expected, cell viability 

was significantly suppressed by δ‐TT, while it was not affected by 3‐MA; however, the 

autophagy inhibitor significantly reverted (although not completely) the cytotoxic effect 

of δ‐TT (Figure 6G).  
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FIGURE 6. Autophagy, related to ER stress, mediates the anti-tumor activity of δ‐TT in PC3 prostate cancer cells. A, 

cells were treated with δ‐TT (15 μM) for 18 h and TEM images were selected. Left panel is a TEM image of control 

cells. Boxed area indicates the presence, in δ‐TT‐treated cells, of autophagosomes (middle panel) that can localize at 

the lysosomal level forming autophagolysosomes (right panel). Scale bars are 2 and 0.7 μm for photographs in boxed 

areas. B and C, cells were treated with δ‐TT (15 μg/mL) for 24 h in the presence of either the inhibitor of early stage 

autophagy 3‐MA (10 mM) (B) or the inhibitors of late stage autophagy CQ (10 μM) and Baf (10 nM) (C). The LC3‐

II/LC3‐I ratio and SQSTM1/p62 levels were evaluated by Western blot analysis. D and E, cells were pretreated with 

the two ER stress inhibitors salubrinal (Sal; 20 μM) for 4 h or 4‐PBA (2 mM) for 1 h, and then with δ‐TT (15 μg/mL) for 

18 h. The LC3‐II/LC3‐I ratio and SQSTM1/p62 levels were evaluated by Western blot analysis. F and G, PC3 cells were 

pretreated with 3‐MA (10 mM) for 4 h before tocotrienol treatment (15 μg/mL) for 24 h. The effects of the treatment 

were analyzed on the expression of apoptosis‐related markers, by Western blot (F) as well as on cell viability, by MTT 

assay (G). For Western blot analyses, one representative of three different experiments performed is shown. For MTT 

assay, each experiment was repeated three times and data represent mean values ± SEM and were analyzed by 

Bonferroni's test after one‐way analysis of variance. *P < 0.05 vs C, controls (vehicle). #P < 0.05 vs δ‐TT‐treated cells. 
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δ‐TT triggers paraptosis in prostate cancer cells  

     Data reported above suggest that δ‐TT may exert its activity by triggering non‐

canonical pro‐death mechanisms in addition to apoptosis (see Figure 2C). Paraptosis 

represents an alternative cell death mechanism characterized by extensive vacuolization 

related to ER stress/mitochondria swelling. Paraptosis was also reported to be 

dependent on protein synthesis. We found that δ‐TT (15 μg/mL, 18 hours) induces 

cytoplasmic vacuolization in both DU145 and PC3 cells (Figure 7A). By TEM analysis, we 

observed that untreated CRPC cells exhibit a normal appearance with normal 

mitochondria and ER with small profiles of cisternae. On the other hand, cells treated 

with δ‐TT showed the presence of swollen damaged mitochondria with loss of/altered 

cristae, and ER cisternae dilation (Figure 7B, boxed areas). Moreover, pretreatment of 

CRPC cells with the ER stress inhibitor salubrinal (20 μM, 4 hours) markedly suppressed 

δ‐TT‐induced cytoplasmic vacuolization (Figure 7C), supporting the relationship 

between vacuoles and ER stress. To confirm the involvement of paraptosis in the anti‐

cancer activity of δ‐TT, DU145 and PC3 cells were pretreated with cycloheximide (20 

μM, 3 hours) and then with the tocotrienol. Translation inhibition strikingly suppressed 

the cytoplasmic vacuolization induced by δ‐TT in both cell lines (Figure 7C). Finally, the 

effects of δ‐TT (15 μg/ml, 24 hours) were analyzed on the expression of MAPK proteins, 

known to be involved in paraptosis. δ‐TT (18 and 24 hours) increased the levels of both 

pJNK and pP38 kinases (Figure 8). These data support that paraptosis is involved in the 

anti‐cancer activity of δ‐TT in PCa cells. 
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FIGURE 7. δ‐TT triggers paraptosis in prostate cancer cells. In all these experiments, DU145 and PC3 cells were 

