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We investigate some well-known problematic aspects of the single-jet inclusive cross section,
specifically its nonunitarity and the possibly related issue of apparent perturbative instability at low
orders. We study and clarify their origin by introducing possible alternative weighted definitions of the
observable which restore unitarity. We show that the perturbative instability of the standard definition is an
accidental artifact of the smallness of the next-to-leading order K factor which only manifests itself for
values of the jet radius in the range R ∼ 0.3–0.6, and that its nonunitarity is necessary in order to ensure
cancellation of logs of the momentum cutoff used in the jet definition. We also show that alternative unitary
definitions do not have better perturbative properties compared to the conventional nonunitary definition,
while suffering from lack of cancellation of large logs.
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I. INTRODUCTION

The single-jet inclusive cross section has been used for
over 30 years [1] for the determination of parton distribu-
tions. As an observable, it is defined in a deceptively simple
way [2,3]: count all jets which fall in any given kinematic
bin and add them up. While this definition is remarkably
simple, a minutes’ reflection shows that it has a somewhat
peculiar and perhaps undesirable feature. Namely, it is not
unitary: each event is counted more than once, so that the
integral of the differential cross section does not yield the
total cross section. The recent computation of the next-to-
next-to-leading order (NNLO) corrections to this observ-
able [4,5] has shown another seemingly problematic aspect:
the scale dependence of the result is not significantly
reduced and the size of the K factor does not significantly
decrease when going from NLO to NNLO, at least with

certain scale choices, which suggests a possible perturba-
tive instability.
In Ref. [5] the perturbative properties of this observable

were extensively studied, in particular by a numerical
analysis of the contributions to individual jet bins with a
variety of computational setups (such as the choice of scale
and of jet radius). Here we approach the problem of
understanding the behavior of this observable from a
somewhat different point of view: namely, by trying to
see how it behaves upon changes of its definition, specifi-
cally motivated by an attempt to correct for its nonunitarity.
We then study the properties of this family of new, unitary
definitions both numerically and analytically in a simple
collinear approximation. Our analysis focuses on the
general properties of the observable, of which we strive
to understand the main qualitative features. We thus base
our discussion on NLO calculations, whose structure is
easier to handle from both a numerical and an analytic point
of view, though we aim at understanding their general
properties at any perturbative order. An explicit study of
NNLO results (which are not publicly available anyway)
such as already presented in Ref. [5], as needed for state-of-
the-art precision phenomenology, is outside our scope and
goals. Nevertheless, we will comment when needed on the
validity of our results at higher orders, and we have
explicitly checked their robustness in several cases at
NNLO, which we have been able to obtain from a NLO
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code by calculating differences in which missing double-
virtual contributions cancel.
Our main conclusion is that what seems to be an

undesirable feature, namely the nonunitarity of the standard
definition, automatically guarantees that results are stable
upon changes of the cutoff momentum scale used in order
to define a jet, i.e., the minimum momentum that a jet must
carry. Introducing an alternative, unitary definition of the
cross section, preserving insensitivity to the momentum
cutoff, is nontrivial, and requires that unitarity be made
compatible with the independence of the number of jets: we
will show two examples demonstrating how this could be
achieved.
On the other hand, what may appear to be a lack of

perturbative convergence when going from NLO to NNLO,
with the NNLO correction [5] larger or of the same order of
the NLO one, is actually a manifestation of the fact that the
NLO correction of the cross section depends on R in such a
way that it changes sign around R ∼ 0.4, and it is thus
accidentally small, with small theoretical uncertainties,
around R ¼ 0.4. The perturbative properties of alternative,
weighted definitions are generally similar to that of the
standard definition, though often worse, for reasons closely
related to the sensitivity to the transverse momentum cutoff.
The outline of this paper is the following. First, in Sec. II

we discuss the standard definition of the cross section and
its nonunitarity, and we present a family of alternative,
unitary definitions. Then, in Sec. III we compare results
obtained using various definitions at NLO. In Sec. IV we
show how the results of the previous section can be
understood in terms of an analytical calculation. Finally,
we draw our conclusions in Sec. V.

II. THE SINGLE-JET INCLUSIVECROSS SECTION
AND ITS DEFINITION

The single-jet inclusive cross section is defined in terms
of the differential cross section dσNjets

dpt1���dptN
for producing N

jets (after cuts) with transverse momenta pti, as

dσ
dpt

¼
X
N

dσNjets

dpt
; ð2:1Þ

dσNjets

dpt
¼

Z
dpt1 � � � dpti � � � dptN

dσNjets

dpt1 � � � dpti � � � dptN

× FN ½pt1;…; ptN;pt�; ð2:2Þ

where FN , for a standard definition, is given by

Fstd
N ½pt1;…; ptN;pt� ¼

XN
i¼1

δðpti − ptÞ; ð2:3Þ

and it fills the bin with transverse momentum pt by picking
all contributions from the fully differential N-jets cross
section. The sum in Eq. (2.1) runs over the number of jets in
each event that pass some kinematic cut. The sum over the

total number of jets starts withN ¼ 1 (theN ¼ 0 case gives
of course no contribution) and goes up to two at leading
order (LO), three at NLO, and generally pþ 2 at NpLO.
It is clear that the inclusive-jet cross section defined in

this way is not unitary, in that its integral over pt does not
give the total number of scattering events per unit flux per
unit time within a given fiducial region. Indeed, with this
definition, when filling a histogram in pt, an event with N
jets is binned N times. This lack of unitarity may be a cause
of concern: one is used to the fact that the unitarity of the
total partonic cross section is crucial in order to ensure its
infrared finiteness, given that infrared singularities cancel
between terms with different numbers of final-state partons.
On the other hand, infrared finiteness of the N-jet cross
section is ensured by the use of a jet definition, so the
question is really whether this definition leads to a good
perturbative behavior.
In order to address the question in a quantitative way, we

generalize the definition of the single-jet inclusive cross
section by introducing jet weights that render the cross
section unitary. Namely, we modify the definition Eq. (2.2)
by introducing weights in the definition of the function FN ,
Eq. (2.3):

FN ½pt1;…; ptN ;pt� ¼
XN
i¼1

δðpti −ptÞwðNÞðpt;pt1;…; ptNÞ:

ð2:4Þ
The choice wðNÞ ¼ 1 represents the standard nonunitary
definition Eq. (2.3). The choice wðNÞ ¼ 1=N restores
unitarity, but has undesirable discontinuities whenever
the kinematics of the final state changes in such a way
that the number of jets jumps from N to N þ 1. In this
work, we consider a set of weights defined as

wðNÞðpt;pt1;…; ptNÞ ¼
(
1 ðstandardÞ

pr
tP

N
j¼1

pr
tj

ðweightedÞ ; ð2:5Þ

where ptj is the transverse momentum of the jth jet. All
weighted choices lead to a unitary definition.
We consider specifically three families of definitions of

these weights, according to which jets are included when
constructing the weights:

(i) A: jets above pcut
t

Only jets with pt ≥ pcut
t are included in the

definitions of FN , Eq. (2.4). In particular, this
implies that the sum in the denominator of
Eq. (2.5) includes only jets for which ptj ≥ pcut

t .
When r ¼ 0, this reduces to the simplest unitary
choice with all weights equal to 1=N.

(ii) B: all jets
FN includes all the jets, but the numerator in the

weight definition, Eq. (2.5), only includes jets above
pcut
t . In particular, the denominator in Eq. (2.5) sums
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over all jets. This definition is infrared safe only for
r > 0. While this definition may seem unphysical, in
practice it corresponds to having a pcut

t that is small
compared to the pt value of the first bin one is
interested in.

