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 29 

Abstract 30   Gain-of-function variants in voltage-gated sodium channel NaV1.7 that increase 31 firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have 32 recently been identified in 5-10% of patients with idiopathic small fiber neuropathy 33 (I-SFN). Our previous in vitro observations suggest that enhanced sodium channel 34 activity can contribute to a decrease in length of peripheral sensory axons. 35 We have hypothesized that sustained sodium influx due to the expression of SFN-36 associated sodium channel variants may trigger an energetic deficit in neurons 37 which contributes to degeneration and loss of nerve fibers in SFN. Using an ATP 38 FRET biosensor, we now demonstrate reduced steady-state levels of ATP and 39 markedly faster ATP decay in response to membrane depolarization in cultured 40 DRG neurons expressing an SFN-associated variant NaV1.7, I228M, compared to WT 41 neurons. We also observed that I228M neurons show a significant reduction in 42 mitochondrial density and size, indicating dysfunctional mitochondria and a 43 reduced bioenergetic capacity. Finally, we report that exposure to dexpramipexole, 44 a drug that improves mitochondrial energy metabolism, increases the neurite length 45 of I228M-expressing neurons. 46 Our data suggest that expression of gain-of-function variants of NaV1.7 can 47 damage mitochondria and compromise cellular capacity for ATP production.  The 48 resulting bioenergetic crisis can consequently contribute to loss of axons in SFN. We 49 suggest that, besides interventions that reduce ionic disturbance caused by mutant 50 Nav1.7 channels, an alternative therapeutic strategy might target the bioenergetic 51 burden and mitochondrial damage that occur in SFN associated with Nav1.7 gain-of-52 function mutations.  53  54 

New and Noteworthy 55 
Sodium channel NaV1.7 mutations that increase dorsal root ganglion (DRG) neuron  56 
excitability have been identified in small-fiber neuropathy (SFN). Here we 57 
demonstrate reduced steady-state ATP levels, faster depolarization-evoked ATP 58 
decay, and reduced mitochondrial density and size in cultured DRG neurons 59 
expressing SFN-associated variant NaV1.7-I228M. Dexpramipexole, which improves 60 
mitochondrial energy metabolism, has a protective effect. Since gain-of-function 61 
Nav1.7 variants can compromise bioenergetics, therapeutic strategies that target 62 
bioenergetic burden and mitochondrial damage merit study in SFN. 63 
 64 

Introduction 65 Small fiber neuropathy (SFN) is a painful condition that typically begins to manifest 66 symptoms such as pain and sensory loss in the extremities of the body and spreads 67 to other regions. It is associated with depletion of intraepidermal nerve fiber (IENF) 68 
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and damage of unmyelinated and thinly myelinated peripheral nerve fibers in 69 epidermal and dermal layers of the skin. What causes the damage to these sensory 70 nerve fibers and terminals in SFN is not well understood.  71 Major causes of SFN include diabetes mellitus, chemotherapy and viral infection 72 (Kokotis et al. 2016; Polydefkis et al. 2002; Smith et al. 2001). No apparent cause for 73 SFN can be identified in 24% to 93% of cases in published patient series, and these 74 cases are termed idiopathic SFN (I-SFN) (Bednarik et al. 2009; de Greef et al. 2018; 75 Devigili et al. 2008; Lacomis 2002). Recently, Faber et al., demonstrated gain of 76 function (GOF) variants in NaV1.7 in a subset of patients with idiopathic SFN (Faber 77 et al. 2012). Electrophysiological assessment of these variant channels 78 demonstrated that their altered biophysical properties render sensory neurons 79 hyperexcitable, endowing them with a reduced threshold, increased firing frequency, 80 and spontaneous firing of action potentials across a broad range of stimulus 81 intensities, which can contribute to spontaneous pain (Faber et al. 2012; Han et al. 82 2012a; Han et al. 2012b; Hoeijmakers et al. 2012c). However, little is known about 83 the molecular or cellular bases underlying axonal injury, and IENF depletion in I-84 SFN associated with GOF variants. 85 Our previous in vitro observations suggest that enhanced sodium channel activity 86 can contribute to a decrease in length of peripheral sensory axons (Persson et al. 87 2013b). We previously also demonstrated that the activities of normal (wild-type) 88 voltage-gated sodium channels can contribute to growth impairment and 89 degeneration of DRG neurites under metabolically challenging conditions (Persson 90 et al. 2013a). Persistent membrane depolarization and Na+ influx via voltage-gated 91 sodium channels, reverse Na+/Ca++ exchanger, and the consequent ionic disturbance 92 require increased activity of Na+/K+ ATPases and Ca2+ ATPases to cope with 93 abnormal Na+ influx and maintain ionic gradient across the membrane (Carafoli 94 1991; Marunaka 1988).  95 Mitochondria are a major ATP source in neurons and are essential for the 96 maintenance of nerve fiber integrity (Pellerin et al. 1998; Tantama et al. 2013). 97 Dysfunctional mitochondria have been associated with axonal degeneration in 98 multiple neurodegenerative diseases (Persson et al. 2013a; Takeuchi et al. 2005). 99 Mitochondrial energy metabolism is regulated by several feedback mechanisms to 100 accommodate fluctuating energy demands that reflect dynamic neuronal activities. 101 Increased [ADP]i and calcium influx induced by neural activity stimulate 102 mitochondrial oxidative phosphorylation (OXPHOS) to compensate the increased 103 ATP consumption (Lark et al. 2016; Rueda et al. 2014). Although OXPHOS 104 constitutes an efficient mechanism to cope with abrupt increase in energy demand 105 in neurons, its excessive activity can negatively impact mitochondrial function and 106 bioenergetics via sustained Ca2+ influx and ROS generation (Persson et al. 2016). 107 
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In this study, we tested the hypothesis that GOF variants in NaV1.7, which are 108 associated with loss of IENFs in I-SFN, may produce a bioenergetic deficit in sensory 109 neurons.  To address this question, we employed a cell culture model, and evaluate 110 the effect of an SFN-associated variant NaV1.7, I228M, on neurite length and ATP 111 level in DRG neurons. This particular variant was chosen for study because it 112 previously has been characterized in detail both clinically (Faber et al. 2012) and in 113 terms of its effect on channel and DRG neuron function (Estacion et al. 2011), and 114 because expression of this variant within DRG neurons has a larger effect on neurite 115 integrity in vitro than other GOF NaV1.7 mutant channels that have been studied 116 (Persson et al. 2013b). We also examined the effect of the variant channel on 117 mitochondria. Finally, we examined whether a drug that improves mitochondrial 118 energy metabolism protects against the impairment of neurite length in I228M-119 expressing neurons. 120  121 
Materials and Methods 122 
 123 