treated with δ‐TT (15 μg/mL) for 18 h. A, light microscopy highlighting the presence of extensive cytoplasmic 

vacuolation in treated cells. Scale bars are 20 μm. B, TEM micrographs showing the presence of swollen damaged 

mitochondria (M), with loss or disintegrated cristae (mc) and endoplasmic reticulum (ER) cisternae dilatation (boxed 

areas), in both DU145 and PC3 treated cells. Scale bars are 2 μm, and 0.7 μm for photographs in boxed areas. C, light 

microscopy showing that pre‐treatment of DU145 and PC3 cells with either the ER stress inhibitor salubrinal (Sal; 20 

μM) for 4 h, or the translation inhibitor cycloheximide (20 μM) for 3 h, markedly suppresses cytoplasmic vacuolation 

in δ‐TT‐treated PCa cells. Scale bars are 20 μm. 
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FIGURE 8. δ‐TT increases the expression of proteins involved in the MAPK cascade in prostate cancer cells. DU145 

and PC3 cells were treated with δ‐TT (15 μg/mL) for 1‐24 h. pJNK and pP38 expression levels were evaluated by 

Western blot analysis. Tubulin expression was assessed as a loading control. One representative of three different 

experiments performed is shown. 
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-TT inhibits mitochondrial respiration in prostate cancer cells 

     Since emerging evidence has highlighted the strict correlation between oxidative 

mitochondrial metabolism and cell death susceptibility [409,410], experiments were 

performed on PC3 and DU145 cells in order to clarify the role of mitochondria in the 

anti-tumor activity of δ-TT. Mitochondria are responsible for generating almost 90% of 

the energy needed to sustain cell proliferation. Thus, we first evaluated the effects of δ-

TT on the mitochondrial respiration of CRPC cells, particularly on oxidative 

phosphorylation (OXPHOS) protein expression, O2 consumption and ATP production. By 

Western blot analysis, we could observe that, in both PC3 and DU145 cells, the 

tocotrienol (15 μg/mL) significantly downregulates the expression of OXPHOS protein 

complexes, specifically complex I, III and IV (12-24 h, Figure 9A). δ-TT (15 μg/mL, 12 h) 

also significantly reduces O2 uptake, in basal as well as in uncoupled (oligomycin, 10 μM) 

and maximal (carbonyl cyanide m-chlorophenyl hydrazine, CCCP, 10 μM) respiration 

conditions (Figure 9B). Notably, this resulted in mitochondrial membrane 

depolarization, as evidenced by cytofluorimetric analysis after staining with the 

fluorescent dye MitoTracker Orange CMTMRos (10 µM, 30 min, Figure 9C). Finally, we 

found that δ-TT (15 μg/mL), severely alters energy homeostasis, by causing massive ATP 

depletion (12 h, Figure 10A) and inducing a parallel activation (phosphorylation) of the 

energy sensor enzyme AMPK (6-24 h) (Figure 10B). Taken together, these data 

demonstrate that δ-TT exerts an energy-depleting effect on CRPC cells by impairing 

mitochondrial oxidative metabolism. 
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FIGURE 9. δ‐TT targets mitochondrial oxidative metabolism in DU145 and PC3 prostate cancer cells. A, DU145 and 

PC3 cells were treated with δ‐TT (15 μg/mL) for 1‐24 h. Western blot analysis was performed to investigate the 

expression levels of OXPHOS proteins. Tubulin expression was evaluated as a loading control. One representative of 

three experiments performed is shown. B, DU145 and PC3 cells were treated with δ‐TT (15 μg/mL) for 12 h; oxygen 

consumption rates were measured using a Clark electrode and they were evaluated in basal as well as in uncoupled 

(oligomycin, oligo) and maximal (carbonyl cyanide m-chlorophenyl hydrazine, CCCP) respiration conditions. One 

representative of three experiments performed is shown. Data represent mean values ± SEM and were analyzed by 

t-test. ***P < 0.001 vs C, controls (vehicle). C, DU145 and PC3 cells were treated with δ‐TT (15 μg/mL) for 12 h; the 

mitochondrial activity was then evaluated by cytofluorimetric analysis after staining with the fluorescent dye 

