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Abstract

Understanding the effects of individual awareness on epidemic phenomena is important to

comprehend the coevolving system dynamic, to improve forecasting, and to better evaluate

the outcome of possible interventions. In previous models of epidemics on social networks,

individual awareness has often been approximated as a generic personal trait that depends

on social reinforcement, and used to introduce variability in state transition probabilities. A

novelty of this work is to assume that individual awareness is a function of several contribut-

ing factors pooled together, different by nature and dynamics, and to study it for different epi-

demic categories. This way, our model still has awareness as the core attribute that may

change state transition probabilities. Another contribution is to study positive and negative

variations of awareness, in a contagion-behavior model. Imitation is the key mechanism that

we model for manipulating awareness, under different network settings and assumptions, in

particular regarding the degree of intentionality that individuals may exhibit in spreading an

epidemic. Three epidemic categories are considered—disease, addiction, and rumor—to

discuss different imitation mechanisms and degree of intentionality. We assume a population

with a heterogeneous distribution of awareness and different response mechanisms to infor-

mation gathered from the network. With simulations, we show the interplay between popula-

tion and awareness factors producing a distribution of state transition probabilities and

analyze how different network and epidemic configurations modify transmission patterns.

Introduction

Epidemics on networks is a research topic that has been investigated for a long time. First

developed to apply mathematical and statistical methods to the study of the spread of diseases

in populations [1–3], epidemic models evolved to describe other viral phenomena unrelated to

pathogens and often characterized by a behavioral or social dimension [4–6]. The spread of

addictions, like heroin diffusion in the ‘70s [7], as well as the recent opioid addiction [8], has

been studied with epidemic models, conveniently adapted from original disease-based ones.

Also the diffusion of ideas [9] and of rumors [10] have been analyzed since the ‘60s by adapting

epidemic models. The modern development of online social networks and phenomena like the
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spread of misinformation and disinformation represent widely researched topics [11–15].

Other important extensions to original epidemic models have been the inclusion of adaptive

agents, which allows for richer dynamics, multi-agent models [16] based on local rules that

introduce self-organizing behaviors [17], or models with game-theoretic agents that simulate

strategic behaviors [18].

The rich research strand that grew upon epidemic models has demonstrated the wide appli-

cability and adaptability of original SIS, SIR, and SIRS models (i.e., where states stand for Sus-

ceptible, Infected, and Recovered), sometimes further extended with new specialized states

[19–21].

With this work, we describe a multiagent model for the coevolving dynamics between an

epidemic and agents’ awareness, with the epidemic‘s dynamics influenced by the behavior of

agents becoming aware of the epidemics. Similar coevolving dynamics are the subject of a rich

strand of research often identified as epidemic/behavior models [21–25]. In these models,

awareness has typically the role of the body of knowledge an agent acquires from the spread of

an epidemic (e.g., as social reinforcement produced by multiple and repeated observations of

peers, interactions, and communications, or from broadcasting media outlets and public bod-

ies’ initiatives) [26–28], and it is used as an attribute of infection and recovery probabilities,

making them dependent to the behavioral response of agents [22, 23, 25, 27, 29]. With the

extension of epidemic/behavior models to multiplex networks [30, 31], the coevolution

between the epidemic spreading and agents’ awareness has assumed the form of two network

processes with mutual influence. In [32], the epidemic is modeled as a SIS process and aware-

ness as a similar SIS-like dynamics indicated as UAU, with agents possibly cycling around

Unaware and Aware status. Despite the work does not specifically investigate the case of agents

reverting to unaware, being more focused on the possible role of a broadcasting media, the

implicit non-monotonic dynamics of awareness is of particular interest for us. Another, more

recent work also studied a UAU-SIS multiplex model [33], but the transition from Aware to

Unaware state is only motivated with a memory loss effect. Several other studies have consid-

ered declining awareness as the result of memory loss, especially in absence of reinforcement

events, like new outbreaks or awareness campaigns [25, 34, 35]. Although we recognize mem-

ory loss as an important effect and account for it in our definition of awareness as pooled fac-

tors, it is especially relevant in the long run, and it is a different scenario with respect to the

one we have studied. Differently from all works considering only increasing awareness or

explaining awareness decline with memory loss, in our work awareness could both increase

and decrease during the whole dynamics, from the exponential start up growth to the regime

reached after the initial peak. To model positive or negative awareness variations, we only

introduce typical behavioral responses of agents to social reinforcement conditions, without

any memory loss long-term assumption. In particular, negative changes to awareness are likely

to be relevant and frequent in non-disease epidemics, because for addiction or rumor based

epidemics, the common assumption of disease/behavior models stating that an individual

tends to become more cautious being aware of infected neighbors [27, 35] should be ques-

tioned as not as prevalent as for diseases. In disease/behavior studies, the diffusion of anti-

vaccination sentiments has often been framed as a social contagion resulting in increased vul-

nerability to outbreaks [36]. However, it represents a different case from what it is common in

addictions and rumor spreading, where individuals, often as a response to social reinforce-

ment, actively seek to develop an addiction or to believe and spread rumors. At best of our

knowledge, ours is the first multiagent model explicitly considering positive and negative

awareness variations as a behavioral response of an heterogeneous population to opposite

social reinforcements. This generalization of the coevolution between a contagion process and

agents’ behavior, apparently more relevant for non-disease epidemics, also seems to justify the
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introduction of a more general definition for this class of models as contagion/behavior mod-

els, rather than the more specific disease/behavior.

The reminder of the paper is organized as follows. The second section introduces our

model, with the definition of awareness’ components and the relation between state transition

probabilities and agent awareness. The simulation results are then presented and discussed,

organized for different epidemic categories and integrated with the specification of different

characteristics of the imitation mechanism. A conclusion is presented in the last section.

Awareness, imitation, and contagion dynamics

Awareness contributing factors

Awareness, as a concept, has roots in psychology studies [37] and has often been associated to

metacognition to describe self-reflection and understanding in learning [38], or specified as sit-
uation awareness as key for human decision making in dynamical systems [39]. Individual

abilities and environmental factors have typically been investigated in awareness studies. All

these elements, learning and decision making, personal traits and the context, are important

for our work because they informed several design decisions for our contagion-behavior mul-

tiagent model. When awareness has been considered in coevolving epidemic models, it was

often regarded as a measure of knowledge of some sort. Information about the existence of an

epidemic has been associated to awareness, built upon the direct observation of infected neigh-

bors or information received through means of communication [23, 25, 26, 28, 29].

