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Abstract 

Background: Despite the growing knowledge and the advances in the prevention 

and treatment of cardiovascular disease (CVD), this pathology is still the leading 

cause of morbidity and mortality worldwide. Of note, environmental factors such as 

stress, depression, and anxiety, were recently included in the category of risk factors 

alongside the canonical ones since their ability to modulate the onset and 

progression of CVD and to influence the response to therapies. In this context, the 

new field of behavioral cardiology aims to reach a deeper understanding of the 

pathophysiology of behavior-related CVDs and the development of effective 

interventions both to modify high-risk lifestyles and behaviors and to reduce 

psychosocial risk factors for patients. Among the non-pharmacological treatments, 

growing amount of literature shows that physical exercise (PE) takes hold as a 

clinical management strategy for its positive effect on both psychological 

pathologies and CVD. Interestingly, the family of proteins named neurotrophins was 

found to be involved in the patho-physiology of both cardiovascular and nervous 

system. Among them, the human BDNF Val66Met polymorphism is known to be 

associated to neuro-psychiatric disorders, anxiety and to higher susceptibility to 

stress, and recently to the individual predisposition to arterial thrombosis related to 

acute myocardial infarction (AMI) and to eating disorders and obesity. 

Aim of the study: The aim of this study was to highlight the impact of the interplay 

between BDNF Met allele and positive (physical exercise) and negative (chronic 

stress) environmental factors on the risk of arterial thrombosis. 

Results: Taking advantage of a knock-in mouse carrying the human BDNF 

Val66Met polymorphism that represents a good model of the pathologies observed 

in human, we showed that spontaneous physical exercise is able to induce positive 

morphological changes and reduce the inflammatory profile of the adipose tissue in 

homozygous BDNF Met/Met mice. These beneficial effects might be at the bases of 

the observed reduction in the pro-thrombotic phenotype detected in this animal 

model. In addition, our in vitro data well support the role of Pro-BDNFMet in 

modulating adipogenesis in line with what observed in the epididymal white adipose 

tissue of BDNF Met/Met mice.  



 

   

In addition, sub-chronic stress is sufficient to unveil the pro-thrombotic phenotype in 

heterozygous BDNF Val/Met mice affecting the number and functionality of blood 

circulating cells, and the expression of key thrombotic molecules in arterial tissue. 

Conclusions: This study supports the important interaction between both positive 

and negative environmental factors and Met allele of the BDNF gene in relation to 

the modulation of arterial thrombosis. Human studies will be crucial to confirm this 

possible gene-environment interaction and to assess the necessity of taking this 

interaction into account to deploy better strategies of clinical management of the 

arterial thrombosis risk in patients carrying this polymorphism. 

 



 

 

Riassunto 

Background: Nonostante il progresso nella comprensione dei meccanismi cellulari 

e molecolari e gli avanzamenti nel campo della prevenzione e dei trattamenti delle 

malattie cardiovascolari, queste rimangono ancora la principale causa di mortalità e 

morbidità a livello mondiale. È interessante notare come fattori di rischio ambientale, 

quali stress, depressione e ansia, siano stati recentemente inclusi accanto ai 

classici fattori di rischio tradizionali data la loro capacità di modulare l’insorgere e la 

progressione delle malattie cardiovascolari ed influenzare la risposta alle terapie. In 

questo contesto si inserisce il nuovo settore della cardiologia comportamentale il cui 

obiettivo è quello di arrivare a comprendere e approfondire la conoscenza della 

patofisiologia alla base delle malattie cardiovascolari legate alla sfera 

comportamentale nonché sviluppare strategie di intervento efficaci al fine di 

modificare gli stili di vita e i comportamenti ad alto rischio, riducendone così l’impatto 

sui pazienti. La letteratura degli ultimi anni ha dimostrato come l’esercizio fisico 

risulti una valida strategia di trattamento a livello clinico risultando efficace sia per il 

trattamento delle patologie psicosociali che di quelle cardiovascolari. In particolare, 

è stato osservato come la famiglia di proteine dette neurotrofine sia coinvolta nei 

processi patofisiologici a carico sia del sistema nervoso che di quello 

cardiocircolatorio. Tra le neurotrofine, il brain-derived neurotrophic factor (BDNF), 

ed in particolare il polimorfismo a singolo nucleotide denominato BDNFVal66Met, si 

sa essere associato a malattie neuropsichiatriche, ansia, maggiore suscettibilità allo 

stress e recentemente ad una maggior predisposizione alla trombosi arteriosa 

associata a infarto acuto del miocardio, nonché con disturbi del comportamento 

alimentare e obesità. 

Obiettivo dello studio: L’obiettivo del presente studio è stato quello di mettere in 

evidenza l’impatto che l’interazione tra la presenza dell’allele Met e fattori ambientali 

positivi, come l’esercizio fisico, o negativi, come lo stress cronico, può avere rispetto 

al rischio di sviluppare trombosi arteriosa. 

Risultati: Il modello murino knock-in per il polimorfismo umano BDNFVal66Met 

rappresenta un buon modello per lo studio delle patologie che questa mutazione 

genera nell’uomo.  

Topi omozigoti per l’allele Met (BDNFMet/Met) sono stati da noi utilizzato per mostrare 

come l’esercizio fisico spontaneo sia in grado di indurre cambiamenti positivi nella 



 
 

   

morfologia del tessuto adiposo e ridurre l’infiammazione locale. Questi effetti positivi 

potrebbero essere alla base della riduzione del fenotipo pro-trombotico osservato in 

questo modello murino. Inoltre, dati in vitro sostengono il ruolo del Pro-BDNFMet 

nella capacità di modulare l’adipogenesi in linea con quanto osservato nel tessuto 

adiposo epididimale dei topi BDNFMet/Met. 

In topi eterozigoti per l’allele Met (BDNFVal/Met), lo stress sub-cronico è risultato 

sufficiente per smascherare il fenotipo pro-trombotico portando all’innalzamento del 

numero e della funzionalità delle cellule del sangue e dell’espressione di fattori 

chiave per il processo trombotico a livello arterioso. 

Conclusioni: Questo studio dimostra un’importante interazione tra fattori 

ambientali positivi o negativi e l’allele Met del BDNF in relazione alla modulazione 

della trombosi arteriosa. Studi sull’uomo saranno necessari al fine di confermare 

questa interazione gene-ambiente e comprovare la possibilità di prendere in 

considerazione l’interazione al fine di mettere in atto migliori strategie di trattamento 

clinico del rischio trombotico in pazienti recanti il polimorfismo in oggetto.  
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1 Risk factors in cardiovascular diseases and thrombosis 

Cardiovascular diseases (CVDs) are the general and broad term by which a 

heterogeneous group of disorders involving the heart and the blood vessels is 

identified. This group of pathologies comprehends congenital and acquired 

cardiomyopathies, arrhythmias, myocardial infarction, coronaropathy, anginas, 

hypertension, peripheral arterial and vascular diseases, stroke and also chronic 

kidney disease and tumors.  

Despite the introduction of new regimens of pharmacological interventions and the 

continuous progression in the development of implant surgery, surgery techniques 

and advanced technological devices for diagnosis, CVDs still represent the first 

cause of morbidity and mortality worldwide. In 2016 an estimated 17.9 million people 

died from CVDs, accounting for 31% of all global deathsa and over three-quarters 

of these took place in low- and middle-income countries (WHO 2017, Organization 

2019). The Framingham Heart Study represented a milestone in the identification of 

independent major risk factors for CVDs (Mahmood et al. 2014). After this, a growing 

amount of literature was able to recognize over 300 risk factors that were afterward 

categorized into two main groups: 

-modifiable factors: like high blood glucose and diabetes mellitus, obesity, high 

blood cholesterol, high blood pressure. In this category are also found the so-called 

behavioural risk factors such as smoking habit and alcohol consumption. 