MitoTracker Orange CMTMRos. One representative of three experiments performed is shown. Data represent mean 

values ± SEM and were analyzed by t-test. ***P < 0.001 vs C, controls (vehicle). 
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 FIGURE 10. δ‐TT exerts an energy-depleting effect on DU145 and PC3 prostate cancer cells. A, DU145 and PC3 cells 

were treated with δ‐TT (15 μg/mL), and ATP levels were measured by colorimetric assay. One representative of three 

experiments performed is shown. Data represent mean values ± SEM and were analyzed by t-test. ***P < 0.001 vs C, 

controls (vehicle). B, Western blot analysis was performed to investigate the expression levels of pAMPK. Tubulin 

expression was evaluated as a loading control. One representative of three experiments performed is shown. 
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δ-TT impairs mitochondrial dynamics in prostate cancer cells 

     Mitochondrial morphology is tightly associated with mitochondrial health and 

function. Mitochondrial fusion correlates with efficient ATP production, whereas 

mitochondrial fission is related to reduced mitochondrial respiration [411,412]. As 

discussed above, the balance between these two opposite processes, and the 

consequent changes in mitochondrial morphology and localization, are finely regulated 

by two classes of proteins: fission (dynamin-related protein 1, DRP1) and fusion (optic 

atrophy 1, OPA1, mitofusin 1 and 2, MFN1 and MFN2) proteins [411,412]. 

     By immunofluorescence studies, we found that δ-TT (15 μg/mL, 12 h) induces 

mitochondrial fission in both PC3 and DU145 cells, as evidenced by the intense 

punctuation of the MitoTracker probe (Figure 11A). In line with this observation, the 

tocotrienol (15 μg/mL, 24 h) also induced the cleavage of the long form of OPA1 in both 

cell lines, together with a decreased expression of MFN2 (Figure 11B, Western blot 

analysis) in PC3 cells. On the other hand, no significant change in Drp1 expression was 

observed (Figure 11B). Taken together, these results demonstrate that the 

mitochondrial fission-fusion machinery is directly targeted by δ-TT, confirming that an 

alteration of mitochondrial dynamics is associated with the δ-TT anti-tumor activity in 

CRPC cells. 
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FIGURE 11. δ‐TT impairs mitochondrial dynamics in DU145 and PC3 prostate cancer cells. A, DU145 and PC3 cells 

were treated with δ‐TT (15 μg/mL), and the mitochondrial fragmentation was evaluated by immunofluorescence. One 

representative of three different experiments performed is shown. Scale bars are 20 μm. C, controls (vehicle). Scale 

bars are 20 μm. B, Western blot analysis was performed to investigate the expression levels of OPA1, MFN2 and Drp1. 

Tubulin expression was evaluated as a loading control. One representative of three experiments performed is shown. 
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Mitochondrial Ca2+ overload is involved in the pro-death activity of δ-TT 

in prostate cancer cells 

     As shown above, loss of mitochondrial potential and Ca2+ overload is associated with 

induction of apoptotic and paraptotic cell death. Various anti-cancer drugs, either 

synthetic or natural, were reported to activate the apoptotic and paraptotic pathways 

by inducing mitochondrial Ca2+ overload [223,273,274]. 

     Here, we investigated the effects of δ-TT on cytoplasmic and mitochondrial Ca2+ levels 

(flow cytometry analysis), and the role of mitochondrial Ca2+ overload in the pro-death 

effects (apoptotic, paraptotic, autophagic) of this compound in PC3 and DU145 cells. We 

found that δ-TT (15 μg/mL, 12 h) significantly increases both cytoplasmic (Fluo-3 AM 5 

µM, 30 min) and mitochondrial (Rhod-2 AM 5 µM, 30 min) Ca2+ levels (Figure 12A, B). 

