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ABSTRACT

Considering aryl azides as electrophilic partners for the TosMIC mediated Van Leusen reaction, a 

novel multicomponent synthesis of 4-tosyl-1-arylimidazoles is reported. In this transformation, two 

molecules of TosMIC participate in the reaction mechanism in two different ways, with the second 

molecule undergoing a novel type of fragmentation resulting in the incorporation of a C-H into the 

final product.
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Serendipitously obtained in low yield (14%) by irradiating tosyldiazomethane in liquid hydrogen 

cyanide by the Dutch Professor Jan Strating and his former student Albert Van Leusen in 1967,1 

toluenesulfonylmethyl isocyanide (TosMIC) rapidly turned from a chemical curiosity to the most 

important and versatile functionalized isocyanides ever synthesized.2 

Indeed, in 1972 the same authors presented a safer and scalable synthetic route for TosMIC3 and in 

the same year Albert Van Leusen started his independent career on TosMIC chemistry 

demonstrating the versatility of this non-smelling, shelf stable isocyanide as a valuable reagent in 

organic synthesis. Preparations of substituted oxazoles and thiazoles by reacting TosMIC and 

carbonyl compounds4 or carboxymethyl dithioates,5 respectively, were published. Over the course 

of the years, Professor Van Leusen and his group were able to expand the chemical boundaries of 

TosMIC, recognizing that the consecutive presence of an isocyanide, an acidic CH, and a leaving 

group allowed for unprecedent transformations with different reactants. Imidazoles, 1,2,4-triazoles, 

and pyrroles could be easily obtained by reacting TosMIC with different electrophiles such as 

imines,6 aryldiazonium salts,7 and Michael acceptors.8 Furthermore, TosMIC could also be used as 

a reagent for converting a ketone to a nitrile in aprotic solvents,9 or as masked formaldehyde 

reagent to form symmetrical and unsymmetrical ketones10 or benzyl derivatives.11 The versatility of 

TosMIC was then recognized by other chemists who, with their imagination and intuition, pushed 

further the boundaries of its chemistry. Excellent reviews on TosMic appeared in the literature 

covering the period from 1972 to 2018.12 

The most rationale use of TosMIC is to exploit its α-acidity (pKa= 12-14)13 in order to favor the 

nucleophilic attack of the TosMIC anion to an electrophile, and finally use the isocyano group as a 

carbenoid to form a five-membered rings in a 5-endo trig ring closure.14 Following this strategy, 

successful examples have been reported with the following electrophiles: carbonyls, imines, carbon 

disulfide, nitriles, isothiocyanates, Michael adducts, pyridine N-oxides, isoquinolines, acyl 

chlorides, diazonium salts and ketimines. On the basis of the electrophile strength, better results 
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were obtained using strong bases for less electrophilic partners. Recently, the use of transition 

metals has amplified and modified the chemical reactivity of TosMIC, opening a new chapter in its 

already rich history. For example, the metal assisted syntheses of E-vinyl sulfones,15 α-sulfonated 

ketones,16 and sulfonyl benzofurans17 have been reported.

Reflecting on the electrophiles reported in the literature able to react with the TosMIC anion, we 

became aware that no reports on the reaction between TosMIC and aryl azides were available. 

Although azides are almost always considered as 1,3-dipolar species or nitrenes precursors of via 

thermal or photochemical degradation, the terminal nitrogen atom can be intercepted by 

nucleophiles and azides can also be considered electrophilic reagents. Example of reactions where 

azides behave like electrophiles are the Dimroth triazole synthesis and the Staudiger reaction.18 For 

this reason, we decided to evaluate the reaction of TosMIC with aryl azides. As a model reaction, 

we chose TosMIC (1) and phenyl azide (2). When the reaction was carried out in THF at room 

temperature in the absence of a base, no reaction occurred. But when under the same reaction 

conditions, t-BuOK was added, the reaction proceeded very fast, and we noticed a rapid evolution 

of gas. The main product was isolated, and its structure unequivocally determined by single crystal 

X-ray diffraction to be the 4-tosyl-1-phenylimidazole (3) obtained in 12% yield (Scheme 1).

Me

SO O

NC

+

N3

Me

SO
O

NN

1 2 3

t-BuOK

THF, rt

Scheme 1. Reaction between TosMIC and phenyl azide affords 4-tosyl-1-phenylimidazole and 

ORTEP19 view of 3 and the relative arbitrary atom numbering scheme (thermal ellipsoids at 40% 

probability).
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A literature search showed that 4-tosyl-1-arylimidazoles were already reported via different 

synthetic strategies. For example, they could be prepared by reacting arylazasulfones 5 with 

TosMIC20 or via oxidation of dilithiated 1-phenyl-4-tosyl-1H-imidazole-5-thiol 6 with alkaline 

potassium ferricyanide21 or, finally via reaction between aryl formamidate 7 or aryl formamidines 

and TosMIC in the presence of sodium hydride (Figure 1).22

N N S
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Me
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NN
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water

rt

Me S
O

O
N

N
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X= C, N

t-BuOK
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TosMIC

TosMIC

rt
4

5

6 7

Figure 1. Reported methods for the synthesis of 4-tosyl-1-arylimidazoles.

