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Abstract

Let Sp ⊂ R+ be a discrete countable set, let {aλ}λ∈Sp be a sequence in l1(Sp) and f(x) :=∑
λ∈Spaλsin(λx). f is an almost periodic odd function with {λ : ±λ ∈ Sp} as spectrum. We

give some conditions about the set S so that
∫ +∞
1

f(x) sin(Rx)dx
x → 0 whenever R → +∞, R ∈ S.
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Motivations and results

The Banach algebra AP of Bohr’s almost periodic functions is obtained completing with respect to the
uniform norm the complex vector space generated by the functions eiλx, with λ ∈ R (see [1]). Over AP
it is possible to define a continuous functional M such that M(eiλx) = δλ,0, where δλ,0 = 1 if λ = 0
and 0 otherwise. An important feature of M is that for every f ∈ AP, M(f(x)eiλx) = 0 for all but a
countable set of values for λ which constitutes the spectrum Sp of f . Usually M is defined as

M(f) := lim
T→+∞

1
T

∫ T

0
f(x)dx ,

but there are other possibilities. In fact, for every α ∈ [0, 1] we can consider

Mα(f) := lim
T→+∞

1
µα([1, T ])

∫ T

1
f(x)

dx

xα
, where µα([1, T ]) :=

∫ T

1

dx

xα
.

The existence and the continuity of Mα as a functional over AP can be proved following the same
argument proving existence and continuity ofM(f) (see [1]). Since a direct check shows thatMα(eiλx) =
δλ,0 for every α ∈ [0, 1], we conclude that Mα is only a different definition of M; in other words, we
have ∫ T

1
f(x)e−iRx dx

xα
= (aR + o(1))µα([1, T ]) (1)

where aR is independent of α and is zero if R 6∈ Spf . The behavior of the integral in (1) for α = 0 and
α 6= 0 is different when a more exact asymptotic behavior is looked for. In fact, suppose R 6∈ Spf so
that aR = 0, and consider the case α = 0, i.e., the function

F (T ) :=
∫ T

1
f(x)e−iRxdx .



A classical result (Theorem 4.1 of [1]) states that if F is bounded then it is almost periodic, therefore
when α = 0 the limit

lim
T→+∞

∫ T

1
f(x)e−iRx dx

xα
(2)

does not exist if f 6≡ 0. On the contrary, when α > 0 an integration by parts∫ T

1
f(x)e−iRx dx

xα
=

F (x)
xα

∣∣∣T
1

+ α

∫ T

1
F (x)

dx

xα+1

is sufficient to realize that (2) exists, at least when F is bounded. When α 6= 0, therefore, it is quite
natural to enquire the behavior of (2) as a function of R, in particular we are interested in finding the
behavior of

lim
R→+∞
R 6∈Sp

∫ +∞

1
f(x)e−iRx dx

xα
. (3)

When f(x)x−α ∈ L1(R) the Riemann-Lebesgue theorem implies that the limit in (3) is zero. This fact is
not useful when f is almost periodic and not identically zero, but we would like to know the conditions
we have to assume in order to prove that the limit is again zero. The function g(x) := f(x)e−iRx is
almost periodic with Spg = Spf −R, and it is known that the primitive of an almost periodic function is
bounded when 0 is not a limit point for its spectrum (see [1], Chapter IV), hence we conjecture that (3)
exists and is zero if and only if R runs over a set of points whose distance from Spf is large enough, in
some sense. Our principal result, the theorem below, shows that this conjecture is true for a large class
of almost periodic functions.