-non-modifiable factors: like family history, genetic factors, ethnic group, age, and 

sex.  

It was believed that acting directly or indirectly on modifiable risk factors could 

represent a winning strategy to reduce the impact of CVDs on population but results 

were far from what estimated. The following studies tried to comprehend this 

controversial founding that the risk factors identified so far were not sufficient to 

reach an adequate accuracy for the comprehension of the causes, and 

subsequently for the treatment, of CVDs leading to hypothesize that something was 

still missing (Brotman et al. 2005). It was reported that conventional risk factors for 

CVDs are predictors of the majority, but not the totality, of morbidity and mortality, 

raising the awareness on the need to identify new dynamics involved in the onset 

and progression of these pathologies (Stamler, Wentworth, and Neaton 1986). 

Starting from this, researchers were able to identify new, non-conventional risk 

factors that were named “emerging”. Among them, gain or loss of function related 
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to mutations and single nucleotide polymorphisms (SNPs) of genes known to be 

involved in cholesterol and fatty acid metabolism such as CEPT (Ference et al. 

2017), LDL and HDL (Mega et al. 2015) and PCSK9 (El Khoury et al. 2017) were 

identified. These studies were subsequently confirmed by Genome-wide 

association studies (GWAS) and opened the way to new therapeutically approaches 

(Kessler, Vilne, and Schunkert 2016). At the same time, the measurement of carotid 

intima-media thickness and blood concentrations of C-reactive protein, 

myeloperoxidase and F2-isoprostane, vitamin D and apolipoprotein B and 

lipoprotein(a) were correlated to the presence and the evolution through time of 

CVDs (Gupta et al. 2013). Interestingly, some researchers suggested that social, 

economic and cultural changes occurring in the last two decades might account for 

the major incidence of CVDs (Havranek et al. 2015). In particular, it was shown that, 

along with the increase in CVDs, there was also a growing trend in the diagnosis of 

psychological and psychosocial disorders (Cohen and Janicki-Deverts 2012, Brody 

2018). Starting from this evidence, different research groups focused their attention 

on the possible relationship between stress or depression and the development of 

CVDs, showing. a causal relationship between these two groups of pathologies 

(Strike and Steptoe 2004, Steptoe and Kivimäki 2012, Jiang, Krishnan, and 

O'Connor 2002, Cohen, Edmondson, and Kronish 2015). Interestingly, both stress 

and depression contribute directly to CVD disease via different mechanisms 

inducing endothelial dysfunction, myocardial ischemia, plaque rupture, arrhythmias 

and thrombosis (Bairey Merz et al. 2002, Huffman et al. 2013). Moreover, chronic 

stress is reported to have a direct causative role in the onset of major depression 

(Yang et al. 2015) and CVDs (Joynt, Whellan, and O'Connor 2003).  

 

1.1 Key regulators of thrombosis 

Haemostasis and thrombosis are two opposite physiological processes cooperating 

in a delicate equilibrium to: 

-keep the blood in a fluid state 

-prevent abnormal and uncontrolled haemorrhage  

-maintain vascular integrity through the correct timing of formation and lysis of blood 

clots.  

Different cells participate in the balance of these processes such as platelets, red 

and white blood cells, and endothelial cells, interacting with different proteins that 
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behave as thrombotic and anti-thrombotic factors. However, in pathological 

conditions, this delicate balance is disrupted leading to opposite conditions 

characterized by excessive bleeding (as happens in hemophilia, anemia, liver 

cirrhosis, leukemia, and vitamin K deficiency) or formation of big and stable thrombi 

that lead to vessel occlusion. In this case, thrombus formation is the triggering event 

of several vascular diseases such as myocardial infarction (MI), cerebrovascular 

thrombosis (often referred to as stroke or cerebral ictus) and venous 

thromboembolism (VTE). Even if both characterized by the formation of a blood clot, 

venous and arterial thrombosis are two highly distinct pathological conditions. 

Venous thromboembolism (VTE) is the general term to indicate in a single word both 

deep-vein thrombosis (DVT) and pulmonary embolism (PE). This condition is 

prevalent in large and deep veins of the legs. The clots forming in this condition are 

referred to as red thrombi since they are primarily composed of red blood cells and 

fibrin. In particular, they form due to defects of the proteins involved in the 

coagulation and fibrinolysis cascade or secondary hypercoagulable states, involving 

abnormalities of blood vessels and blood flow as happens in cancer, obesity or after 

major surgery (Cushman 2007, Urbach et al. 2003).  

Arterial thrombosis is characterized by the formation of clots called in this case white 

thrombi. Arterial thrombi are platelet-rich and their formation reflects vessel wall 

defects and its consequence (Freedman 2005). For example, the primary cause of 

arterial thrombosis is either instability or rupture of an atherosclerotic plaque 

resulting in localized clot formation and blockage of blood flow with subsequent MI 

or stroke. Hypertension, hyperlipidemia, smoke habit and diabetes mellitus are well-

known and characterized risk factors for arterial thrombosis (Owens and Mackman 

2010). During the onset and progression of these pathological conditions, a series 

of interacting processes involving vascular wall, platelets, leukocytes, and 

coagulation proteins take place. Haemostasis is driven primarily by the coagulation 

system with the expression of tissue factor and besides that by platelet activation, 

contributing to the haemostatic plug formation and the reinforcement of the 

coagulation system (Versteeg et al. 2013). 

 

1.1.1 Role of platelets and vessel wall  

Platelets (PLTs) are the smallest cells in the human body, with a diameter of 2-4µm 

that are produced daily by fragmentation of their progenitors, the megakaryocytes. 

For their origin, platelets lack the nucleus and genomic DNA (Italiano and 
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Shivdasani 2003) but still have mRNA and all the transcription machinery necessary 

for the translation process to synthesize proteins (Nieswandt, Varga-Szabo, and 

Elvers 2009). Since their first observation, it was understood that PLTs have an 

essential role in the thrombotic process and nowadays their importance is well 

established also in inflammation, immunity, atherosclerosis (Nording, Seizer, and 

Langer 2015) and mental-psychiatric disorders (Ehrlich and Humpel 2012). 

Platelets contribute to the thrombotic process through their ability to adhere to the 

damaged vessel wall thus becoming in this way activated and able to secrete 

several components and to aggregate. Primary hemostasis starts with discoid PLTS 

adhering to the sub-endothelial matrix via the interaction between specific adhesive 

glycoproteins (GPs) on their surface and extracellular matrix (ECM) proteins. 

In particular, the most important interaction between platelets and ECM proteins is 

mediated by the multimeric plasma protein von Willebrand factor (vWF). vWF 

associated with both the major matrix protein collagen, the substrate of platelet 

adhesion predominantly under high shear, and with the GP Ib/IX/V complex 

expressed on platelets. Among the collagen types expressed in the ECM, vWF has 

a major affinity for type I and III. Circulating vWF has a structure that prevents its 

interaction with GP complex located on platelets surface; however, after collagen 

binding, it undergoes a shape change exposing different sites that are recognized 

by the GP Ib/IX/V complex, thus promoting platelets adhesion to ECM. 