(iii) C: two leading jets
Only the first two leading jets in pt are included in

the definition of both FN and the weights, so N ¼ 2
in both Eqs. (2.4) and (2.5). In this case we consider
the two leading jets independently on whether their
pt is larger or smaller than a possible pcut

t .
These definitions are “unitary” in the sense that the

weights add up to one. This implies that, with the first
definition, integrating over pt gives the total cross section
to have at least one jet above pcut

t . For the second definition
(with pcut

t → 0 or an explicit underflow bin) and for the
third definition, one instead gets the total pp cross section.
To keep the discussion simple, we do not impose any
rapidity cut in the studies carried on in this paper.
Nevertheless each of the previous definitions could be
extended to the case in which a rapidity cut is introduced.
Note that in the case of the third definition, a rapidity cut
could change what the leading jets are. To avoid potential
issues, in particular for r < 0 which is more sensitive to
small pt, one might have in practice to impose an additional
dijet selection cut (similar to what is already done when
studying e.g., the dijet invariant mass).
To highlight the various features we are interested in

studying in this work, it is useful to consider different ways
of organizing the perturbative calculation of the single-jet
inclusive cross section at NpLO accuracy. This can, in fact,
be written as a sum of contributions, each of order α2þk

s ,
k ¼ 0;…; p, assuming that the LO process is of order α2s :

dσN
pLO

dpt
¼

Xp
k¼0

dσðkÞ

dpt
: ð2:6Þ

Furthermore, it is useful to think about the order αkþ2
s

contribution in two different ways. The first is as a sum of
contributions with a different number of jets, as we have
done in Eq. (2.2). In such a case, the kth order contribution
to the cross section is built out of terms containing at most
kþ 2 jets, i.e., two at LO (k ¼ 0), three at NLO (k ¼ 1),
and so forth:

dσðkÞ

dpt
¼

Xkþ2

N¼1

dσðkÞNjets

dpt
: ð2:7Þ

Equation (2.7) is the same as Eq. (2.1), but for the kth order
contribution only. However, in order to understand the
perturbative behavior of the cross section it also useful to
break it up into the contribution from the jet with the largest
pt (leading, or first jet), the jet with the second largest pt
(subleading, or second jet), and so on:

dσðkÞ

dpt
¼

Xkþ2

n¼1

dσðkÞnth jet

dpt
: ð2:8Þ

In Eq. (2.7), dσðkÞNjets=dpt is the contribution to the cross
section coming from configurations with N jets, while in

Eq. (2.8) dσðkÞnth jet=dpt is the contribution coming from the
nth leading jet. The range of the sum is the same in both
cases, and it is equal to the maximum number of jets that
can be produced at a given perturbative order k.

III. COMPARING DEFINITIONS
OF THE CROSS SECTION

In order to study the effects of the various unitary
definitions, Eq. (2.5), we start by simply comparing results
obtained in each case for the NLO K factors and individual
jet contributions. This way, we can see how imposing
unitarity affects the pt distribution of the single-jet inclu-
sive cross section. In Sec. IV we then turn to analytic
arguments, both in general and in a collinear approxima-
tion. While the discussion presented here is mostly at NLO,
we have explicitly checked that our results persist through
NNLO, by computing at NNLO the difference of the cross
section with the various definitions that we consider, which
can be done using public NLO codes.
All results presented in this section are obtained using

the following setup. Computations up to NLO are per-
formed using NLOJET++(v4.1.3) [6,7] for pp collisions,
with center of mass energy

ffiffiffi
s

p ¼ 13 TeV. Parton distri-
bution functions are taken from the NNPDF3.1 [8] set at
NNLO, with αsðMZÞ ¼ 0.118, and interfaced using the
LHAPDF library (v6.1.6) [9]. Jets are clustered using the
anti-kt algorithm [10], as implemented in FastJet
(v3.3.2) [11], with R ¼ 0.4, unless otherwise specified.
The dependence on the choice of central factorization

and renormalization scale (see e.g., the discussion in [5])
is studied by considering three options: (i) the average
dijet scale,

pðavgÞ
t ¼ pðR¼1Þ

t1 þ pðR¼1Þ
t2

2
; ð3:1Þ

where pðR¼1Þ
t1;2 are the transverse momenta of the two leading

jets clustered with a radius R ¼ 1 [12]; (ii) the partonic
scalar kt halved,

ĤT

2
¼ 1

2

Xn-partons

i¼1

kti; ð3:2Þ

suggested as an optimal scale choice in [5]; and (iii) the

leading jet pt, p
ðmaxÞ
t , defined as pt of the leading R ¼ 1 jet.

For each choice of central scale, uncertainty bands are
obtained with the seven-point scale variation rule [13].

SINGLE-JET INCLUSIVE CROSS-SECTION AND ITS … PHYS. REV. D 100, 114015 (2019)

114015-3



As noted in [12] and as we discuss below, the uncertainty
bands around the NLO prediction are unnaturally small
because of unphysical cancellation in scale dependence
between the production of hard partons, a large angle
process, and their fragmentation into jets, a small angle
one. A more reliable estimate could be obtained by factoring
the cross section for producing a small-radius jet into the
cross section for the initial partonic scattering and the
fragmentation of the parton to a jet, considering separately
the uncertainties of these two processes and summing them
in quadrature. This option has been studied in [12] and in
great detail more recently in [14]. In this paper, we have
checked the effects of decorrelated scale variation on the
weighted definitions, and we briefly comment on this below.

A. Standard (nonunitary) definition

We start by discussing some well-known results for the
standard definition. As mentioned, we focus on two
observables: the total NLO K factor, and the individual
nth-leading jet NLO K factor as a function of pt,

K ¼
X3
n¼1

Kn; with Kn ¼
dσNLOnth jet

dσLO
: ð3:3Þ

They are shown in Fig. 1 for the standard definition.
Three main features are apparent. First, while the total
NLO K factor is quite close to one (see the right plot in
Fig. 1), the individual Kn for the leading and subleading
jets deviate from their leading order value, 1=2, by
sizable amounts (see the left plot in Fig. 1). However,
they almost exactly compensate when added up into the
total cross section, yielding a total NLO K factor close to
1, as well as a scale uncertainty much smaller than those
of the individual Kn. This almost exact compensation is
largely accidental as it depends on the value of the jet
radius. This can be seen in Fig. 2, where we plot the K
factor for the total cross section as a function of R: the
leading and the second leading jet K factors only
compensate (up to a residual ∼10% effect) in the region
R ∼ 0.3–0.6. This effect has also been noticed in
Refs. [12,14].

FIG. 1. Left: Contributions from the leading, subleading, and third-leading jet to the NLO inclusive cross section, with central scale
choice μR ¼ μF ¼ pðavgÞ

t , Eq. (3.1). Right: Inclusive NLO K factors, with three different central scale choices (see text).

FIG. 2. The NLO K factor for the single-inclusive total jet cross section as a function of the radius R of the jet (black). The
contributions from the leading jet (red) and the subleading jet (blue) are also shown. Results are plotted both with a logarithmic (left) and
linear (right) scale.
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The behavior of the individual jet K factors can be
explained in a simple fashion. At NLO, the K factor of the
leading jet K1 is substantially larger than one, most likely a
consequence of recoil effects amplified by the fact that the
LO cross section is steeply falling—typically with a power
around 5—in pt. Furthermore, at NLO, K1 does not
depend on R, as explicitly visible in Fig. 2 and as we show
analytically in Sec. IVA below. However, K2 decreases at
small R since out-of-cone final state radiation depends on the
jet radius and has the effect of lowering the pt of the emitter.
This effect is again drastically enhanced by the steeply
falling nature of the LO differential cross section in pt.
It can be seen from the logarithmic scale that the

dependence of the cross section on lnR becomes linear
only for R≲ 0.2: hence, the logarithmic contribution domi-
nates the cross section only in the very small R region, and
indeed resummation was shown to be necessary in this
region in Refs. [12,15,16]. For larger R the lnR term is still
sizable, but the bulk of the lnR effects is captured by the
exact NLO result, and for R≳ 0.4 there is a modest benefit
in resumming them, as also shown in Refs. [12,15,16],
where this resummation was performed explicitly.
Second, while the leading and second jet account for

most of the cross section, the contribution of the third jet to
the total K factor is much smaller (giving a correction of
less than 2% of the LO cross section) and almost com-
pletely negligible. The dominance of the first two jets as pt
grows is important in determining the qualitative features of
the standard definition, in comparison to the various other
definitions that we consider below. It persists at NNLO, as
shown in Ref. [5], and it is in fact to be expected to persist
to all orders, as a consequence of the dominance of soft
radiation which, combined with the transverse-momentum
conservation, favors configurations in which two hard jets
are back-to-back while all the others are softer.
Finally, by inspecting the uncertainty bands shown in

Fig. 1, one can see that scale variation bands for R ¼ 0.4 for
different central scale choices do not overlap in the small pt
region. An in-depth discussion of this problem and how this
changes when including even higher order QCD correc-
tions is given in Ref. [5]. It is, however, clear that this is a
consequence of the accidental compensation of the two
leading jets discussed above, which then propagates onto
the scale variation. It follows that theoretical uncertainties
obtained by performing standard scale variation for fixed
R ∼ 0.4 are unrealistically small. A more reliable estimate
can be obtained performing uncorrelated scale variation
[12,14], which then leads to overlapping scale uncertainties
across the whole pt spectrum, analogously to what happens
in the context of jet vetoing, where decorrelated scale
variation also leads to more realistic uncertainty estimates
in the presence of cancellations [17].
All this shows that the putative perturbative instability of

the standard definition is in fact a by-product of an entirely
accidental cancellation which happens only at NLO in a

given R range. Because this cancellation is not protected by
a symmetry, one should not expect it to persist with a
different definition or at higher perturbative orders.