Pretreatment of both cell lines with DIDS (disodium 4,4′-diisothiocyanostilbene-2,2′-

disulfonate, 100 µM, 3h), the blocker of the VDAC channel, significantly counteracted 

the effects of the tocotrienol (15 μg/mL, 24 h) on: cell viability (Figure 12C), apoptosis 

(evaluated by analyzing the levels of cleaved caspase 3; Figure 13A), paraptosis 

(evaluated by analyzing intracellular vacuolation and JNK and p38 activation; Figure 13B, 

C), and autophagy (evaluated by analyzing the levels of LC3-II and p62; Figure 13D). 
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FIGURE 12. Mitochondrial Ca2+ overload is involved in the cytotoxicity of δ-TT in DU145 and PC3 prostate cancer 

cells. A and B, DU145 and PC3 cells were treated with δ‐TT (15 μg/mL) for 12 h, and the cytoplasmic (Fluo-3 AM 5 

µM, 30 min) and mitochondrial (Rhod-2 AM 5 µM, 30 min) Ca2+ levels were measured by cytofluorimetric analysis. 

Each experiment was repeated three times. Data represent mean values ± SEM and were analyzed by t-test. ***P < 

0.001 vs C, controls (vehicle). C, Cells were pretreated with the VDAC inhibitor DIDS (100 µM) for 3 h, and then with 

δ‐TT (15 μg/mL) for 24 h. Cell viability was assessed by MTT assay. Each experiment was repeated three times. Data 

represent mean values ± SEM and were analyzed by Bonferroni's test after one‐way analysis of variance. *P < 0.05 vs 

controls (vehicle). #P < 0.05 vs δ‐TT‐treated cells. 
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FIGURE 13. Mitochondrial Ca2+ overload is involved in the δ-TT-mediated apoptosis, paraptosis and autophagy in 

prostate cancer cells. A and B, Cells were treated with δ‐TT (15 μg/mL) for 24 h in the presence or absence of DIDS 

(100 μM, 3 h). Caspase 3 cleavage and pJNK and pP38 levels were evaluated by Western blot analysis. Each experiment 

was repeated three times. C, Light microscopy showing that pretreatment of DU145 and PC3 cells with DIDS (100 μM, 

3 h) markedly suppresses cytoplasmic vacuolation in δ‐TT‐treated PCa cells. Each experiment was repeated three 

times. Scale bars are 20 μm. D, PC3 cells were pretreated with DIDS (100 μM) for 3 h before tocotrienol treatment 

(15 μg/mL) for 24 h. The effects of the treatment were analyzed on the expression of autophagy markers by Western 

blot. One representative of three different experiments performed is shown. 
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The ROS/Akt pathway is involved in the pro-death activity of δ-TT in PC3 

prostate cancer cells 

     It is well accepted that high intracellular levels of ROS can induce oxidation of 

macromolecules (nucleic acids, proteins and lipids) and damage cell membranes and 

organelles, triggering cell death pathways such as apoptosis and paraptosis. The deep 

interplay between mitochondrial dysfunction and ROS generation has been discussed in 

detail. Moreover, it is known that cancer cells possessing high endogenous ROS levels 

are more susceptible to ROS-inducing treatments; indeed, different anti-cancer drugs 

trigger apoptosis and paraptosis in cancer cells by inducing ROS generation [280-288]. 

     Here, we analyzed the effects of δ-TT on intracellular ROS production (flow cytometry 

analysis after staining with the fluorescent dye DCFDA 10 µM for 30 min) and the role of 

ROS formation in the anti-cancer activity of this compound in CRPC cells. We observed 

that δ-TT (15 μg/mL, 12 h) significantly increased ROS levels in both PC3 and DU145 cells, 

although this effect was more evident in PC3 cells (Figure 14A). Indeed, we then 

demonstrated that pretreatment of cancer cells with NAC (N-acetyl-L-cysteine, 4 mM, 2 

h), the known ROS scavenger, significantly counteracted the inhibitory activity of δ-TT 

(15 μg/mL, 24 h) on cell viability in PC3 but not in DU145 cells (Figure 14B). These data 

confirm previous observations showing that ROS-mediated cell death can be induced in 

PC3 but not in DU145 cells [413,414]. 

     Based on these observations, subsequent experiments were carried out in PC3 cells. 

We demonstrated that, in these cells, pretreatment with NAC significantly inhibits the 

effects of δ-TT (15 μg/mL, 24 h) on apoptosis (Figure 15A), paraptosis (Figure 15B, C), 

and autophagy (Figure 15D).  