GPIba is the first one interacting with vWF and it is responsible for platelets 

immobilization to the lesion site; after this, other GPs take part in the activation and 

stabilization processes (Savage, Almus-Jacobs, and Ruggeri 1998). It was showed 

that GP Ib/IX/V complex, after mediating the interaction with vWF, also binds to 

other adhesive proteins such as collagen, thrombospondin-1, α-thrombin, and 

coagulation factors (Rivera et al. 2009). Despite the fundamental role of collagen-

vWF-GPIb/IX/V in the platelet adhesion process, many other interactions play a 

crucial role in platelet immobilization and activation in the lesion site. Also, integrin 

α2β1 (GPIa/IIa) is able to bind collagen and this process represents one of the first 

steps of PLTS adhesion, even if it is not understood if GPIa/IIa alone is able to drive 

this process (Munnix et al. 2008). Other GPs such as αvβ3, integrin α5β1, and 

integrin α6β1, even if not highly expressed on platelets surface, contribute to these 

processes, binding other adhesion proteins including fibronectin,  vitronectin, 

laminin and Thrombospondin-1 (Shattil and Newman 2004).   Although the great 
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amount of fibronectin is detected in plasma, megakaryocytes, and α-granules of 

platelets (Maurer, Tomasini-Johansson, and Mosher 2010), its role in thrombus 

formation and stability is limited (Maurer, Tomasini-Johansson, and Mosher 2010, 

Ni et al. 2003). Similarly, it is still unclear the role of plasma and endothelial 

extracellular matrix (ECM) vitronectin during platelet activation (Preissner and 

Reuning 2011). However, it is well known that vitronectin is indirectly involved in the 

coagulation stabilizing plasminogen activator inhibitor-1 (PAI-1) and then reducing 

the clot lysis (Zhou et al. 2003). Laminin, synthesized by endothelial cells, is present 

in the ECM and in the basement membrane, and it is exposed after mild vascular 

injury (Hamill et al. 2009), supporting PLTs adhesion to the subendothelium. Finally, 

Thrombospondin-1 is released from α-granules of platelets and binds to CD36, 

sustaining platelet activation (Jurk et al. 2003).  

These protein-protein interactions induce activation of PLTs promoting 

morphological changes characterized by shape change with the protrusion of 

plasma membrane pseudopodia originating from changes in the cytoskeleton (Fox 

1993). During these events, the granules present in the PLTs fuse with the 

membrane releasing their content by exocytosis. Among the released factors 

adenosine diphosphate (ADP) and serotonin, named secondary agonists, have the 

ability to potentiate the stimulation of other platelets, which are attracted to the lesion 

site. ADP is an amplifier of platelet activation and two of its receptors can be found 

on their surface (Gachet 2001). The P2Y1-receptor is involved in Ca2+ mobilization 

in the platelet favouring shape change and the transient aggregation (Fabre et al. 

1999) while the P2Y12-receptor potentiates platelet secretion activity and it is 

involved in sustained irreversible aggregation (Dorsam and Kunapuli 2004). 

Serotonin acts as an amplifier of platelet response acting as a mediator for the 

retention of procoagulant proteins like fibrinogen and thrombospondin on the platelet 

surface (Dale et al. 2002). An important role is also played by thromboxane A2 

(TXA2), which is an agonist released by activated platelets supporting both autocrine 

(self) and paracrine (adjacent) platelet activation, and recruiting the surrounding 

platelets to the site of the growing thrombus (Riccioni et al. 2007, Roberts, Vaziri, 

and Barnard 2002). TXA2 in humans stimulates two subtypes of G-proteins couples 

named TPα and TPβ, even if the effects in platelets are mediated predominantly 

through the α isoform (Murugappan, Shankar, and Kunapuli 2004) by the activation 

of adenyl cyclase activity (Davì et al. 1997).  
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Activated platelets start their bridging thanks to the interaction between their surface 

receptor GPIIbIIIa and its ligand fibrinogen starting in this way the aggregation 

process. This interaction determines conformational changes in GPIIb/IIIa 

facilitating the stabilization of platelet-platelet aggregates and giving GPIIbIIA the 

ability to bind other proteins such as vWF, fibronectin, vitronectin, and CD40L thus 

maintaining clot firmness. At this point, platelet plug undergoes the formation of 

insoluble cross-links mediated by the conversion of fibrinogen to fibrin by the 

activated coagulation factor thrombin. This process is called secondary hemostasis 

and during this, platelet amplification of the stimulation signal leads to their ability to 

bind clotting factors (procoagulant activity) by the interaction with specific high-

affinity binding sites and the formation of a stable platelet-fibrin plague with 

subsequent clot retraction (Jurk and Kehrel 2005).  

 

1.1.2 The coagulation cascade 

The model of coagulation cascade was developed in the 60s when it was 

understood that each clotting factor consists of a pro-enzyme that is converted to its 

active enzymatic form by another upstream-activated factor (DAVIE and RATNOFF 

1964, MACFARLANE 1964). It is now well understood that there are two different 

cascades named intrinsic pathway, called in his way since all the interacting 

molecules are present in the blood, and extrinsic pathway, in which tissue factor 

(TF) necessary to start the process is coming from extravascular tissue. However, 

both pathways converge on the activation of FX. Following vascular damage, sub-

endothelial and smooth muscle cells are exposed to the bloodstream thus showing 

TF on their surface. TF interacts with factor VII and upon activation TF/FVIIa 

complex is able to convert FIX and FX into FIXa and FXa, respectively. This allows 

FXa to associate with cofactor FVa to form a prothrombinase complex on TF-

expressing cells. The amplification of the coagulation cascade promotes the 

conversion of prothrombin (FII) into thrombin (Monroe, et al., 2006). The slowly 

accumulating amounts of thrombin will further activate platelets that adhered to the 

site of injury. In parallel, thrombin converts platelet-derived FV into FVa, thus 

amplifying prothrombinase activity, and converts FVIII into FVIIIa, which acts as a 

cofactor to FIXa on the surface of activated platelets to support FXa generation. In 

addition, thrombin converts FXI into FXIa. Activated FXI converts FIX into FIXa, 

which then associates with thrombin-cleaved FVIII. On phosphatidylserine-exposing 

cell membranes, the tenase complex of FIXa/FVIIIa catalyzes the conversion of FX 
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to FXa, after which the FXa/FVa complex produces sufficient amounts of thrombin 

to massively form fibrin fibers. As a final step, the thrombin-activated plasma 

transglutaminase FXIIIa catalyses the formation of a covalent crosslink between 

adjacent fibrin chains to yield an elastic, polymerized fibrin clot. 

 

Figure 1. Schematic representation of the model of the coagulation cascade. 

 

Concomitantly with the coagulation cascade, a fundamental role is played by the 

negative control of coagulation by which the system controls the spreading of the 

clot formation (Broze et al. 1988). Different proteins are involved in this system. 

Antithrombin acts inhibiting FIXa, FXa, and thrombin, heparin cofactor II inhibits FIIa, 

and TFPI reversibly inhibits coagulation by direct binding to free FXa and by 

interaction with the transient TF/FVIIa/FXa complex (Girard et al. 1989). The 

enzyme-based protein C/protein S pathway acts inactivating FVIIIa and FVa by 

protolithic cleavage, thus suppressing tenase complex and prothrombinase actions 

providing another anticoagulant modality. 

 

In particular, Tissue factor (TF), also named CD142 or thromboplastin, is a 

transmembrane glycoprotein of about 47kDa and in its mature form, it is constituted 

by 219 amino acids in the extracellular region, a transmembrane region and a short 

tail (21 amino acids) in the intracellular side. The outside domain is formed by two 

fibronectin type III domains, each with an extracellular disulphide bond (Versteeg et 

al. 2013). 
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TF is expressed on the surface of fibroblasts and smooth muscle cells and its 

localization is fundamental since it acts as a haemostatic barrier upon vessel injury.  

TF is also expressed by circulating monocytes and tumour cells that may initiate 

pathological conditions such as disseminated intravascular coagulation (Rickles, 

Patierno, and Fernandez 2003). TF may be found also in microparticles released by 

the cells (Giesen et al. 1999), representing the so-called blood-born TF. Nowadays 

the opinion is that TF expressed by cells in the vessel wall is about 1000-fold the 

one circulating in the blood (Butenas et al. 2005) thus making its role in thrombosis 

a subject of debate.  