B. Weighted (unitary) definitions

We now turn to the study of the weighted (unitary)
definitions of the single inclusive-jet cross section intro-
duced in Sec. II. We start our discussion with case (A), in
which a pcut

t is adopted, and we show that in fact this
unitary definition appears to display a somewhat problem-
atic behavior, whose origin is discussed analytically in
Sec. IV. We then turn to cases (B) and (C) which provide a
natural way to alleviate this problematic behavior.

1. Jets above pcutt

In Fig. 3 we show again the individual jet contributions
and K factor, now using weighted definitions of type (A),
with a positive (r ¼ 2) and a negative (r ¼ −4) value for
the exponent in the weights. Note that theKn, and hence the
total K factor, are normalized to the LO weighted jet cross
section which is exactly half of the LO jet cross section
obtained with the standard definition. Indeed, at LO we
have w1 ¼ w2 ¼ 1=2, by kinematic constraint, for the
weighted definition, independently of r.
We first discuss the behavior for pt far above pcut

t .
Broadly speaking, positive weights enhance the difference
between leading and second leading jets, with features that
resemble those of the standard definition for the individual
Kn factors. This is also true, in particular, for the total K
factor for pt sufficiently larger than pcut

t (top row of Fig. 3).
Negative values of r, on the other hand, have the effect of
balancing the difference between leading and subleading
jets. This results in more similar individual Kn factors, at
the price of an overall larger total K factor (bottom row of
Fig. 3). At very large pt this effect becomes very large,
which can easily be understood as follows: whenever we
have three jets passing the pt cut with pt1;2 ≫ pt3 we have

wð3Þ
1;2ðr < 0Þ ¼ pr

t1;2

pr
t1 þ pr

t2 þ pr
t3
∼
�
pt3

pt1;2

�jrj
≪ 1; ð3:4Þ

wð3Þ
3 ðr < 0Þ ¼ pr

t3

pr
t1 þ pr

t2 þ pr
t3
∼ 1: ð3:5Þ

The contributions of the two leading jets to the inclusive
cross section, which are strongly dominating the NLO cross
section for the standard definition (or for the weighted
definition with r ≥ 0), are now power suppressed by the
weights. Furthermore, corresponding virtual corrections

have two jets in the final state with wð2Þ
1;2ðr < 0Þ ¼ 1=2.

At large pt real and virtual corrections with pcut
t ≪ pt3 ≪

pt1;2 ∼ pt therefore yield, after integration over pt3, a
negative contribution enhanced by logðpt=pcut

t Þ, corre-
sponding to the large corrections seen in Fig. 3.

SINGLE-JET INCLUSIVE CROSS-SECTION AND ITS … PHYS. REV. D 100, 114015 (2019)

114015-5



Now turning to the region where pt → pcut
t , we see from

Fig. 3 that this weighted definition (for both positive and
negative r) develops a singular behavior. The origin of this
behavior is explained analytically in Sec. IV. For the time
being, we note that these singularities, both for pt ≫ pcut

t
and for pt → pcut

t , are of logarithmic origin and could in
principle be dealt with resummation.
In summary, the weighted definitions of type (A) (with

pcut
t ) have the undesirable feature of developing problem-

atically unstable behaviors for pt close to the pt cut as well
as at large pt for r < 0. In the other pt regions their
perturbative behavior now shows large K factors also at
NLO since the accidental cancellation of the standard
definition is spoiled; while this is perhaps more natural,
it does not suggest an improvement in perturbative behav-
ior over the standard definition.

2. All jets

A natural way of curing the logarithmic divergence
observed when pt → pcut

t using weights of type (A) is to
include all jets down to a pt much smaller than the first bin
of the distribution. Based on Fig. 3, taking a pcut

t 2 or 3
times smaller than the first bin of the distribution would
already get rid of most of the sensitivity to pcut

t , e.g.,
without any need for an additional resummation. One can

view the weighted definition of type (B) as simply taking
the limit pcut

t → 0 and one should not expect our con-
clusions to change as long as pcut

t remains much smaller
than the first bin of the distribution, say pcut

t ∼ 20–30 GeV.
This possibility is only sensible for positive weights, for
which the low pt part of the spectrum is suppressed. For
negative weights this choice is infrared unsafe.
Results are shown in Fig. 4 for r ¼ 2. As expected, the

singular behavior of the K factor for pt close to pcut
t is now

absent, and features similar to those of the standard
definition are now recovered. Specifically, nonoverlapping
scale variation bands are observed in the low pt region,
though to a smaller extent than in the standard case. As a
last comment, we have checked that this definition does not
suffer from large nonperturbative corrections, such as those
coming from underlying events, despite involving low-pt
jets. In a practical experimental context, one would still
need to make sure that this remains true with realistic pileup
conditions.

3. Two leading jets

An alternative choice, motivated by the observation that
the contribution of the third jet to the inclusive jet cross
section is much smaller than that of the first two jets
(see Fig. 1) is to switch to definitions of type (C), in which

FIG. 3. Same as Fig. 1 but using the weighted definitions of type A (see text: jets above pcut
t ) for r ¼ 2 (top) and r ¼ −4 (bottom).
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only the two leading jets are included in the weights,
whether or not they pass a given pcut

t . Clearly this should
also remove the problem of the behavior for pt ∼ pcut

t of
definitions of type (A). This approach is similar in spirit
to what is done when looking at the dijet cross section.
Results in this case are presented in Fig. 5 for the individual
K factors Kn and the total K factor. The situation for
positive r is again similar to what we observe for the

standard definition: in particular there seems to be a large
compensation between the leading and subleading jets,
leading to a rather flat K factor, though larger than in the
standard case.
As explained above, negative values of r have the effect

of normalizing the individual Kn factors for the leading and
subleading jets, reducing the effect of the compensation
seen in the standard case. Furthermore, the uncertainty

FIG. 4. Same as Fig. 1, but using a weighted definition of type B (all jets) for r ¼ 2.

FIG. 5. Same as Fig. 1, but using the weighted definitions of type C (two leading jets) for r ¼ 2 (top) and r ¼ −4 (bottom).
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bands obtained for the three different scale choices now
overlap. Nevertheless, the inclusive K factor is relatively
larger than for the standard definition and shows a some-
what strong pt dependence.
Comparing these results to the other weighted defini-

tions, we see that the logarithmic divergence for pt close to
pcut
t which is observed in Fig. 3 when using the jets above

pcut
t has now disappeared for both positive and negative r.

This, as discussed above, is expected: the weights do not
depend on whether one or two of the two leading jets passes
the pcut

t , so the definition becomes independent of the cut.
Furthermore, the issue with large K factors at large pt for
negative r when including jets above pcut

t has also dis-
appeared. This is simply because the third jet no longer
contributes to the weights and therefore the large contri-
bution seen in Eq. (3.4) is absent.
In summary, weighted definitions of type (C) behave

similarly to the standard definition for positive r. The
perturbative behavior for negative r changes, with some
desirable features (the individual K factors K1 and K2 are
similar, and the scale uncertainty bands for different scale
choices overlap) and some undesirable ones (the overall K
factor is larger).

IV. NONUNITARITY AND
PERTURBATIVE BEHAVIOR

We now show how several features of the results
presented in the previous section can be understood on
the basis of simple analytic arguments. Specifically, we
show that the behavior in the vicinity of pcut

t is strongly tied
to the unitarity, or lack thereof, of the various definitions.
We first provide general (if somewhat formal) argu-

ments, exploiting the fact that at NLO the jet functions used
for partitioning the phase space have a compact and
manageable form. We then perform more explicit calcu-
lations using a soft and collinear approximation which
shows that the effects discussed in Sec. III B have a simple
leading logarithmic origin.