While these methods can give access to 4-tosyl-1-arylimidazoles, there are evident limitations 

associated with them such as the use of strong base, problems of selectivity, reaction time, required 

synthesis of intermediates, and use of external oxidants which can restrict the versatility of these 

transformations.

As the preparation of aryl azides is an easy task which does not suffer limitations, thus allowing for 

the preparations of any aromatic azide, this novel transformation could give access to an increased 

number of functionalized 4-tosyl-1-arylimidazoles not attainable with the other reported methods. 

For this reason, we considered this novel transformation worthy of further studies and 

improvements. At first, reasoning on the possible reaction mechanism, it was clear that two 

equivalents of TosMIC participated actively in this transformation. A possible scenario for this 
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multicomponent reaction is represented in Scheme 2. To initiate the process, the TosMIC anion 

attacks N-3 of the azide to form intermediate A. Subsequently, N-1 intercepts the isocyanide in a 6 

endo-trig cyclization to form anion B, which is quenched by a proton source (e.g. tert-butanol) to 

form C. Due to its instability, C undergoes a [4+2] cycloreversion to form D with loss of nitrogen. 

The imine of D then undergoes attack by a second molecules of TosMIC anion, followed by ring 

closure to form E. At this point, after protonation, intermediate F regains aromaticity through a base 

assisted mechanism with the expulsion of the most acidic proton and loss of hydrogen cyanide and 

sulfinate. Under strong basic conditions, excess of t-BuOK deprotonates the newly formed 

hydrogen cyanide, avoiding the release of toxic HCN. It is worth to note that the two molecules of 

TosMIC participate in the reaction mechanism in two different ways, with the second molecule in 

the scheme undergoing a fragmentation resulting in the incorporation of a C-H into the final 

molecule. To the best of our knowledge, this mechanistic feature has never been reported for the 

TosMIC reagent. HRMS infusion of the reaction mixture revealed the presence both intermediates 

A or B and p-toluensulfinic acid, while intermediate D was not detectable probably due to its 

instability (see supporting information). 
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Scheme 2. Plausible reaction pathway.

Relying on this mechanistic scenario, several reaction parameters were varied (solvent, base, 

temperature, reagent equivalents) in order to increase the yield and control the exothermicity of the 

reaction. The results are shown in the supporting information. As expected, increasing the number 

of TosMIC and base equivalents boosted the yield with t-BuOK still being the best base, since it has 

the possibility to exchange protons with intermediates B and E. Cooling the reaction to 0 °C before 

adding the base had the beneficial effect of increasing the yield. Interestingly, when a polar protic 

solvent (MeOH) was used, no reaction was observed after 30 minutes; aprotic solvents (DMSO, 

DMF) were the best choice to carry out the reaction. Best reaction conditions (DMF, 2.5 equiv. of 

TosMIC, 0 °C then rt, 30 minutes) increased the yield of 3 to 58%. With these optimal conditions in 
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hand, the substrate scope of the reaction using different aryl azides (A-U) and TosMIC analogues 

(V-X) (Figure 2) was evaluated, resulting in 23 additional successful examples (8-30) as shown in 

Figure 3. 
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Figure 3. 4-arylsulfonyl-1-(hetero)arylimidazoles synthesized
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When electron withdrawing groups (EWGs) were present on the aryl azides, the reaction afforded 

higher yields. This is in line with the same observation for the Dimroth reaction, as the presence of 

EWGs increase the electrophilic nature of the azide group.23 However, the reaction was also 

successful with aryl azides containing electron donating groups, with only a slight reduction in 

yields, and even with sterically demanding substrates. Finally, the use of heteroaryl azides were 

well tolerated, together with the use of TosMIC analogues. When two different TosMIC analogues 

were used, the reaction led to both the two possible products in a 1:1 ratio. Moreover, a TosMIC 

analogue substituted at the alpha position with a phenyl ring was also tested, but unfortunately, no 

definite products were obtained. Notably, the reaction was very fast, with full conversion of starting 

materials in less than 30 minutes. Simple column chromatography and methanol recrystallization 

afforded the desired products.

The presented reaction does not work with aliphatic azides, vinyl azides, boronic azides, and 

toluene sulphonyl azide, as we detected an inseparable reaction mixture. When acyl azides were 

employed, we isolated 5-aryl-4-tosyloxazoles in high yield. This is exemplified by the reaction in 

Scheme 3. In this case, acyl azide 33 behaves like an acyl choride4 towards the TosMIC anion and, 

after acylation of the α-carbon of TosMIC, enolization and ring closure of the isocyanide, the 

corresponding 4,5-disubstituted oxazole 34 is formed.

SO O

CN

Me

N
O

SO O

Me

t-BuOK, DMF

0 °C to rt

ON3

+

80%
133 34

Scheme 3. With acylazides, 5-aryl-4-tosyloxazoles are formed.

In conclusion, following the idea that aryl azides have never been considered as potential 

electrophilic partner in the Van Leusen reaction with the anion of TosMIC, we demonstrated the 
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feasibility of this strategy, enabling the formation of 4-arylsulfonyl-1-(hetero)arylimidazoles in 

good yields. In this novel multicomponent reaction, two molecules of TosMIC participate in the 

reaction mechanism displaying two distinct chemical behaviors, and sulfinic acid anion and 

hydrogen cyanide fragmentation of TosMIC was reported for the first time. The versatility of this 

reaction associated with the ready availability of aryl azides, operational simplicity, and reduced 

reaction times renders this methodology much more attractive with respect to previously reported 

routes. 

