Optical coherence tomography (OCT) has dramatically changed the understanding and management of uveitis and other ocular conditions. Currently, OCT angiography (OCTA) combines structural information with the visualization of blood flow within the imaged area. The aim of this review is to present the basic principles of OCT and OCTA interpretation and to investigate the role of these imaging techniques in the diagnosis and management of uveitis. Common complications of intraocular inflammation such as macular oedema and inflammatory choroidal neovascularization are often diagnosed and followed with OCT/OCTA scans. However, uveitis specialists can obtain much more information from tomographic scans. This review provides a comprehensive description of typical OCT/OCTA findings characterizing different ocular structures in uveitis, proceeding from the cornea to the choroid. A careful interpretation of OCT/OCTA images can help in the differential diagnosis, the prediction of clinical outcomes, and the follow-up of patients with uveitis.

KEYWORDS
optical coherence tomography, optical coherence tomography angiography, uveitis

1 | INTRODUCTION

Optical coherence tomography (OCT) is an imaging technique that provides in vivo quasi-histological images of the ocular tissues with a resolution beyond that of any other non-invasive technology. Since the introduction of OCT into clinical practice two decades ago, it has dramatically changed the understanding and the management of several ocular conditions. Currently, the structural assessment of the ocular tissues obtained through OCT images can be combined with the visualization of the blood flow within the vessels in the imaged area. The combined structural and functional images are obtained by OCT angiography (OCTA), a recent evolution of OCT technology.

Inflammation is a response of the body to harmful stimuli. The inflammatory process promotes changes to the blood supply, the cellular components and the chemical environment of the involved area. These structural and functional modifications can result in transient and/or permanent changes to the tissues, both detectable with OCT and OCTA.

The aim of this review is to investigate the role of OCT and OCTA in the diagnosis and management of inflammatory ocular conditions. After a brief overview of the basic principles of these techniques, we will describe the main findings, characterizing OCT and OCTA images of the different ocular structures in uveitis, proceeding from the cornea to the choroid. Finally, we will focus on the use of OCT/OCTA in the objective quantification of intraocular inflammation and the possible future developments of these technologies.

2 | OCT/OCTA BASIC PRINCIPLES

There are several OCT technologies that vary in technical aspects, but all use a light beam to image the tissue of
interest and to collect structural information. Spectral domain OCT (SD-OCT) is currently the most commonly used OCT technique. These instruments generate a broadband light that is split into a reference arm and a sample or “exploring” arm. As the light of the exploring arm passes through the tissues it is modified by the interaction with the different structures it encounters. Part of it is reflected back towards the source, part is absorbed, and some is scattered. The OCT device then collects the altered light from the exploring arm and compares it with the pure signal coming from the reference arm. The signal interference between the two arms is used to generate an image where the brightness varies depending on the phase relationship between the two beams. Analysis of the different frequency components of the light allows SD-OCT to simultaneously collect reflectivity information at different depths of the explored tissue (Figure 1A).1

Enhanced depth imaging optical coherence tomography (EDI-OCT) is a modified acquisition procedure that allows SD-OCT devices to collect images with greater details of the deeper structures, such as the choroid and the sclera. Unfortunately, this results in a concurrent decrease in the ability to visualize tissues like the vitreous and the inner retina that are closer to the light source (Figure 1B).6 Swept source optical coherence tomography (SS-OCT) is the latest generation of structural imaging. This technology is characterized by a longer wavelength and a lower axial sensitivity decay, the combination of which bypasses most of the SD-OCT and EDI-OCT limitations. Thus, SS-OCT can perform comprehensive evaluations of both the deep and the superficial structures in the same scan (Figure 1C).7

OCTA is an evolution of the OCT technology and can detect blood flow within the vessels of the explored area with no need to inject any dye. OCTA technology is based on the repetition of multiple OCT scans on the same area and the detection of differences between these scans. Because the images are acquired at very short time intervals, it is assumed that no structural changes occur between them. Consequently, any element of change between consecutive scans is interpreted by the OCTA device as “movement” and hence coded as blood flow.2