Plasmids 124 The human WT Nav1.7 insert (containing the adult exon 5, E5A, and Long loop1) 125 and the Nav1.7 variant with residue substitutions I228M have been previously 126 described (Estacion et al. 2011).  Full-length inserts of clones were sequenced 127 (Howard Hughes Medical Institute/Keck Biotechnology Center at Yale University) 128 and analyzed using BLAST (National Library of Medicine) and Lasergene (DNAStar, 129 Madison, WI). 130 ATeam1.03-nD/nA/pcDNA(ATeam), the plasmid encoding a FRET-based ATP 131 indicator, has been previously described (Imamura et al. 2009)and was purchased 132 from Addgene (Addgene #51958). 133 pLV-mito-DsRed, the plasmid encoding a RFP variant tagged with 61 aa targeting 134 sequences of the P1 isoform F1F0-ATP synthase (N terminal on insert) has been 135 previously described (Kitay et al. 2013) and purchased from Addgene (Addgene 136 #44386). 137  138 
Isolation and culturing of dorsal root ganglion (DRG) neurons 139 DRG from deeply anesthetized (Ketamine/Xylazine, 80/5 mg/kg bw) C57BL/6 140 mice (6-8 weeks) were isolated and cultured as described previously (Estacion et al. 141 2011; Persson et al. 2013a).  Briefly, dissected ganglia were placed in ice-cold 142 oxygenated complete saline solution (CSS), containing (in mM) 137 NaCl, 5.3 KCl, 1 143 MgCl2, 25 sorbitol, 3 CaCl2, 10 N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid 144 (HEPES), pH 7.2, then incubated for 20 minutes in 37°C CSS containing Collagenase 145 A (1.5mg/mL), and for 20 minutes in 37°C CSS containing Collagenase D (1.5 mg/mL) 146 and Papain (30 U/mL). Ganglia were then triturated in DRG media (DMEM/F12 147 
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containing 100 U/mL penicillin, 0.1 mg/mL streptomycin (Invitrogen, Carlsbad, CA) 148 and 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO)), 1.5 mg/mL bovine 149 serum albumin and 1.5 mg/mL trypsin inhibitor (Sigma).  The cell pellet was 150 resuspended in DRG media. 151  152 
Transfection of DRG neurons 153 The dissociated DRG neurons were transfected by electroporation with WT 154 Nav1.7 channels and Nav1.7 channel variant I228M along with RFP (channel:RFP 155 ratio 10:2), using Nucleofector II (program SCN6; Amaxa, Gaithersburg, MD), as 156 previously described. (Rolyan et al. 2016). WT and I228M neurons were always 157 prepared from the same animal. After isolating the cell suspension, it was split half 158 and half for WT and I228M transfection so that paired cultures, prepared by the 159 same operator on the same day from the same animal, could be compared head-to-160 head. The transfected neurons were allowed to recover for 5 minutes at 37°C in 0.5 161 mL of Ca2+-free DMEM. The cell suspension was diluted with Neurobasal A media 162 containing 2% B27, 1% GlutaMax and 100U/ml Penicillin-Streptomycin (Thermo 163 Fisher Scientific) and 150 μL of the cell solution was placed on 15 mm circular poly-164 L-lysine/laminin-coated coverslips and incubated at 37°C in 5% CO2 for 30 min.  2ml 165 of the standard culture media (Neurobasal A containing 25mM glucose,  2% B27, 1% 166 GlutaMax and 100U/ml Penicillin-Streptomycin) was added and cells were 167 maintained at 37°C in a 5% CO2 incubator. For glucose concentration experiments 168 (Figure 2),  the standard culture media (25mM glucose) were replaced with 5.7 or 169 2.7mM  glucose- containing Neurobasal A. 170  171 
Live-cell imaging; neurite outgrowth assay and mitochondrial morphology 172 Live-cell imaging for neurite measurement was performed using a Nikon 173 Eclipse Ti microscope (Nikon USA, Melville, NY) equipped with an environmental 174 chamber (In Vivo Scientific, St Louis, MO) to maintain the cells in a humidified 175 atmosphere at 37 °C. TRITC filter sets were used to visualize RFP fluorescence, and 176 images were acquired using NIS-Elements (Nikon). For each coverslip, a large-field 177 montage image consisting of 7×7 field-of-view images was acquired using a 178 motorized stage and a 10X objective.  179 Live-cell imaging for neuritic mitochondria was performed using the same 180 microscope setup. For each condition, 40 images from 2 distinct cultures were 181 acquired using 100X objective and DIC and TRITC filter sets to create two layered 182 images: one including mito-DsRed puncta and one including neurite morphology.  183  184 
Quantification of neurite lengths 185 For quantification of neurite lengths, large-field images containing ~50-100 186 neurons (acquired as described above) were thresholded based on RFP signal using 187 
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ImageJ (National Institutes of Health, Bethesda, MS, USA) (with restrictions on signal 188 intensity, size, roundness etc.) to create two binarized layers: one including cell 189 bodies and one including cell bodies as well as neurites. The transfection rate for 190 Schwann cells was very low (<0.01%) and the level of expression of RFP in these 191 cells was low so that these cells were readily excluded by threshold setting. In 192 addition, using roundness setting we were also able to exclude Schwann cells, 193 whose cell bodies are fusiform. Using particle analysis and skeletonize plugins in 194 ImageJ (National Institutes of Health, Bethesda, MS, USA), the total neurite length 195 was calculated for each large-field image and divided by the number of neurons 196 within the field. Thus, a measure of the average neurite length/neuron was acquired 197 for each large-field image. For each condition, 11-34 large-field images were 198 analyzed from 3-8 independent cultures, in each case comparing neurite 199 length/neuron for I228M channel-transfected neurons with neurite length/neuron 200 for WT channel-transfected neurons, cultured at the same time in parallel to insure 201 identical conditions. Normalized data are presented as mean ± SEM where n= 202 number of large-field images, and differences between conditions analyzed using 203 Student’s unpaired t-test, and P<0.05 was considered significant. 204  205 
Quantification of mitochondrial morphologies 206 For quantification of neuritic mitochondrial morphologies, images containing 1 207 or 2 neurites with mito-DsRed expression (acquired as described above) were 208 thresholded based on DsRed signal using ImageJ.  Using particle analysis plugin, 209 total number and size of DsRed puncta were measured from TRITC images.  Using 210 line trace and measurement tools in imageJ, total neurite lengths were measured 211 from DIC images. For the mitochondrial density, the total number of DsRed puncta 212 were normalized by total length of neurites within the field. Normalized data are 213 presented as mean ± SEM, differences between conditions analyzed using Student’s 214 unpaired t-test, and P<0.05 was considered significant. 215  216 