EXPERIMENTAL SECTION

Solvents and Reagents. Commercially available reagents and solvents were used without further 

purification. When necessary the reactions were performed in oven-dried glassware under a positive 

pressure of dry nitrogen. 

 Chromatography. Column chromatography was performed on silica gel (70–230 mesh ASTM) 

using the reported eluents. Thin layer chromatography (TLC) was carried out on 5 x 20 cm plates 

with a layer thickness of 0.25 mm (Silica gel 60 F254). When necessary they were developed with 

KMnO4.

Spectra. Infrared spectra were recorded on a FT-IR Thermo-Nicolet Avatar spectrometer with 

absorption maxima (νmax) recorded in wavenumbers (cm-1). 1H and 13C APT NMR were recorded 

on at 400 MHz. High-resolution ESI-MS spectra were performed on a Thermo LTQ Orbitrap XL 

mass spectrometer. The spectra were recorded by infusion into the ESI source using MeOH as the 

solvent. Chemical shifts (δ) are reported in part per million (ppm) relative to residual solvent peak. 

Melting points were determined using a Stuart Scientific SMP3 apparatus and remain uncorrected. 

General preparation of phenyl azides (A-U). The aryl azides were readily synthesized in two 

steps starting from the corresponding anilines.
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Preparation of aryl azides. The corresponding aniline (5 mmol) was suspended in water (1 M, 5 

mL); hydrochloric acid (2M, 2.5 mL) was added dropwise and a solution of sodium nitrite (1.1 

equiv., 5.5 mmol, 379 mg) in water (3M, 1.8 mL) was added at 0°C. The reaction was stirred at 0°C 

for 10 minutes. A solution of sodium azide (1.1 equiv., 5.5 mmol, 358 mg) in water (6M, 0.9 mL) 

was added at 0°C and the reaction mixture was stirred for additional 10 minutes. 

The aryl azide was extracted with dichloromethane (x3), the organic phase was washed with brine, 

evaporated under reduced pressure, and used without further purification in the multicomponent 

reaction. Phenyl azides A-U matched the NMR data as reported in literature (see supporting 

information for references)24-42, while the aryl azide S was newly synthesized.

4-azido-1-bromo-2-chlorobenzene (S). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 199:1) to give the product as yellowish solid (767 mg, 66% 

yield). 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.8 Hz, 1H), 7.12 (d, Jm = 2.4 Hz, 1H), 6.80 (dd, 

J1 = 8.8 Hz, J2 = 2.8 Hz, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 140.5, 135.6, 134.5, 120.8, 

118.6, 117.8. Mp 46-47 °C.

Preparation of benzoyl azide (33). Benzoyl chloride (5 mmol) was dissolved in acetone (1.5 M, 

3.3 mL) at 0°C; a 3M solution of sodium azide (1.5 equiv., 7.5 mmol, 0.49 g) in water was added 

dropwise at 0°C and the reaction mixture was stirred at room temperature until the complete 

formation of the product as judged by TLC (typically 10 minutes). 

The benzoyl azide was extracted with ethyl acetate (x3), the organic phase was washed with brine, 

evaporated under reduced pressure, and the crude was purified by chromatographic column. 

Benzoyl azide 31 matched the NMR data as reported in literature.43

General preparation of 1-phenyl-4-(phenylsulfonyl)-1H-imidazoles (3, 8-32). The isocyanide 

(0.62 mmol, 2.5 equiv.) was dissolved in DMF (0.25 M), potassium tert-butoxide (0.62 mmol, 2.5 

equiv., 70 mg) was added at 0 °C. After 2 minutes the aryl azide (0.25 mmol, 1 equiv.), was added 
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and the reaction mixture was stirred at 0 °C for 10 minutes and at room temperature for 20 minutes. 

The reaction mixture was diluted with ethyl acetate and water. The aqueous layer was extracted 3 

times with ethyl acetate, and the collected organic phases were then washed one more time with 

brine. After evaporation of the solvent, the crude material was purified by column chromatography. 

1-phenyl-4-tosyl-1H-imidazole (3). The crude material was purified by column chromatography 

(PE/EtOAc 8:2 and PE/EtOAc 6:4) to give the product as yellowish solid (43 mg, 58% yield). The 

model reaction was then carried out at 1 mmol scale, referred to aryl azide, without noticing any 

reduction in yield. 1H NMR (400 MHz, CDCl3) δ 7.98-7.94 (m, 3H), 7.81 (s, 1H), 7.52-7.42 (m, 

3H), 7.37-7.31 (m, 4H), 2.40 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.3, 143.6, 137.7, 

135.9, 130.2, 129.8, 128.9, 128.0, 122.2, 121.9, 21.6. IR (KBr) 3146, 3126, 2923, 1595, 1514, 1316, 

1179, 1144, 1086, 763 νmax/cm-1; Mp 144-146 °C; MS (ESI) m/z (M+H)+ Calcd for C16H15N2O2S+: 

299.0849; Found: 299.0844 [M+H]+.