We have inquired both the case 0 < α < 1 and the case α = 1. We have found similar (but not
identical) conclusions but the second case is complicated by the non-integrability at x = 0 hence we
have chosen to present our result only for α = 1. Moreover, for our applications it is useful to know the
behavior of

lim
R→+∞
R 6∈Sp

∫ +∞

1
f(x) sin(Rx)

dx

x

(sin(Rx)/x is the Fourier transform of the characteristic function χ[−R,R](x)) so that we state our result
directly for such object. The proofs are based on explicit formulas, hence only almost periodic functions
which are associated with l1 sequences are considered. Summarizing, our setting is the following:
Sp ⊂ R+ is a discrete set, {aλ}λ∈Sp is a sequence in l1(Sp) so that

f(x) :=
∑

λ∈Sp

aλ sin(λx)

is an almost periodic odd function whose spectrum is a subset of {±λ : λ ∈ Sp}.

Remark 1. The referee pointed to our attention that in the context of the signal processing theory
sin(Rx)/x represents the impulse response of a reconstruction filter to the unit step rectangular pulse
on the time interval [−R,R], that the limit R → +∞ implies an increase of bandwidth and that M
defines the spectral average detection performed by a signal responding instrument. In this context the
spectral weights adopt a novel and interesting character. Since we are not expert of this subject, we
prefer to demand to the specialized literature (for example [2] and [3]) the interested reader.



The following lemma gives an explicit and alternative formula for the integral we are studying.

Lemma 1. Let R > 0 be fixed, then the limit

lim
M→+∞

∫ M

1
f(x) sin(Rx)

dx

x

exists if and only if aR = 0 and in this case∫ +∞

1
f(x) sin(Rx)

dx

x
=

∑
λ∈Sp

aλ

2

∫ λ+R

|λ−R|
cos x

dx

x
. (4)

Proof. The series defining f converges uniformly on R, therefore∫ M

1
f(x) sin(Rx)

dx

x
=

∑
λ∈Sp

aλ

∫ M

1
sin(λx) sin(Rx)

dx

x

= −
∑

λ∈Sp

aλ

2

∫ M

1
[cos(λ + R)x− cos(λ−R)x]

dx

x

= −
∑

λ∈Sp
λ6=R

aλ

2

[∫ M(λ+R)

λ+R
cos x

dx

x
−

∫ M |λ−R|

|λ−R|
cos x

dx

x

]
−aR

2

[∫ M

1
cos(2Rx)

dx

x
−

∫ M

1

dx

x

]
.

When R 6= λ and M � R we have |λ−R| ≤ λ + R ≤ M |λ−R| ≤ M(λ + R), so that

= −
∑

λ∈Sp
λ6=R

aλ

2

[∫ M(λ+R)

M |λ−R|
cos x

dx

x
−

∫ λ+R

|λ−R|
cos x

dx

x

]
−aR

2

∫ 2RM

2R
cos x

dx

x
+

aR

2
lnM.

The series depending on M can be uniformly estimated since∫ M(λ+R)

M |λ−R|
cos x

dx

x
=

sinx

x

∣∣∣M(λ+R)

M |λ−R|
+

∫ M(λ+R)

M |λ−R|
sinx

dx

x2
� 1

M |λ−R|
, (5)

so that ∑
λ∈Sp
λ6=R

|aλ|
2

∣∣∣∫ M(λ+R)

M |λ−R|
cos x

dx

x

∣∣∣ � ∑
λ∈Sp
λ6=R

|aλ|
1

M |λ−R|
� 1

M
.

A similar upper bound, this time with M = 1, proves that also the second series converges, therefore as
M → +∞ we have∫ M

1
f(x) sin(Rx)

dx

x
=

∑
λ∈Sp
λ6=R

aλ

2

∫ λ+R

|λ−R|
cos x

dx

x
− aR

2

∫ +∞

2R
cos x

dx

x
+

aR

2
lnM + O(M−1) ,

and the claim follows.

Now we approximate Identity (4) in such a way that only the elements of Sp which are near to R appear
explicitly.



Lemma 2. Let Sp and aλ as before, with aR = 0. Let c be an arbitrary positive constant, then∫ +∞

1
f(x) sin(Rx)

dx

x
= −

∑
λ∈Sp

|λ−R|<c

aλ

2
ln|λ−R|+ Oc(

∑
λ∈Sp

R/2<λ<2R

|aλ|) + O(R−1) .