ATP imaging 217 Somatic and intraneuritic ATP were assessed using a FRET-based ATP indicator, 218 which increases FRET signal upon binding ATP (Imamura et al. 2009; Pathak et al. 219 2015). Isolated DRG neurons were transfected with ATeam1.03-nD/nA/pcDNA 220 along with a plasmid encoding either WT or I228M mutant Nav1.7 and cultured in 221 PLL/laminin-treated glass bottom Petri dishes (MatTek). At 4–7 days after plating, 222 FRET images of the cultures were acquired in standard bath solution (SBS) 223 containing the following (in mM): 140 NaCl, 3 KCl, 1 MgCl2, 1 CaCl2, and 10 HEPES, 224 pH 7.3, at room temperature.  Neuronal cultures were illuminated with 514-nm light 225 to localize the neurons that were expressing the probe co-transfected with mutant 226 I228M or WT Nav1.7 channels. Neuronal cell bodies identified from YFP signal were 227 
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selected for ATP imaging. Neurons with expression of ATP indicator were 228 illuminated with 436 nm using a Nikon Ti-E inverted microscope equipped with a 229 fast switching xenon light source (Lambda DG-4; Sutter Instruments). Dual emission 230 ratio images were captured using a QuantEM CCD camera (Princeton Instruments) 231 and 20X objective (Super Fluor; Nikon) with a DV2 beam splitter (Photometrics) 232 and the following filter sets (Semrock, Rochester, NY); 438/24 - DM458 - 483/32 233 (CFP) or 542/27 (YFP).  The microscope system was controlled with NIS-Elements 234 (Nikon). Imaging data were analyzed using NIS-Elements AR (Nikon). After 235 background correction, YFP/CFP emission ratio was calculated by dividing YFP 236 intensity by CFP intensity for each cell. Normalized data are presented as mean ± 237 SEM, differences between conditions analyzed using Student’s unpaired t-test, and 238 P<0.05 was considered significant. 239  240 
Stimulation protocol for ATP imaging 241 Neuronal culture dishes were microperfused at a constant flow rate using a 242 computerized valve system (ValveLink 8.2; AutoMate Scientific). To measure [ATP]i 243 transients in activated neuronal cell bodies and neurites, membrane depolarization 244 was induced by perfusion with high [K+] solution (SBS containing 50 mM KCl/90 245 mM NaCl). After recording basal level of [ATP] in SBS for 60 s, neurons were 246 exposed to high [K+] solution. During the microperfusion, neurons were illuminated 247 every 2 s with 492-nm light using a Nikon Ti-E inverted microscope equipped with a 248 fast switching xenon light source (Lambda DG-4; Sutter Instruments). Time lapse 249 Images were captured using a QuantEM CCD camera (Princeton Instruments) and 250 20 objective(Nikon) under the control of NIS-Elements (Nikon). 251  252 
The quantification of ATP imaging 253 Acquired images were digitized and analyzed with NIS-Elements software 254 (Nikon). Based on YFP signal, images were thresholded, and a binary mask created 255 over YFP-positive neuronal cell bodies and neurites. A binary mask overlaying each 256 neuronal cell body was defined as a ROI. For neurites, each 50µm-long segment of 257 the binary mask overlying the neurite was defined as the ROI. Fluorescence at 483-258 nm (CFP) and 542-nm excitation (YFP) mean pixel intensities were measured. After 259 background correction, the ratio of YFP/CFP was calculated for each image. Mean 260 values from neuronal cell bodies and neurites are depicted in graphs. The area 261 under the curve (AUC) was calculated from t 60 s to t 180 s using Prism8 software 262 
(GraphPad). Differences between experimental groups were analyzed by Student’s t-263 test, and P<0.05 was considered significant. 264  265 
Statistics 266 
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Statistical analysis was performed using Prism8 software (GraphPad), and 267 either Students' t test or Mann–Whitney rank sum test was used. For neurite data 268 sets, nested t test (Figure 1, 5, and 7), and nested one-way ANOVA (Figure 2) were 269 used to accommodate cluster-related variation. Data are presented as mean ± 270 standard deviation (SD). Mean difference ± SEM (MD) and 95% confidence intervals 271 (CI) were also calculated to assess the magnitude of these differences. Statistical 272 significance was accepted at p≤ 0.05 for all variables.   273 
 274 
Effect size estimates for ATP FRET 275 FRET in Figure 3 is an arbitrary measurement for ATP levels. For more 276 objective comparison of treatment effects in figure 3B and 3D, we standardized the 277 effect sizes, using Cohen’s d effect sizes (ES) with the resulting d values reported 278 (Cohen 1988; Lenhard et al. 2016). We used an effect size calculator that considers 279 standard deviation and sample number variation between groups as well as their 280 non-parametric distributions (Lenhard et al. 2016; Fritz et al. 2012). 281  282 In this calculation, Cohen’s d is computed from the equation; 283  284 𝑑 = 2𝑟√1 − 𝑟   285 , where the point biserial correlation r is derived from U values from Mann-Whitney 286 tests and sample sizes n of two groups, using Hans Wendt formula (Wendt, 1972), 287 
 288 𝑟 = 1 − (2𝑈)𝑛 × 𝑛   289 
Availability of data and materials 290 The datasets that support the findings of this study have been deposited in 291 figshare at https://figshare.com/s/5f02c47d446893384c34. 292 

 293 

Results 294 
I228M, an SFN-associated Nav1.7 gain of function mutant, reduces the neurite 295 
length of cultured DRG neurons 296 Loss of intraepidermal nerve fibers (IENFs) is a hallmark of SFN and an 297 important diagnostic criterion of the disease. We previously reported that GOF 298 mutations in NaV1.7 are associated with I-SFN and showed that expression of these 299 mutations renders sensory neurons hyperexcitable. In addition, following the 300 expression of the GOF variants, dorsal root ganglion (DRG) neurons exhibit reduced 301 nerite lengths (Persson et al. 2013b; Rolyan et al. 2016). 302 To establish an in vitro model for IENF loss by SFN-associated GOF variants in 303 NaV1.7, we transfected DRG neurons with wild-type (WT) and variant I228M 304 
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NaV1.7 channels (co-transfected with red fluorescent protein [RFP] to enable the 305 identification of transfected cells). As demonstrated in representative 49 field-of-306 view montage images (Figure 1A and C), cultures contained numerous RFP-positive 307 neurons, 7 days after transfection, with robust RFP signal in cell bodies as well as 308 neurites. Cell diameters varied between 20μm and 60μm. Examples of neurons 309 transfected with WT and I228M are shown at increased magnification in Figure 1B 310 and D. 311 Mean total neurite length/neuron was quantified from large-field images for 312 WT- and I228M-transfected neurons. There was an 20% reduction (p < 0.0001) in 313 length of neurites of I228M-expressing neurons as compared to those transfected 314 with WT channels (Figure 1E). We did not differentiate between large and small 315 diameter DRG neurons because neurites from each neuron made multiple crossings 316 with neurites from adjacent neurons, making it impossible to locate the cell body (or 317 cell body diameter) from which any given neurite arose.  318  319 
DRG neurons expressing I228M exhibit decreased neurite length in low 320 