1-(3-fluorophenyl)-4-tosyl-1H-imidazole (8). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as a light brown solid (56 

mg, 71% yield). 1H NMR (400 MHz, CDCl3) δ 7.97-7.94 (m, 3H), 7.82 (s, 1H), 7.52-7.47 (m, 1H), 

7.32 (d, J= 8.0 Hz, 2H), 7.20-7.10 (m, 3H), 2.41 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 163.1 

(d, Jipso= 248.7 Hz), 144.4, 144.0, 137.5, 137.1 (d, Jm= 9.8 Hz), 131.8 (d, Jm= 9.0 Hz), 129.8, 128.1, 

122.0, 117.5 (d, Jp= 3.3 Hz), 115.9 (d, Jo= 20.9 Hz), 109.6 (d, Jo= 25.1 Hz), 21.6. IR (KBr) 3138, 

3083, 2924, 1613, 1602, 1521, 1326, 1304, 1142, 857, 694 νmax/cm-1; Mp 157-159 °C; MS (ESI) 

m/z (M+H)+ Calcd for C16H14FN2O2S+: 317.0755; Found: 317.0750 [M+H]+.
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1-([1,1'-biphenyl]-4-yl)-4-tosyl-1H-imidazole (9). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as an amorphous black 

solid (61 mg, 65% yield). 1H NMR (400 MHz, CDCl3) δ 7.99-7.97 (m, 3H), 7.87 (s, 1H), 7.69 (d, 

J= 8.4 Hz, 2H), 7.57 (d, J= 7.6 Hz, 2H), 7.47-7.36 (m, 5H), 7.31 (d, J= 8.0 Hz, 2H), 2.39 (s, 3H); 

13C{1H} NMR (100 MHz, CDCl3) δ 144.3, 143.5, 141.9, 139.2, 137.7, 134.9, 129.8, 129.0, 128.7, 

128.1, 128.0, 127.0, 122.2, 21.6. IR (KBr) 3120, 3057, 2918, 1595, 1525, 1488, 1319, 1183, 1145, 

1086, 693, 602 νmax/cm-1; MS (ESI) m/z (M+H)+ Calcd for C22H19N2O2S+: 375.1162; Found: 

375.1158 [M+H]+.

1-(4-phenoxyphenyl)-4-tosyl-1H-imidazole (10). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as an amorphous brown 

solid (51 mg, 52% yield). 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J= 8.0 Hz, 2H), 7.89 (s, 1H), 7.76 

(s, 1H), 7.40-7.29 (m, 6H), 7.20-7.16 (m, 1H), 7.10-7.03 (m, 4H), 2.41 (s, 3H); 13C{1H} NMR (100 

MHz, CDCl3) δ 158.1, 156.0, 144.3, 143.4, 137.6, 130.8 (2C), 130.0, 129.7, 128.0, 124.3, 123.7, 

122.5, 119.5, 119.4, 21.6. IR (KBr) 3155, 3134, 3121, 3054, 2922, 1588, 1519, 1489, 1312, 1243, 

1144, 1085, 694 νmax/cm-1; MS (ESI) m/z (M+H)+ Calcd for C22H19N2O3S+: 391.1111; Found: 

391.1105 [M+H]+.

4-tosyl-1-(3,4,5-trimethoxyphenyl)-1H-imidazole (11). The crude material was purified by 

column chromatography (PE/EtOAc 7:3 and PE/EtOAc 6:4) to give the product as an amorphous 

black solid (59 mg, 58% yield). 1H NMR (400 MHz, CDCl3) δ 7.96-7.91 (m, 3H), 7.76 (s, 1H), 7.32 

(d, J= 8.0 Hz, 2H), 6.54 (s, 2H), 3.87 (s, 6H), 3.85 (s, 3H), 2.40 (s, 3H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 154.1, 144.3, 143.3, 138.4, 137.6, 131.7, 129.8, 128.0, 122.7, 100.1, 61.0, 56.4, 21.6. IR 
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(KBr) 3125, 2963, 2849, 1600, 1514, 1465, 1262, 1095, 1028, 801 νmax/cm-1; MS (ESI) m/z 

(M+Na)+ Calcd for C19H20N2NaO5S: 411.0991; Found: 411.0967 [M+Na]+.

4-(4-(4-tosyl-1H-imidazol-1-yl)phenyl)morpholine (12). The crude material was purified by 

column chromatography (PE/EtOAc 6:4 and PE/EtOAc 5:5) to give the product as a pink solid (38 

mg, 40% yield). 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J= 7.2 Hz, 2H), 7.85 (s, 1H), 7.71 (s, 1H), 

7.32 (d, J= 7.6 Hz, 2H), 7.25-7.22 (m, 2H), 6.95 (d, J= 8.0 Hz, 2H), 3.87-3.85 (m, 4H), 3.20-3.18 

(m, 4H), 2.40 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 151.4, 144.2, 143.1, 137.8, 129.7, 128.0, 

127.9, 123.2, 116.0, 66.6, 48.7, 21.6. IR (KBr) 3148, 3128, 2954, 2813, 1528, 1450, 1303, 1237, 

1137, 1116, 926, 830 νmax/cm-1; Mp 198-200 °C; MS (ESI) m/z (M+H)+ Calcd for C20H22N3O3S+: 

384.1377; Found: 384.1371 [M+H]+.