     It is known that the pro-tumor activity of high ROS levels is associated with various 

signaling pathways, including the PI3K/Akt signaling pathway. Thus, we investigated the 

effects of δ-TT (15 μg/mL, 24 h) on Akt/mTOR activation in CRPC cells and the 

involvement of ROS in these effects. First, we found that pAkt (the activated 

phosphorylated form) is constitutively expressed in PC3, but not in DU145 PCa cells 

(Figure 16A). In addition, in PC3 cells, δ-TT significantly reduced pAkt levels in a time-

dependent manner (Figure 16B), and this effect was completely counteracted by 
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pretreatment of the cells with the ROS scavenger NAC (4 mM, 2 h) (Figure 16C). These 

data confirm that constitutive activation of Akt in cancer cells confers them a high 

vulnerability to anti-cancer compounds specifically targeting ROS formation.   
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FIGURE 14. Oxidative stress is involved in the cytotoxicity of δ-TT in DU145 and PC3 prostate cancer cells. A, DU145 

and PC3 cells were treated with δ‐TT (15 μg/mL) for 12 h, and the ROS production was measured by cytofluorimetric 

analysis (DCFDA, 10 µM, 30 min). Each experiment was repeated three times. Data represent mean values ± SEM and 

were analyzed by t-test. ***P < 0.001 vs C, controls (vehicle). B, Cells were pretreated with the ROS scavenger NAC 

(N-acetyl-L-cysteine, 4 mM) for 2 h, and then with δ‐TT (15 μg/mL) for 24 h. Cell viability was assessed by MTT assay. 

Each experiment was repeated three times. Data represent mean values ± SEM and were analyzed by Bonferroni's 

test after one‐way analysis of variance. *P < 0.05 vs controls (vehicle). #P < 0.05 vs δ‐TT‐treated cells. 
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FIGURE 15. ROS generation is involved in the δ-TT-mediated apoptosis, paraptosis and autophagy in prostate 

cancer cells. A and B, Cells were treated with δ‐TT (15 μg/mL) for 24 h in the presence or absence of NAC (4 mM, 2 

h). Caspase 3 cleavage and pJNK and pP38 levels were evaluated by Western blot analysis. Each experiment was 

repeated three times. C, Light microscopy showing that pretreatment of DU145 and PC3 cells with NAC (4 mM, 2 h) 

markedly suppresses cytoplasmic vacuolation in δ‐TT‐treated PCa cells. Each experiment was repeated three times. 

Scale bars are 20 μm. D, PC3 cells were pretreated with NAC (4 mM) for 2 h before tocotrienol treatment (15 μg/mL) 

for 24 h. The effects of the treatment were analyzed on the expression of autophagy markers by Western blot. One 

representative of three different experiments performed is shown. 
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FIGURE 16. The ROS/Akt pathway is involved in the pro-death activity of δ-TT in PC3 prostate cancer cells. A, pAkt 

expression was evaluated in PC3 and DU145 cells by Western blot analysis. Each experiment was repeated three 

times. B, PC3 cells were treated with δ‐TT (15 μg/mL) for 24 h. pAkt and pmTOR levels were evaluated by Western 

blot analysis. Each experiment was repeated three times. C, PC3 cells were pretreated with NAC (4 mM) for 2 h before 

tocotrienol treatment (15 μg/mL) for 24 h. The effects of the treatment were analyzed on the expression of pAkt and 

pmTOR by Western blot. One representative of three different experiments performed is shown. 
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δ-TT induces Ca2+- and ROS-mediated mitophagy in PC3 prostate cancer 

cells 

     Increasing evidence suggests that dysfunctional/damaged mitochondria are 

eradicated through a specific degradation pathway, known as ‘mitophagy’.  