glucose concentration. 321 Neurite growth and/or the maintenance of neurite length via extension and 322 regeneration is a high-energy demanding cellular process. Metabolically challenging 323 conditions, especially associated with the shortage of ATP, prevent neurite 324 extension and induce neurite degeneration (Chen et al. 2007; Estacion et al. 2015; 325 Persson et al. 2016). 326 Glucose is a major substrate for ATP production and its availability affects 327 cellular energetics (Tanaka et al. 2014; Tanaka et al. 2015; Tantama et al. 2013). We 328 therefore examined how low glucose availability would affect neurite growth of 329 cultured neurons. WT channel-expressing neurons exhibited similar neurite lengths 330 in all three glucose concentrations (25, 5.7 and 2.7mM) with a trend of modestly 331 increased neurite length in lower concentrations (Figure 2A). This result suggests 332 that, in neurons that express normal (wild-type) voltage-gated sodium channels, 333 neurite lengths are not strongly dependent on glucose availability in this model 334 system, presumably because the channel activity and the resulting cellular activities 335 are not a burden on neuronal bioenergetics. 336 In contrast to the WT cells, I228M neurons showed a trend toward markedly 337 decreased neurite lengths at low glucose concentrations (5.7 and 2.7mM), compared 338 to those in the control glucose condition (25mM) (Figure 2B). Average neurite 339 length was reduced by 25% (p=0.015) in 2.5mM glucose, as compared to the control. 340 Our results indicate that the presence of I228M channels imposes energetic burden 341 on sensory fibers, rendering them more vulnerable to damage under conditions 342 where the glucose level is low. 343 
 344 
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DRG neurons expressing I228M exhibit a reduced steady-state level of ATP 345 Impaired slow-inactivation of I228M is known to produce a sustained influx of 346 sodium, which would be predicted to lead to persistent activation of Na+/K+ ATPase 347 pumps (Estacion et al. 2015). The presence of I228M also produces increased 348 spontaneous firing of DRG neurons (Estacion et al. 2011). The firing of action 349 potentials induces synaptic vesicle cycling that imposes an additional energetic cost 350 (Pathak et al. 2015).  We therefore expected that I228M-transfected neuron would 351 display low intracellular ATP level ([ATP]i).  352 To address this question, we measured ATP levels in DRG neurons using a 353 genetically encoded FRET sensor, Ateam (Imamura et al. 2009).  We transfected 354 DRG neurons with NaV1.7 wild type (WT) or I228M along with Ateam FRET sensor 355 and measured FRET (ratio between YFP emission/ CFP emission) signals from the 356 transfected cells 5-6 days after culturing. We compared FRET differences between 357 WT and I228M groups.  358 It is not clear if the relationship of FRET values and ATP levels is linear. 359 Recognizing this limitation, inferential statistical analysis was carried out using 360 Cohen’s d effect sizes (Cohen 1988), which allows us to achieve standardized 361 comparison of treatment effect by NaV1.7 I228M (small effect = 0.20, medium 362 effect = 0.50 and large effect = 0.80). We calculated the effect sizes in the results of 363 Figure 3, using an effect size calculator that considers standard deviation and 364 sample number variation between groups as well as their non-parametric 365 distributions (Lenhard et al. 2016).  366 As shown in Figure 3A and B, I228M neurons displayed a modest reduction in 367 the FRET signal, compared to that of WT.  Our test statistic (p = 0.0042) signifies this 368 reduction in the I228M. However, given the small effect size (Cohen’s d = 0.315,  369 whether or not the effect size of this result is biologically meaningful remains to be 370 determined under the conditions that might permit changes of larger magnitude in 371 ATP level to occur. 372 Several feedback mechanisms might participate in the regulation of 373 mitochondrial ATP synthesis in these neurons. A moderate ATP reduction in I228M 374 neurons (Figure 3B) might be explained as a result of increased mitochondrial 375 metabolisms via feedback regulations (Estacion et al. 2015; Rolyan et al. 2016). We 376 therefore treated both WT and I228M DRG cultures with 1µM rotenone to inhibit 377 mitochondrial function and compared their steady-state levels of ATP. Rotenone 378 markedly reduced the FRET level in both WT and I228M cultures, indicating a 379 significant mitochondrial contribution to the FRET signal (Figure 3B and D). 380 However, in the presence of rotenone, I228M-transfected neurons showed a more 381 robust decrease in their FRET signal, compared to WT neurons. The average FRET 382 value of WT neurons shifted from 3.738 to 3.408 (9% reduction, Cohen’s d = 0.315) 383 whereas the FRET signal in I228M cultures shifted from 3.542 to 3.031 (15% 384 
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reduction, Cohen’s d = 0.364) (Figure 3B and D). This result suggests that I228M 385 channels negatively impact neuronal bioenergetics via a reduction in [ATP]i, for 386 which mitochondria can partially compensate. 387 
 388 
DRG neurons expressing I228M exhibit a faster decay of [ATP]i in response to 389 
membrane depolarization 390 DRG neurons expressing I228M channels display an increased firing frequency 391 over a broad range of stimulus intensities even close to current threshold (Estacion 392 et al. 2011). We therefore asked how I228M expression influences the change of 393 [ATP]i in response to depolarization. We induced membrane depolarization in the 394 transfected DRG neurons via application of 50mM KCl and monitored the FRET 395 change of the ATP sensor in real-time.  396 As shown in figure 4, both WT- and I228M-transfected neurons displayed a 397 decrease in the FRET signal of ATeam in both cell bodies and neurites in response to 398 high K+ application. However, the magnitude of the FRET reduction was greater in 399 I228M neurons than in WT neurons, suggesting that I228M neurons deplete their 400 [ATP]i more rapidly than that of WT. More rapid reductions of the FRET signal were 401 demonstrated in neurites than cell bodies (Figure 4B and D), possibly due to the 402 smaller diameter of neurites which are known to express a high level of sodium 403 channels (Black et al. 2012; Persson et al. 2010). Irrespective of the underlying 404 biophysical mechanism, the results indicate that neurites expressing I228M 405 channels are bioenergetically more vulnerable to energetic stress imposed by 406 depolarization than cell bodies, and that this vulnerability is markedly enhanced 407 under the expression of I228M channels.   408  409 
Pyruvate moderately increases neurite length in I228M neurons 410 Cellular ATP is produced in part from the activities of glycolysis and 411 mitochondrial OXPHOS. Greater molar numbers of ATP are synthesized from 412 OXPHOS, utilizing pyruvate as a substrate (Figure 5A). Increasing pyruvate 413 availability has been demonstrated to facilitate mitochondrial ATP production and 414 prevent cell and tissue damage provoked by conditions that involve bioenergetic 415 stress (Geng et al. 2015; Izumi and Zorumski 2010; Peeling et al. 1996; So and Fuller 416 2003; Wang et al. 2018; Zeng et al. 2007).  417 We hypothesized that exogenous pyruvate might protect against the impairment 418 of neurite outgrowth in I228M-transfected neurons. To test this hypothesis, we 419 cultured I228M-expressing DRG neurons for 7 days in the absence and presence of 420 pyruvate and compared the neurite lengths under these conditions.  In contrast to 421 this expectation, pyruvate treatment failed to significantly increase neurite length in 422 I228M neurons, despite a trend of slight increase (Figure 5B, left panel).  423 