A. Dependence on pcutt and R:
A general argument

In order to understand the behavior of various
definitions we need an explicit expression for the

contribution to the N-jet cross section
dσðkÞN jet

dpt
introduced

in Eq. (2.7) and to the nth jet cross section
dσðkÞnth jet

dpt

introduced in Eq. (2.8). These can be constructed in
terms of parton-level cross sections by introducing
explicit jet functions that cluster final-state partons into
jets, in the latter case further supplemented by a
function that selects the nth leading jet, and bins the
result into a fixed pt bin. In order to cancel infrared
singularities, the kth order contribution must be con-
structed by adding up contributions coming from final
states with a number of final-state partons that goes
from two (with k virtual loops), up to kþ 2 (with k real
emissions on top of the Born level). For instance, the
NLO k ¼ 1 term receives contributions both from a two-
parton final state with one loop and from a real emission
three-parton state, and so on.
Explicitly, we can write the N-exclusive jets contribu-

tion, Eq. (2.7), as a sum of terms where the N jets are
produced from an m parton final state, dΦm,

dσðkÞN jets

dpt
¼

Xkþ2

m¼2

Z
dΦm

dσ̂ðkÞm

dΦm
Gm→N jetsðΦm; ptÞ; ð4:1Þ

where Gm→Njets is the jet function which clusters m partons
into N jets. Gm→Njets contains the function FN , Eq. (2.4),
which in turn includes the possible weights. The jet
function thus depends on the jet momentum pt and on
the partonic phase-space variables dΦm.
We can give an explicit expression of Gm→N at NLO

(k ¼ 1). For this, let us denote by kti the parton transverse
momenta, with kt1 ≥ kt2 ≥ kt3. Using the anti-kt [10] jet
clustering with R < π

2
, one has

G2→1 ¼ G2→3 ¼ 0; ð4:2Þ

G2→2 ¼ Θðpt > pcut
t Þf2wð2Þðpt;pt; ptÞδðpt − kt1Þg; ð4:3Þ

G3→1 ¼ ΘðΔR23 > RÞΘðkt1 > pcut
t > kt2 > kt3Þfwð1Þðpt;ptÞδðpt − kt1Þg; ð4:4Þ

G3→2 ¼ ΘðΔR23 > RÞΘðkt1 > kt2 > pcut
t > kt3Þ

�X2
i¼1

wð2Þðpt; kt1; kt2Þδðpt − ktiÞ
�

þ ΘðΔR23 < RÞΘðpt > pcut
t Þf2wð2Þðpt;pt; ptÞδðpt − kt1Þg; ð4:5Þ

G3→3 ¼ ΘðΔR23 > RÞΘðkt1 > kt2 > kt3 > pcut
t Þ

�X3
i¼1

wð3Þðpt; kt1; kt2; kt3Þδðpt − ktiÞ
�
; ð4:6Þ
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where we have defined, as is customary, ΔRij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕijÞ2 þ ðΔyijÞ2

q
, as the distance between parton i

and parton j in the rapidity-azimuth plane, with y and ϕ
the rapidity and the azimuthal angle, respectively. Note also
that, due to momentum conservation, it is sufficient to
consider the recombination of the two softest partons. The
second line of Eq. (4.5) corresponds to the case where
the two softest partons cluster, yielding two back-to-back
jets of momentum kt1.
Using Eqs. (4.2)–(4.6), the issue of unitarity vs cancel-

lation of the dependence on pt is easily understood. On the
one hand, it is clear that the standard definition is not
unitary and only the weighted definitions are unitary
because

Z
dpt G3→1 þ G3→2 þ G3→3jwgt ¼ Θðkt1 > pcut

t Þ: ð4:7Þ

This result, valid for any r, means that integrating the
single-jet cross section over pt yields the total cross section
for producing (at least) one jet above pcut

t [with definitions
of type (A) in the sense of Sec. II] or the total cross section
[for definitions of type (B) or of type (C)]. Hence these
choices are unitary, and thus the standard choice cannot be.
On the other hand, it is clear that the inclusive cross

section is independent of pcut
t when using the standard

definition. Indeed, in this case one has

G3→1 þ G3→2 þG3→3jstd

¼ Θðpt > pcut
t Þ

�
ΘðΔR23 > RÞ

�X3
i

δðpt − ktiÞ
�

þ ΘðΔR23 < RÞ2δðpt − kt1Þ
�
; ð4:8Þ

where now the subscript “std” denotes that in the definition
of FN , Eq. (2.4), the standard case in Eq. (2.5) has been
selected. The result, Eq. (4.8), is manifestly independent of
pcut
t since all the dependence on pcut

t is factored in an
overall Θ function which is always satisfied as long as one
has at least one jet in the event. In practice, the dependence
on pcut

t disappears since, when integrating over the partonic
transverse momenta, the N-jet contribution has pcut

t as a
lower bound of integration while the N − 1-jet contribution
has pcut

t as an upper bound. When summing both con-
tributions, the pcut

t dependence cancels.
When one instead uses a unitary definition which

explicitly introduces a pcut
t dependence, such as definition

(A), this cancellation is spoiled: whether a jet passes a cut
or not changes the weights of all the other jets, thereby
introducing a cutoff dependence of the observable. The lack
of cancellation then propagates into the individual nth jet
cross sections, thus explaining the singular behavior
observed in Fig. 3 when pt ∼ pcut

t . Of course, this cutoff

dependence is not present for the two other weighted
definitions, (B) and (C), even if the weight associated with a
jet still depends on the other jets in the event, which is
needed to eventually ensure the unitarity of the cross
section.
We can similarly understand the R dependence or lack

thereof of the leading jet contribution, which as discussed
in Sect. III A controls the behavior of the NLO K factor, by
introducing explicit expressions for individual jet func-
tions. We now need to consider the nth leading jet
contribution, Eq. (2.8),

dσðkÞnth jet

dpt
¼

Xkþ2

m¼2

Z
dΦm

dσ̂ðkÞm

dΦm
Sm→nth jetðΦm; ptÞ; ð4:9Þ

where the functions Sm→nth jet are defined summing the
contributions coming from the nth jet in the functions G
given above. By direct calculation, we find

S2→pt1
¼ S2→pt2

¼ 1

2
G2→2; ð4:10Þ

S3→pt1
¼ Θðpt > pcut

t Þδðpt − kt1ÞfΘðΔR23 > RÞ
× ½Θðpcut

t > kt2 > kt3Þwð1Þðpt; kt1Þ
þ Θðkt2 > pcut

t > kt3Þwð2Þðpt; kt1; kt2Þ
þ Θðkt2 > kt3 > pcut

t Þwð3Þðpt; kt1; kt2; kt3Þ�
þ ΘðΔR23 < RÞwð2Þðpt;pt; ptÞg; ð4:11Þ

S3→pt2
¼ Θðkt1 > pt > pcut

t ÞfΘðΔR23 > RÞδðpt − kt2Þ
× ½Θðpcut

t > kt3Þwð2Þðpt; kt1; kt2Þ
þ Θðkt3 > pcut

t Þwð3Þðpt; kt1; kt2; kt3Þ�
þ ΘðΔR23 < RÞδðpt − kt1Þwð2Þðpt;pt; ptÞg;

ð4:12Þ

S3→pt3
¼ Θðkt1 > kt2 > pt > pcut

t Þδðpt − kt3Þ
ΘðΔR23 > RÞwð3Þðpt; kt1; kt2; kt3Þ: ð4:13Þ

If now one sets all weights w ¼ 1, Eq. (4.11) takes the
form

S3→pt1
jstd ¼ Θðpt > pcut

t Þδðpt − kt1Þ ¼ S2→pt1
jstd; ð4:14Þ

where the subscript “std” again denotes that in the defini-
tion of FN , Eq. (2.4), the standard case in Eq. (2.5) has been
selected. This means that all the Θ functions simplify,
leading to an overall factor providing a condition that is
always satisfied if at least one jet in the event is above pcut

t .
At NLO, the leading jet contribution is therefore always
given by the transverse momentum of the hardest parton
(this is valid for both the real contribution with three
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partons in the final state and the virtual corrections with two
partons), independently of the jet radius R. Note that, one
can similarly see that for any weighted definition, at NLO,
corrections to the leading jet are R-dependent for the same
reason that the weighted definitions depend on pcut

t : the
value of the weights depend on how many partons have
ΔRij > R. Furthermore, the NLO corrections for the
subleading and third-leading jet also depend on R. This
is trivial for the latter which shows an explicit R depend-
ence in (4.13). For the subleading jet, this is due to the fact
that the pt of the jet changes (between kt1 and kt2)
depending on how ΔR23 compares to R.