1-(p-tolyl)-4-tosyl-1H-imidazole (13). The crude material was purified by column chromatography 

(PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as an amorphous reddish solid (53 mg, 68% 

yield). 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J= 8.0 Hz, 2H), 7.90 (s, 1H), 7.77 (s, 1H), 7.31-7.22 

(m, 6H), 2.38 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.2, 143.3, 139.0, 137.8, 137.4, 133.5, 

130.7, 129.7, 128.0, 122.3, 121.8, 21.6, 21.0. IR (KBr) 3151, 3107, 3063, 2962, 2919, 1521, 1312, 

1302, 1139, 1086, 816, 662 νmax/cm-1; MS (ESI) m/z (M+H)+ Calcd for C17H17N2O2S+: 313.1006; 

Found: 313.1000 [M+H]+.

1-(2-phenoxyphenyl)-4-tosyl-1H-imidazole (14). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as an amorphous brown 

solid (35 mg, 36% yield). 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J= 8.0 Hz, 2H), 7.91 (s, 1H), 7.77 

(s, 1H), 7.38-7.28 (m, 6H), 7.07-7.01 (m, 4H), 2.37 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 
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158.0, 156.0, 144.3, 143.3, 137.7, 130.8, 130.1, 129.8, 128.0, 124.3, 123.7, 119.5, 21.6. IR (KBr) 

3152, 3121, 3071, 1588, 1522, 1488, 1318, 1236, 1141, 1086, 693 νmax/cm-1; MS (ESI) m/z (M+H)+ 

Calcd for C22H19N2O3S+: 391.1111; Found: 391.1106 [M+H]+.

1-(4-chlorophenyl)-4-tosyl-1H-imidazole (15). The crude material was purified by column 

chromatography (PE/EtOAc 9:1 and PE/EtOAc 7:3) to give the product as a light brown solid (56 

mg, 67% yield). 1H NMR (400 MHz, CDCl3) δ 7.97-7.92 (m, 3H), 7.79 (s, 1H), 7.48 (d, J= 8.8 Hz, 

2H), 7.34-7.31 (m, 4H), 2.41 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.4, 143.9, 137.5, 

134.8, 134.4, 130.4, 129.8, 128.0, 123.2, 122.1, 21.6. IR (KBr) 3125, 3078, 2922, 1597, 1519, 1321, 

1140, 1083, 706, 605 νmax/cm-1; Mp 173-175 °C; MS (ESI) m/z (M+H)+ Calcd for C16H14ClN2O2S+: 

333.0460; Found: 333.0448 [M+H]+.

1-(3-bromophenyl)-4-tosyl-1H-imidazole (16). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 6:4) to give the product as an orange-pink solid (53 

mg, 56% yield). 1H NMR (400 MHz, CDCl3) δ 7.97-7.93 (m, 3H), 7.81 (s, 1H), 7.58-7.54 (m, 2H), 

7.41-7.26 (m, 4H), 2.41 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.4, 144.0, 137.5, 137.0, 

132.0, 131.5, 129.8, 128.1, 125.1, 123.7, 120.6, 21.6. IR (KBr) 3153, 3113, 3063, 2922, 1594, 1516, 

1490, 1315, 1303, 1142, 1087, 673, 601νmax/cm-1; Mp 190-192 °C; MS (ESI) m/z (M+Na)+ Calcd 

for C16H13BrN2NaO2S: 400.9758 (97.3%); Found: 400.9745 [M+Na]+.

3-(4-tosyl-1H-imidazol-1-yl)quinoline (17). The crude material was purified by column 

chromatography (PE/EtOAc 6:4 and PE/EtOAc 5:5) to give the product as a light brown solid (67 

mg, 71% yield). 1H NMR (400 MHz, CDCl3) δ 8.95 (d, Jm= 2.4 Hz, 1H), 8.21-8.10 (m, 3H), 7.96-

7.89 (m, 4H), 7.80-7.76 (m, 1H), 7.67-7.63 (m, 1H), 7.31-7.29 (m, 2H), 2.38 (s, 3H); 13C{1H} 
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NMR (100 MHz, CDCl3) δ 147.6, 144.6, 144.2, 144.0, 137.3, 130.9, 129.8, 129.5, 129.3, 128.6, 

128.3, 128.0 (2C), 127.2, 122.5, 21.6. IR (KBr) 3140, 3112, 3062, 2918, 1610, 1515, 1317, 1189, 

1147, 1084, 693, 607 νmax/cm-1; Mp 189-191 °C; MS (ESI) m/z (M+Na)+ Calcd for C19H15N3NaO2S: 

372.0783; Found: 372.0763 [M+Na]+.

1-(4-fluorophenyl)-4-tosyl-1H-imidazole (18). The crude material was purified by column 

chromatography (PE/EtOAc 8:2 and PE/EtOAc 7:3) to give the product as an orange solid (48 mg, 

61% yield). 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J= 8.4 Hz, 2H), 7.90 (s, 1H), 7.77 (s, 1H), 7.38-

7.30 (m, 4H), 7.21-7.17 (m, 2H), 2.40 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 163.6, 161.1, 

144.4, 143.7, 137.6, 132.1 (d, Jo=3.2 Hz), 129.8, 128.0, 124.1 (d, Jm= 8.6 Hz), 122.5, 117.2 (d, Jo= 

23.1 Hz), 21.6. IR (KBr) 3138, 3089, 3066, 2962, 2922, 1525, 1326, 1261, 1142, 1088, 1020, 807, 

694 νmax/cm-1; Mp 163-165 °C dec; MS (ESI) m/z (M+H)+ Calcd for C16H14FN2O2S+: 317.0755; 

Found: 317.0750 [M+H]+.