OCT images are usually evaluated on B-scans along the sagittal plane, perpendicular to the surface of the scanned structure. These cuts allow visualization of the different layers of the explored tissue along the line where the scan is performed.4 In contrast, OCTA images are usually examined following a coronal plane, parallel to the surface of the tissue of interest. This different approach is more convenient to visualize the different vascular networks that normally follow a horizontal distribution (Figure 1D,E).2

3 | INTERPRETATION OF OCT IMAGES

Uveitis includes a wide group of inflammatory responses ranging from infectious entities to autoimmune conditions

![FIGURE 1](image-url)
that can target a specific ocular structure or involve the entire eye. The same entity can often have protean clinical presentations. In addition, different structures within the eye can be involved at the same time. This generates an overlap of OCT/OCTA findings that are often poorly described, hard to standardize, and apparently difficult to interpret. In such a complex scenario, the application of simple rules, based on how the OCT/OCTA images are formed, is fundamental to interpret and understand the nature of the findings.

As we previously mentioned, the OCT image is a graphic representation of the alterations that occur to the exploring light beam as it interacts with the investigated tissue. A strong reflection of the light will generate a brighter image, whereas the absorption/scattering of the OCT signal will result in a darker area on the scan.

The way a specific structure interacts with the OCT signal depends on several variables, the complete analysis of which goes beyond the purpose of this review. A simple rule to keep in mind is that pigments, proteins and lipids usually reflect the OCT signal, thus appearing bright on the scan (Figure 2A). By contrast, extracellular water and homogeneous structures are easily penetrated by the light and appear darker. Complex structures with multiple interfaces of different density such as the choroid tend to absorb and/or scatter the OCT signal.

A final important concept is that the OCT incident light undergoes more interactions as it penetrates deeper into the tissue. For this reason, the amount of light reaching a specific layer is a direct function of the quantity of light that has been reflected/absorbed/scattered by the overlying structures. For instance, a shadowing is usually generated by hyper-reflective structures (Figure 2A), whereas the increased transmission of the signal means that the OCT light has undergone less reflection/absorption/scattering. This is usually seen when homogeneous formations, such as granulomas, are imaged or when the ocular structures are thinner than usual due to atrophy (Figure 2B).

4 | INTERPRETATION OF OCTA IMAGES

OCTA images combine the structural information of a standard OCT scan with blood flow visualization. All the reflectivity rules listed above for the structural OCT can consequently be applied to OCTA images. In addition, moving elements are coded as white pixels on the OCTA scans to represent blood flow, and this makes the interpretation more challenging.

As mentioned above, OCTA images are usually examined following a plane parallel to the surface of the explored tissue. To create such images, the software performs an automatic segmentation of the B-scans following the reflectivity of the layers. It then separately shows the brightness information contained at specific depths. As a result, and different from traditional angiographic techniques, the images show single vascular networks contained within the explored tissue at different depths (Figure 3A,B). For this reason, while interpreting the images, it is mandatory to be aware of which

FIGURE 2 Basic interpretation of structural optical coherence tomography (OCT) image reflectivity. (A) Lipids, proteins, and pigment are highly reflective and appear bright on the OCT scan. Thus, the retinal pigment epithelium (RPE, black asterisk) and the hard exudates (black arrowheads) appear white. Highly reflective elements partially block signal penetration, inducing shadows on the underlying structures (white arrowheads). (B) In contrast, thinning of the retina or the absence of the RPE allow a higher penetration of the signal, inducing an increased transmission effect (white arrows) and better visualization of the deeper structures.
tissue layer is being shown and to double check to ascertain if the segmentation was correctly performed. OCTA detects the movement of erythrocytes within vessels in sequential images and then represent the changes between images as flow. However, as the moving elements affect the signal, so does the penetration of the incident light through the underlying structures, and the interaction with these structures changes over time. These changes can be wrongly interpreted by the software as movement occurring in the structures underlying the vessel. The result will be an artefact that projects the image of the vessel onto the deeper layers.

Finally, for technical reasons, the movement can only be detected if the velocity is within a certain range. Consequently, when the flow is either too fast or too slow, it will not be visualized, and the vascular network will appear as absent or not perfused.