B. Dependence on pcutt and R:
The soft-collinear approximation

The arguments outlined above may seem somewhat
formal. To gain further analytic insight, it is useful to take
a soft-collinear approximation in which case Eqs. (4.1) and
(4.9) simplify considerably. Indeed, if one considers a
collinear splitting at a small angle ϑ, the NLO contribution
from a real emission can be written in simple form by
parametrizing the final-state momenta as

pμ
1 ¼ p̃μ

a þOðk2⊥Þ; pμ
2 ¼ ð1 − zÞp̃μ

b þ kμ⊥ þOðk2⊥Þ;
pμ
3 ¼ zp̃μ

b − kμ⊥ þOðk2⊥Þ; ð4:15Þ

where p̃μ
a and p̃μ

b are the Born final-state hard directions,
z is the longitudinal momentum fraction of the splitting,
and the transverse momentum k⊥ satisfies k⊥ · p̃a ¼ k⊥·
p̃b ¼ 0; k⊥ can then be parametrized by the angle ϑ
between p2 and p3 and an azimuthal angle φ.
Including only terms that produce a logarithmic

enhancement in the limit ϑ → 0, the real emission con-
tribution takes the form

dΦ3

dσ̂ð1Þ3

dΦ3

¼
X
i¼q;g

�
dσð0Þ2

dpt
ðp̃tÞ

�
i

�
αsCi

π
PiðzÞ

�
dp̃t dz

dϑ2

ϑ2
dφ
2π

:

ð4:16Þ

Note that within this approximation recoil effects on p1

become negligible. They could be addressed using a similar
formalism but going beyond the small-angle approximation
that we adopt here.
In Eq. (4.16) ½dσð0Þ2 =dpt�i, with i ¼ q, g, is the LO

differential cross section for producing a quark or a gluon
of transverse momentum p̃t, correctly normalized in such a
way that the sum over i gives the total cross section. PiðzÞ
corresponds to the standard Altarelli-Parisi splitting func-
tions with z the momentum fraction of the collinear
splitting (see Appendix for explicit expressions) from
which we have explicitly factored out a color factor 2Ci
(Ci ¼ CF for quarks and Ci ¼ CA for gluons). Finally, φ is
the azimuthal angle corresponding to the emission with

respect to the Born-level parton that splits. At this accuracy,
the NLO one-loop virtual correction has exactly the same
form as Eq. (4.16) integrated over the full phase space of
the extra real emission, but with the opposite sign. In what
follows, we further assume that the extra emission is soft so
we can approximate PiðzÞ ≈ 1

z. This soft approximation is
made for the sake of simplicity and can easily be lifted to
include the full splitting function.
The soft-collinear approximation is sufficient to obtain

results in fair agreement with the full calculation, and
specifically reproduce three important aspects discussed in
Sec. III. First, we can see explicitly how the cancellation of
the pcut

t dependence which happens in the standard case is
spoiled for the weighted definition (A) and restored with
definitions (B) and (C). Second, we are able to identify the
R dependence of the second leading jet with out-of-cone
radiation. Third, we can further study the impact of
weighted definitions at large pt. Conversely, working in
a soft-collinear approximation, we are neglecting all recoil
effects. This means in particular that the calculation below
will not reproduce the large K1 factor for the leading jet.
The text below outlines the structure of the calculation and
our main results, deferring additional details to Appendix.
The fact that the real and virtual contributions have the

opposite sign implies that the N-jet contribution Eq. (4.1)
and the nth jet contribution Eq. (4.9) take, respectively, the
simple form

dσðkÞN jets

dpt
≈

X
i¼q;g

Ci

π

Z
dp̃t dz

dϑ2

ϑ2

�
dσð0Þ2

dpt
ðp̃tÞ

�
i
αsPiðzÞ

× fG3→N jets −G2→N jetsg ð4:17Þ

≡ X
i¼q;g

�
dσð0Þ2

dpt
ðptÞ

�
i

Ci

π
ln

�
R2
max

R2

�
IN ð4:18Þ

and

dσðkÞnth jet

dpt
≈

X
i¼q;g

Ci

π

Z
dp̃t dz

dϑ2

ϑ2

�
dσð0Þ2

dpt
ðp̃tÞ

�
i
αsPiðzÞ

× fS3→nth jet − S2→nth jetg ð4:19Þ

≡ X
i¼q;g

�
dσð0Þ2

dpt
ðptÞ

�
i

Ci

π
ln

�
R2
max

R2

�
Jn; ð4:20Þ

where in both cases Rmax is the upper limit of the ϑ
integration. The functions IN and Jn can be cast in a simple
closed analytic form by writing the LO cross section as a
power law

�
dσð0Þ2

dpt
ðp̃tÞ

�
i
∼

1

p̃mi
t
; ð4:21Þ
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where mi is, in general, different for the quark and the
gluon cases. In Appendix explicit analytic expressions are
given for the standard definition, with the general defi-
nitions easily amenable to numerical treatment.
We can now use Eqs. (4.18) and (4.20) to address

the issues mentioned above. We start by investigating
the behavior in the pt → pcut

t limit and focus on the

leading jet. J1 receives real contributions from S3→pt1
,

Eq. (4.11), and virtual corrections from S2→pt1
,

Eq. (4.10). The latter contribution cancels against the
real one in the region ΔR23 ≡ ϑ < R. Up to power
corrections in z, we can set kt2 ¼ ð1 − zÞkt1 and
kt3 ¼ zkt1. For pt → pcut

t we can then assume kt3 <
pcut
t and we are left with two terms:

FIG. 6. Contributions from the leading, subleading, and third-leading jets to the NLO inclusive K factors in the soft-collinear
approximation. The standard definition (top left) is compared to the weighted definition of type (B) (no pcut

t ) with r ¼ 2 (top right),
weighted definitions of type (A) (with pcut

t Þ with r ¼ −4 (middle left) and r ¼ 2 (middle right) and of type (C) (two jets) also with
r ¼ −4 (bottom left) and r ¼ 2 (bottom right).
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J1 ∼
pt→pcut

t

Z
pcut
t =pt

1−pcut
t =pt

dz PðzÞwð1Þðpt;ptÞ

−
Z

pcut
t =pt

1−pcut
t =pt

dz PðzÞwð2Þðpt;pt; ptÞ: ð4:22Þ

The first term corresponds to kt2 < pcut
t while the second

term includes the real emissions with kt2 > pcut
t as well

as the remaining virtual corrections. After integration
over z, we thus find

J1 ¼ log

�
pcut
t

pt − pcut
t

�
− ω log

�
pcut
t

pt − pcut
t

�

¼
� 0 ðstandardÞ
− 1

2
logðpt−pcut

t
pcut
t

Þ ½weighted ðAÞ� ; ð4:23Þ

where ω ¼ 1 for the standard definition and ω ¼ 1
2
for

the weighted definition (A), independently of the expo-
nent r which enters the definition of the weights,
Eq. (2.4). In the same limit it turns out that J2 and
J3 are nonsingular. This explains our findings from
Sec. III: the unitary definition suffers from a logarithmic
divergence close to pcut

t while the standard definition is
independent of the value of pcut

t . Furthermore, this
behavior (see Fig. 3), only affects the leading jet, whose
properties are encoded in J1. Of course, it also follows
from Eq. (4.23) that when pcut

t ≪ pt, corresponding to
using definitions of the weights of type (B), the singular
behavior disappears. A similar conclusion can be
reached for the definition of type (C).
Next, we can also use Eq. (4.20) to predict the small-R

behavior of the second and third leading jet contributions.
In both cases one would get a logarithmic enhancement at
small R. Note that at first sight Eq. (4.20) seems to imply
that the leading jet contribution also has a logarithmic R
dependence in the standard case, in contradiction to the
behavior observed in Fig. 2, and to our previous general
conclusion based on Eq. (4.14). However, one should
realize that, in the small-R limit where Eq. (4.20) holds,

Eq. (4.23) implies that J1 is zero, and thus obviously R
independent in the standard case. In all weighted cases J1 is
nonvanishing, and thus the leading jet contribution
becomes R dependent in agreement with our previous
analytic and numerical arguments, with a logarithmic
dependence on R in the small-R limit.
Finally, we can study the limit of the functions Jn when

pt ≫ pcut
t , in the weighted case with r negative and

jrj ∼ jmij ∼ 4. In this case, we find that the contributions
from the leading and the subleading jets are comparable
(see Appendix for details), partially solving the problem of
the large compensation seen in the standard definition or for
positive values of r, as observed in Sec. III B, Fig. 3.
Results obtained for the leading, subleading, and

third-leading jet contributions using the approximation
Eqs. (4.18) and (4.20) are shown in Fig. 6 for a represen-
tative set of cases, to be compared to Figs. 1 and 3–5. All
plots have been produced implementing Eq. (4.19), with
Eq. (4.21) and m ¼ 5. Note that this parametrization of the
LO pt spectrum already includes initial state PDFs. We
have checked that using the exact LO partonic cross section
yields similar results. We choose Rmax ¼ 1 and use R ¼ 0.4
to allow for a comparison with the full results presented in
Sec. III. Finally, we set αsðpt1Þ. As anticipated, it is clear
that the main qualitative features of the exact results are
reproduced by the soft-collinear approximation.