It was demonstrated that platelets contain TF pre-mRNA that is converted into 

mature mRNA and might in this way generate a small amount of protein upon 

platelets activation (Schwertz et al. 2006, Panes et al. 2007). In addition, it was 

observed that Meg-01 megakaryoblastic cell line express TF and that it is 

transferred to a subset of shed platelet-like particles (Brambilla et al. 2015). 

Moreover, TF was found to be expressed after platelet activation (Camera et al. 

2003, Brambilla et al. 2008) and in particular localises on the biggest activated ones 

(Camera et al. 2012). In line with these data, also platelets can be a source of active 

“blood-borne” TF, which can sustain activation of the blood coagulation on the edge 

of a growing thrombus. However, some authors showed that activated PLTS, after 

P-selectin exposure, are able to bind TF-bearing microvesicles deriving from 

monocytes thus leading to the formation of highly thrombogenic platelet-

microvesicles hybrid. (Del Conde et al. 2005, Falati et al. 2003, Bouchard, Mann, 

and Butenas 2010, Østerud 2003, Owens and Mackman 2011). 

Alongside its action in thrombosis, TF was found to participate in the migratory and 

proliferating ability of smooth muscle cells (Pyo et al. 2004) and to be involved in 

cancer-related vascularization and metastasis (Steffel, Lüscher, and Tanner 2006). 

However, it was also demonstrated that TF is expressed as a response to 

inflammatory stimuli as chemokines or cytokines (Erlich et al. 1999).  

Among the inflammatory molecules responsible for TF induction there are tumor 

necrosis factor-α (TNF-α), interleukin-1β or CD40 ligand (Bavendiek et al. 2002) but 

also biogenic amines such as serotonin (Kawano et al. 2001) or histamine (Steffel 

et al. 2005), and mediators such as thrombin, oxidized LDL or vascular endothelial 

growth factor (Camera et al. 1999).  
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1.1.3. Leukocytes  

The presence of the leukocyte population participating in the thrombotic process 

was observed at the end of the XIX century but their role is still under debate. In 

particular, it seems that aside from their canonical inflammatory role, the prevalent 

role of leukocytes in thrombus formation is to assign to the interaction with PLTs 

thus forming mixed aggregates (Cerletti et al. 2012). 

Leukocytes are able to bind either with activated circulating PLTs or with the one's 

adherent to the site of vessel wall injury (Gawaz, Langer, and May 2005, Weber and 

Springer 1997). Leukocytes initially adhere to PLTs via PSGL-1-P-selectin 

interactions (Evangelista et al. 1999, Yang, Furie, and Furie 1999) and this adhesion 

is subsequently stabilized by the binding between Mac-1 and GPIbα (Simon et al. 

2000). These interactions with the receptors PSGL-1 and Mac-1 on the monocyte 

surface are able to induce the inflammatory cascade enhancing the secretion of 

effector molecules such as CCL5 (Weyrich et al. 1996, Neumann et al. 1997). 

Lymphocytes are able to interact with PLTs based on the binding between P-

selectin-, CD154- and αIIbβ3 (Hu et al. 2010). Different studies suggested that 

platelets-leukocytes complexes are more prone to interact with endothelial cells thus 

enhancing in-site inflammation that can cause an accelerated progression of 

atherosclerosis (Huo et al. 2003, Lievens et al. 2010). In addition, high levels of 

neutrophil and platelet-monocyte complexes were correlated with acute myocardial 

infarction (Furman et al. 2001). Besides their role in forming complexes with PLTs, 

leukocyte can have a direct role in the thrombotic process through the release of 

tissue factor (TF), the initiator of blood coagulation. In particular, following 

stimulation with lipopolysaccharides (LPS) and C-reactive protein, TF mRNA is 

highly translated to the mature protein and exposed to monocyte membrane 

(Sovershaev et al. 2007). TF could stimulate differentiation of monocyte to 

macrophages thus enabling their migration through the arterial wall and promoting 

their accumulation in atherosclerotic plaques, as shown in human and mouse 

tissues (Lambert, Sachais, and Kowalska 2007, Muhlfelder et al. 1999).  

Monocytes/macrophages, synthetizing interstitial collagenase (MMP-1) and 

stromelysin (MMP-3) through CD40 stimulation, participate in plaque destabilization 

and rupture key processes the atherothrombotic events (Mach et al. 1997).  

Finally, monocytes not only take an active part in the coagulation, but they also 

support it reducing the fibrinolysis. Indeed, resting naïve monocytes produce 
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thrombomodulin (Satta, Freyssinet, and Toti 1997), an essential cofactor of thrombin 

in triggering the natural anticoagulant protein C pathway. 

 
1.1.3 Fibrinolytic system and control of thrombosis 

The fibrinolytic system represents, along with primary and secondary haemostasis, 

the crossroad between haemostasis and thrombosis since its balanced regulation 

is fundamental on one side to avoid haemorrhages and on the other one to prevent 

thrombus excessive growth. The process is mediated by two plasminogen activators 

(PAs), the tissue-type PA (tPA) and the urokinase-type (uPA) acting through a 

cellular u-PA receptor (u-PAR). These activators convert plasminogen to plasmin 

that degrading fibrin and activating matrix metalloproteinases (MMPs) promote clot 

lysis and extracellular matrix degradation (Collen and Lijnen 1991, Birkedal-Hansen 

1995). These processes are counteracted by the inhibitors of PAs (PAI-1 and PAI-

2) that prevent plasminogen to plasmin conversion and by α2-antiplasmin that 

inhibits directly plasmin. The fibrinolytic system could be impaired by an alternated 

t-PA release from the vessel wall or by increased rates of the neutralization system. 

Regarding this latter case, it was observed that PAI-1 plasma concentration is 

enhanced in different pathological condition including venous thromboembolism, 

obesity, sepsis, and CAD. On the other hand, increased levels of tPA or deficiency 

of α2-antiplasmin or PAI-1 are associated with a bleeding tendency (Collen 1999). 
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2 Psychological stress and CVDs 

The term stress was coined by Hans Selye in 1936 to describe “the non-specific 

response of the body to any demand for change” (Selye 1936). This definition 

resulted from the observation that different acute ambient stimuli (named stressors) 

were all able to induce three main pathological conditions: hyperaemia and 

enlargement of the adrenals, atrophy of the thymus and lymph nodes as well as 

hemorrhagic gastric erosions/ulcers (stress triad). Further studies in the last eighty 

years showed that in addition, if these stressors were protracted, they could induce 

chronic alterations leading to heart attacks, stroke, kidney disease, and rheumatoid 

arthritis (Dimsdale 2008, Bruce, Griffith, and Thorpe 2015, Walker et al. 1999).  

However, it must be underlined that stress is a necessary response that the body 

puts in place to overcome a new or difficult situation when a higher efficiency and 

productivity is needed. For this reason, heart rate and respiratory acts accelerate, 

blood pressure increases, sweating intensifies to maintain under control body 

temperature and appetite is reduced but energy metabolism becomes more 

efficient.  

When transient, acute stress, these alterations are easily handled by the body that 

immediately after the cessation of the stressor(s) returns quickly to homeostasis. It 

is the one resulting from specific events or situations that are perceived by the body 

as completely new or dangerous (Bryant 2018).  

However, when the stressful events are close to one another or when the stressors 

become chronic (chronic stress), then the organism is not able to compensate for 

the situation and to return the systems in the homeostatic situation.  