5 OCT/OCTA IN INTRAOCULAR INFLAMMATION: GENERAL FINDINGS

Different types of uveitis often have specific OCT/OCTA findings according to the involved ocular tissues and the kind of inflammatory/infectious process that characterizes them. However, there are some transient or permanent changes to the physiology and anatomy of the eye that can occur independently from the underlying uveitic entity.

Increased permeability of the vessel walls is one of the key features of inflammation. This results in leakage of inflammatory proteins and migration of inflammatory cells from the intravascular space towards the inflamed area. In the eye, these changes are clinically represented by the presence of flare and inflammatory cells in the anterior chamber or in the vitreous cavity.

In uveitis, inflammatory cells floating in the anterior chamber or in the vitreous are commonly seen as hyper-reflective dots on OCT scans. Vitreous haze is also detectable on OCT images as an increased brightness of the vitreous cavity. Variations in the brightness can be used to monitor the inflammatory status of the eye (Figure 4A,B). The presence of dense vitritis or vitreous aggregates often impairs the collection of good quality OCT scans of the retina and the choroid by increasing the noise of the image and preventing the signal from reaching the posterior structures of the eye. Aqueous flare, in contrast, is not clearly visible on OCT images and can be evaluated only through specific algorithms of images post processing.

Blood flow increases during inflammation. This can be detected directly by OCTA and indirectly by OCT. In the iris, OCTA can detect dilation of vessels during acute iridocyclitis, whereas retinal microvascular changes are visible in acute uveitis. An increase of the choroidal thickness can also be seen on OCT scans in most cases of uveitis, including those mainly affecting the anterior segment. This is an indirect measurement of increased blood flow within the choroid induced by the inflammation and can be monitored to evaluate the inflammatory status of the eye over time (Figure 4C,D).

Inflammation of the optic nerve head is common in uveitis, and the consequent swelling of the disk can be easily assessed and monitored with OCT (Figure 4E,F). In addition, OCTA can detect an increase in vessel density in the disc area during acute inflammation. One of the most common complications of uveitis is cystoid macular oedema (CME). This collection of fluid in the interstitial space in the macular region is hard to evaluate.

FIGURE 3 Basic interpretation of optical coherence tomography angiography (OCTA) scans. (A) Structural OCT scan of a normal eye. Coloured bands indicate the different layers analysed by OCTA automatic segmentation. The different layers are presented in the bottom row. Orange: superficial vascular plexus; turquoise: deep vascular plexus; blue: avascular zone; yellow: choriocapillaris; red: choroid. (B) OCTA B-scan showing structural reflectivity information (grey scale) and coded flow data (yellow scale)
through traditional biomicroscopy, especially in case of media opacity. In contrast, structural OCT easily visualizes and quantifies CME in a non-invasive way and is considered the gold standard technique for the diagnosis and follow up of this condition (Figure 5A).18,19 Often CME is accompanied by a decrease in capillary density and complexity in the macular region on OCTA.13

Chronic inflammation can induce a reaction at the level of the vitreoretinal interface, resulting in the formation of an epiretinal membrane. This complication is commonly seen in recurrent uveitis and can easily be diagnosed and followed by OCT during its evolution (Figure 5B).4

Finally, OCT and OCTA are useful tools to detect and manage inflammatory choroidal neovascularization (iCNV) (Figure 5C,D).4,5 As OCTA utilizes no dye, it does not detect leakage due to alterations of the blood retinal barrier, as traditional angiography does.2 While the absence of leakage on OCTA images may be a limitation in the detection of inflammatory changes such as exudative vasculitis, it can be an advantage in the detection of iCNVs. In fact, both iCNVs and other inflammatory lesions may show leakage on fluorescein angiography, but OCTA can easily differentiate them by visualizing the neovascular network that characterizes iCNVs.5

6 | OCT/OCTA IN ANTERIOR UVEITIS

Anterior uveitis (AU) is defined as an ocular inflammatory condition in which the anterior chamber of the eye is the primary site of inflammation.20 The main finding in eyes diagnosed with AU is the presence of cells and flare in the anterior chamber. Anterior segment OCT (AS-OCT) can be used to directly visualize and quantify the inflammatory cells floating in the aqueous humour. The cellular elements appear on the scan as hyper-reflective dots against the dark background of the anterior chamber (Figure 6A).21 In contrast, aqueous flare is usually undetectable on OCT scans, and the images need post-processing to be indirectly graded.11
The deposition of inflammatory proteins on the corneal endothelium is responsible for the formation of keratic precipitates (KPs) that can have different sizes, shapes and distribution, depending on the underlying uveitic process. Recently, Kobayashi et al.\(^2\) successfully used AS-OCT to characterize KPs and follow their evolution over time in cytomegalovirus (CMV) endothelitis (Figure 6B).