1-([1,1'-biphenyl]-2-yl)-4-tosyl-1H-imidazole (19). The crude material was purified by column 

chromatography (PE/EtOAc 9:1 and PE/EtOAc 7:3) to give the product as an orange solid (23 mg, 

25% yield). 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J= 8.0 Hz, 2H), 7.57-7.47 (m, 3H), 7.43 (d, J= 

5.6 Hz, 2H), 7.36-7.21 (m, 6H), 7.01 (d, J= 7.6 Hz, 2H), 2.42 (s, 3H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 144.0, 142.4, 137.9, 137.8, 136.9, 133.6, 131.5, 129.8, 129.6, 128.9, 128.8, 128.1, 127.9, 

126.0, 124.7, 21.6. IR (KBr) 3146, 3117, 3055, 3029, 2917, 1595, 1514, 1482, 1315, 1177, 1141, 

694, 660 νmax/cm-1; Mp 165-167 °C; MS (ESI) m/z (M+H)+ Calcd for C22H19N2O2S+: 375.1162; 

Found: 375.1149 [M+H]+.
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1-(benzo[d][1,3]dioxol-5-yl)-4-tosyl-1H-imidazole (20). The crude material was purified by 

column chromatography (PE/EtOAc 7:3 and PE/EtOAc 6:4) to give the product as an amorphous 

black solid (31 mg, 36% yield). 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J= 8.4 Hz, 2H), 7.83 (s, 

1H), 7.70 (s, 1H), 7.32 (d, J= 8.0 Hz, 2H), 6.88-6.79 (m, 3H), 6.06 (s, 2H), 2.40 (s, 3H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 148.9, 148.2, 144.3, 143.2, 137.7, 130.1, 129.8, 128.0, 122.7, 115.9, 

108.8, 103.9, 102.3, 21.6. IR (KBr) 3142, 2915, 1517, 1317, 1306, 1246, 1149, 1037, 691, 604 

νmax/cm-1; MS (ESI) m/z (M+Na)+ Calcd for C17H14N2NaO4S: 365.0572; Found: 365.0556 [M+Na]+.

4-(4-tosyl-1H-imidazol-1-yl)pyridine (21). The crude material was purified by column 

chromatography (PE/EtOAc 6:4 and PE/EtOAc 3:7) to give the product as a yellow solid (34 mg, 

45% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.76-8.75 (m, 2H), 8.06 (s, 1H), 7.98-7.94 (m, 3H), 

7.35-7.33 (m, 4H), 2.41 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 155.4, 150.8, 144.7, 143.5, 

143.3, 138.0, 130.4, 127.9, 115.4, 22.3. IR (KBr) 3137, 2963, 2921, 1591, 1519, 1323, 1143, 1085, 

819, 806 νmax/cm-1; Mp 195-197 °C; MS (ESI) m/z (M+H)+ Calcd for C15H14N3O2S+: 300.0802; 

Found: 300.0794 [M+H]+.

1-(4-nitrophenyl)-4-tosyl-1H-imidazole (22). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 6:4) to give the product as a yellowish solid (59 mg, 69% yield). 

1H NMR (400 MHz, CDCl3) δ 8.42 (d, J= 9.2 Hz, 2H), 8.02 (d, Jm= 1.6 Hz, 1H), 7.98 (d, J= 8.4 Hz, 

2H), 7.92 (d, Jm= 1.2 Hz, 1H), 7.59 (d, J= 9.2 Hz, 2H), 7.35 (d, J= 8.0 Hz, 2H), 2.43 (s, 3H); 

13C{1H} NMR (100 MHz, CDCl3) δ 145.1, 144.7, 140.5, 137.1, 129.9, 128.2, 126.0, 122.0, 110.0, 

21.6. IR (KBr) 3132, 2922, 2853, 1594, 1518, 1311, 1287, 1140, 1077, 853, 603, 534 νmax/cm-1; Mp 

228-229 °C; MS (ESI) m/z (M+H)+ Calcd for C16H14N3O4S+: 344.0700; Found: 344.0693 [M+H]+.
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1-(3,5-dichlorophenyl)-4-tosyl-1H-imidazole (23). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 8:2) to give the product as a yellowish solid (52 mg, 57% yield). 

1H NMR (400 MHz, CDCl3) δ 8.34-8.32 (m, 1H), 8.28 (s, 1H), 8.01-7.98 (m, 2H), 7.90 (s, 1H), 

7.76-7.75 (m, 2H), 7.35 (d, J= 8.4 Hz, 2H), 2.43 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 

144.6, 144.5, 137.4, 137.3, 136.7, 129.8, 129.0, 128.1, 121.8, 120.5, 21.6. IR (KBr) 3070, 2920, 

2851, 1589, 1573, 1432, 1303, 1141, 1084, 799, 665, 599, 532 νmax/cm-1; Mp 209-210 °C; MS (ESI) 

m/z (M+H)+ Calcd for C16H13Cl2N2O2S+: 367.0070; Found: 367.0064 [M+H]+.