A contribution of this work is to suggest that awareness should be defined as the combina-

tion, possibly variable and different for different type of agents, of multiple information sources.

Information sources should not just vary in numbers, but also in nature, and it is this combined

effect of heterogeneous factors that gives to awareness its characteristic feature of being partially

situational awareness, i.e. “adaptive, externally directed consciousness” [40], and partially the

result of personal traits, culture, education, and knowledge, in some sense similar to the

assumption of imperfect knowledge and bounded rationality in risk prospects [41].

Following this logic, with this work we have started by considering three information

sources as contributing to awareness: Self-awareness, Imitation, and Communication.

Self-awareness. It represents the awareness an individual has before the beginning of an

epidemic and derived from her/his personal body of knowledge. It could depend from educa-

tion, expertise, or personal skills. We use this factor to set up a heterogeneous population of

agents starting with different level of awareness, and different responses to the contagion-

behavior dynamics. We defined three agent types based on the value and usage of this factor:

• No Awareness;

• Low Self-awareness;

• High Self-awareness.

No Awareness type represents those whose dynamics is a simple contagion using fixed state

transition probabilities and serves the purpose of benchmark for the other two types. Low and

High Self Awareness agents differs for the initial level of self-awareness and represent the two

agent having different behavioral responses to social reinforcement. Their state transition

probabilities are variable with respect to their awareness level, which, in turn, depends on the

behavior of multiple neighbors. The non-linearity of the dynamics of awareness and then of

probabilities introduces a difference between the two types of agents that simulates the differ-

ent impact on the epidemic prevalence of two subgroups of the population. Another differ-

ence between Low and High Self-awareness agents is that, by design, only Low Self-awareness
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agents could show negative awareness variations. Again, this difference is useful to simulate

subgroups with adaptive behavior, in this case a group that could intentionally seek to become

infected.

Motivations for assuming different levels of awareness in a population, before an epidemic

takes place, could be found in studies that have documented that, whatever the nature of the

epidemic, there are individuals better equipped than others to face to it [34, 42, 43]. Education

level, expertise, and in general the quality of knowledge an individual possesses are key for

adopting effective countermeasures in mitigating the contagion risk [44–46], whereas the lack

of knowledge or ingenuity may induce individuals to incautious behaviors, erroneous evalua-

tions, and even to voluntarily engage in contagion spreading, as was recognized a long time

ago for rumor and propaganda [47]. By introducing agent types, we aimed at capturing this

fundamental aspect and use it for the analyses.

We combined these three types of agents to simulate how the infection prevalence could be

modified by changing the proportion of one type with respect to another, as a possible effect of

targeted awareness campaigns. The value of the Self-awareness factor is defined for each agent at

setup and represents the fixed contribution to awareness. The following two factors are the vari-

able part of awareness, dynamically depending to the spread of the contagion on the network.

Imitation. It represents the main social reinforcement mechanism of our model, and

depends on the state (Infected or not) of the neighbors. We assume that the imitative behavior

is based on direct observation, therefore neighbors are assumed to take no active action.

Depending on the combined effect of observations, which is governed by a threshold, an agent

may or may not adapt its behavior. Agents type and the nature of the epidemic could deter-

mine either positive or negative variations of awareness, and as a consequence an agent, during

a simulation, could become less likely to be infected or more likely (similarly for recovering).

Communication. It represents a special form of communication, where an infected agent

actively seeks to spread the contagion, more likely social contagion, to the neighbors. In this

work, we have assumed that direct messages are the means of communication, and the effect

on awareness is governed by a threshold. Similarly to the case of Imitation, it is the combined

effect of infected peers to determine the possible behavioral response of an agent (i.e., change

of awareness, followed by a possible change of state transition probabilities).

Imitative behavior, intentionality, and beliefs

We add here some explanations and contextual descriptions with respect to the previous defi-

nition of factors contributing to agent awareness of our contagion-behavior model.

Positive or negative effects of imitation. Imitation is a powerful mechanism that drives

human behavior to adapt to a social context and often a safe strategy for decision-making in

uncertain situations. The importance and prevalence of imitation as a key factor in determin-

ing individual beliefs and choices has been recognized in many studies [20, 48–51]. In our

model, it is the process and mechanism that let agents’ modify their awareness during the sys-

tem evolution and from this to have a complex contagion process. Imitation, as a social enforce-

ment, could be modeled in a variety of ways (e.g., based on equal or weighted relevance of the

neighbors, dependent on peers more than 1-step away, or induced by broadcasting media),

but it could also depend on the type of behavior that imitation induces, say a positive or a nega-
tive behavior. For sake of clarity, we do not assume any moral principle for defining what is a

positive or negative behavior, just a generic utilitarian approach considering the social welfare.

In particular, we assume that positive behaviors are those that more likely permit an agent to

stay in the Susceptible state or to move from Infected to Recovered. Negative behaviors are

those that more likely bring an agent to the Infected state. Accordingly, it is labeled as positive
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a behavior that reduces the odds to get a disease, to start an addiction, or to believe in rumors;

vice versa it is a negative behavior to increase them.

Spreaders and messages. A special form of social contagion, which is mostly related to

the spread of rumors or false beliefs, is represented by an agent in the Infected state that

believes in a certain rumor (e.g., false news, pseudo-scientific theory, conspiracy theory, and so

forth) and intentionally tries to spread it by actively communicating with neighbors. For rumor

epidemics, it has often been adopted a specific terminology for the states, like Ignorant/
Spreader/Stifler in place of Susceptible/Infected/Recovered [11]. We acknowledge the better fit

of the specific terminology to the rumor case, but in this work we have preferred to maintain

the traditional one for sake of homogeneity in presenting the different categories. We believe

that no loss of precision or clarity is due to this choice. Research about learning or marketing

has often debated how the repetition of a message is crucial in forming a belief. The fundamen-

tal reason is that in learning, opinion formation, and social media communication, there is

typically a cognitive threshold, represented by a number of repetitions with the same content,

above which an information is recognized as such (possibly unconsciously) and may contrib-

ute in forming knowledge (belief, opinion, preference) [52–54].