     Based on these data, we investigated whether δ-TT might induce mitophagy in PCa 

cells. These experiments were performed in PC3 cells, since DU145 cells are autophagy-

defective. By immunofluorescence studies, in δ-TT-treated (15 μg/mL, 12 h) PC3 cells, 

we demonstrated the presence of autophagic vesicles containing mitochondria (Figure 

17A). In line with this observation, by TEM analysis we showed the presence of 

mitochondria-like structures inside autophagic vesicles (Figure 17B). To further confirm 

the induction of mitophagy by δ-TT, we could demonstrate that the tocotrienol (15 

μg/mL, 24 h) time-dependently increase the expression of the PINK1 kinase, while Parkin 

levels were not affected by the treatment, as expected (Figure 17C).  

     Given the role of Ca2+ and ROS in the pro-death activity of δ-TT in PCa cells, we finally 

investigated whether δ-TT-induced mitophagy might also be mediated by Ca2+ and ROS 

levels. PC3 cells were pretreated with either the blocker of VDAC channel DIDS (100 µM, 

3 h) or the ROS scavenger NAC (4 mM, 2 h) before δ-TT treatment (15 μg/mL, 24 h). As 

shown in Figure 17D and E, both DIDS and NAC significantly counteracted the δ-TT-

induced expression levels of PINK1. 

     Taken together, these results demonstrate that δ-TT triggers Ca2+- and ROS-mediated 

autophagic clearance of mitochondria in PC3 cells. 
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FIGURE 17. δ-TT induces Ca2+- and ROS-mediated mitophagy in PC3 prostate cancer cells. A, PC3 cells were treated 

with δ‐TT (15 μg/mL) for 12 h; the induction of mitophagy was then evaluated by immunofluorescence analysis. One 

representative of three experiments performed is shown. Scale bars are 20 μm. B, TEM micrograph showing the 

presence of autophagolysosomes containing damaged mitochondria in PC3 treated cells. Scale bars are 2 μm. C, PC3 

cells were treated with δ‐TT (15 μg/mL) for 24 h. PINK1 and Parkin levels were evaluated by Western blot analysis. 

Each experiment was repeated three times. D and E, PC3 cells were pretreated with NAC (4 mM) for 2 h before 

tocotrienol treatment (15 μg/mL) for 24 h. The effects of the treatment were analyzed on the expression of PINK1 by 

Western blot. One representative of three different experiments performed is shown. 
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DISCUSSION 
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     It is accepted that TTs are associated with significant anti-cancer properties 

[415,416]. Although most of the studies so far reported were performed with γ-TT, δ-TT 

was shown to be the most effective vitamin E isoform in triggering cell death in PCa cells 

[316,417]; however, the molecular mechanisms/targets of this activity are poorly 

clarified. 

     Here, we dissected the molecular mechanisms underlying the anti-tumor/pro-

apoptotic activity of δ-TT in CRPC cells (DU145 and PC3); the possible involvement of 

paraptosis in its activity was also investigated. 

     We confirmed that δ-TT exerts a significant anti-tumor/cytotoxic activity on CRPC 

cells, by decreasing cell viability, increasing the dead/live cell ratio and reducing the 

viability of colony-forming cells. Interestingly, the tocotrienol reduced the viability of 

RWPE-1 cells only slightly and at the highest dose. We also demonstrated that δ-TT 

triggers apoptosis by increasing the levels of cleaved caspase 3 and PARP and inducing 

the release cytochrome c from mitochondria into the cytoplasm. We finally confirmed 

the involvement of the intrinsic apoptosis in the activity of δ-TT by showing that 

pretreatment of the cells with the pan-caspase inhibitor Z-VAD-FMK significantly 

counteracts its cytotoxic effects. 

     These data agree with previous observations showing that δ-TT induces cell death in 

PCa cells [316,417] and suppresses the survival of the stem-like cells subpopulation of 

PC3 cells [321]; similar results were reported for γ-TT [315,415,418]. 