OCT has also been reported as a useful tool in the evaluation of iris changes induced by the inflammatory process. Mahendradas et al.\(^3\) described the use of AS-OCT to monitor the response to treatment of an iris granuloma in a patient with leprosy. Independent groups reported a thinning of the iris assessed through OCT scans in patients with Fuchs uveitis.\(^4,5\) Finally, AS-OCT can be used to evaluate the presence of posterior synechia (Figure 6C) or peripheral anterior synechia in uveitic patients and help in assessing the risk to develop angle closure glaucoma.\(^6\)

In AU, the inflammatory process is mainly localized in the anterior chamber; nevertheless, recent evidence suggests that the choroidal blood flow may also be affected. Independent groups have reported that the thickness of the choroid, as measured by OCT, increases during the acute phases of AU.\(^7,8\) These changes disappeared when the inflammation was treated, suggesting that choroidal thickness assessment through OCT scans could be a useful tool in monitoring the response to therapy in these patients.\(^9\)

OCTA has limited applications compared to structural OCT in AU. Dilation of the iris vessels detectable with OCTA has been reported during the acute phases of AU, with a disappearance of the changes after treatment.\(^10\) However, the clinical relevance of these interesting findings needs further investigations.

7 OCT/OCTA IN SCLERAL/EPISCLERAL INFLAMMATION

Inflammation of the eye walls can be investigated with OCT. Shoughy et al.\(^11\) reported thickening of the sclera and the presence of hypo-reflective areas suggestive of scleral oedema on AS-OCT scans in eyes with scleritis. However, other authors reported the thickening to be visible with AS-OCT mostly in the episcleral layer in both scleritis and episcleritis.\(^12\) Similarly, another study found swelling of diffuse scleritis within the episclera rather than the scleral stroma.\(^13\) Regardless of the location of the swelling, all of the authors agree that AS-OCT can be used to monitor the tissue changes over time and help in assessing the response to treatment.

There is limited literature on the use of OCTA in the assessment of the vasculature in eye walls. A recent paper from Akagi et al.\(^14\) reported the possibility of using OCTA to investigate the vasculature of the normal conjunctiva and anterior sclera. Their promising results suggest possible future applications of this technology in the evaluation of patients with scleritis and episcleritis.

8 OCT/OCTA OF THE VITREOUS IN UVEITIS

Standard SD-OCT scans of the posterior segment allow visualization of the vitreo-retinal interface, the posterior hyaloid,
and the posterior part of the vitreous body. These structures can be seen in better detail by adjusting the device’s focus anterior to the retina, a technique described by Pang et al and termed “enhanced vitreous imaging.” SS-OCT also allows imaging of the vitreous with greater details compared to SD-OCT, making structures like the premacular bursa or the Martegnani space visible on the scans.

The ease with which vitreous haze and cells are seen by OCT in uveitic eyes allows careful assessment of the inflammatory status of intermediate and posterior uveitis and monitoring of the response to treatment. A generalized increased brightness accompanied by some hyper-reflective dots are specific signs of vitreous inflammation visible on OCT of uveitic eyes.

Some diseases tend to develop unique vitritis patterns for which the OCT findings have been characterized. Invernizzi et al reported that posterior segment OCT scans of CMV retinitis patients with vitritis showed a “nebulous pattern” composed of a dusty background of increased reflectivity studded with hyper-reflective dots. In some patients this pattern was accompanied by focal areas of increased reflectivity shaped as “volcanic eruptions” rising from the points of contact between the vitreous and the necrotizing retina (Figure 7A). Hyper-reflective oval deposits within the vitreo-retinal interface or along the detached posterior hyaloid have been reported during the active phase of toxoplasmic retinochoroiditis (Figure 7B). These deposits migrated within the retina and gradually disappeared as the infection was treated.