1-(3,4-dimethoxyphenyl)-4-tosyl-1H-imidazole (24). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 8:2) to give the product as a brownish solid (60 mg, 67% yield). 

1H NMR (400 MHz, CDCl3) δ 7.96 (d, J= 8.0 Hz, 2H), 7.88 (d, Jm= 1.2 Hz, 1H), 7.74 (d, Jm= 1.2 

Hz, 1H), 7.32 (d, J= 8.0 Hz, 2H), 6.94-6.89 (m, 2H), 6.82 (s, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 2.40 (s, 

3H); 13C{1H} NMR (100 MHz, CDCl3) δ 150.0, 149.5, 144.2, 143.1, 137.8, 129.7, 129.2, 128.0, 

122.8, 114.5, 111.6, 106.2, 56.2, 21.6. IR (KBr) 3160, 2921, 2852, 1600, 1517, 1442, 1236, 1136, 

1082, 1025, 662, 599, 536 νmax/cm-1; Mp 130-131 °C; MS (ESI) m/z (M+H)+ Calcd for 

C18H19N2O4S+: 359.1061; Found: 359.1057 [M+H]+.

1-(4-bromo-3-chlorophenyl)-4-tosyl-1H-imidazole (25). The crude material was purified by 

column chromatography (n-hexane/ EtOAc 8:2) to give the product as a brown to red solid (93mg, 

90% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.68 (s, 1H), 8.48 (s, 1H), 8.16 (d, Jm= 2.4 Hz, 1H), 

7.92 (d, J= 8.8 Hz, 1H), 7.81 (d, J= 8.0 Hz, 2H), 7.70 (dd, Ja= 8.4 Hz, Jb= 2.4 Hz, 1H), 7.41 (d, J= 

7.6 Hz, 2H), 2.36 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 144.6, 142.6, 138.7, 138.3, 

136.5, 135.2, 134.8, 130.3, 127.8, 123.5, 121.8, 121.1, 21.5. IR (KBr) 3111, 2922, 2852, 1592, 
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1513, 1463, 1313, 1138, 1084, 810, 634, 585, 532 νmax/cm-1; Mp 183-184 °C; MS (ESI) m/z (M+H)+ 

Calcd for C16H13BrClN2O2S+: (97%) 412.9544; Found: 412.9536 [M+H]+.

1-(3,5-dimethoxyphenyl)-4-tosyl-1H-imidazole (26). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 8:2) to give the product as brownish oil (45 mg, 50% yield). 1H 

NMR (400 MHz, CDCl3) δ 7.95 (d, J= 7.6 Hz, 2H), 7.88 (s, 1H), 7.73 (s, 1H), 7.31 (d, J= 7.6 Hz, 

2H), 6.91-6.83 (m, 3H), 3.90 (s, 6H), 2.39 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 150.0, 

149.5, 144.2, 143.1, 137.7, 129.7, 129.2, 128.0, 122.8, 114.5, 111.6, 106.2, 56.2, 21.6. IR (KBr) 

3124, 2924, 2838, 1599, 1517, 1315, 1235, 1136, 1084, 1020, 660, 597, 534 νmax/cm-1; MS (ESI) 

m/z (M+H)+ Calcd for C18H19N2O4S+: 359.1061; Found: 359.1053 [M+H]+.

1-(2-iodophenyl)-4-tosyl-1H-imidazole (27). The crude material was purified by column 

chromatography (n-hexane/ EtOAc 8:2) to give the product as a yellow solid (39 mg, 37% yield). 

1H NMR (400 MHz, CDCl3) δ 7.99-7.97 (m, 3H), 7.77 (d, Jm= 1.2 Hz, 1H), 7.61 (d, Jm= 1.2 Hz, 

1H), 7.50-7.46 (m, 1H), 7.35-7.21 (m, 4H), 2.42 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 

144.2, 142.9, 140.4, 139.1, 138.7, 137.7, 131.4, 129.7, 129.6, 128.0, 127.6, 124.4, 95.1, 21.6. IR 

(KBr) 3159, 3106, 2921, 2851, 1511, 1312, 1139, 1084, 766, 688, 660, 602, 533 νmax/cm-1; Mp 180-

181 °C; MS (ESI) m/z (M+H)+ Calcd for C16H14IN2O2S+: 424.9816; Found: 424.9806 [M+H]+.

1-(3,5-dichlorophenyl)-4-(naphthalen-2-ylsulfonyl)-1H-imidazole (28). The crude material was 

purified by column chromatography (n-hexane/ EtOAc 8:2) to give the product as a yellowish solid 

(59 mg, 58.5% yield). 1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.03-7.81 (m, 6H), 7.64-7.58 (m, 

2H), 7.43 (s, 1H), 7.31 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.2, 137.4, 137.1, 136.7, 

135.2, 132.2, 129.7, 129.5 (2C), 129.2, 129.1, 127.9, 127.5, 122.9, 122.1, 120.6. IR (KBr) 3127, 
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2922, 1583, 1518, 1311, 1144, 1124, 1072, 852, 751, 682, 665, 588 νmax/cm-1; Mp 212-213 °C; MS 

(ESI) m/z (M+H)+ Calcd for C19H13Cl2N2O2S+: 403.0070; Found: 403.0062 [M+H]+.