Proof. In fact, from (5) we have the upper bound

∑
λ∈Sp

λ≤R/2

aλ

∫ λ+R

|λ−R|
cos x

dx

x
�

∑
λ∈Sp

λ≤R/2

|aλ|
|λ−R|

� R−1 ,

the same argument holds in the range λ ≥ 2R, therefore

∑
λ∈Sp

aλ

∫ λ+R

|λ−R|
cos x

dx

x
=

∑
λ∈Sp

R/2<λ<2R

aλ

∫ λ+R

|λ−R|
cos x

dx

x
+ O(R−1) .

Using (5) again but in ranges R/2 < λ < R− c and R + c < λ < 2R, we obtain

∑
λ∈Sp

aλ

∫ λ+R

|λ−R|
cos x

dx

x
=

∑
λ∈Sp

|λ−R|<c

aλ

∫ λ+R

|λ−R|
cos x

dx

x
+ Oc(

∑
λ∈Sp

R/2<λ<2R
|λ−R|≥c

|aλ|) + O(R−1) . (6)

Since ∫ λ+R

|λ−R|
cos x

dx

x
=

∫ 1

|λ−R|
cos x

dx

x
+ O(1) = − ln|λ−R|+

∫ 1

|λ−R|

cos x− 1
x

dx + O(1)

= − ln|λ−R|+ O(1)

uniformly on λ ∈ Sp and R ∈ R+, from (6) we get

∑
λ∈Sp

aλ

∫ λ+R

|λ−R|
cos x

dx

x
= −

∑
λ∈Sp

|λ−R|<c

aλ ln|λ−R|+ O(
∑

λ∈Sp
|λ−R|<c

|aλ|) + Oc(
∑

λ∈Sp
R/2<λ<2R
|λ−R|≥c

|aλ|) + O(R−1)

which is the claim.

Lemma 2 immediately implies the following theorem.

Theorem. Given φ : R → R+, suppose that Sφ := {x ∈ R+ : |x− λ| ≥ 1/φ(λ), ∀λ ∈ Sp} is unbounded
and that

lim
R→+∞

∑
λ∈Sp

|λ−R|<1

|aλ lnφ(λ)| = 0 ,

then

lim
R→+∞
R∈Sφ

∫ +∞

1
f(x) sin(Rx)

dx

x
= 0 . (7)



We note that Sφ is unbounded if and only if ∆λ := inf{|η − λ|, η ∈ Sp, η 6= λ} > 1/φ(λ) for infinitely
many λ ∈ Sp, so that a function φ as in Theorem exists if and only if

lim
R→+∞

∑
λ∈Sp

|R−λ|<1

|aλ ln(∆λ)| = 0 . (8)

This condition is always satisfied when Sp is well spaced, i.e., ∆λ � 1, but can fail if infλ ∆λ = 0.

Remark 2. The restriction R ∈ Sφ in (7) is necessary, in fact the limit can be non-zero when R runs on
a set sufficiently near to Sp. For example, suppose Sp = N\{0} and let an = n−2. Then, from Lemma 2
(with c = 1/2) we have ∫ +∞

1
f(x) sin(Rx)

dx

x
= − ln ‖R‖

2bRc2
+ o(1)

where bRc is the integer which is nearest to R and ‖R‖ := |R − bRc|: obviously the limit can be zero,
positive or infinite for suitable choices of R.

Remark 3. The similar problem for even functions is easier. In fact, let g(x) :=
∑

λ∈Sp bλ cos(λx), where
Sp is a discrete countable set and {bλ}λ∈Sp is a sequence in l1(Sp). Then, an argument similar to that
one proving Lemma 1 shows that∫ +∞

1
g(x) sin(Rx)

dx

x
= π

∑
λ∈Sp
λ<R

bλ −
∑

λ∈Sp
λ6=R

bλ

2

∫ λ+R

λ−R
sinx

dx

x
+

bR

2

∫ +∞

2R
sinx

dx

x
∀R,

so that by the dominated convergence theorem we conclude that
∫ +∞
1 g(x) sin(Rx)dx

x tends to zero as
R tends to infinity, without any restriction about the set containing R.