Finally, in patients with endogenous candida endophthalmitis, fungal aggregates lying on the retinal surface or infiltrating the vitreous appeared on OCT as round-shaped hyper-reflective lesions with a homogenous internal pattern (Figure 7C). These peculiar lesions almost completely obscured the underlying retinal layers, and thus resembled a white cloud with an underlying shower (rain-cloud sign).

OCTA has limited applications in the vitreous imaging because there is no vascular structure at this level. However, OCTA can be useful in studying neovessels growing in response to an inflammatory stimulus in the preretinal space. Such vessels can in fact use the vitreous as a scaffold (Figure 7D,E). Inflammation of the vitreous is the main finding in intermediate uveitis. This is often accompanied by inflammatory changes affecting the retinal vasculature. Reduced vascular density and complexity in the retinal superficial and deep layers, along with a more heterogeneous flow signal in the choriocapillaris, have been reported on OCTA in intermediate uveitis. The authors suggested that these parameters could help in monitoring the disease and the response to treatment.

OCTA OF THE RETINA IN UVEITIS

The retina is a complex structure, with a proper vasculature divided among multiple layers. Uveitis can induce both functional and structural changes to the retina and its vessels during the acute and chronic stages of the inflammatory process. OCT and OCTA can provide useful information to detect, characterize, and monitor such changes and thereby better manage the disease.

Retinal vasculitis can be either exudative, as when the vessels show a breakdown of the blood-retinal barrier (BRB), or occlusive, as when the inflammatory process prevents normal blood flow within the lumen. Exudative vasculitis is usually evaluated by fundus fluorescein angiography (FFA) because it allows visualization of dye leakage through the impaired BRB. Additionally, independent groups have reported that a thickening of the perivascular structures can be visualized in exudative vasculitis and monitored with structural OCT scans in patients with birdshot chorioretinopathy. Further studies are needed to establish if these findings can be observed in other uveitic entities.

Occlusive vasculitis results in retina non-perfusion, hypoxia and cells death. Structural OCT findings vary according to the stage of the inflammatory process. Acute infarcts in
the retinal nerve fibre layer, clinically visible as cotton wool spots, appear as areas of increased thickness and reflectivity at the level of the inner retinal layers. A diffuse thickening, disruption of the retinal architecture, and increased reflectivity is seen in cases of retinal ischaemia. These changes turn into thinning or disappearance of the affected retinal layers during the chronic stage of the disease. Because OCTA is more sensitive than FFA in the imaging of ischaemic changes, it allows careful visualization and quantitation of retinal hypoperfusion in occlusive vasculitis (Figure 8A). Decreased capillary density and complexity in both the superficial and deep vascular plexuses have been reported in the parafoveal area in different kinds of uveitis.

Both infectious and non-infectious uveitis can be characterized by retinitis and consequent retinal necrosis. Structural OCT enables determination of which retinal layers are involved and helps in the differential diagnosis. Full thickness increases in reflectivity and retinal thickening, along with disruption of all of the retinal layers, are commonly seen in acute toxoplasmic retinochoroiditis (Figure 8B), viral retinitis (Figure 8C) and Behçet posterior uveitis. Specific patterns of findings can help to differentiate among the different entities. Patients with the same disease can also show different OCT alterations within the retinal layers, and these can help in predicting the outcomes and managing the disease. For instance, the identification of large empty spaces in the outer nuclear layer in eyes with CMV retinitis has been correlated with subsequent retinal detachment.

OCTA findings in areas of retinitis have been reported in both infectious and non-infectious uveitis. The images usually allow visualization of disruption or absence of the normal capillary plexuses in the affected areas (Figure 8A). OCTA was used to detect a neovascular network within the infected focus in a case of bartonella and the presence of a chorioretinal anastomosis following the regression of a retinal lesion in a patient with endogenous candida endophthalmitis.