A population study showed that, under a chronic stressful condition, patients that 

already had a myocardial infarction showed a 2.5x incidence of a second event than 

not stressed ones. The same study analysed data regarding 3335 people affected 

by coronaropathy, identifying a correlation with stress with a 4.4x risk increase 

(Bosworth et al. 2000). A longitudinal study performed on the analysis of data 

regarding 7066 women and men from the Copenhagen City Heart Study showed a 

causal relationship between stress and cardiovascular diseases mediated through 

unfavourable changes in health behaviour and cardiac risk profile (Rod et al. 2009).  

Regarding the association between stress and CVDs, it was demonstrated that 

there are at least three macro-areas in which we can classify it: the impact of work 

stress, marital and domestic stress and social support.  
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Regarding work stress, it is estimated that up to 40% of all workers are stressed and 

in a third of these, the condition is chronic (Strike and Steptoe 2004, Peter and 

Siegrist 2000). An analysis performed among 13 different studies, showed that in 

10 of them an association between work stress and CVDs could be found, while in 

the other three not significant score was reached (Kuper, Marmot, and Hemingway 

2002). Work stress is showed to increase the incidence of coronary artery disease 

(CAD) and, in patients already hospitalized for CAD, it increases the risk of new 

events (Aboa-Eboulé et al. 2007).  

Marital and domestic stress is showed to worsen the prognosis in women with 

progress CVDs (Strike and Steptoe 2004) and taking care of the sick husband 

independently from other canonical risk factors such as smoke, age, hypertension 

and diabetes (Lee et al. 2003).  A Swedish study found that, after adjusting for 

classic risk factors, a cohort of women having both work and marital-domestic stress 

enhances the risk of CVDs up to 5 times versus the control cohort (Orth-Gomér et 

al. 2000).  Domestic stress has a major impact on people with a low socio-economic 

status in a relationship with the level of instruction and work position (Rose and 

Marmot 1981). In support of these results, in countries with low social support, there 

is an increase in behavioral risk factors such as smoking, unbalanced diet and low 

physical activity (Rosengren, Orth-Gomér, and Wilhelmsen 1998), but also stress 

levels are higher and associated with enhanced risk of CVDs (Strike and Steptoe 

2004).  

All these evidences from literature lead to consider the role of lifestyle behaviour on 

CVDs and to coin the term “behavioural cardiology” as “an emerging field of clinical 

practice based on the recognition that adverse lifestyle behaviours, emotional 

factors, and chronic life stress can all promote atherosclerosis and adverse cardiac 

events” (Rozanski et al. 2005). In particular, the role of the new discipline would be 

a deeper understanding of the pathophysiology of behaviour-related CVDs and the 

development of effective therapeutic interventions both for modifying high-risk 

lifestyles and behaviours and for reducing psychosocial risk factors for patients. 

Unfortunately, until now there have been few large scale trials on the effect of both 

classical, as for example antidepressant drug use, and alternative, as physical 

exercise training, treatments among patients with distress and CVDs. The main 

problem found was the lack of patient's adherence to behavioural interventions and 

the difficulty to find standardized parameters to define distress in people already 
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suffering from CVDs (Rozanski, Blumenthal, and Kaplan 1999). In addition, the field 

of behavioural cardiology requires new figures of physicians that could incorporate 

both cardiology and psychological expertise in clinical practice.  

 

2.2. Biological effects of stress  

As above-mentioned, stress determines the activation of the HPA-axis and the 

release of glucocorticoids (GCs) and catecholamines thus exercising its influence 

on different body districts. Of note, hyper-activation of the HPA-axis and the 

subsequent pathological alterations were found in about 70% of depressed patients 

(Holsboer 2000) suggesting a possible correlation between stress and major 

depression (Yang et al. 2015). For example, it was demonstrated that a constant 

stimulation by cortisol not only can lead to the impairment of the molecular pathways 

above mentioned but can also have a direct role in neuron excitation. Under normal 

conditions, GCs contribute to the termination of the stressful reaction via feedback 

loops that involve the participation of the hippocampus and paraventricular nucleus 

(Berton and Nestler 2006, Pariante and Lightman 2008). However, constant cortisol 

and GCs stimulation is able to induce corticosteroid-resistance and decreased 

function of the glucocorticoid receptor (GR) (Pariante and Lightman 2008). High 

cortisol level was found able to induce excitotoxicity to pyramidal neurons in the 

hippocampus leading to spine loss and atrophy of dendrites (Berton and Nestler 

2006) and reduced hippocampal volume (Manji, Drevets, and Charney 2001), 

conditions that are common also in patients affected by major depressive disorder 

(Yang et al. 2015). Furthermore, it was demonstrated that HPA-axis hyperactivation 

is directly related to an alteration in the levels of vasopressin (Hodgson et al. 2014), 

brain-derived neurotrophic factor (Duman and Monteggia 2006), glial cell-derived 

neurotrophic factor (Uchida et al. 2011), and neurotransmitter system such as 

glutamate and its receptors (Hashimoto 2011), NMDA, AMPA and metabotropic 

glutamate receptors (Berton and Nestler 2006), gamma-aminobutyric acid (Möhler 

2012) and serotonin (Berton and Nestler 2006). Of note, all these alterations are 

considered molecular signatures related to the development and progression of 

major depressive disorder. A recent meta-analysis (Park et al. 2019), showed an 

association between psychosocial stress, major depressive disorder, and epigenetic 

changes. Interestingly the alterations that were found are relative to the 

glucocorticoid signaling (NR3C1 and FKBP5), the serotonergic signaling (SLC6A4), 
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and the neurotrophin system (BDNF) clearly showing the tight relationship between 

the alterations induced by stress and major depression. In addition, it was observed 

that likely in stressed people, also depressed patients present increased levels of 

pro-inflammatory cytokines that are known to be involved in the reduction of 

monoamine levels and so in the modulation of cognition, sleep and reward 

processes (Karrenbauer et al. 2011, Wong and Licinio 2001). Elevated levels of IL-

1β are found in depressed patients and they are able to activate the HPA-axis in the 

same way as stress does, suppressing hippocampal long-term potentiation and 

down-regulating BDNF expression (Koo and Duman 2009). Mice lacking IL-6 are 

protected from depressive symptoms induced by stress (Chourbaji et al. 2006) and 

have not an impairment in neuron proliferation (Koo and Duman 2009). Also, tumor 

necrosis factor-α (TNF-α) is able to activate HPA axis (Kaster et al. 2012), as well 

as interleukin-1β (IL-1β) that is able to promote the serotonin uptake suggesting that 

its blockade could be helpful in depression treatment (Zhu, Blakely, and Hewlett 

2006). As a proof of concept deletion of either TNF-α receptor 1 (TNFR1) or TNFR2 

generates animal models resistant to induced depression (Simen et al. 2006) while 

TNF-α injection induced depression-like phenotype which could be prevented by 

antidepressant drugs (Kaster et al. 2012). However, it is well known that 

psychosocial and psychiatric pathologies are strictly related to the environment and 

to the psychological history of each individual and so these parameters, even in 

presence of common cellular and molecular features between stress and 

depression, must be taken into account before demonstrate the unidirectional 

association between these two pathologies. Different studies are available 

regarding the dynamic relationships between stress and depression over time, 

including for example the effects of childhood and lifetime stress exposure on later 

reactivity to stress and development of major depressive disorder. Unfortunately, 

the lacking of common evaluation parameters often biases the results that were 

obtained leaving uncertainty on the argument (Hammen 2005). 