For clarity, it is worth noting that the case of rumor spreading is extremely rich in variations

and scenarios, hence for the aim of this work, several simplifying assumptions were needed to

analyze how awareness could play an important role within in the contagion-behavior model.

Our first assumption is that the vector of rumor spreading is only represented by messages

sent from an Infected node (a spreader) to its direct neighbors. No broadcast communication

has been considered as well as the possibility of message forwarding. A second assumption is

that spreading rumors is the consequence of a belief and agents could possibly change their

mind, so they could “recover” from spreading or they could be “infected” and start over again.

We do not consider the case of agents that spread rumors for reasons such as in advertising

through influencers or disinformation campaigns. Another assumption is that Infected agents

send messages regardless of any external variable, such as the density of Infected agents or the

time elapsed from the beginning of the epidemic, and with constant frequency. We have also

limited our case study to messages aimed at spreading the contagion, not at mitigating it,

therefore the effect would be a negative variation of awareness, the same mechanism we

defined for imitation, but through a different vector and a different threshold. Similarly to the

imitation case, by design, only Low Self-awareness agents may adapt their awareness due to the

effect of messages received from spreaders.

Epidemic categories and intentionality. We have considered three categories of epidem-

ics: disease, addiction, and rumor, as the reference scenarios for modeling the network dynam-

ics in case of only positive or both positive and negative awareness variations due to imitation,

and in case of messages from infected peers.

For biological diseases, we assume that there is no intentionality in becoming infected, only

in trying to avoid it (e.g., with medical care, healthy habits), whereas for addiction and rumor,

we assume that all changes of state, e.g. becoming addicted or believing in false news, as well as

recovering from them, are, at least partially, intentional. As a consequence, in case of disease

epidemic, imitation can only have positive effects or otherwise no effect. We exclude the possi-

bility of negative effects (e.g., one that voluntarily act to become infected). When the number

of infected neighbors in a certain time frame exceeds a given threshold, then we assume that

the awareness Imitation factor increases, and so does the total amount. For addiction, instead,

the dynamic is more complex. An agent in Susceptible state, by observing its neighbors, may

imitate the positive behavior (e.g., to stay away from addictions or do not believe in rumors),

therefore increasing the value of the Imitation factor and the total awareness. But it may also

decide to imitate the negative behavior (e.g., to start the addiction or to believe and spread
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rumors). In this second case, the contribution of the Imitation factor is to decrease the total

amount of awareness. Same logic applies for an agent in Infected state, it may decide to imitate

Susceptible and Recovered neighbors and then to increase the chance to quit the addiction or

to dismiss the false belief, or otherwise it may decide to imitate Infected neighbors and to fur-

ther decrease the chance of rehabilitation or change of mind. The choice between positive or

negative imitation is driven by a threshold on the number of Infected or non Infected neigh-

bors. By changing the threshold, we could model agents with different attitudes, more or less

likely to develop an addiction or spread rumors.

For the last category, rumor epidemic, we add the effect of messages sent from infected

(spreaders) agents. By considering this category, our model of contagion-behavior accounts for

the case of an agent in Susceptible state that could be influenced by the behavior of neighbors in

two ways: i) by observing their state, as for typical imitative behavior, and ii) by the messages

that a Infected neighbors send with a certain frequency, as a form of persuasion. With this sce-

nario, it is possible to observe agents exhibiting a wide variety of probabilities to become

infected or to recover, developing, at the end of simulations, a highly heterogeneous population

with respect to initial equal state transition probabilities and (for agent type) awareness level.

Table 1 summarizes the characteristics of the three categories.

Simple and complex contagion processes

With regard to the type of contagion process defined in our model, the base dynamics is the

same for the three epidemic categories we have considered and it is a simple contagion: every

contact between a Susceptible and an Infected agent has equal probability to trigger a change

of state. However, state transition probabilities are specific of each agent and their values at

each time step depend on the agent‘s social context. This introduces a form of indirect complex

contagion dynamics, because multiple exposures to different neighbors are required to reach

the imitation or message thresholds able to change the awareness through Imitation and Com-
munication factors, which in turn may trigger a non-linear change in state transition probabili-

ties. Therefore, with respect to the contagion type, our model is hybrid, with both simple and

complex contagion effects: i) simple contagion as the simplified assumption for the base

dynamics; and ii) complex contagion for changes of base rates (infection and recovery proba-

bilities) driven by the corresponding adaptation, positive or negative, of awareness triggered

by social reinforcement. To the best of our knowledge, this type of coevolving dynamics

between epidemic rates and awareness is discussed here for the first time. A more advanced

model would have included a complex contagion dynamics for contagion, too, this way com-

bining two layers of social reinforcement: one for awareness dynamic adaptation and another

for infection and recovery, possibly with different regimes (under some assumptions aware-

ness dynamics could be regressive with respect to epidemic effects, in other cases it could be

the opposite, with strong hype concerning the effects or extent of an epidemic). We guess that

a study about the coevolution of these two dynamics, represented as both based on social rein-

forcement and, for the awareness, including both positive and negative effects could be a diffi-

cult but challenging research goal for future works.

The model

We use a multiagent dynamic network model of N agents interacting within a network N
[55]. The process, involving the agent network and driving agents time evolution, is an epi-

demic of a certain category (disease, addiction, or rumor) spreading on network N . Agents are

autonomous self-adaptive entities, each one characterized by a vector that, at each time step t,
includes: the state S/I/R, transition state probabilities, total awareness, and awareness
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contributing factors. We now present the state transition diagram between S/I/R states and

define transition probabilities as a function of awareness for each agent and at each time step.

Next, we formalize our definition of awareness as a pooling function and give the second key

definition of state transition probability as a function of an agent‘s awareness.