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We initially reasoned that this result might reflect negative feedback regulation 424 from glycolysis that would inactivate pyruvate dehydrogenase (Figure 5A).  Because 425 high glucose concentration in the culture condition is expected to strengthen the 426 inhibition of pyruvate dehydrogenase (PDH) through PDH kinase (PDK) 427 phosphorylation and prevent pyruvate from being incorporated into OXPHOS, we 428 used dichloroacetate (DCA), a PKD inhibitor, to increase pyruvate flux into 429 mitochondrial metabolism and evaluated its effect on neurite length of I228M 430 neurons. However, DCA treatment was also ineffective in promoting neurite length 431 of I228M neurons (Figure 5B, right panel).  432 
 433 
I228M neurons display a marked reduction in the size and number of 434 
mitochondria. 435 We reasoned that the failure of the previous metabolic approaches might reflect 436 alterations of mitochondria in I228M neurons.  To address this possibility, we 437 investigated the size and density of mitochondria, which are strongly associated 438 with the functionality and bioenergetic capacity of the organelles (Youle and van der 439 Bliek 2012). We transfected DRG neurons with Mito-dsRED whose fluorescence is 440 limited to mitochondria and assessed their morphologies and distribution in the 441 transfected neurons. As shown in Figure 6, red fluorescence was expressed as 442 puncta along the neurites, confirming the target specificity of Mito-DsRed (Kitay et 443 al. 2013). In a comparison of WT and I228M cultures (Figure 6), I228M-expressing 444 neurites exhibited significantly fewer DsRed puncta than WT-expressing ones. In 445 addition, the size of DsRed puncta in I228M-neurites was significantly diminished, 446 compared to that of WT neurites.  447 The extent of mitochondrial fusion and fission provide indices of the intactness 448 of the subcellular organelle. Fragmented mitochondria, indicating increased fission, 449 are in general associated with mitochondrial damage and reduced respiratory 450 capacity (Rossignol et al. 2004; Westermann 2012). These results thus suggest that 451 I228M expression leads to dysfunctional and degrading mitochondria, which is 452 consistent with the ineffectiveness of pyruvate and DCA treatment in neurite length 453 enhancement. They also suggest that mitochondrial alterations are at least in part 454 involved in the reduced cellular energy state and neurite length in the mutant cells. 455  456 
Dexpramipexole increases neurite length in I228M neurons.  457 Our results — short neurite length, impaired bioenergetics, and mitochondrial 458 alterations in I228M neurons — predict that agents that protect or restore 459 mitochondrial energy production might protect against the impairment of neurite 460 length by GOF variants in NaV1.7. 461 An electrochemical gradient of protons is created by cellular respiratory 462 activities of mitochondria. The ionic gradient across the inner mitochondrial 463 
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membrane is used to drive ATP synthesis. Maintaining the gradient is, therefore, 464 critical to ensure sufficient ATP production via mitochondrial OXPHOS. 465 The mitochondrial permeability transition pore (mPTP) is known to regulate the 466 ionic gradient in mitochondrial matrix. Despite its role in the regulation of 467 mitochondrial Ca2+ level and metabolism, pathological conditions related to 468 energetic stress and Ca2+ overload can cause prolonged opening of mPTP, and in 469 turn induce mitochondrial dysfunction. 470 Dexpramipexole (DEX) blocks mPTP, enhances mitochondrial membrane 471 potential and improves mitochondrial energy metabolism in models of 472 neurodegeneration (Alavian et al. 2015; Alavian et al. 2012). To determine whether 473 DEX protects against reduced neurite length of I228M neurons, we treated the 474 neurons with this drug at a concentration previously reported to increase ATP 475 levels in neuronal cultures (Alavian et al. 2012). As shown in Figure 7E, treated 476 neurons displayed a significant increase in neurite length, compared to untreated 477 group in parallel cultures. Mean total length/neuron was increased by 25% in DEX-478 treated I228M neurons. We also assessed the effect of DEX on WT neurons and 479 found that 2µM DEX did not alter neurite length of WT-transfected neurons (Figure 480 7F).  481 Those results indicate that mitochondrial mechanisms are indeed involved in the 482 neuritic impairment of I228M neurons. They also suggest that a therapeutic strategy 483 might target mitochondrial dysfunction to prevent IENF loss that occurs in DRG 484 neurons carrying GOF mutations in NaV1.7. 485  486 

Discussion 487 
Gain-of-function mutations in NaV1.7 are related to loss of intraepidermal 488 
nerve fibers in I-SFN and reduce neurite lengths in cultured DRG neurons 489 The epidermis where IENFs reside is a dynamic terrain. The tissue continuously 490 remodels itself. Because new keratinocytes arise at the base of the tissue, then 491 migrate upwards and flatten preexisting keratinocytes, there is an ongoing change 492 of intercellular space and extracellular matrix, which mandates IENFs to navigate 493 through and adjust their ramification patterns while maintaining their skin 494 innervation. IENFs achieve this goal by a dynamic process that involves repeated 495 regeneration and degeneration (Cheng et al. 2010; Gibbons et al. 2010; Verze et al. 496 1999). 497 Previous skin biopsy studies have revealed that the density of nerve fibers 498 innervating the epidermis is reduced, and some nerve fiber terminals display 499 degenerating or retracting morphologies in the epidermis of SFN patients harboring 500 GOF mutations in NaV1.7. Those observations suggest that the sensory nerve fibers 501 
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in SFN are “dying back” (Chai et al. 2005; Hoeijmakers et al. 2012b; Lauria et al. 502 2011). 503 The neurite outgrowth assay provides a simple in vitro method for assessment 504 of potential effects of genetic and exogenous factors on the integrity of the axons of 505 DRG neurons. (Filous and Silver 2016). In the present study, we chose the I228M 506 mutation of NaV1.7 because it has been characterized in detail both clinically (Faber 507 et al. 2012) and in terms of its effect on channel and DRG neuron function (Estacion 508 et al. 2011), and because expression of this variant within DRG neurons has a larger 509 effect on neurite integrity in vitro than other gain-of-function NaV1.7 mutant 510 channels that have been studied (Persson et al. 2013b). Using this in vitro assay, 511 DRG neurons transfected with I228M showed a reduced neurite length, compared to 512 WT channels (Figure 1).  513  514 