     In line with these data, the anti-cancer activity of TTs (specifically γ- and δ-TT) was 

reported in a wide range of tumors [415,419,420]. To get further insights into the 

mechanisms and targets of the δ-TT anti-tumor activity in CRPC cells, we concentrated 

our studies on the ER stress and autophagy pathways. We observed that, in both DU145 

and PC3 cells, δ-TT induces the expression of BiP, peIF2α and IRE1α. δ-TT also induced 

the expression/activation of the transcription factors ATF4 and CHOP (pointing out their 

cytoplasmic-to-nuclear localization). It is known that the peIF2α/ATF4 pathway activates 

CHOP, a transcription factor that is also activated by IRE1α [421,422]. These results 

demonstrate that, in CRPC cells, δ-TT triggers the main ER stress branches, leading to 

the activation of CHOP, deeply involved in the ER stress-related apoptosis. To confirm 



 
 

96 
 

the involvement of the ER stress pathway in the activity of δ-TT, we pretreated the cells 

with two ER stress inhibitors, salubrinal and 4-PBA. Both inhibitors significantly reverted 

the pro-apoptotic effect of δ-TT, as assessed in terms of cleavage of caspase 3 and PARP 

as well as of cell viability, indicating that ER stress mediates its anti-cancer activity. 

     We also investigated whether autophagy might be induced by δ-TT in CRPC cells. First, 

we demonstrated that the tocotrienol markedly increases the expression of autophagy-

related proteins, such as LC3 (increased LC3-II/LC3-I ratio) and SQSTM1/p62 and their 

accumulation into autophagosomes in PC3, but not in DU145 cells (previously reported 

to be autophagy-defective) [408]. Thus, the involvement of autophagy in the anti-tumor 

activity of δ-TT was further investigated in PC3 cells. By TEM, we demonstrated the 

presence of autophagosomes and autophagolysosomes in δ-TT-treated cells. 

Pretreatment of the cells with an early stage autophagy inhibitor (3-methyladenine, 3-

MA) significantly counteracted, while their pretreatment with late stage autophagy 

inhibitors (chloroquine, CQ, and bafilomycin, Baf) markedly increased δ-TT -induced LC3-

II and SQSTM1/p62 expression. 

     These data support that δ-TT triggers an autophagic flux in PC3 cancer cells. We 

further showed that in PC3 cells the autophagic pathway is linked to ER stress, since 

pretreatment of the cells with the ER stress inhibitors markedly prevented δ-TT-induced 

LC3-II and SQSTM1/p62 overexpression. Finally, we demonstrated that the autophagy 

inhibitor 3-MA significantly counteracts the effects of δ-TT on apoptosis markers as well 

as on cell viability. 

     These data demonstrate that, in CRPC cells possessing an efficient autophagic 

pathway, δ-TT induces apoptosis by triggering the ER stress-related pro-death 

autophagic flux. On the other hand, only the ER stress pathway is involved in the activity 

of δ-TT in autophagy-defective cells. 

     To our knowledge, this is the first report describing the involvement of the ER stress-

autophagy in the anti-cancer activity of δ-TT in PCa cells. γ-TT was shown to concurrently 

trigger ER stress and autophagy in inducing apoptosis in breast cancer cells [338,339]. 

TTs (specifically γ- and δ-TT) were shown to induce apoptosis by triggering the ER stress 

branches in cervical cancer [360], breast cancer [337] and melanoma cells [392]. In line 
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with these observations, both the ER stress and the autophagy pathways were reported 

to mediate the anti-cancer activity of several natural compounds [423,424]. 

     Here, we also observed that abrogation of apoptosis by the pan-caspase inhibitor Z-

VAD-FMK significantly, but not completely, reverted the cytotoxic effect of δ-TT on CRPC 

cells. Thus, an additional programmed cell death modality might be involved in the 

activity of the tocotrienol. Paraptosis, necroptosis, mitotic catastrophe, anoikis were 

reported to be typical of apoptosis-resistant tumor cells and to mediate the cytotoxic 

effects of anti-cancer compounds [219,425,203]. This makes these types of cell death a 

promising target for novel therapeutic strategies [203]. Among them, paraptosis is 

characterized by: intense cytoplasmic vacuolation, correlated with ER stress and 

mitochondrial swelling/dilatation; de novo protein synthesis; involvement of JNK and 

p38 kinases [219,201,203]. We observed that δ-TT induces morphological changes, with 

an intense cytoplasmic vacuolation in both CRPC cells. In δ-TT-treated cells, we pointed 

out: by TEM, a significant swelling of mitochondria and dilatation of the ER cisternae; by 

light microscopy, a cytoplasmic vacuolation that was markedly inhibited in the presence 

of salubrinal or cycloheximide; by Western blot, increased expression of the active forms 

of JNK and p38. These data support that, in addition to apoptosis, the non-canonical cell 

death paraptosis is involved in the anti-tumor activity of δ-TT in CRPC cells. 