State transition probabilities and awareness

With regard to probabilities in epidemic studies, it is common to focus on infection and recov-

ery probabilities to describe a simple dynamic. Although it may look unusual, we choose

instead to describe the contagion by referring to the probability to remain susceptible and to
recover. The reason is because it permits more naturally a logical presentation of the effects of

awareness variations. With this choice, it could be said that positive variations of agent aware-

ness may produce increases in the two probabilities (i.e., to remain susceptible and to recover)

and the effect is a reduction of the epidemic prevalence. Conversely, negative variations of

awareness may decrease the two probabilities and the contagion tends to spread more. For the

same reason, we preferred another notation for probabilities, in place of the Greek letters com-

mon in epidemic studies, to be more explicit about states and transitions. The notation is intui-

tive and has the form: Px for the probability to remain in state x, Pxy for the probability to

change state from x to y. Therefore, probabilities are:

• PS: probability to stay in Susceptible state, PSI: infection probability (with PS = 1 − PSI);

• PIR: probability to recover, PI: probability to remain Infected (with PIR = 1 − PI);

• PRS: probability to become Susceptible, PR: probability to remain in Recovered state (with

PRS = 1 − PR).

More formally, probabilities should show that they are specific of agent i and depend on the

awareness of i at time step t. Px,i(Awi,t) and Px,y,i(Awi,t) are the more formal notations for Px
and Pxy. For sake of simplicity, and when no ambiguity may arise, we will use the more com-

pact form.

With respect to the relation between state transition probabilities and awareness, for PS and

PIR, we have assumed the S-shaped form of the generalized logistic function as a good approxi-

mation for that relation (P{S,IR} = logistic(Aw)). Eq 1 shows the relation between PS and PIR
with awareness, specific for each agent i with a certain awareness at timestep t.

PSðAwÞ ¼ PSð0Þ þ
Pmax � PSð0Þ

1þm � exp ð½� kðAw � AwmidÞ�Þ
1
v

PIRðAwÞ ¼ PIRð0Þ þ
Pmax � PIRð0Þ

1þm � exp ð½� kðAw � AwmidÞ�Þ
1
v

ð1Þ

In the equation, Awmid defines the x-axes value of the sigmoid‘s midpoint, k is the logistic

growth rate, m is related to the function sensitivity, and v to the point of maximum growth.

PS(0) and PIR(0) are the base rates, respectively, for PS and PIR when the agent has no awareness

Table 1. Summary of differences between epidemic categories.

Category Imitation Intentionality
Disease Positive Imitation None

Addiction Positive/Negative Imitation Passive

Rumor Positive/Negative Imitation and Messages Active

https://doi.org/10.1371/journal.pone.0225447.t001
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(PS(0), PIR(0)6¼0), while it is possible to set an upper bound to the probabilities by means of

Pmax� 1.0.

Fig 1, on the right, shows two examples of probability as a function of awareness, PS(Aw)

and PIR(Aw). Base rates are showed as PS−base = PS(0) and PIR−base = PIR(0).

The logistic function has been chosen because for small and for large values of Aw the mar-

ginal gains are small, while in the middle range of Aw, probabilities are sensitive with respect

to awareness variations. In practical terms, the S-shape means that for small values of Aw, it

takes a certain amount of awareness variation to produce a change in agent behavior; for high

values, instead, variations in awareness could only produce small effects having the agent

already consistently changed its behavior, whereas in the middle range a variation of awareness

may produce a sensible change in agent behavior. In general, this appears as a common way of

reacting to reinforcements in social contexts. The typical reduced sensitivity of the logistic

function for small and large values reinforces the complex contagion dynamics governing

changes in probabilities. Not only for awareness variations a threshold should be met for imita-

tion or messages, but especially for small values of awareness, the logistic function is insensitive

to small changes, further stressing the need of a larger social reinforcement in order to change

the contagion dynamics.

Up to now, we have ignored the probabilities PR and PRS. The rationale is that the Recov-

ered state and how long an agent remains in that state are associated to immunization, tempo-

rary or permanent. Immunization is key for diseases and a rich literature has modeled it in

many ways. On the contrary, the concept of immunity is less clearly defined for addiction and

rumor categories. Actually, there is no consistent notion of immunity for those categories, but

only behavioral responses that may possibly be mapped on the Recovered state. For these rea-

sons, in this work, we have simplified the model by assuming a fixed value for PR (smaller than

Fig 1. States, probabilities, and awareness. On the left, the state transition diagram for agent i at time step t is showed with corresponding

probabilities. On the right, the logistic function P(Aw) is showed in two examples for probabilities PS and PIR, for agent i at time step t. The maximum

value of x-axis is Awmax, the upper bound of awareness. On the y-axis, Y(0) corresponds to base rates of transition probabilities, respectively PS−base =

PS(0) = 0.2 and PIR−base = PIR(0) = 0.4, in the example.

https://doi.org/10.1371/journal.pone.0225447.g001
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one, to have a SIRS model, instead of a SIR), and focusing our analyses on Susceptible and

Infected states.

Awareness factors

Our definition of awareness is that at time t and for each agent i of the network N , awareness

is defined as the geometric pooling of the three contributing factors here indicated as {a1, a2,

a3}, respectively with weights {w1, w2, w3} (i.e., a1 ≔ Self-awareness, a2 ≔ Imitation, and a3 ≔
Communication):

AwiðtÞ ¼
a1;iðtÞ

w1a2;iðtÞ
w1a3;iðtÞ

w1

Awmax
with

X6

k¼1

wi ¼ 1 ð2Þ

We have made some assumptions for the definition of Awi(t). The first is that the maximum

amount of awareness for an agent is bounded to an upper value Awmax, which could serve as

normalization factor. The meaning of this assumption is of cognitive boundedness, a common

in autonomous agent studies [56]. The second assumption is to consider the geometric pooling

a reasonable representation for the combination of heterogeneous awareness factors. Pooling

functions are typically used for aggregating probabilistic opinions expressed, for example, by a

panel of experts [57]. Here, similarly to the belief model of [34] for vaccinating behavior, we

assume that our problem of independent information sources evaluated by an individual and

contributing to his/her awareness is an acceptable approximation of the pooling problem.