Gain-of-function mutations in NaV1.7 produce a bioenergetic deficit. 515 Despite the statistical significance of our results in Figure 3, their small effect sizes 516 approximately equate to a 58.4-61.1% probability of superiority, suggesting that the effect 517 of I228M in this condition might be minimal at best (calculated from  518 https://rpsychologist.com/d3/cohend/). Whether or not a 0.3-0.4 standard deviation 519 difference between groups is biologically relevant remains to be determined through 520 further investigation. In SFN patients, neurodegeneration occurs in length-dependent and 521 age-dependent manners (Hoeijmakers et al. 2012a). Given this clinical feature of SFN, 522 culturing for longer periods of time, under conditions that permit growth of longer axons 523 and cumulative ATP reduction or mitotoxic effect, might permit changes of larger 524 magnitude in ATP level to occur. 525 I228M-expressing neurons demonstrated reduced levels of [ATP]i in the basal 526 state and increased ATP consumption rates in response to depolarization (Figure 3 527 and 4). These results suggest that decreased bioenergetic stores contribute to the 528 pathophysiology of SFN related to GOF variants of NaV1.7. Those mutations alter the 529 gating properties of the channels so that their pores open more frequently and/or 530 with longer duration(Estacion et al. 2011; Hoeijmakers et al. 2012c).  Those 531 alterations expectedly increase Na+ influx and, via reverse operation of Na+/Ca++ 532 exchanger, alter [Ca2+]i dynamics in neurons as demonstrated by the example of 533 G856D mutation (Estacion et al. 2015).  To reverse the resulting ionic imbalance, the 534 excessive Na+ and Ca2+ are necessarily pumped out, which requires increasing 535 activities of Na+/K+-ATPase and Ca2+-ATPase (Ames et al. 1992; Palmgren and 536 Nissen 2011; Sokoloff 1999).  The increased activities of these pumps can impose an 537 energetic burden to neurons. In addition to that ionic disturbance, the variant 538 channels render neurons hyperexcitable with higher firing frequency and increased 539 spontaneous firing of action potentials that can confer an additional energetic 540 burden. (Estacion et al. 2011; Han et al. 2012a; Han et al. 2012b; Hoeijmakers et al. 541 2012a). 542 
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 543 
Cellular energy state influences neurite length  544 Multiple studies have suggested a link between bioenergetic state and the 545 maintenance of axonal integrity (Chowdhury et al. 2014; Estacion et al. 2015; 546 Persson et al. 2013a). Numerous cellular events take part in axon extension and 547 maintenance, including actin-microtubule reorganization, vesicle trafficking and 548 protein synthesis, and some of them are energetically demanding. It is thus not 549 surprising that impaired bioenergetic states have been shown to result in axonal 550 injury, growth inhibition and degeneration in vitro (Gibbons et al. 2010; Kitayama et 551 al. 2008; Natera-Naranjo et al. 2012; Persson et al. 2013a; Press and Milbrandt 552 2008).  The continuous remodeling, that is required for IENFs in vivo to maintain 553 skin innervation as they accommodate to the addition of new epidermal cells and 554 their transit to the skin surface, may add to the energetic demand.  555 Our results suggest that a bioenergetic deficit contributes to the mechanism by 556 which GOF variants in NaV1.7 cause IENF loss. First, under the expression of I228M 557 mutant channels, DRG neurons displayed reduced steady-state levels of [ATP]i and 558 rapid ATP consumption rates upon membrane depolarization. This result indicates 559 that the mutant channels impose bioenergetic stress on sensory neurons and their 560 nerve fibers.  Second, neurite lengths in I228M neurons were markedly sensitive to 561 glucose availability, while this effect was not observed in WT cells. This result 562 suggests that the energetic burden by GOF variants in NaV1.7 renders nerve fibers 563 vulnerable to metabolic conditions that are benign to WT axons. Given that the low 564 glucose concentrations that we used fall within physiological ranges (Guemes et al. 565 2016), we suggest that the GOF variant channels trigger axonal damage at least in 566 part via a bioenergetic mechanism in I-SFN. 567  568 
Mitotoxicity and protection in peripheral sensory neuropathies 569 The alterations of mitochondria in I228M neurons (Figure 6) indicate that 570 mitochondrial mechanisms also contribute to impaired bioenergetics and IENF 571 damage in I-SFN related to NaV1.7 mutations. Dysfunction and/or loss of 572 mitochondria have been recently suggested as a converging pathogenic mechanism 573 in multiple types of peripheral neuropathy (Bennett et al. 2014; Casanova-Molla et 574 al. 2012; Lehmann et al. 2011; Persson et al. 2016). DEX has been shown to have a 575 protective effect in several models of neurodegeneration (Alavian et al. 2015; 576 Alavian et al. 2012). The beneficial effect of DEX in our model system (Figure 7) 577 suggests the possibility that at least in the short term, a degree of therapeutic 578 protection of IENF may be achievable.  579 
 580 
Bioenergetic stress and pain 581 
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Bioenergetic stress impairs the performance of Na+-K+-ATPase-dependent pump. 582 This impairment contributes to a depolarizing shift in resting membrane potential, 583 which can render neurons hyperexcitable prior to development of neuropathy 584 (Nasu et al. 2014). Ischemic conditions are also known to result in bioenergetic 585 deficits and increase membrane depolarization and axonal excitability (Han et al. 586 2008; Kiernan and Bostock 2000). Those results are consistent with our hypothesis 587 and observations — GOF variants in NaV1.7 evoke bioenergetic stress, resulting in 588 the impairment of the ATPases pumps and a disturbance of ionic gradient. We 589 suggest that the ionic disturbance evoked by the variant channels and the 590 consequent energetic burden may mutually amplify each other. The resulting 591 positive feedback loop may, in the long term, aggravate spontaneous impulse 592 generation and pain in SFN. For instance, increased ionic perturbation would 593 decrease cellular energy. This energy crisis would consequently impair the function 594 of the ATPase-dependent ion pumps. As a result, the residual ionic imbalance would 595 be expected to persistently activate ATPases, further depriving cellular ATP. 596 Through this cycling between ionic imbalance and bioenergetic stress, neurons 597 would be increasingly depolarized and deprived of cellular energy. If affected 598 neurons are nociceptors, this would contribute to an increased spontaneous pain. If 599 such a cycling persists, the consequent severe bioenergetic crisis would lead to 600 neurodegeneration of IENF. 601 Multiple GOF mutations of NaV1.7 have been linked to small fiber neuropathy 602 (Faber et al. 2012; Han et al. 2012a; Han et al. 2012b). In previous studies, a subset 603 of DRG neurons expressing the SFN G856D mutation demonstrated time-dependent 604 neurite degeneration as well as neurite fragmentation under metabolically 605 challenging conditions (Estacion et al. 2015; Rolyan et al. 2016). However, the 606 G856D mutation produces a complex phenotype in which impaired distal limb 607 development accompanies SFN (Hoeijmakers et al. 2012c). We speculate that many 608 gain-of-function NaV1.7 mutations impose energetic stress on DRG neurons. 609 Additional studies on other NaV1.7 mutant channels will be needed to confirm this 610 proposal.  Additional studies will be needed to determine whether bioenergetic or 611 mitotoxic mechanisms contribute to the association that has been reported 612 (Blesneac et al. 2018) between NaV1.7 mutations and painful diabetic neuropathy.  613 