V. CONCLUSIONS

In this paper we have addressed the potential issue of the
nonunitarity of the single-jet inclusive cross section, by
introducing a series of alternative weighted definitions of
this observable which are unitary in the sense that upon
integration they lead to the total cross section. The main
features of the various definitions we have considered are
summarized in Table I.
Our conclusion is that a naive weighted approach [type

(A) of Sec. II] in which one simply introduces a weighting
of all jets above a certain pcut

t is flawed, in the sense that
it develops logarithmic singularities associated with the

TABLE I. Summary of the main properties of the various single-inclusive jet definitions studied in this paper.

Weighted

Definition Standard (A) Above pcut
t (B) All jets (C) Two leading

Reference plot Fig. 1 Fig. 3 Fig. 4 Fig. 5

Unitarity No Yes Yes yes

No large logs close to pcut
t ✓ ✗ ✓ ✓

No large logs at large pt ✓ ✓ for r > 0 ✓ ✓
✗ for r < 0

Overlapping scale variation bands ✗ ✓ ✓ ✓
✓ with uncorr. uncert. [4,12]

No large cancellations between K1 and K2 ✗ ✗ ✗ ✗ for r > 0
✓ for r < 0
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transverse momentum cut on jets, pcut
t . More sophisticated

definitions avoid this problem by setting pcut
t to zero

[type (B)] or by considering only the two leading jets
[type (C)]. Both these definitions could be more challeng-
ing to implement in a practical (experimental) environment.
Additionally, even leaving aside practical considerations,

there does not seem to be any real advantage in adopting
these definitions in term of perturbative stability. In parti-
cular, all weighted definitions with positive r show features
at best similar to the standard definition. Furthermore, the
apparent perturbative instability of the conventional defi-
nition appears in fact to be the manifestation of an unnatural
smallness of the NLO K factors which only happens for a
limited range of jet radius R ∼ 0.4. It is a consequence of an
accidental cancellation which makes standard scale varia-
tion unreliable as a means of estimating missing higher
order corrections. This apparent issue, for example, dis-
appears with more conservative estimates of the perturba-
tive uncertainties. One possible case of interest is the
definition of type (C), focusing on the two leading jets,
with r < 0. Compared to the standard definition, it has the
potential advantage of reducing the large difference
between the K factor of the leading and subleading jets,
at the cost of having a larger overall NLO K factor.
Our final conclusion is both negative and positive. On

the negative side, we conclude that unitary definitions of
the jet inclusive cross section are at best as good as the
standard definition, while being rather more contrived. On
the positive side, we conclude that the standard definition
shows no critical sign of pathological features or problems,

other than its unitarity, which, however, is per se not
causing any perturbative problem. Among the unitary
definitions, the weighted definitions based on including
only the two leading jets appear to be particularly well
behaved. While in this work we study the dijet system as a
function of the pt and rapidity of the individual jets, this is
in agreement with previous studies [5] in which dijet
observables are also found to have better perturbative
stability.
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APPENDIX: NLO CROSS SECTION IN THE
SOFT-COLLINEAR APPROXIMATION

The N-jet contribution and the nth jet contribution to the
differential cross section at NLO in the soft-collinear
approximation are given by Eq. (4.17) and Eq. (4.19),
respectively. Using an explicit expression for the splitting
functions Pi and for theG or the S functions in the collinear
limit we can perform the phase-space integration explicitly.
The splitting functions Pi are

PqðzÞ ¼
X
j¼q;g

Pjq ¼
1þ ð1 − zÞ2

2z
¼ 1

z
þOð1Þ;

PgðzÞ ¼
X
j¼q;g

Pjg ¼
1

2

�
2
1 − z
z

þ zð1 − zÞ þ TRNf

CA
ðz2 þ ð1 − zÞ2Þ

�
¼ 1

z
þOð1Þ; ðA1Þ

where the z ↔ ð1 − zÞ symmetry has been exploited in such a way that all soft-collinear singularities are at z ¼ 0 (see e.g.,
[18]). Note that a 2CF or 2CA factor, respectively, has been explicitly factored out.
By adopting the parametrization of the final-state given in Eq. (4.15), the jet functions G and S can be rewritten in the

collinear and small R limit, i.e., ΔR23 ¼ ϑ ≤ R ≪ 1. For the weighted definition with jets above pcut
t we have

G2→1 ¼ G2→3 ¼ 0; ðA2Þ

G2→2 ¼ Θðp̃t > pcut
t Þwð2Þðptjp̃t; p̃tÞ½δðpt − p̃tÞ þ δðpt − p̃tÞ�; ðA3Þ

G3→1 ¼ Θðϑ2 > R2ÞΘðp̃t > pcut
t ; zp̃t < pcut

t ; ð1 − zÞp̃t < pcut
t Þwð1Þðptjp̃tÞ½δðpt − p̃tÞ�; ðA4Þ

G3→2 ¼ Θðϑ2 < R2ÞΘðp̃t > pcut
t Þwð2Þðptjp̃t; p̃tÞ½δðpt − p̃tÞ þ δðpt − p̃tÞ�

þ Θðϑ2 > R2ÞΘðp̃t > pcut
t Þ

× fΘðzp̃t < pcut
t ; ð1 − zÞp̃t > pcut

t Þwð2Þðptjp̃t; ð1 − zÞp̃tÞ½δðpt − p̃tÞ þ δðpt − ð1 − zÞp̃tÞ�
þ Θðzp̃t > pcut

t ; ð1 − zÞp̃t < pcut
t Þwð2Þðptjp̃t; zp̃tÞ½δðpt − p̃tÞ þ δðpt − zp̃tÞ�g; ðA5Þ
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G3→3 ¼ Θðϑ2 > R2ÞΘðp̃t > pcut
t ; zp̃t > pcut

t ; ð1 − zÞp̃t > pcut
t Þ

× wð3Þðptjp̃t; zp̃t; ð1 − zÞp̃tÞ½δðpt − p̃tÞ þ δðpt − zp̃tÞ þ δðpt − ð1 − zÞp̃tÞ�; ðA6Þ

and

S2→pt1
¼ S2→pt2

¼ Θðp̃t > pcut
t Þwð2Þðptjp̃t; p̃tÞδðpt − p̃tÞ; ðA7Þ

S3→pt1
¼ Θðϑ2 < R2ÞΘðp̃t > pcut

t Þwð2Þðptjp̃t; p̃tÞδðpt − p̃tÞ þ Θðϑ2 > R2Þ
× ½Θðp̃t > pcut

t ; zp̃t < pcut
t ; ð1 − zÞp̃t < pcut

t Þwð1Þðptjp̃tÞδðpt − p̃tÞ
þ Θðp̃t > pcut

t ; zp̃t > pcut
t ; ð1 − zÞp̃t < pcut

t Þwð2Þðptjp̃t; zp̃tÞδðpt − p̃tÞ
þ Θðp̃t > pcut

t ; zp̃t < pcut
t ; ð1 − zÞp̃t > pcut

t Þwð2Þðptjp̃t; ð1 − zÞp̃tÞδðpt − p̃tÞ
þ Θðp̃t > pcut

t ; zp̃t > pcut
t ; ð1 − zÞp̃t > pcut

t Þwð3Þðptjp̃t; zp̃t; ð1 − zÞp̃tÞδðpt − p̃tÞ�; ðA8Þ

S3→pt2
¼ Θðϑ2 < R2ÞΘðp̃t > pcut

t Þwð2Þðptjp̃t; p̃tÞδðpt − p̃tÞ þ Θðϑ2 > R2Þ
× fΘðp̃t > pcut

t ; zp̃t > pcut
t ; ð1 − zÞp̃t < pcut

t Þwð2Þðptjp̃t; zp̃tÞδðpt − zp̃tÞ
þ Θðp̃t > pcut

t ; zp̃t < pcut
t ; ð1 − zÞp̃t > pcut

t Þwð2Þðptjp̃t; ð1 − zÞp̃tÞδðpt − ð1 − zÞp̃tÞ
þ Θðp̃t > pcut

t ; zp̃t > pcut
t ; ð1 − zÞp̃t > pcut

t Þwð3Þðptjp̃t; zp̃t; ð1 − zÞp̃tÞ
× ½Θðz > 1=2Þδðpt − zp̃tÞ þ Θðz < 1=2Þδðpt − ð1 − zÞp̃tÞ�g; ðA9Þ