This definition of awareness is useful for studying our reference epidemic categories. For

example, for disease and addiction, where the Communication factor is not present, it suffices

to set w3 = 0 and reconfigure w1 and w2 so that w1 + w2 = 1. Also, to simulate scenarios where

the different contributions have different relevance, for example reducing that of Self-aware-
ness in favor of the variable factors, the weights of the pooling function offer an easy mecha-

nism. To summarize, the whole dynamics of our contagion-behavior model could be

expressed by combining a simple stochastic contagion dynamic with the two key definitions of

PS and PIR as functions of awareness Aw(.), as for Eq 1, and of awareness Aw(.) as a pooling

function of the three contributing factors, as for Eq 2.

Schema of the coevolution dynamics

In Fig 2, we present a schema of how the contagion and the behavior dynamics coevolve. For

simplicity, we have assumed the case of disease epidemic, with only Imitation and positive

awareness variations. At time step 0 the network is set up, assigning agents types, as for the

required configuration, a corresponding value to Self-awareness (a1), and base rates of PS and

PIR. All nodes, except for the seed node, are in Susceptible state. All other parameters (e.g.,

weights, PR, etc.) are part of the standard configuration. Then, behavior and contagion

coevolve in the following way: At time step 1, for each node in random order, first the behavior

dynamic is updated: It is checked whether or not the number of infected neighbors exceeds

the imitation threshold. If that is the case, then factor a2 is increased with a predefined gain

and the awareness of the agent is updated with Eq 2. This is the first behavioral response to the

social reinforcement, the agent becomes more aware. Then, probability PS (i.e., the agent is in

Susceptible state) is updated with Eq 1 using the newly calculated value of awareness. The new

value of PS makes the agent more likely to stay Susceptible than in the previous time step. Now

the contagion behavior is updated: it is a simple contagion, therefore, being the agent in Sus-

ceptible state, the infection probability PSI = 1 − PS, smaller than in time step 0, is used for each

infected neighbor to decide whether or not the agent should change state. For the seed node,
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being in Infected state, the imitation threshold will be checked with respect to the number of

non-infected neighbors, awareness changed accordingly to Eq 2, and PIR updated with Eq 1.

The recovery phase will use PR = 1 − PIR, this time just once, to decide if the state should

change. Following time steps proceed in a similar way.

Results

We have run simulations of different epidemic scenarios on an artificial network of N = 103

nodes for the analysis of aggregate metrics, and of N = 104 nodes to study the individual behav-

ior of an agent population with heterogeneous features. The test network has been created to

produce a clustering coefficient compatible with typical disassortative social networks [58]

(i.e., approximately equals to 0.35), for which local cascade effects are common [59, 60]. In

all simulations, a single seed node, selected at random, has been used. We are aware that it is

not uncommon to identify multiple origins in epidemics and that therefore the single seed

assumption may represent a strong simplification. We however believe, having done some

tests, that considering multiple sources would not have substantially changed the significance

of the results. On the other hand, a detailed analysis of the number and distribution of multiple

origins would have changed the specific focus on awareness of this work.

Each data point presented in following figures has been averaged over, at least, 200 valid tri-

als. Valid trials have been considered those that propagated the contagion at least for 5 time

steps and at least infecting 50 nodes (5% of the total population size, N = 1000). These two con-

ditions have been set empirically given the fact that: i) at time step 3 most simulations are

already close to the peak of infected nodes; ii) the total of 50 infected nodes is sufficient to dis-

card the (rare) cases where the contagion seemed to jump back and forth for several time steps

among few nodes. Given the reference configuration that we used throughout our simulations,

Fig 2. Schema of our contagion-behavior coevolution. At time step 0, the set up configures the network, agent types, Self-awareness and probabilities.

At time step 1, for each agent, first, the behavioral dynamics of awareness variations followed by probability variation takes place, then the stochastic

contagion is carried out with probabilities possibly modified with respect to time step 0. Time step 2 and the following ones proceed similarly.

https://doi.org/10.1371/journal.pone.0225447.g002
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with an infection probability PSI = 0.2, a recovery probability PIR = 0.5, and the presence of

only a single seed node, the large majority of non-valid trials corresponded to simulations that

terminated within the first two time steps and with a number of infected nodes smaller than

50. For each unique configuration whose result are presented, the total number of simulations

we run was between 800 and 1000, including valid and non-valid ones. We found a reference

to confront our validity criteria. In [36], “an outbreak is defined as a minimum final epidemic

size of 25 (i.e. 0.5% of the total population size N = 5000)” (page 3, caption of Fig 2). Infection

and recovery probabilities are both equal to 0.1 in their stochastic simulations, and in total

they run 10000 simulation for unique network. Given the different network sizes and probabil-

ities, it seems to us that our criteria to consider a trial as valid is comparable to the one

assumed in [36].

Simulation results are presented in the reminder of this section starting with some examples

of network dynamics with simple contagion only (no awareness dynamics), then followed by

results related to our reference epidemic categories. For each group of simulations, a table

summarize the main parameters and their values. Table 2 shows the parameters with fixed val-

ues for all groups of experiments that follows. Values have been defined empirically, as a result

of many trials, and selected for qualitative analyses of the results.

Pure epidemic, no awareness

With these simulations, we aim at showing the basic behavior of our network for classical epi-

demic models and to set the benchmark for subsequent analyses when the effect of different

components of awareness will be studied. Here awareness is not considered and state transi-

tion probabilities do not dynamically change.

Table 2. Configuration values for different groups of simulations. When not repeated, a parameter value is intended

to be the same of the previous simulation category.