 614 
Conclusion 615 SFN is a progressive disorder and is often diagnosed when there is degeneration 616 of nerve fibers. Our result suggests that, in addition to interventions that selectively 617 reduce ionic imbalances caused by mutant Nav1.7 channels, an alternative 618 therapeutic strategy might target the bioenergetic burden and mitochondrial 619 dysfunction that occur in SFN associated with Nav1.7 gain-of-function mutations. 620 Future studies will be needed to assess this approach with multiple SFN-associated 621 
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sodium channel mutations, and should aim at testing this mechanism in vivo, via the 622 assessment of IENF and behavioral changes after interventions that protect 623 bioenergetic mechanisms.  624 
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Figure 1. DRG neurons expressing I228M, a gain-of-function mutant of NaV1.7, 850 
display reduced neurite length in vitro 851 Mouse DRG neurons were isolated from 6-8 week old mice and sister cultures, 852 prepared at the same time from the same animal by the same operator, were 853 electroporated with the plasmid encoding wild-type Nav1.7 or the mutant channel 854 along with RFP. After the electroporation, cells were plated on the coverslips coated 855 with laminin and cultured for 7 days. The resulting cultures were imaged and their 856 total lengths per cell were assessed as described in Methods. 857 A. Large-field montage image of WT-expressing DRG culture, consisting of 7X7 858 field views. Dotted lines distinguish individual field-of-view. Scale bar, 1000µm 859 B. Enlarged field view image of individual neurons transfected NaV1.7 WT 860 C. Large-field montage image of I228M-expressing DRG culture, consisting of 861 7X7 field views. Dotted lines distinguish individual field-of-view. Scale bar, 1000µm 862 D. Enlarged field view image of individual neurons transfected NaV1.7 I228M 863 Quantification of total length per cell of WT and I228M neurons calculated from 864 large-field images and the average for each condition. Each data point represents 865 total neurite length per cell from each culture. Dotted line indicates mean value of 866 control. Data are normalized to WT values and presented as mean ± standard 867 deviation.  Mean of WT (n = 34 cultures from 8 animals) and I228M (34 cultures 868 from 8 animals) are 1.000 ± 0.1870 and 0.7966 ± 0.1755, respectively. MD (WT - 869 I228M) is 0.2034 ± 0.04398. CI is 0.1155 to 0.2912. I228M culture displays a 20 % 870 decrease in neurite lengths with ****p < 0.0001, (nested t test).  871  872 
Figure 2. DRG neurons expressing I228M display a significant reduction in 873 
neurite length at reduced glucose concentrations. 874 Mouse DRG cultures expressing the indicated channels were prepared as described 875 in Methods. The cultures were then maintained in the culture media containing 25, 876 5.7, or 2.7mM glucose for 7 days. The resulting cultures were imaged, and their 877 neurite lengths were assessed as described in Methods. Data are normalized to the 878 neurite length values of 25mM glucose cultures and presented as mean ± standard 879 deviation. Dotted line indicates mean value of control.  880 A. WT neurons show a similar extent of neurite outgrowth in all the range of 881 glucose concentrations (25mM: 1 ± 0.3057, n = 19 cultures from 5 animals ; 5.7mM: 882 1.1346 ± 0.3452, n = 19 cultures from 5 animals; 2.7mM: 1.1569 ± 0.3740, n = 11 883 cultures from 3 animals).  884 B. I228M neurons display neurite length reductions in the low glucose 885 conditions, compared to 25mM glucose (25mM: 1 ± 0.2902, n = 20 cultures from 5 886 animals; 5.7mM: 0.9036 ± 0.1966, n = 20 cultures from 5 animals; 2.7mM: 0.7471 ± 887 0.2218 from n = 12 cultures from 3 animals).    888 
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I228M-transfected culture displays a 25 % reduction in neurite lengths at 2.7mM 889 glucose, compared to the culture at 25mM glucose (**p = 0.0120, nested one way 890 ANOVA followed by Dunnett's multiple comparisons test. MD (25mM-2.7mM) is 891 0.2529 ± 0.08847. CI is 0.04879 to 0.4570. In contrast to the mutant culture, WT 892 culture did not show reduced neuritic growths in the low glucose concentrations 893 (NS, not significant, nested one way ANOVA followed by Dunnett's multiple 894 comparisons test).  895  896 
Figure 3. [ATP]i levels are decreased in DRG neurons expressing I228M. 897 Steady-state levels of ATP were measured from cultured DRG neurons using a FRET-898 based ATP indicator approach. ATeam, an ATP FRET probe was expressed in mouse 899 DRG neurons along with the indicated channels. 7 days after culturing, FRET signals 900 of transfected neurons were measured in the absence or the presence of rotenone as 901 described in Methods. 902 A. Representative FRET images of ATeam-expressing DRG neurons 903 B. I228M-expressing neurons exhibit a reduced FRET signal, compared to WT 904 neurons (WT: 3.738 ± 0.612 from n = 218 cells; I228M: 3.542 ± 0.770 from n = 121 905 cells, p = 0.0042, Mann-Whitney test). Each data point represents a FRET value from 906 each cell. Dotted line indicates mean value of control.  907 C. Representative FRET images of ATeam-expressing DRG neurons treated with 908 rotenone 909 I228M-expressing neurons exhibit a markedly reduced FRET signal, compared to 910 WT neurons in the presence of rotenone (WT: 3.408 ± 0.800 from n = 250 cells; 911 I228M: 3.031 ± 1.042 from n = 325 cells, p > 0.0001 Mann-Whitney test). Each data 912 point represents a FRET value from each cell. Dotted line indicates mean value of 913 control.  914 
 915 
Figure 4. DRG neurons expressing I228M display a rapid ATP reduction, 916 
compared to WT neurons in response to membrane depolarization. 917 ATP kinetics of DRG neurons were assessed in response to depolarization as 918 described in Methods. Mouse DRG neurons transfected with ATeam along with 919 Nav1.7 WT or I228M and FRET changes were monitored after depolarization with 920 50mM KCl.  921 A. Representative time-lapse images of ratiometric FRET change of DRG 922 neurons expressing the indicated channels. Scale bar, 50 µm. 923 B. Traces represent means of WT neurons (n=8) and I228M neurons (n=7). 924 Error bars represent standard deviations. 925 C. Quantification of FRET changes of DRG neurons after membrane 926 depolarization by 50mM [K+], Area under the curve (AUC) was calculated and the 927 