 

2.1 Biological mechanisms by which psychological stress could 
predispose to CVDs 

Starting from the association observed between psychosocial stress and CVDs 

observed in clinical studies, basic research tried to understand the molecular 

mechanism at the crossroad between these pathologies (Strike and Steptoe 2004, 
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Dhar and Barton 2016). As already said, a stressful event determines an altered 

response in different organs and systems of the organism thus influencing different 

biological pathways and leading to pathological alterations (Rosengren et al. 2004, 

Huffman et al. 2013). Different systemic alterations have been investigated until 

now, showing a clear contribution of: 

-hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis 

-hypertension 

-immunity response 

-endothelial dysfunction 

-platelet activation 

-coagulation factors 

-neurotrophin system 

 

2.1.1 The hypothalamic pituitary adrenal (HPA) axis dysfunction 

One of the first observations done by Hans Selye regarding the effect of chronic 

stress on living beings was the enhanced dimension of the adrenal glands (Selye 

1936).  After decades of investigations, it is now clear that stress is able to activate 

the hypothalamic-pituitary-adrenal (HPA) axis with a consequent stimulation of the 

sympathetic nervous system and increased circulating levels of cortisol and 

catecholamines (Rozanski, Blumenthal, and Kaplan 1999, Dinan 1994, Banki et al. 

1992, Brown, Varghese, and McEwen 2004). 

In response to a stressful event, cortical areas of the brain are activated and, through 

the limbic system, the signals arrive at the hypothalamus. Under neurotransmitter 

stimulation, cells located in the paraventricular nucleus (PVN) are activated to 

synthesize and secrete corticotropin-releasing factor (CRF) (Gu, Tang, and Yang 

2012). This factor enters the hypothalamic portal venous system and stimulates the 

corticotrophs located at the anterior pituitary gland to synthesize 

proopiomelanocortin (POMC) (Pariante and Lightman 2008) that is subsequently 

cleaved in adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating 

hormone (α-MSH). CRF from parvocellular neurons also stimulates the release of 

arginine vasopressin (AVP) from PVN, which together with CRF synergistically 

stimulates the release of ACTH (Hasan et al. 2012). ACTH stimulates fasciculate 

and reticularis zones of the adrenal cortex to produce and release glucocorticoids 

(GCs, cortisol, and corticosterone in human and rodent, respectively) (Hasan et al. 
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2012), which together with catecholamine released by sympathetic nervous system 

(SNS) are the main stress hormones (Gu, Tang, and Yang 2012). GCs exert their 

effects on multiple aspects of the brain function, such as survival of neurons, 

neurogenesis, hippocampal size and emotional events, and the peripheral functions 

including metabolism and immunity (Pariante and Lightman 2008). By binding to 

glucocorticoid receptors (GRs) in the hypothalamus, the pituitary and the medial 

prefrontal cortex (mPFC), which will result in a decrease in CRF secretion and 

subsequent reduced release of ACTH from the pituitary, these GCs inhibit activity 

of HPA axis through negative feedback mechanism to sustain homeostasis 

(Pariante and Lightman 2008, Gu, Tang, and Yang 2012). 

Salivary cortisol is considered the biomarker of the stressful condition in organisms 

(Hellhammer, Wüst, and Kudielka 2009, Strike and Steptoe 2004).  

Cortisol acts as an anti-inflammatory hormone (Yeager, Pioli, and Guyre 2011), 

however, during acute stress, the high concentrations of cortisol stimulate the 

hypothalamus, hypophysis (also called pituitary gland) and other non-specific brain 

regions mediating its effects and thus acting with a negative feedback loop on the 

HPA axis. High levels of the hormone inhibit the synthesis and release of the 

corticotropin-releasing hormone (CRH) and of the adrenocorticotropic hormone 

(ACTH).  

During the chronic stress response, cortisol is secreted continuously thus 

determining a cortisol-resistance and a reduction in the negative feedback loop of 

the HPA. Cortisol and CRH were found able to induce endothelial dysfunction, thus 

participating in the onset and progression of plaque formation/rupture and coronary 

artery thrombosis (Wirtz et al. 2006).   

Interestingly, patients affected by the Cushing's syndrome that is characterized by 

hypercortisolism, frequently show a hypercoagulable and thrombotic condition, thus 

confirming the role of cortisol over-stimulation in the onset and progression of 

cardiovascular disease (Erem et al. 2009).  

If the activation of HPA response is necessary during acute stress (Wirtz et al. 2006), 

its hyperactivation (chronic stress response) determine an alteration of the balance 

between sympathetic and parasympathetic activity with consequent dysregulation 

of blood pressure, inflammation, platelet activation, plaque rupture, coronary artery 

spasm and ventricular arrhythmias that could evolve in ventricular fibrillation and 

cardiac arrest (Rozanski, Blumenthal, and Kaplan 1999). Interestingly, it was found 
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that the hyperactivation of the HPA axis can influence cerebral functionality causing 

other hormonal, inflammatory and neurotransmitter alterations that are able on their 

own to reinforce HPA axis stimulation (Grippo and Johnson 2002). 

 
2.1.2 Psychosocial stress and hypertension 

Different studies suggest that stressful events are related to the development of 

hypertension. Acute stress is able to increase blood pressure by enhancing cardiac 

output and the heart rate without affecting total peripheral resistance. In addition, 

the activation of the HPA-axis not only increases the levels of catecholamines and 

cortisol but has an effect also on vasopressin, endorphins, and aldosterone. All 

these alterations may in part explain the increase in blood pressure (Zimmerman 

and Frohlich 1990). It was demonstrated that people experimenting with work stress 

and low socioeconomic levels have enhanced blood pressure, higher heart rate, and 

peripheral resistance, especially in the morning (Schnall et al. 1998). Interestingly, 

two systematic reviews, one of cohort studies and the other on observational 

studies, clearly showed that acute stress is able only to enhance blood pressure 

acutely, while several, but not all, the studies included indicate that chronic 

psychosocial stress is able to induce hypertension (Sparrenberger et al. 2009, 

Gasperin et al. 2009). However, if the association between chronic psychosocial 

stress and hypertension is confirmed, no consistent data are available regarding the 

molecular mechanisms underlying this interaction. It is hypothesized that the 

involvement of the sympathetic nervous system response and the release of 

catecholamines leads to increased heart rate, cardiac output, and blood pressure. 

If sympathetic responses to acute stress are well studied and demonstrated, the 

process by which this system could sustain blood pressure enhancement leading to 

hypertension is not well understood. It is supposed that the key could be the 

prolonged activation of the system and the failure to return to homeostasis following 

multiple stressful events (Spruill 2010). However further studies are necessary to 

deepen the understanding of the molecular bases of these processes. 

 

2.1.3 Psychosocial stress and the immune system 

It was recently reported that stress can activate the inflammatory response not only 

in the brain but also in peripheral tissues (Rohleder 2014, Calcia et al. 2016) 

As above-mentioned, the activation of the HPA-axis mediates the release of cortisol 

for which an anti-inflammatory action is known. Of note, upon stimulation adrenal 
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glands release other hormones that, like cortisol, are part of the class of GCs that 

are known for their immunosuppressive and anti-inflammatory activity.  