Positive imitation

Parameter Value

(PS, PIR, PR) (base rates) (0.8, 0.6, 0.5)

Timitation: Imitation threshold (H and L agent types) 0.5 (majority rule)

H type agent: Self-awareness (a1) 10.0

L type agent: Self-awareness (a1) 1.0

H type agent: Imitation (a2) when Timitation exceeded a2 + 3.0

L type agent: Imitation (a2) when Timitation exceeded a2 + 0.5

Awareness weights: (w1, w2) (0.5, 0.5)

Positive and Negative imitation

Parameter Value

Timitation: Imitation threshold (H types only) 0.5 (majority rule)

H type agent: Positive Imitation (a2) when Timitation exceeded a2 + 3.0

Timitation: Imitation threshold (L types only) (0.2, 0.5, 0.8)

L type agent: Positive Imitation (a2) when Timitation exceeded a2 + 0.5

L type agent: Negative Imitation (a2) when Timitation not exceeded a2 ≔ 0.2

Messages, Positive and Negative imitation

Parameter Value

Tmessages: Number of received messages threshold (L agent types) (8, 10)

L type agent: Communication (a3) when Tmessages exceeded a2 ≔ 0.2

Awareness weights: (w1, w2, w3) (0.33, 0.33, 0.33)

https://doi.org/10.1371/journal.pone.0225447.t002
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Fig 3 shows the behavior of SIS/SIR/SIRS epidemics models on our test network for three

configurations (i.e., A, B, and C). For each configuration, we set the probability to stay in the

Susceptible state (PS = 0.8) and correspondingly the probability to get infected (PSI = (1 − PS) =

0.2). By increasing the probability to recover (PIR = (0.4, 0.5, 0.6)), the maximum number of

infected decreases of about 20%. Instead, by changing the probability to stay in the Recovered

state (PR = (0.0, 0.5, 1.0)), the classical SIS/SIR/SIRS epidemic models could be obtained.

Positive imitation

With these simulations, we start testing the effect of awareness by considering two compo-

nents, namely the Self-awareness and the Imitation factors (respectively, a1 and a2). Here only

positive variations of the awareness are possible, according to the disease category.

Configuration. In this set of simulations, the difference between L and H type agents

(defined at set up by the value of factor a1) is that the former, individually, produce small

improvements in state transition probabilities PS and PIR, while the impact of the latter is

larger. The effect is a consequence of the difference in a1 initial values and the different gain

of a2. No other difference in action rule is implemented. With respect to a realistic scenario,

we have assumed that L type agents could include a large proportion of the population (up to

the entire population), while H type agents could only be a minority. The rationale for this

assumption is based, for example, on the cost of awareness campaigns or the time needed to

improve individual awareness up to high levels.

Simulation results. In Fig 4, results are obtained, left to right, starting from a population

of only No awareness, therefore only simple contagion dynamics, then with mixed populations

of L and H types, first the proportion is 90/10, then 70/30. With these experiments we want to

show the variability of results and how the awareness dynamics tends to reduce the prevalence

of infection and the duration of an epidemics.

Fig 5 gives the full pictures of all experiments with heterogeneous population and positive

awareness variations. Experiments are conducted starting with a population of No awareness
agents, then introducing an increasing proportion of L type agents, until a full population of L

types is reached. At that point, the role of H type agents is evaluated, by introducing them in

different proportions. The rational behind these simulations is, first, to study how a small

degree of awareness distributed over a large fraction of (or the entire) population is able to

Fig 3. Pure epidemics, no awareness: SIS/SIR/SIRS epidemic models for different configurations.

https://doi.org/10.1371/journal.pone.0225447.g003
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change the epidemic dynamics. Then to study how, by empowering a subset of agents with a

higher degree of awareness, the dynamics could be further modified.

In Fig 5, it could be observed the clear effect of awareness dynamics on the number of

infected and on the overall process. The progressive reduction of infected clearly emerges soon

when some No awareness agents are converted in L types. With a proportion 70/30 of NoAw:L

types, the reduction is already larger than 10%. However, the most striking result is when the

Fig 4. Variability of the contagion dynamics. The results have been obtained based on 200 valid trials for time steps.

It should be noted, from left to right, the increasing presence of trials with a number of infected nodes that dropped to

zero. One of the effect of the awareness dynamics was to reduce the prevalence of infected but even terminate more

often the epidemics. The large variability of initial steps should be also remarked. Left: the baseline case of pure

epidemics with no awareness mechanism; Center: the case of positive imitation with proportion of L/H type equals to

90:10; Right: positive imitation with L/H type proportion equals to 70:30.

https://doi.org/10.1371/journal.pone.0225447.g004

Fig 5. Positive imitation: Effect of awareness and agent type. Threshold for imitation is 0.5 (majority rule). Colored

lines are for the two cases of uniform population: all No awareness agents (blue line) and all L types (red line). Lines

with different shapes are for mixed populations: no awareness/L type and L/H types. The results presented here have

been produced by running more than 6000 simulations, to obtain at least 200 valid trials for each configuration.

https://doi.org/10.1371/journal.pone.0225447.g005
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whole population is of L types. At that level, the difference with the single contagion is large

(>50%) and the dynamics has changed, apparently mitigating the initial exponential increase.

The following introduction of H types further improves the results, although not dramatically.

These results, although qualitative and not generalizable out of our artificial network, could

nevertheless provide some useful advices. First, they remind of the power of a small but largely

spread intervention to raise awareness, which could have a surprisingly positive impact on a

population. An objection is that a small increase in awareness may have immediate effects, but

it easily disappear if not sustained in the long run. Another advice is about the importance of

mitigating the dynamics, not just the number of infected. A contagion with an exponential ini-

tial dynamics not just may reach a dangerous peak of infected, but it exhibits a wild initial vari-

ability that could make the response to an epidemics extremely difficult. The unpredictable

behavior of early stages of an epidemic, easily dominated by stochastic uncertainty or subtle

effects of heterogeneity and asymmetries, could induce severe evaluation errors when used to

forecast future evolution. Unfortunately, in many real situations and for epidemics of different

nature, it is in the early phases that the pressure of emotional reactions, for example by the

media or politicians, may lead to decisions producing over- or underreactions.

By changing the the imitation threshold, populations of agents more or less like to take pre-

cautions when infected peers are observed could be simulated. For other parameters, tuning

the gain of factor a2 of awareness for L and H types (now with a proportion of 1:10), different

scenarios could be represented.

A different viewpoint is presented in Fig 6. Probability PS and PIR are adjusted according to

the logistic function based on the varying degree of awareness gained by agents during the

temporal evolution of the epidemic. Fig 6 shows, for each agent (the x axes lists the IDs from 1

to 10000), the value of PS (top) and PIR (bottom) at the end of the simulation (time step 20).