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difference between the groups was analyzed (WT: -222.6±56.2, n=8; I228M: -928 291.8±25.8, n=7). Dotted line indicates mean value of control. 929 D. Representative time-lapse images of ratiometric FRET change of DRG 930 neurites expressing the indicated channels. Scale bar, 10 µm. 931 E. Traces represent means of WT neurites (n=12) and I228M neurites (n=12). 932 Error bars represent standard deviations. 933 Quantification of FRET changes of DRG neurites after membrane depolarization by 934 50mM [K+], Area under the curve (AUC) was calculated and the difference between 935 the groups was analyzed (WT: -450.9±169.3, n=12; I228M: -1085±281.2, n=12). 936 Dotted line indicates mean value of control.  937  938 
Figure 5. Increasing pyruvate availability fails to increase the neurite length of 939 
I228M neurons. 940 I228M neurons were treated as indicated, in order to increase pyruvate availability 941 for mitochondria and assess the effects of those treatments in the neuritic growth. 942 Mouse DRG neurons were isolated from 6-8 weeks old mice and electroporated with 943 the plasmid encoding wild type Nav1.7 or the mutant channel along with RFP. After 944 electroporation, the cells were plated on the coverslips coated with laminin and 945 cultured for 7 days in the indicated treatments. 946 A. Carbohydrate energy metabolism and its feedback regulation 947 Using pyruvate, mitochondria produce more ATP through TCA cycle and oxidative 948 phosphorylation (OXPHOS) than glycolysis and lactate fermentation do. Glucose 949 negatively regulate mitochondrial TCA and OXPHOS via pyruvate dehydrogenase 950 kinase. 951 B. The effect of pyruvate supplementation in neurite lengths. Each data point 952 represents total neurite length per cell from each culture. Dotted line indicates mean 953 value of control. Data are normalized to the value of I228M-control (without 954 pyruvate) and presented as mean ± standard deviation  (I228M-Control: 1.067 ± 955 0.413, n = 17 cultures from 6 animals; I228M-pyruvate: 1.284 ± 0.704, n = 15 956 cultures from 6 animals). Difference between means is not significant (p = 0.2027, 957 nested t test). MD (Control-Pyruvate) is -0.4249 ± 0.3117. CI is -1.120 to 0.2696.  958 The effect of DCA treatment in neurite lengths. Each data point represents total 959 neurite length per cell from each culture. Dotted line indicates mean value of control. 960 Data are normalized to the value of I228M-control (without DCA treatment) and 961 presented as mean ± standard deviation (I228M-Control: 0.9981 ± 0.301, n = 12 962 cultures from 3 animals ; I228M-DCA: 1.021 ± 0.387, n = 10 cultures from 3 animals). 963 Difference between means is not significant (p = 0.8827, nested t test). MD (Control-964 DCA) is -0.02322 ± 0.1551. CI is -0.3490 to 0.3026.  965  966 
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Figure 6. I228M-expressing neurons exhibit alterations in mitochondrial 967 
distribution and morphology. 968 Mitochondria were genetically labeled by transfecting Mito-DsRed into mouse DRG 969 neurons expressing the indicated human Nav1.7 plasmids. Mitochondria with red 970 fluorescence were imaged and counted in transfected neurites, as described in 971 Methods. 972 A. A representative image of neuritic mitochondria of DRG neurons expressing 973 WT. Scale bar, 50 µm. 974 B. A representative image of neuritic mitochondria of DRG neurons expressing 975 I228M. Scale bar, 50 µm. 976 C. Mitochondrial density of WT- and I228M-expressing neurites. Dotted line 977 indicates mean value of control. Each data point represents an individual neurite. 978 Data are normalized to neurite length and presented as mean ± standard deviation. 979 The graph represents mean of mitochondrial numbers per µm.  (WT: 0.1449 ± 980 0.0229, n=39 neurites; I228M: 0.1323 ± 0.0046610298, n=41 neurites, *p = 0.0371, 981 unpaired t test). MD (WT-I228M) is 0.01266 ± 0.005967.  CI is -0.02453 to -0.00078. 982 D. Mitochondrial size of WT- and I228M-expressing neurites. Dotted line 983 indicates mean value of control. Each data point represents an individual 984 mitochondria. Data are presented as mean ± standard deviation. The graph 985 represents the mean of pixel numbers (WT: 112 ± 171.59, n=1453 mitochondria; 986 I228M: 90.47 ± 130.01, n=1014 mitochondria, ***p = 0.007, Mann-Whitney test). 987 I228M neurons display a modest but significant reduction in mitochondrial density 988 and size in neurites, compare to WT neurons.  989  990 
Figure 7. Dexpramipexole promotes neurite growth of I228M-expressing 991 
neurons. 992 I228M neurons were treated with 2µM dexpramipexole for 7 days and the neurite 993 lengths were compared to those of the untreated group. 994 A. A representative montaged image of I228M-expressing DRG culture.  995 B. A field view image of the montaged image shown in A 996 C. A representative montaged image of I228M-expressing DRG culture in a 997 coverslip.  998 D. A field view image of the montaged image shown in C 999 E. Quantification of total length per cell of I228M-control and I228M-treatment 1000 group. Dotted line indicates mean value of control. Each data point represents total 1001 neurite length per cell from each culture. Data are normalized to neurite control 1002 value and presented as mean ± standard deviation  (I228M-Control: 1 ± 0.0974, n = 1003 12 cultures from 3 animals; I228M-2µM dexpramipexole: 1.287 ± 0.08403, n = 12 1004 cultures from 3 animals). MD (DEX-Control)  is 0.2875 ± 0.09296. CI is -0.009469 to 1005 

Downloaded from www.physiology.org/journal/jn at IRCCS Inst Naz Neuro Carlo Besta (193.204.088.253) on December 19, 2019.



0.4803. Dex-treated I228M culture displays a 29 % increase in neurite lengths with 1006 ***p = 0.0053, (nested t test). 1007 F. Quantification of total length per cell of WT-control and WT-treatment group. 1008 Dotted line indicates mean value of control. Each data point represents total neurite 1009 length per cell from each culture. Data are normalized to neurite control value and 1010 presented as mean ± standard deviation (WT-Control: 1 ± 0.0828 from n = 10 1011 cultures from 3 animals; WT-2µM dexpramipexole: 1.034 ± 0.0839, n = 10 cultures 1012 from 3 animals). MD (DEX-Control) is -0.03392 ± 0.1179. CI is  -0.2816 to 0.2138. 1013 Dex-treated WT culture did not displays any significant change in neurite lengths. (p 1014 = 0.7768, Nested t test).  1015  1016 
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Figure 2, Lee et al. 
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Figure 3, Lee et al. 
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Figure 4, Lee et al. 
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Figure 4, Lee et al. 
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Figure 5, Lee et al. 
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Figure 6, Lee et al. 
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Figure 7, Lee et al. 
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