The presence of several inflammatory cytokines such as TNF-α and IL-6 stimulates 

the pituitary-adrenal axis to release GCs that in turn enhance the expression of anti-

inflammatory cytokines such as IL-10, TNF-β (Sorrells et al. 2009). However, it was 

discovered that persistent high levels of GCs increase the expression of the 

inflammasomes system through the enhanced secretion of IL-1β (Busillo, Azzam, 

and Cidlowski 2011), CRP, IL-6, TNFα and the transcription factor of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) (Miller, Maletic, and Raison 

2009). In addition, enhanced release of norepinephrine (NE) could regulate the 

immune and inflammatory system through the secretion of inflammatory factors as 

transforming growth factor-β (TGF-β) and TNFα as demonstrated in the cell line 

RAW264.7 (Zhou, Xu, and Jiang 2008). Intriguingly, the presence of a chronic low-

grade inflammatory could be a possible mechanism linking chronic stress and 

CVDs. It was observed that some inflammatory cytokines like CRP, IL-6, TGF- β1 

and TNF- α are involved in the onset and progression of thrombotic events and 

atherosclerosis. In particular, CRP and IL-6 are considered potentially predictive 

markers of atherosclerosis (Nadrowski et al. 2016). NE, through activation of α 

adrenoreceptors, could increase the levels of TGF-β1 and TNFα production in 

macrophage (Huang et al. 2012) and it is showed that these cytokines are related 

to endothelial dysfunction and renin-angiotensin system (Li et al. 2012). In summary, 

stress, hyper-activating the HPA-axis induces a constant release of GCs and NE 

that are known to promote the release of CRP, IL-6, TGF- β1 and TNF- α, 

inflammatory cytokines well know for their role in the onset and progression of 

CVDs. 

 

2.1.4 Psychosocial stress and platelets 

A large number of modifiable and not-modifiable risk factors such as age, serum 

cholesterol level, diabetes, catecholamine levels, cigarette smoke, obesity, and 

alcohol consumption, are well known to be associated with CVDs. A mechanism by 

which all these risk factors can lead to CVDs is their ability to enhance platelet 

reactivity. It is well documented that patients with CVDs have hyper-reactive 

platelets that expose higher levels of P-selectin and GPIIbIIIa thus starting the 

formation of platelet-leukocyte and platelet-fibrinogen-vWFactor aggregates, 
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respectively (Merten et al. 2000, Konstantopoulos et al. 1998). In addition, activated 

platelets release more TXA-A2 and other prostaglandin metabolites (Falk 1985, 

Fitzgerald et al. 1986) and produce less nitric oxide (Freedman et al. 1998). During 

acute coronary syndromes, the thrombus formation is driven by the ability of 

platelets to aggregate with neutrophils and leukocytes that in turn can enhance 

platelet aggregation (Faraday et al. 2001). Activated platelets produce mediators of 

inflammation such as platelet-derived growth factor (Selheim et al. 2000), platelet 

factor 4 (Leavitt 2007) and TGF-β (Grainger et al. 1995). 

The release of catecholamines due to the activation of the HPA-axis induced by 

stress is able to stimulate alpha2-adrenergic receptors (von Känel and Dimsdale 

2000) and research data suggest that this is sufficient to enhance platelet activity, 

reactivity and immune-modulatory capacities (Koudouovoh-Tripp and Sperner-

Unterweger 2012). Stressful mental tasks are able to increase acutely the release 

of PF-4 and TGF-β from platelets (Patterson et al. 1995) and also a significant 

increase in platelet-leukocyte aggregates formation was observed (Hamer et al. 

2006, Steptoe et al. 2003). Three cross-sectional studies reported that stress is able 

to increase the percentage of platelet-leukocyte aggregates by 15% and the 

percentage of P-selectin by 5-fold (Aschbacher et al. 2008, Aschbacher et al. 2007, 

Aschbacher et al. 2009). 

 
2.1.5 Psychosocial stress and coagulation cascade 

In the last five decades it was clearly demonstrated that stress is certainly 

associated with hypercoagulability through the activation of the coagulation system, 

platelets hyper-reactivity and reduced fibrinolysis (von Känel et al. 2001). 

In particular, it was observed that even a single bout of stress is able to enhance the 

activity of clotting factor VIII, tissue-type plasminogen activator (t-PA) with a 

concomitant increase in D-dimer, indicating enhanced fibrin turnover. Interestingly, 

it was found that FVIII:C, as well as fibrinogen and von Willebrand factor (VWF) 

levels,  are increased between 5% and 10% from baseline in healthy subjects in 

response to acute stress, and that after 20-45 minutes their levels return to pre-

stress condition (von Känel 2012, von Känel et al. 2001). As for acute stress, also 

chronic stress is able to alter many factors involved in the coagulation process. In 

particular, it was demonstrated an increase in fibrinogen and coagulation factors VII, 

VIII, and von Willebrand factor (Austin, Wissmann, and von Kanel 2013). In addition, 

other studies found that chronic stress is also able to increase the level of 
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Plasminogen-activator inhibitor-1 (PAI-1) and reduce t-PA (von Känel 2012). As 

regards the molecular mechanism by which stress is able to unbalance the 

coagulation system, it was found that the activation of the HPA-axis, inducing the 

release of catecholamines, stimulates β2-adrenergic receptors, in particular 

mediating their effects on endothelial cells. Only few minutes of stimulation are 

sufficient to activate the release of FVIII, active VWF and profibrinolytic t-PA from 

endothelial storage pools into the bloodstream (von Känel and Dimsdale 2000), to 

increase plasma levels of thrombin (von Känel et al. 2002) and also to induce the 

release of hepatic FVIII and affect the clearance of t-PA and D-dimer in the liver 

(Austin, Wissmann, and von Kanel 2013). In addition, it was found that sympathetic 

nerves hyper-stimulation in artery walls induced an increase in circulating t-PA (Hao 

et al. 2005). 

The increased blood pressure induced by stress determines an efflux of plasma in 

the interstitial space of vessels thus concentrating non-diffusible large (i.e. >69 kDa) 

haemostatic molecules (Austin, Wissmann, and von Kanel 2013) that are in this way 

more in contact each other (Austin, Patterson, and von Känel 2011). Arithmetic 

adjustment for stress-haemoconcentration accounts for a portion of stress-induced 

haemostasis molecules as fibrinogen and VWF suggests that the intrinsic 

coagulation pathway is activated during stress (Austin et al. 2012). 

Thrombotic risk after acute stress increases with age (Jern et al. 1989), and it was 

found that it is correlated also with a proportional increasing level of D-dimer (Wirtz 

et al. 2006). Regarding sex, the risk was found to be higher in men than in women 

after an acute event. It was showed that stress enhances the coagulation factor VIII 

only in male, while women have an increase in the activation of t-PA which promotes 

the fibrinolytic process (Jern et al. 1989). 
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Table 1. Changes in the levels of haemostatic factors after stress exposure.  

↑ = increased level; ↓ = decreased level; - = no change. (Adapted from von Känel 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2.1.6 Psychosocial stress and endothelial dysfunction 

Endothelium represents a fundamental anatomic structure deputed to the control of 

vascular tone, angiogenesis, wound healing, smooth muscle cell proliferation, 

fibrosis, inflammation, and haemostatic balance. Classic risk factors for CVDs, 

altering the molecular pathways necessary to maintain the correct processes 

regulating the functions above mentioned, are at the bases of endothelial 

dysfunction (Widmer and Lerman 2014). 

Of note, recently accumulating evidence showed that stress-related endothelial 

dysfunction could be an early risk factor predicting future development of CVDs. 

Mental stress is able to directly enhance the release of pro-inflammatory cytokines 

and endothelin-1 leading to a lower release of nitric-oxide via the downregulation of 

endothelial nitric oxide synthase (eNOS) (Toda and Nakanishi-Toda 2011).  