The difference between L and H types is clearly visible for both probabilities, as well as a differ-

ent variance that the two types develop starting from the same base rates (PS−base = 0.8 and

PIR−base = 0.6). From this figures, the stochastic heterogeneity introduced by our awareness

mechanism into state transition probabilities appears in a clear way, and represents, in our

opinion, a more realistic representation of a population of individuals for epidemic models

and spreading phenomena.

Fig 6. Positive imitation: Distribution of probability values among L and H agent types. On the x axes, agent IDs in

increasing order; on the y axes, probability PS for Susceptible agents (top) and PIR for Infected agents (bottom) in a

sample trial.

https://doi.org/10.1371/journal.pone.0225447.g006
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Positive and negative imitation

We move now to the next set of simulations, with a more complete characterization of imita-

tion. Different from the previous case, which essentially modeled a disease epidemic, here we

consider the case of addictions and the spreading of rumors.

Configuration. An individual in addiction or rumor epidemics may act by imitating oth-

ers in two possible ways: by being nudged to adopt a positive behavior, meaning that it results

in an increase of PS and PIR, or to adopt a negative behavior, meaning that the outcome will be

a decrease of PS and PIR. We have called Positive Imitation the first case and Negative Imitation
the second one.

Table 2 shows the different parameters, with respect to the previous case. The main differ-

ence is that H type agents and L types have distinct imitation thresholds for the two different

behaviors. We tested different thresholds for Negative Imitation, from 0.8 to 0.2, meaning

from L type agents that very likely will behave negatively, to the opposite case.

Therefore, to summarize, Positive and Negative Imitation have the following meaning and

targets:

• H type agent—Positive Imitation: Same as disease epidemic, but limited to H type agents. A

Susceptible H type agent becomes more aware of the epidemic and thus adopts countermea-

sures when the number of Infected nodes directly connected (addicted or rumor spreading)

exceeds a certain threshold. With Positive Imitation, awareness increases and, accordingly,

PS tends to increase. Similarly if the H type agent is Infected, its increased awareness tends to

speed up the recovery by increasing PIR.

• L type agent—Positive and Negative Imitation: L type agents now are assumed to behave as

pure imitators. Therefore, after defining a target threshold of directly connected agents, if the

proportion of directly connected peers in Infected state exceeds the threshold, then a L type

agent will seek to increase its odds to become Infected by reducing awareness that, in turn,

will reduce PS or PIR. Vice versa, if the proportion of directly connected peers in Infected

state does not exceed the threshold, the L type agent will imitate the Susceptible or Recovered

by increasing awareness and then increasing PS or PIR.

Simulation results. Fig 7 shows an example of the effect of Negative Imitation on agents

that, during a simulation, had mixed Positive and Negative Imitation (at certain time steps

they behaved as Positive Imitation, in others as Negative Imitation) (blue dots), with respect to

agents that experienced only Positive Imitation (red dots). In the model, Negative Imitation is

produced by setting the Imitation factor a2 to a value between (0,1), which reduces the total

awareness, when geometric pooling defined in Eq 2 is calculated. Fig 7 represents the value of

PIR at the end of the simulation (N = 10000). In this simulation, Negative Imitation is triggered

according to majority rule (threshold = 0.5), meaning that an L type agent imitates the behav-

ior of the majority of its neighbors. The overall effect of introducing Negative Imitation is to

have a larger distribution of PIR values with respect to the case of only Positive Imitation, with

a richer dynamics during a simulation.

In Fig 8, simulations have been run by changing the threshold for triggering the Negative

Imitation of L type agents (the values tested for the threshold are 0.2, 0.5, and 0.8). The overall

effect of a larger proportion of H types is more evident than what we have seen in previous Fig

5, because here the benefit of the L type agents is mitigated by those that negative imitate. Con-

fronting the values between Figs 8 and 5 for threshold = 0.5, it can be seen the effect of negative

imitation in the higher prevalence of infected at the end of the simulation, in case of negative

imitation.
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From these results, we have seen how the interplay between the outcome of an epidemic,

when a degree of intentionality in individual behaviors is considered, could be described with

a rich set of features. Individuals may react differently to external stimuli according to different

levels of awareness (e.g., by elaborating a strategy for reducing the risk or according to a herd-

ing behavior [61]). Some of them may even react incoherently when the whole epidemic event

Fig 7. Positive and negative imitation: Distribution of probability values for L type agents. On the x axes, agent IDs

in increasing order; on the y axes, probability PIR for Infected agents in a sample trial. (blue dots): agents experiencing

both Positive and Negative Imitation; (red dots): agents experiencing Positive Imitation only.

https://doi.org/10.1371/journal.pone.0225447.g007

Fig 8. Positive and negative imitation: Infected with different thresholds. Threshold equals 0.8 means that an L type

agent imitates Infected (Negative Imitation) when 20% of its neighbors are Infected and imitates not Infected (Positive

Imitation) when 80% of neighbors are not Infected. For thresholds 0.5 and 0.2, Negative Imitation is triggered when

the proportion of Infected neighbors is, respectively, 50% and 80%.

https://doi.org/10.1371/journal.pone.0225447.g008
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is considered (e.g., sometimes being influenced by a majority of peers with a certain behavior,

other times by a different behavior model), and the individual attitudes towards risk of conta-

gion influenced by a variable awareness, here represented by state transition probabilities,

might distribute within a range of values. We stress the importance of distinguishing epidemic

categories based on intentionality of individual actions, because, even for models relatively

simple as the one we have studied, the nature of some fundamental interactions should be

revised, with respect to the traditional approach to epidemic models based on diseases.

Messages

In this last section of the experimental results, we have added messages sent by Infected agents

to the neighbors. Here the mechanism is presented in a basic form, but nevertheless relevant

to better specify another possible difference between our epidemic categories.

Configuration. Again, Table 2 shows the different parameters, with respect to the previ-

ous case. In this case, the difference is the introduction of a new threshold (Tmessages) to

match with the number of messages received by an agent in Susceptible state from Infected

nodes. Factor Communication (a3) keeps the messages count. This represents a form of dose-
based diffusion, with a memory effect that disappears only once the threshold is exceeded.