10 | OCT/OCTA OF THE OUTER RETINA, RETINAL PIGMENT EPITHELIUM AND CHORIOCAPILLARIS IN UVEITIS

The integrity of the outer retina evaluated with OCT has been positively associated with visual function in several ocular conditions, including uveitis. Photoreceptors can be directly affected by the inflammatory process or suffer from a metabolic insult derived from a dysfunctional retinal pigment epithelium (RPE) or choriocapillaris. The involvement of the outer retina in the inflammatory process is usually
seen on OCT as increased reflectivity and a disruption of the outer layers.

Several uveitic conditions such as placoid syphilitic chorioretinopathy, multiple evanescent white dot syndrome (MEWDS), acute posterior multifocal placoid pigment epitheliopathy (APMPPE), multifocal choroiditis (MFC), birdshot chorioretinopathy (BC), Vogt-Koyanagi-Harada (VKH), serpiginous choroidopathy (SC) and serpiginoid tuberculosis (STB) can target the photoreceptors, the RPE, or the surrounding structures and show unique findings on OCT and OCTA.

In patients with placoid syphilitic chorioretinopathy, disruption of the inner segment/outer segment band (ellipsoid zone according to the currently accepted nomenclature)\(^5\) and nodular thickening of the RPE with loss of the linear outer segment/RPE junction (interdigitation zone according to the currently accepted nomenclature)\(^5\) are common findings on OCT scans (Figure 9A).\(^5\) Subretinal fluid is also frequently detected. In most cases, these alterations disappear with treatment and good vision recovery. A permanent loss of function is seen in cases of persistent photoreceptors damage.\(^5\)

In acute MEWDS lesions, focal disruption of the junction between the RPE and the photoreceptor outer segments, along with hyper-reflectivity of the outer nuclear layer, occurs (Figure 9B). These changes are not associated with any OCTA alterations at the level of the choriocapillaris and disappear with no need for treatment within weeks.\(^5\)

In patients with BC, acute choroidal lesions are composed of infiltrates of epithelioid cells, and therefore they do not show alterations of the choriocapillaris flow on OCTA.\(^5\) However, if not promptly treated, these lesions evolve to atrophy of the stroma and the overlying choriocapillaris, inducing blood flow impairment that is detectable on OCTA.\(^5\) Choriocapillaris hypo-perfusion is often accompanied by disruption and atrophy of the overlying RPE and outer retinal layers.\(^5\)

Eyes with MFC typically have round-shaped hyper-reflective lesions that break through the RPE and extend into the outer retinal layers. The interruption of the RPE allows more OCT signal to penetrate the choroid, which therefore appears hyper-reflective underneath the lesion (Figure 9C).\(^5\) OCTA can help in distinguishing these inflammatory foci from CNVs that commonly complicate MFC. In fact, MFC lesions do not show any internal flow on OCTA, in contrast to CNV where blood flow is clearly visible within the neovascular network.\(^5\)

Different mechanisms, including RPE dysfunction, choroidal outflow impairment, breakdown of the outer BRB, and leakage from CNVs can lead to the accumulation of
fluid between the RPE and the retina. Subretinal fluid can be easily visualized and monitored with structural OCT, but usually it is not suggestive of a specific aetiology. However, the presence of hyper-reflective septa and the consequent formation of pockets of fluid within the subretinal space is strongly suggestive for acute VKH disease (Figure 9D).

APMPPE and SC are characterized by choriocapillaris hypo-perfusion, demonstrated by indocyanine green angiography (ICGA). These alterations are visible on structural OCT as hypo-reflective focal thickenings and loss of the physiological hyper-reflective dots at the level of the choriocapillaris (Figure 9E,F). Overlying retinal layers may appear normal (Figure 9F) with a consequent good prognosis. Alternatively, the layers demonstrate hyper-reflective changes and disruption (Figure 9E) and undergo atrophy despite treatment. Similar findings have been reported in STB and VKH, where OCTA demonstrated discrete areas of diminished or absent flow suggestive of choriocapillaris hypo-perfusion (Figure 9G).