An application

Let Sp := {λ : λ = ln n, n ∈ N, n > 1} so that ∆λ ∼ e−λ, and take aλ = λ−2e−λ so that

f(x) =
∑

λ∈Sp

aλ sin(λx) =
∞∑

n=2

sin(x lnn)
n ln2 n

.

Since
∑
|R−λ|<1|aλ ln

(
∆λ

)
| � λ−1, by (8) and our theorem we know that there exists a function φ (for

example, φ(λ) � ∆−1
λ = eλ) such that

∫ +∞
1 f(x) sin(Rx)dx/x tends to 0 as R → ∞ in Sφ. It is

interesting to check this claim when R runs over some particular sequence, for example, what happens
if we take R ∈ N? An answer to this question follows from known results about the transcendence
measure of logarithms of algebraic numbers; in particular, we use the following fact: there exists c > 0
such that

∀p, q, n ∈ N\{0}, |pq − lnn| > e−c(ln n) ln(q ln n) (9)

(for q = 1 this claim is due to Mahler, the generalization we consider here is an immediate consequence
of Theorem 9.1 of [5]). Let r : R+ → R+ be an arbitrary function monotonously decreasing to 0 and



satisfying r(x) ≥ x−1 lnx. Let

φ(λ) := ecλ2r(λ),

Sφ := {x : |x− λ| > φ−1(λ),∀λ ∈ Sp},

Sφ,r := {p/q ∈ Q : 1 ≤ q ≤ λ−1eλr(λ), where λ = λ(p/q) ∈ Sp and |pq − λ| = min
η∈Sp

|pq − η|}.

The inclusion Sφ,r ⊂ Sφ follows by (9) and since∑
|λ−R|<1

|aλ lnφ(λ)| �
∑

|λ−R|<1

r(λ)
eλ

� r(R− 1)
∑

|λ−R|<1

1
eλ
� r(R− 1) → 0 ,

the theorem gives

lim
R→+∞
R∈Sφ,r

∫ +∞

1
f(x) sin(Rx)

dx

x
= 0 . (10)

When r(x) = x−1 lnx we have Sφ,r = N, but for other choices of r, Sφ,r can be significantly larger than
N.
We note that f(x) = −=F (1 + ix) where F (s) :=

∑∞
n=2 n−s/ ln2 n, so that by (10) and Remark 3 we

conclude that
lim

R→+∞
R∈Sφ,r

∫ +∞

1
F (σ + ix) sin(Rx)

dx

x
= 0 (11)

when σ = 1. By similar arguments it is possibile to prove the validity of (11) for every σ ≥ 1. The
function F (s) has an analytical continuation to C\(−∞, 1] coming from the equality F ′′(s) + 1 = ζ(s)
where ζ(s) is the Riemann zeta function. It is probable that (11) holds whenever F (σ + ix) = o(x), in
particular, we conjecture that (11) holds whenever µF (σ) < 1, where µF (σ) := inf{a > 0 : F (σ+ ix) �a

xa, x > 1} is the Lindelöf function of F . It is known that the the Lindelöf function is a convex function
and it is simple to prove that µF (1) = 0, therefore (11) should be true also in some range σ ∈ (c, 1).
In particular, assuming LH (i.e., the Lindelöf hypothesis for ζ(s) stating µζ(σ) = 0 when σ ∈ [1/2, 1];
see [4]) we get µF (σ) ≤ 4(1−σ) when σ ∈ [1/2, 1], hence (11) should be correct at least when σ ∈ (3/4, 1).
Our inquires in this direction have been fruitless.
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