When the threshold (Tmessages) is exceeded, an agent decreases the awareness. For simplicity

we used the same mechanism of Negative Imitation, reducing the value of a2. At that point, the

queue of messages is also emptied, therefore there is no accumulation, or memory effect, once

a behavioral response has been produced. It is a simplified assumption to avoid an excessive

prevalence of the effect. In our simplified set up, messages are sent at constant rate by Infected

agents to neighbors as an attempt to recruit more spreaders. In particular, this means that mes-

sages have the only possible effect to increase the odds of a state transition from Susceptible to

Infected.

Simulation results. Fig 9 shows the experimental results for two agent populations with

different proportion of L/H agents. Here the dynamics combines four different behaviors: H

type agents positive imitating, L types positive and negative imitating, and L types message-

driven negative imitation. For imitation we used Timitation≔ 0.5 to compare the results with

Figs 5 and 6. The colored lines indicated as “no Imit, no Msg” and “Imit, no Msg” corresponds,

respectively, to (NoAw,L) ≔ (100,L) of Fig 5, the case of single contagion, and to (T ≔ 0.5) of

Fig 6, the positive and negative imitation with majority rule.

Fig 9. Messages and imitation: Effect of different configurations in two populations. On the x axes, simulation time

step; on the y axes the number of Infected (Spreader) agents. (left): L:H = 70:30; (right): L:H = 90:10. Colored lines are

for setup with only Imitation mechanism and no Messages, and neither Messages nor Imitation (pure epidemic). Lines

with different shapes are for configurations with Message threshold.

https://doi.org/10.1371/journal.pone.0225447.g009
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The results, as expected, show an increased number of infected, with respect to previous

experiments. For the L:H = 70:30 configuration, it can be clearly observed the negative effect of

messages increasing the number of Infected agents. For the L:H = 90:10 configuration, the

result is qualitatively similar but with a difference worth to be noted. The difference between

the two benchmarks (lines red and blue) is reduced due to the smaller number of H agents

contributing to Positive Imitation. This makes the negative contribution of messages propor-

tionally more relevant, with the consequence that all lines with different shapes, representing

configurations with message thresholds, exceed the number of Infected of both benchmarks.

Again, presenting these results, we wish to highlight the complex interplay of the different con-

tributions to awareness resulting in different types of behavior. Finally, as expected, configura-

tions with smaller message thresholds (MsgThrs = 8 with respect to MsgThrs = 10) produce

proportionally more Infected nodes.

Conclusion

Previous epidemic models have typically included individual awareness as a factor for varying

the state transmission probabilities. We made a step further by modeling awareness as a com-

bination of contributing factors. This has let us introduce the main contribution of this work,

that is the modeling of positive and negative variations of awareness. This, combined with het-

erogeneous agent types, different for level of adaptation of awareness and behavior, represent

our contagion-behavior model. The results have showed how both the number of infected and

the dynamic of the epidemic could be strongly modified. With positive imitation we have

showed strong changes also in the initial phase, exponential and with extreme variability in a

typical stochastic contagion. With negative imitation and negative effects driven by messages,

instead, we have showed that, with a richer setting, the results may change, sometimes even

with performances worse than simple contagion. Therefore, it is a rich picture what it emerged

from our experiments. The model presented and the experimental results could be useful for

future studies about the coevolution between individual awareness and spreading phenomena.

The two dynamics are entangled in all epidemics at different degrees, and its modeling is criti-

cal for the definition of control measures aiming at mitigating negative effects (or at amplifying

positive effects of beneficial spreading phenomena). The effect of media coverage and of edu-

cation campaigns are tightly dependent on the impact on individual awareness and how it

influences behaviors. From the spread of diseases, addictions, to the many facets of rumor

(e.g., ideas, memes, fashions, popular beliefs), and all relevant network epidemic categories

that we have not considered in this work, the ability to simulate and analyze the dynamics

between a contagion, social or biological, and the awareness of people could be important in

several situations. Policy makers and educators, for instance, often address awareness cam-

paigns to groups of people at risk (e.g., typically selected for a combination of age, gender, eth-

nicity, income, education level, habits, health status, etc.). The increase of individual awareness

may result in different outcomes: on the positive side, the individual less likely will turn

infected (addicted or prey of false beliefs) and (s)he might have a beneficial network effect on

peers through social learning and imitation; on the negative side, it is also possible that the

individual will quickly lose the awareness gained, when exposed to negative social reinforce-

ments. The outcome of a real awareness campaign is most often a combination of all these out-

comes, and a model should account for all of them. Another application of the model could be

in supporting the evaluation of an awareness campaign with different targets. An important

decision for a campaign planner could be to choose between reaching a large audience with no

awareness with the goal to raise it to a low but not negligible level, or to focus on a smaller

group and make them well aware. This is an instance of the classical moral dilemma of how to
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distribute scarce resources: providing a few to many or a lot to a few? For an awareness cam-

paign planner it represents a hard decision, for the ethical questions and the utilitarian consid-

erations it raises. These considerations about the model applicability and a paper recently

appeared [62] have inspired what, in our opinion, could be an interesting development: group
awareness and group contagion/behavior dynamics, that would introduce a higher order model

of complex contagion and awareness dynamics, even more representative of social contexts

characterized by local effects, homogeneous clusters, and small cascades [63]. Finally, our con-

tagion-behavior model, while it proposes some original solutions, it also comes with many lim-

itations. One is the simplification related to the simple contagion dynamic. It should be

removed and the model should fully become a complex contagion dynamics. Then there are

the many limitations and assumption of our mechanisms. The case of rumor epidemics and

messages is an extreme simplification of the richness of the spread of rumors, ideas, false infor-

mation, propaganda, etc. We have barely scratched the surface of those models. The study of

positive and negative awareness variations is just at the beginning, there could be countless

nuances and interesting scenarios to explore. We have only sketched the basic mechanism.

The static contact network is another simplification that we accepted, but for which we are

well aware that it has to be changed. Networks should be dynamic, as well as populations.

With respect population, we wanted to introduce heterogeneity, as we did, but clearly our

agent types are a vague approximation of network communities and profiles. These are some

of the many limitations of our work. We hope that they are regarded as necessary simplifica-

tions for an initial study that allows for the simulation of a rich contagion-behavior dynamics

and considers awareness as a dynamic property of individuals, coevolving in a complex conta-

gion process.
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