11 OCT/OCTA OF THE CHOROID IN UVEITIS

Structural OCT shows that inflammation within the eye is characterized by choroidal thickening, which is due to increased blood flow during the acute stage of the inflammatory process. Variations in choroidal thickness can be

FIGURE 9 Outer retina and choriocapillaris findings on optical coherence tomography (OCT) and OCT angiography (OCTA) in patients with uveitis. (A) Diffuse disruption of the outer retinal layers in a patient with placoid syphilitic chorioretinopathy. (B) Focal disruption and increased reflectivity of the outer retinal layers in multiple evanescent white dot syndrome. (C) Typical outer retinal hyper-reflective lesions breaking through the retinal pigment epithelium (white arrowheads), inducing an increased transmission effect (black arrowheads) in a patient with multifocal choroiditis. (D) Multiple pockets of subretinal fluid in a patient with active Vogt-Koyanagi-Harada disease. Note the typical hyper-reflective content of the fluid (white asterisk). (E, F) Focal thickening of the choriocapillaris (separated from the rest of the choroid with a white dashed line) with (E) and without (F) increased outer retinal reflectivity in a patient with acute posterior multifocal placoid pigment epitheliopathy (APMPPE). The lesion in E (black asterisk) will likely undergo atrophy while that in F will probably disappear without scars. (G) Fundus photography, indocyanine green angiography (ICGA), and OCTA in a patient with acute APMPPE. The hypo-perfusion of the choriocapillaris typical of this condition is clearly visible on OCTA with an almost perfect overlap with that detected by ICGA.
consequently used to monitor the response to treatment or recurrences. In addition, some features of the choroid visible on OCT scans can suggest specific aetiologies.

The presence of a hypo-reflective round-shaped area with homogeneous content in the choroidal stroma and which generates a cone of increased transmission of the OCT signal through the underlying structures suggests the presence of a choroidal granuloma (Figure 10A). These lesions are typical of certain types of granulomatous uveitis such as intraocular tuberculosis, sarcoidosis and VKH and can be followed over time on EDI-OCT or SS-OCT scans. In fact, OCT was reported to be more sensitive than ICGA in detecting early changes of these lesions in response to treatment. Large choroidal granulomas can compress the surrounding vasculature, impairing the choroidal blood flow and appearing as areas of flow void on OCTA.

VKH disease is characterized by an inflammatory reaction against melanocytes, and the choroid is the primary site of inflammation. The structural manifestation appears as a massive choroidal thickening as typically seen on EDI-OCT (Figure 10B). In contrast, a focal thickening of the choroid is present in toxoplasmic retinochoroiditis (Figure 10C). In this entity, the choroidal thickness increases mainly in the areas where the parasites are directly attacking the choroidal and the retinal tissue. The most common finding is focal choroidal thickening with disruption of the physiological choroidal architecture in association with an overlying area of full thickness retinitis. Finally, a selective enlargement of the Sattler's layer may indicate a diagnosis of sarcoid-related uveitis. This differentiation may be helpful in distinguishing patients with this disease from other types of granulomatous uveitis.

12 | OCT/OCTA OF INFLAMMATORY CHOROIDAL NEOVASCULARIZATION

Uveitis can be complicated by the development of iCNVs, mostly affecting the macular region. The presence of a choroidal neovascularization, even when promptly treated, can lead to severe irreversible vision loss. The uveitic forms more commonly associated with this complication are punctate inner choridopathy, MFC, APMPPE, BC, MEWDS and acute zonal occult outer retinopathy. However, virtually any inflammatory ocular disease can develop an iCNV.

Structural OCT is used as a routine imaging modality to diagnose iCNVs and to assess the activity of the neovascularization. In addition, OCTA findings can provide critical diagnostic differentiation between iCNVs and other inflammatory non-neovascular lesions. Historically, the identification of iCNVs and inflammatory non-neovascular lesions was based on the use of invasive dye-based procedures such as fundus fluorescein angiography. However, dye leakage can occur from both iCNVs and non-neovascular inflammatory foci (Figure 11A-C). OCTA can clearly demonstrate the presence of the neovascular network forming the iCNV (Figure 11D), a feature that is not present in other types of lesions.