S3→pt3
¼ Θðϑ2 > R2ÞΘðp̃t > pcut

t ; zp̃t > pcut
t ; ð1 − zÞp̃t > pcut

t Þwð3Þðptjp̃t; zp̃t; ð1 − zÞp̃tÞ
× ½Θðz < 1=2Þδðpt − zp̃tÞ þ Θðz > 1=2Þδðpt − ð1 − zÞp̃tÞ�: ðA10Þ

The standard definition can trivially be recovered by setting the weights to 1, while the case of the weighted definition
including all jets can be obtained by taking the limit pcut

t → 0. Similarly, the weighted definition with two leading jets is
instead obtained by first taking the limit pcut

t → 0 and by then keeping the terms proportional to δðpt − p̃tÞ as well as the
terms proportional to either δðpt − zp̃tÞ if z > 1=2 or δðpt − ð1 − zÞp̃tÞ if z < 1=2, modifying the weights accordingly.
The p̃t integration in Eqs. (4.17)–(4.19) can be simplified using the delta functions δðpt − p̃tÞ, δðpt − zp̃tÞ, and

δðpt − ð1 − zÞp̃tÞ. The ϑ integration leads to a logarithmic dependence on the jet radius R. The only nontrivial integral is
over z, thereby leading to a final result of the form of Eqs. (4.18) and (4.20). Explicitly, IN and Jn there present are given by

I1 ¼ Θðpt < 2pcut
t Þ

Z
pcut
t =pt

1−pcut
t =pt

dz PðzÞ½1�σ̃ðptÞ; ðA11Þ

I2 ¼ Θðpt < 2pcut
t Þ

�Z
1

pcut
t =pt

dz PðzÞ
�

1

1þ zr

�
σ̃ðptÞ

þ
Z

1−pcut
t =pt

0

dzPðzÞ
��

1

1þ ð1 − zÞr
�
σ̃ðptÞ −

�
1

2

�
σ̃ðptÞ

�
−
Z

1

1−pcut
t =pt

dz PðzÞ
�
1

2

�
σ̃ðptÞ

�

þ Θðpt > 2pcut
t Þ

�Z
1

1−pcut
t =pt

dz PðzÞ
�

1

1þ zr

�
σ̃ðptÞ

þ
Z

pcut
t =pt

0

dzPðzÞ
��

1

1þ ð1 − zÞr
�
σ̃ðptÞ −

�
1

2

�
σ̃ðptÞ

�
−
Z

1

pcut
t =pt

dz PðzÞ
�
1

2

�
σ̃ðptÞ

�

þ
Z

1

pt=ðptþpcut
t Þ

dzPðzÞ
�

zr

1þ zr

�
1

z
σ̃

�
pt

z

�

þ
Z

pcut
t =ðptþpcut

t Þ

0

dzPðzÞ
�� ð1 − zÞr

1þ ð1 − zÞr
�

1

1 − z
σ̃

�
pt

1 − z

�
−
�
1

2

�
σ̃ðptÞ

�

−
Z

1

pcut
t =ðptþpcut

t Þ
dzPðzÞ

�
1

2

�
σ̃ðptÞ; ðA12Þ
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I3 ¼ Θðpt > 2pcut
t Þ

Z
1−pcut

t =pt

pcut
t =pt

dz PðzÞ
�

1

1þ zr þ ð1 − zÞr
�
σ̃ðptÞ

þ
Z

pt=ðptþpcut
t Þ

0

dzPðzÞ
�

zr

1þ zr þ ð1 − zÞr
�
1

z
σ̃

�
pt

z

�

þ
Z

1

pcut
t =ðptþpcut

t Þ
dzPðzÞ

� ð1 − zÞr
1þ zr þ ð1 − zÞr

�
1

1 − z
σ̃

�
pt

1 − z

�
; ðA13Þ

J1 ¼ Θðpt < 2pcut
t Þ

�Z
pcut
t =pt

1−pcut
t =pt

dz PðzÞ½1�σ̃ðptÞ −
Z

1

1−pcut
t =pt

dz PðzÞ
�
1

2

�
σ̃ðptÞ

þ
Z

1−pcut
t =pt

0

dzPðzÞ
��

1

1þ ð1 − zÞr
�
σ̃ðptÞ −

�
1

2

�
σ̃ðptÞ

�
þ
Z

1

pcut
t =pt

dz PðzÞ
�

1

1þ zr

�
σ̃ðptÞ

�

þ Θðpt > 2pcut
t Þ

�Z
1−pcut

t =pt

pcut
t =pt

dz PðzÞ
�

1

1þ zr þ ð1 − zÞr
�
σ̃ðptÞ −

Z
1

pcut
t =pt

dz PðzÞ
�
1

2

�
σ̃ðptÞ

þ
Z

pcut
t =pt

0

dzPðzÞ
��

1

1þ ð1 − zÞr
�
σ̃ðptÞ −

�
1

2

�
σ̃ðptÞ

�
þ
Z

1

1−pcut
t =pt

dz PðzÞ
�

1

1þ zr

�
σ̃ðptÞ

�
; ðA14Þ

J2 ¼
Z

1

pt=ðptþpcut
t Þ

dzPðzÞ
�

zr

1þ zr

�
1

z
σ̃

�
pt

z

�
−
Z

1

pcut
t =ðptþpcut

t Þ
dzPðzÞ

�
1

2

�
σ̃ðptÞ

þ
Z

pcut
t =ðptþpcut

t Þ

0

dzPðzÞ
�� ð1 − zÞr

1þ ð1 − zÞr
�

1

1 − z
σ̃

�
pt

1 − z

�
−
�
1

2

�
σ̃ðptÞ

�

þ
Z

pt=ðptþpcut
t Þ

1=2
dzPðzÞ

�
zr

1þ zr þ ð1 − zÞr
�
1

z
σ̃

�
pt

z

�

þ
Z

1=2

pcut
t =ðptþpcut

t Þ
dzPðzÞ

� ð1 − zÞr
1þ zr þ ð1 − zÞr

�
1

1 − z
σ̃

�
pt

1 − z

�
; ðA15Þ

J3 ¼
Z

1=2

0

dzPðzÞ
�

zr

1þ zr þ ð1 − zÞr
�
1

z
σ̃

�
pt

z

�
þ
Z

1

1=2
dzPðzÞ

� ð1 − zÞr
1þ zr þ ð1 − zÞr

�
1

1 − z
σ̃

�
pt

1 − z

�
; ðA16Þ

where the terms in squared brackets correspond to the weights, here given for a definition of type (A), and we have set the
running coupling scale to pmax

t ≡ pt1 ¼ p̃t and introduced

σ̃ðxÞ≡ dσð0Þ2

dpt
ðxÞαsðxÞ: ðA17Þ

In the fixed coupling approximation or if we take αsðptÞ, the coupling can be factorized out of the integration and directly
moved to Eq. (4.18) or Eq. (4.20). Note that the above expressions do not assume z ≪ 1. Keeping the full z dependence of
the splitting functions would therefore account for hard-collinear splittings.
In the general weighted case, these integrals can only be computed numerically. Results for the standard (unweighted)

definition are found by simply removing all terms in square brackets. In this case, by using Eq. (4.21) for the Born cross
section and the soft approximation of the splitting functions these integrals can be computed exactly in the fixed coupling
approximation, and their expressions are