     To further clarify the molecular mechanisms underlying both the pro-apoptotic and 

pro-paraptotic effects of δ-TT, we focused our attention on the study of mitochondrial 

metabolism. Indeed, in the last years mitochondria have emerged as important 

pharmacological targets because of their key role in cellular proliferation and death 

[409,410]. Here, we observed that, in both DU145 and PC3 cells, the tocotrienol 

treatment resulted in a rapid loss of mitochondrial membrane potential, accompanied 

by downregulation of OXPHOS protein expression levels and reduction of oxygen 

consumption. As direct consequence of mitochondrial damage, a significant decline in 

cellular ATP levels and a parallel activation of the energy sensor AMPK were also found. 

Taken together, these data demonstrate that δ-TT severely alters mitochondrial 

homeostasis in CRPC cells, also exerting an energy-depleting effect on them. 
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     We also evaluated the effects of δ-TT on mitochondrial dynamics. In particular, we 

demonstrated that the tocotrienol directly target the fission-fusion machinery in CRPC 

cells, inducing mitochondrial fragmentation associated with OPA-1 cleavage and MFN2 

downregulation. 

     Since mitochondrial dysfunction is often associated with Ca2+ overload and oxidative 

stress, we measured Ca2+ and ROS levels in CRPC cells treated with δ-TT. A significant 

increase of both cytoplasmic and mitochondrial Ca2+, as well as of ROS levels, was 

observed in DU145 and PC3 cells after δ-TT treatment. Using the VDAC blocker4,4'-

Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and the ROS scavenger N-acetyl-l-

cysteine (NAC), we investigated the role of Ca2+ and ROS in the induction of cell death: 

interestingly, DIDS pretreatment significantly rescued cell viability of both DU145 and 

PC3 cells, while NAC pretreatment was effective only on the more oxidatively stressed 

PC3 cells. In particular, Ca2+ overload was shown to be directly involved in apoptosis, 

paraptosis and autophagy activation in CRPC cells; similarly, ROS generation was 

responsible for apoptotic, paraptotic and autophagic PC3 cell death. 

     In order to elucidate the molecular mechanisms of the ROS-mediated cell death 

induced by δ-TT in PC3 cells, we focused our studies on the Akt signaling pathway. 

Indeed, it is known that this cascade is mainly responsible for ROS generation in 

overproliferative cancer cells, making them more susceptible to oxidative stress-related 

damage [285-288]. Here, we first confirmed that Akt protein is constitutively activated 

in PC3 cells but not in DU145 cells. Then, we observed that δ-TT treatment lead to a 

time-dependent downregulation of this pathway in PC3 cells. In addition, NAC 

pretreatment significantly reverted the tocotrienol-induced reduction in Akt levels. 

Taken together, these results highlight that δ-TT can inhibit the Akt cascade through ROS 

generation in PC3 cells. 

     Dysfunctional mitochondria are usually eliminated via mitophagy [275]. In PC3 cells, 

we found that δ-TT can also activate the PINK1-mediated mitophagic flux. 

     In conclusion, these data demonstrate that, in CRPC cells, δ-TT exerts an anti-cancer 

activity by triggering both apoptosis, involving the ER stress/autophagy axis, and 

paraptosis. In particular, we showed that it can selectively alter mitochondrial 
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morphology and function and induce Ca2+ overload- and oxidative stress-mediated CRPC 

cell death, providing novel mechanistic insights into its anti-tumor activity. 

     Despite all these encouraging observations, the clinical data so far available are still 

incomplete and several important questions remain to be addressed about the role of 

TTs in cancer patients, especially as regards their pharmacokinetics and bioavailability. 

Thus, clinical trials aimed to clarify the TT anti-tumor effectiveness are urgently needed. 
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