OFFICIAL JOURNAL OF THE EUROPEAN
ATHEROSCLEROSIS SOCIETY

AFFILIATED WITH THE INTERNATIONAL
ATHEROSCLEROSIS SOCIETY

AND

THE SOCIETY OF Atherosclerosis IMAGING AND PREVENTION

ABSTRACTS
XIV International Symposium on Atherosclerosis
Rome, Italy, June 18-22, 2006
Th-W53.8

THE EFFECT OF N-3 FATTY ACIDS ON HEART RATE VARIABILITY IN PATIENTS TREATED WITH CHRONIC HEMODIALYSIS

M. Svensson1, E.B. Schmidt2, K.A. Jørgensen1, J.H. Christensen1, 1Aarhus University Hospital, Aalborg, Denmark; 2Aarhus University Hospital, Aarhus, Denmark.

Objectives: Patients with chronic renal failure (CRF) have an increased mortality, mainly due to cardiovascular disease (CVD). Depressed heart rate variability (HRV) is a predictor of mortality in patients with CVD. Previous studies have shown that supplementation with n-3 polyunsaturated fatty acids (PUFA) may increase HRV and protect against sudden cardiac death. The aim of the present study was to address the effect of n-3 PUFA on HRV in patients treated with chronic hemodialysis (HD).

Methods: Patients with documented CVD, treated with chronic HD for at least 6 months were randomised to treatment with n-3 PUFA or control treatment (olive oil). At baseline and after three months, patients were evaluated with 24-hour HRV measurement and blood-samples, to assess the content of n-3 PUFA in plasma phospholipids.

Results: Thirty patients were included. The two groups were comparable regarding baseline characteristics and HDV. After supplementation with n-3 PUFA for three months there was a significant decrease in heart rate (HR) from 73.4 bpm to 70.5 bpm and a corresponding increase in the RR interval. When the two groups were compared, this did not remain significant. n-3 PUFA did not significantly affect other HRV parameters.

Conclusion: Supplementation with n-3 PUFA for three months did not significantly increase HRV. However, in the n-3 PUFA group there was a reduction in HR of 2.9 bpm, results that may be of clinical interest.

Funding: The Danish Heart Foundation, The Danish Kidney Foundation. The Research Foundation of the County of North Jutland and Pronova Biocare.

Th-W54

LIPROTEIN PARTICLE

Th-W54.1

RECENT ADVANCES IN THE STUDY OF THE SMALL DENSE LOW-DENSITY LIPOPROTEIN PARTICLE PHENOTYPE

B. Lamarche, J.F. Mauger, Institute on Nutritional and Functional Foods, Laval University, Quebec, Canada.

Objective: Small dense LDL particles are being increasingly recognized as an important risk factor for coronary heart disease (CHD). The objective of this presentation is to provide an overview of the latest research developments in that area.

Methods: Results were retrieved through literature search in PUBMED, with emphasis on data from our own group.

Results: Compelling evidence from epidemiological, clinical and in vitro studies associate small dense LDL with an increased risk of CVD [1]. Yet, the independence of the association between the small dense LDL phenotype and CHD risk from other known risk factors remains speculative as this thesis has not been supported by most epidemiological studies. However, the fact that the LDL size phenotype has been characterized using a wide array of methods certainly represents a major limitation in our ability to reach definite conclusions on whether or not small dense LDL should be considered an independent risk factor. While most epidemiological studies have characterized LDL size by polyaeryulide gradient gel electrophoresis (PAGGE) using a variable referred to as the LDL peak particle diameter, more recent studies have indicate that other characteristics of LDL, particularly the proportion and absolute levels of small LDL particles, are more strongly related to the risk of CHD than the LDL peak particle diameter [2]. It is suggested that several components of the LDL size phenotype should be measured concurrently in order to fully appreciate the impact of the small dense LDL phenotype on CHD risk. LDL particles have also been characterized using other methods such as Nuclear Magnetic Resonance (NMR) [3] and more recently by heparin-magnesium precipitation [4]. However, these methods show various degrees of concordance with measures derived from PAGGE. Finally, although it has long been suggested that small dense LDL have a prolonged plasma residence time compared to larger LDL, thereby contributing to their increased atherogenicity, this hypothesis had never been formally tested in vivo in humans using tracer studies with stable isotopes. We have recently developed a new protocol to investigate the in vivo kinetics of LDL with various sizes, using a single intravenous bolus of D3-lysine. We show using this method that LDL in the smaller LDL density range (d 1.044-1.063 g/ml) are cleared at a much slower rate than LDL with a lower density (d 1.019-1.034 g/ml). These novel analyses will be discussed in detail.

Conclusions: While the inverse association between the small dense LDL and CHD risk is virtually indisputable, several issues remain to be further investigated. The most representative measure of the LDL size phenotype in terms of CHD risk has to be determined. The in vivo physiology of small dense LDL also needs to be better characterized, particularly in association with patho-physiological states such as obesity and the metabolic syndrome.

References

4. [Koba S et Al. Am Heart J 2002; 144:1026].

Funding: Supported in part by the Canada Research Chair in Nutrition and Cardiovascular Health, Canada Research Chair program, and by the Canadian Institute for Health Research.

Th-W54.2

WHY METUSELAH LIVED TO BE 969: LONGEVITY GENES AND A NOVEL LIPOPROTEIN CONNECTION

N. Barzilai, G. Atzmon, Department of Medicine and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.

Objective: The discovery that a single gene can confer longevity in lower species has led us to examine whether centenarians are over-represented with phenotypic and genotype for exceptional longevity.

Methods: We recruited a genetically homogeneous population of unrelated Ashkenazi Jews between the ages of 60 and 108 years (n=356). Individuals who lived independently at age > 95 years were defined as centenarians, or having exceptional longevity (n=169). To validate the genetic and physiological findings we also recruited 222 offspring of subjects with exceptional longevity. We assessed their serum lipoproteins levels and lipoprotein particle size (by NMR), and determined the presence of the metabolic syndrome by

XIV International Symposium on Atherosclerosis, Rome, Italy, June 16-22, 2006