The majority of iCNVs are located above the RPE in the subretinal space, similar to the so-called type 2 or classic lesions of exudative age-related macular degeneration. On structural OCT scans, an iCNV appears as an accumulation of hyper-reflective material seated between the disrupted RPE and the outer retinal layers, rarely accompanied by a sub-RPE component (Figure 12A). In addition, active
lesions exhibit signs of exudation such as subretinal fluid, subretinal hyper-reflective material, retinal thickening, intraretinal cysts, and shadowing on the underlying structures. In contrast, inactive iCNVs appear as hyper-reflective lesions with clearly marked edges and the absence of sub- or intraretinal fluid.70

A peculiar OCT feature that can help in the differential diagnosis between iCNVs and CNVs related to other causes is the so-called “pitchfork sign” described in 2013 by Hoang et al.73 This consists of multiple, hyper-reflective, vertical projections that extend from the iCNV area into the outer retinal space.

In most OCTA scans, iCNV appears as a well-circumscribed neovascular network, typically located at the level of the avascular zone (outer retina RPE).58,69,71 Due to alterations in the normal anatomy of the retinal layers induced by the exudative process, the use of automated segmentation software can fail.74 Manual adjustments of the reference segmentation line and plane are often necessary to accurately define the neovascular network and differentiate it from superficial retinal vessels and underlying choroidal structures. A good approach while reviewing OCTA scans is to evaluate the flow both on the B-scan and the coronal plane reconstruction (Figure 12B-F). As the B-scans do not need any segmentation to be interpreted, the evaluation of the flow on these images may facilitate the lesion detection and avoid misdiagnosis due to projection artefacts.5

While multimodal imaging remains the gold standard approach to comprehensively investigate uveitic patients, combined OCT and OCTA are essential techniques for the detection and management of iCNVs. OCT allows a careful evaluation of the CNV activity and OCTA is extremely helpful in differentiating iCNVs from other non-neovascular inflammatory lesions.70

13 | FUTURE DIRECTIONS: OCT/OCTA FOR OBJECTIVE GRADING OF INTRAOCULAR INFLAMMATION

One of the greatest unmet needs in uveitis management is the objective evaluation of the intraocular inflammation. Clinical grading scales developed by the Standardized Uveitis Nomenclature group decades ago are still the gold standard techniques to assess and grade anterior chamber cells, flare and vitreous haze.20 These reference scales are of great
value and have been used for the management of uveitic eyes for the last 20 years. However, they suffer from some major limitations, including low inter-operator agreement, poor repeatability, and the lack of a continuous scale. Recently, new techniques based on the analysis of OCT images have been proposed to overcome the limitations of the clinical scales and to accurately grade intraocular inflammation. Sections of the anterior chamber obtained with AS-OCT have been used to count the number of cells and more recently evaluate aqueous flare. Vitreous haze has been reliably measured on posterior segment OCT scans. In addition, new parameters such as the choroidal vascularity index (the ratio between vessel lumina and the total choroidal area) or the vessel density measured by OCTA have been proposed as adjunctive tools to objectively evaluate the inflammatory status of uveitic eyes.

The near future will likely see a paradigm shift in the grading of intraocular inflammation with objective measurements being performed in a fully, or at least partially, automated way on digital images such as OCT scans. This will allow better management of patients in the everyday clinical practice and a higher accuracy in the evaluation of new drug efficacy in clinical trials.

13.1 Conclusions

OCT has dramatically changed the management of several ocular diseases, including uveitis. Currently, most of the common complications of intraocular inflammation such as macular oedema, epiretinal membranes and iCNVs are routinely diagnosed and followed by OCT/OCTA scans. However, uveitis specialists can obtain much more useful information from tomographic scans, as highlighted in this review. A simple OCT scan through an inflammatory lesion can tell the depth of the alteration, which ocular structures are involved, and with what pattern of changes, providing help in the differential diagnosis, the prediction of clinical outcomes and the patient's follow up. With the development of new automated techniques to objectively grade intraocular inflammation on OCT scans, the use of this imaging

![FIGURE 12](image-url)
technique will further increase over time and become even more essential in the management of uveitis.

CONFLICTS OF INTEREST
None declared.

ORCID
Alessandro Invernizzi https://orcid.org/0000-0003-3400-1987

REFERENCES