IðstdÞ1 ¼ Θðpt < 2pcut
t Þ ln

�
pcut
t

pt − pcut
t

�
; ðA18Þ

IðstdÞ2 ¼ Θðpt > 2pcut
t Þ ln

�
pcut
t

pt − pcut
t

�
− Θðpt < 2pcut

t Þ ln
�

pcut
t

pt − pcut
t

�
þ ln

�
pcut
t

pt þ pcut
t

�

þ 1

m − 1

�
1 −

�
pt þ pcut

t

pt

�
1−m

�
− ðm − 1Þ

�
pcut
t

pt þ pcut
t

�
3F2

�
1; 1; 2 −m; 2; 2;

pcut
t

pt þ pcut
t

�
; ðA19Þ
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IðstdÞ3 ¼ −Θðpt > 2pcut
t Þ ln

�
pcut
t

pt − pcut
t

�
− ln

�
pcut
t

pt þ pcut
t

�

þ 1

m − 1

�
pt þ pcut

t

pt

�
1−m

−Hm−1 þ ðm − 1Þ
�

pcut
t

pt þ pcut
t

�
3F2

�
1; 1; 2 −m; 2; 2;

pcut
t

pt þ pcut
t

�
; ðA20Þ

and

JðstdÞ1 ¼ 0; ðA21Þ

JðstdÞ2 ¼ −
1

2
ðm − 1Þ3F2

�
1; 1; 2 −m; 2; 2;

1

2

�
−
21−m − 1

m − 1
− log 2; ðA22Þ

JðstdÞ3 ¼ 1

2
ðm − 1Þ3F2

�
1; 1; 2 −m; 2; 2;

1

2

�
−Hm−1 þ

21−m

m − 1
þ log 2; ðA23Þ

where Hn are harmonic numbers, pFq is a generalized
hypergeometric function, and m is the power of the LO
cross section in Eq. (4.21), which can in principle differ for
quarks and gluons.
Adding up all contributions we get

dσðkÞ

dpt
¼

X
i¼q;g

�
dσð0Þ2

dpt
ðptÞ

�
i

αsCi

π
ln

�
R2
max

R2

�
ðI1 þ I2 þ I3ÞðstdÞ

¼
X
i¼q;g

�
dσð0Þ2

dpt
ðptÞ

�
i

αsCi

π
ln

�
R2
max

R2

�
ðJ1 þ J2 þ J3ÞðstdÞ

¼
X
i¼q;g

�
dσð0Þ2

dpt
ðptÞ

�
i

αsCi

π
ln

�
R2
max

R2

��
1

mi − 1
−Hmi−1

�
:

ðA24Þ
For mq ¼ mg, the K factor is flat, since both the pt and the
pcut
t dependence have canceled completely in the square

bracket in the last line. The only remaining dependence on
pt would therefore come either from differences between
the quark and gluon contributions (mq ≠ mg) or from the
running of αs which was neglected in the above result.
We conclude by studying the large pt limit of Jn in the

weighted case. When pt → ∞, from Eqs. (A14) and (A15)
we get

JðwgtÞ1 ∼pt→∞ −
Z

1

0

dzPðzÞ
�
1

2

�
σ̃ðptÞ

þ
Z

1

0

dzPðzÞ
�

1

1þ zr þ ð1 − zÞr
�
σ̃ðptÞ; ðA25Þ

JðwgtÞ2 ∼pt→∞ −
Z

1

0

dzPðzÞ
�
1

2

�
σ̃ðptÞ

þ
Z

1

1=2
dzPðzÞ

�
zr

1þ zr þ ð1 − zÞr
�
1

z
σ̃

�
pt

z

�

þ
Z

1=2

0

dzPðzÞ
� ð1 − zÞr
1þ zr þ ð1 − zÞr

�
1

1 − z

× σ̃

�
pt

1 − z

�
; ðA26Þ

while J3 in Eq. (A16) does not depend on pt and it is
always negligible. Assuming that the LO cross section
behaves accordingly to the power law Eq. (4.21), and
choosing a negative exponent r ∼ −m for the weights, it
appears that J1 and J2 become the same in the pt → ∞
limit. Hence, the effect of the weight is to balance the
leading and the second leading jet contributions.

[1] A. D. Martin, R. G. Roberts, and W. J. Stirling, Structure
function analysis and Ψ, Jet, W, Z production: Pinning
down the gluon, Phys. Rev. D 37, 1161 (1988).

[2] F. Aversa, P. Chiappetta, M. Greco, and J. P. Guillet, Higher
order corrections to QCD jets, Phys. Lett. B 210, 225
(1988).

[3] S. D. Ellis, Z. Kunszt, and D. E. Soper, The One Jet
Inclusive Cross-section at Order α3s : Gluons Only, Phys.
Rev. Lett. 62, 726 (1989).

[4] J. Currie, E.W. N. Glover, and J. Pires, Next-to-Next-to
Leading Order QCD Predictions for Single Jet Inclusive
Production at the LHC, Phys. Rev. Lett. 118, 072002 (2017).

MATTEO CACCIARI et al. PHYS. REV. D 100, 114015 (2019)

114015-16

https://doi.org/10.1103/PhysRevD.37.1161
https://doi.org/10.1016/0370-2693(88)90377-2
https://doi.org/10.1016/0370-2693(88)90377-2
https://doi.org/10.1103/PhysRevLett.62.726
https://doi.org/10.1103/PhysRevLett.62.726
https://doi.org/10.1103/PhysRevLett.118.072002


[5] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N.
Glover, A. Huss, and J. Pires, Infrared sensitivity of single
jet inclusive production at hadron colliders, J. High Energy
Phys. 10 (2018) 155.

[6] Z. Nagy, Next-to-leading order calculation of three jet
observables in hadron-hadron collision, Phys. Rev. D 68,
094002 (2003).

[7] Z. Nagy, Three Jet Cross-Sections in Hadron-Hadron
Collisions at Next-to-Leading Order, Phys. Rev. Lett. 88,
122003 (2002).

[8] R. D. Ball et al. (NNPDF Collaboration), Parton distribu-
tions from high-precision collider data, Eur. Phys. J. C 77,
663 (2017).

[9] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page,
M. Rüfenacht, M. Schönherr, and G. Watt, LHAPDF6:
Parton density access in the LHC precision era, Eur. Phys.
J. C 75, 132 (2015).

[10] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[11] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[12] M. Dasgupta, F. A. Dreyer, G. P. Salam, and G. Soyez,
Inclusive jet spectrum for small-radius jets, J. High Energy
Phys. 06 (2016) 057.

[13] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and G.
Ridolfi, The t anti-t cross-section at 1.8-TeV and 1.96-TeV:
A study of the systematics due to parton densities and scale
dependence, J. High Energy Phys. 04 (2004) 068.

[14] J. Bellm et al., Jet cross sections at the LHC and the quest
for higher precision, arXiv:1903.12563.

[15] Z.-B. Kang, F. Ringer, and I. Vitev, The semi-inclusive jet
function in SCET and small radius resummation for in-
clusive jet production, J. High Energy Phys. 10 (2016) 125.

[16] X. Liu, S.-O. Moch, and F. Ringer, Threshold and Jet Radius
Joint Resummation for Single-Inclusive Jet Production,
Phys. Rev. Lett. 119, 212001 (2017).

[17] I. W. Stewart and F. J. Tackmann, Theory uncertainties for
higgs and other searches using jet bins, Phys. Rev. D 85,
034011 (2012).

[18] S. Marzani, G. Soyez, and M. Spannowsky, Looking inside
jets: An introduction to jet substructure and boosted-object
phenomenology, Lect. Notes Phys. 958, 1 (2019).

SINGLE-JET INCLUSIVE CROSS-SECTION AND ITS … PHYS. REV. D 100, 114015 (2019)

114015-17

https://doi.org/10.1007/JHEP10(2018)155
https://doi.org/10.1007/JHEP10(2018)155
https://doi.org/10.1103/PhysRevD.68.094002
https://doi.org/10.1103/PhysRevD.68.094002
https://doi.org/10.1103/PhysRevLett.88.122003
https://doi.org/10.1103/PhysRevLett.88.122003
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1007/JHEP06(2016)057
https://doi.org/10.1007/JHEP06(2016)057
https://doi.org/10.1088/1126-6708/2004/04/068
https://arXiv.org/abs/1903.12563
https://doi.org/10.1007/JHEP10(2016)125
https://doi.org/10.1103/PhysRevLett.119.212001
https://doi.org/10.1103/PhysRevD.85.034011
https://doi.org/10.1103/PhysRevD.85.034011
https://doi.org/10.1007/978-3-030-15709-8