4-(naphthalen-2-ylsulfonyl)-1-(3-nitrophenyl)-1H-imidazole (29). The crude material was 

purified by column chromatography (n-hexane/ EtOAc 8:2) to give the product as a brownish solid 

(58 mg, 61% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.88 (s, 1H), 8.65-8.60 (m, 3H), 8.20-8.10 

(m, 4H), 8.01-7.63 (m, 5H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 148.9, 142.4, 139.1, 138.1, 

137.0, 135.0, 132.1, 131.7, 130.0, 129.9, 129.7, 129.0, 128.3, 128.2, 128.1, 124.1, 123.1, 116.8. IR 

(KBr) 3152, 3121, 1535, 1518, 1346, 1318, 1143, 1125, 1070, 737, 662, 537 νmax/cm-1; Mp 163-

164°C; MS (ESI) m/z (M+Na)+ Calcd for C19H13N3NaO4S: 402.0524; Found: 402.0516 [M+Na]+.

4-((4-methoxyphenyl)sulfonyl)-1-(3-nitrophenyl)-1H-imidazole (30). The crude material was 

purified by column chromatography (n-hexane/ EtOAc 6:4) to give the product as a yellow to 

orange solid (29 mg, 32% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.75 (s, 1H), 8.62 (s, 1H), 8.56 

(s, 1H), 8.24-8.19 (m, 2H), 7.88-7.78 (m, 3H), 7.13-7.11 (m, 2H), 3.81 (s, 3H); 13C{1H} NMR (100 

MHz, CDCl3) δ 163.7, 149.1, 145.1, 136.9, 131.6, 131.5, 130.4, 127.4, 123.4, 121.4, 117.0, 114.5, 

55.7. IR (KBr) 3110, 2921, 2851, 1591, 1525, 1348, 1298, 1256, 1135, 737, 673, 600, 545 νmax/cm-

1; Mp 180-181 °C; MS (ESI) m/z (M+Na)+ Calcd for C16H13N3NaO5S: 382.0474; Found: 382.0459 

[M+Na]+.

4-((4-bromophenyl)sulfonyl)-1-(3,5-dimethoxyphenyl)-1H-imidazole (31). The crude material 

was purified by column chromatography (n-hexane/ EtOAc 6:4) to give the product as a yellowish 

amorphous solid (29 mg, 27% yield). 1H NMR (400 MHz, CDCl3) δ 7.98 (d, J= 8.8 Hz, 2H), 7.92 

(d, Jm= 1.2 Hz, 1H), 7.78 (d, Jm= 1.6 Hz, 1H), 7.70 (d, J= 8.8 Hz, 2H), 6.95-6.94 (m, 2H), 6.85 (d, 
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Jm= 2.0 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 150.0, 149.7, 

142.4, 139.8, 138.0, 132.4, 129.6, 129.1, 128.6, 123.3, 114.6, 111.6, 106.3, 56.3, 56.2. IR (KBr) 

3087, 2925, 2022, 1516, 1236, 1064, 1008, 856 νmax/cm-1; MS (ESI) m/z (M+H)+ Calcd for 

C17H16BrN2O4S+: 423.0009; Found: 423.0010 [M+H]+.

4-((4-bromophenyl)sulfonyl)-1-(3,5-dichlorophenyl)-1H-imidazole (32). The crude material was 

purified by column chromatography (n-hexane/ EtOAc 9:1) to give the product as a yellowish 

amorphous solid (89 mg, 82% yield). 1H NMR (400 MHz, CDCl3) δ 7.98-7.95 (m, 3H), 7.85 (s, 

1H), 7.71 (d, J= 8.4 Hz, 2H), 7.49 (s, 1H), 7.34-7.37 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 

143.8, 139.3, 137.3, 137.2, 136.8, 132.5, 129.6, 129.2, 128.9, 123.0, 122.3, 120.6. IR (KBr) 3135, 

2922, 2230, 1571, 1432, 1313, 1140, 1064, 742, 628 νmax/cm-1; MS (ESI) m/z (M+H)+ Calcd for 

C15H10BrCl2N2O2S+: 430.9018; Found: 430.9026 [M+H]+.

5-phenyl-4-tosyloxazole (34). The crude material was purified by column chromatography 

(PE/EtOAc 9.5:0.5 and PE/EtOAc 8:2) to give the product as a pink solid (61 mg, 75% yield). 1H 

NMR (400 MHz, CDCl3) δ 7.98-7.85 (m, 5H), 7.51-7.50 (m, 3H), 7.31 (d, J=8.4 Hz, 2H), 2.41 (s, 

3H); 13C{1H} NMR (100 MHz, CDCl3) δ 152.7, 149.2, 145.0, 137.1, 135.6, 130.9, 129.8, 129.0, 

128.6, 128.2, 125.5, 21.7. IR (KBr) 3143, 2963, 2922, 1595, 1512, 1313, 1263, 1144, 1112, 1032, 

812, 671 νmax/cm-1; Mp 133-135 °C dec.; MS (ESI) m/z (M+H)+ Calcd for C16H14NO3S+: 300.0689; 

Found: 300.0688 [M+H]+.
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