Human studies carried out with different paradigms of acute stress found that 

vascular resistance is enhanced and dilatation of the brachial artery is reduced after 

30 and 90 minutes after the test (Ghiadoni et al. 2000, Sherwood et al. 1999), 

suggesting only a transient endothelial dysfunction. Interestingly it was reported that 

Haemostatic factor  

Fibrinogen ↑ 

Factor XII ↑ 

Factor VII ↑ 

Factor VIII ↑ 

Von Willebrand factor antigen ↑ 

Thrombin-antithrombin complex ↑ 

Fibrin D-dimer ↑ 

Tissue-type activator antigen ↑ 

Tissue-type plasminogen activator activity ↑ 

Percent prothrombin time ↑ 

Plasminogen activator inhibitor-1 -/↑ 

Activated partial thromboplastin time ↓ 
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intense emotions such as outbursts of anger and acutely depressed mood could 

increase by two times the risk of the acute coronary syndrome within two hours from 

the stressful triggering event (Mostofsky, Penner, and Mittleman 2014, Steptoe et 

al. 2006). However, it must be underlined that several studies failed to reach similar 

results for the heterogenicity of the responses to these paradigms of stress. In 

particular, it is hypothesized that this could be due to individual differences in the 

neuroendocrine coping mechanisms (Gerra et al. 2001) and the presence of people 

hyper-responsive to the stimulation of the sympathetic nervous system induced by 

stress (Rozanski, Blumenthal, and Kaplan 1999). Chronic stress disrupting 

hormonal homeostasis of glucocorticoids and catecholamines is able to induce not 

only metabolic abnormalities and inflammation but also endothelial dysfunction (Das 

and O'Keefe 2006). Studies on students with chronic sleep deprivation and under 

stress for examinations showed reduced vasodilation (Takase et al. 2004) and this 

parameter was even worst when in presence of sedentary lifestyle and smoking 

(Mancaş et al. 2008). Low socioeconomic levels in relationship with anxiety, 

depression, tension, hostility, and fatigue were found to determine impaired flow-

mediated vasodilatation in both women and men and increase in carotid intima-

media thickness only in men (Cooper et al. 2010, Mausbach et al. 2010, Chumaeva 

et al. 2010). 

 

2.1.7 Psychosocial stress and the neurotrophin system 

As already reported, chronic stress leads to an alteration in the structure of the 

central nervous system with a particular impact on the hippocampus region where 

it was shown that GCs continuous stimulation is at the basis of dendritic atrophy 

(Berton and Nestler 2006). Of note, it was observed that these alterations induced 

by stress are able to reduce the level of different neurotrophins in the same brain 

region and in the prefrontal cortex (Smith et al. 1995b, László et al. 2019). 

Among them, the down-regulation of the Brain-Derived Neurotrophic Factor (BDNF) 

pathway was found to have an important molecular role in stress response. The 

response to stress, however, differs from region to region in the brain as 

demonstrated by the fact that its levels are reduced in the hippocampus but 

enhanced in the amygdala, suggesting a different involvement of these regions in 

neuronal structural plasticity (Lakshminarasimhan and Chattarji 2012). Interestingly, 

the administration of anti-depressant not only was able to counteract the effect of 

chronic stress but was also able to prevent BDNF reduction in the hippocampus and 
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protect neurons from atrophy (Chen et al. 2001). Following these and other results 

showing that symptoms of stress and pathologies related to it, such as depression, 

have in common a decrease in neurotrophic support and that infusion of these 

proteins (Shirayama et al. 2002) or gene overexpression (Govindarajan et al. 2006) 

leads to ameliorate pathological conditions, the “neurotrophic hypothesis” was 

formulated (Duman and Monteggia 2006). However, since rodent models with 

BDNF gene deletion do not show spontaneous depression phenotype, it could be 

hypothesized that there are other alternative pathways that working along with the 

neurotrophin are causative of the pathology suggesting that possible therapeutic 

strategies must take into consideration targets downstream BDNF pathway (Duman 

and Voleti 2012).  

 

2.2 Psychosocial stress management 

Since all the above describes evidence suggest that stress could be an important 

cause of psychological, inflammatory, metabolic and cardiovascular disease, 

different techniques for stress management were investigated. Among them, some 

techniques are devoted to improving physical health, such as exercise, while others 

are psychological interventions such as individual or group counseling or support of 

self-care. 

 

2.2.1 Exercise 

In the last few years, a growing body of the literature showed that psychological 

pathologies such as stress, anxiety, and depression might benefit from physical 

activity and exercise. In particular, it was shown that regular activity is associated 

with a better level of self-esteem and mood state and lower stress and anxiety levels 

(Anderson and Shivakumar 2013, DeBoer et al. 2012). The positive effect of 

exercise on mental disorders has been studied in depth founding that it is sustained 

by the integrative enhancement of the energetic and neuro-mediate homeostasis, 

by the modulation of the immune system, and by psychological improvements 

(Mikkelsen et al. 2017). In particular, it was observed that exercise activates 

mitochondrial function sustaining neuronal dendrites sprouting and axonal stability 

(Bansal and Kuhad 2016) and improving the performances of muscular fibers 

(Broskey et al. 2014). In addition, mitochondrial activity is also correlated to 

activation of thermogenesis that was found able to reduce the intensity of anxiety 
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episodes (Youngstedt et al. 1993). Exercise, stimulating the central nervous system, 

is able to enhance the endocannabinoid system (Heyman et al. 2012), to increase 

serotoninergic and adrenergic levels in the brain acting in the same way as 

antidepressant drugs (Wipfli et al. 2011), and to adjust the hormonal pathway of the 

HPA-axis which hyperactivation is known responsible for stress-related impairments 

(Salmon 2001). It also increases mTOR signaling in brain regions involved in 

cognition and emotional behavior (Lloyd et al. 2017). Besides this physiological 

effects, exercise might help to distract from negative thoughts especially when 

combined with music (Barwood et al. 2009) and increase self-esteem by generating 

a feeling of mastery which elevates mood (Middelkamp et al. 2017). Exercise affects 

inflammation system by reducing the number of total leukocytes (Apostolopoulos et 

al. 2016), by stimulating the production of anti-inflammatory cytokines such as TNF-

alpha, IL-1, IL-8 and IL-15 in neurons, muscles and adipose tissue (Apostolopoulos 

et al. 2014, Schindler et al. 1990), by decreasing tool-like receptor (TLR) expression 

in monocytes (Gleeson 2007), and by enhancing the vagal tone thus having a 

positive impact in restraining the inflammatory cascade as well as reducing heart 

rate in chronic heart failure (Guiraud et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representation of the systems mediating the beneficial effects of exercise on stress, 

anxiety, and depression.  

TLR, toll-like receptors; mTOR, mammalian target of rapamycin signaling; HPA axis, hypothalamic-

pituitary-adrenal axis (Mikkelsen et al. 2017). 
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2.2.2 Cognitive-behavioral therapies 

Cognitive-behavioral therapies are based on the evidence that a better 

understanding of behaviours, emotions, and ideas could contribute to reducing 

distress and consequent anxiety or, in the worst cases, major depression 

(Giummarra et al. 2018, Shen et al. 2018). Different kinds of therapies was found to 

be effective in reducing psychological alteration. Psychodynamic therapy is based 

on the understanding of unconscious internal conflicts, interpersonal therapy is 

based on the understanding of the social interactions with family and friends and 

cognitive behavioural therapy (CBT) involves the understanding of negative 

thoughts and how they can lead to negative emotions. Other therapies combine 

relaxation, physical activity, and meditation such as deep breathing, progressive 

muscle relaxation, yoga, meditation, and mindfulness-based stress reduction. It 

must be underlined that in many cases psychotherapy show the same efficacy as 

antidepressant drugs and that these paradigms of interventions might have a 

fundamental role in the management of patients with early life stress, anxiety or 

depression issues (Farhang et al. 2019, Lloyd et al. 2018).  

 

2.2.3 Pharmacological management 

In line with the rules of interventions for psychosocial disorders, primary strategies 

for the treatment of stress must be conservative and aimed to promote the 

development of a personal strategy of response mechanisms from every patient. 

However, when despite this management stress leads to panic attacks traumatic 

recall associated with post-traumatic stress disorder (PTSD), and anxiety, drug 

therapy must be taken into account. Benzodiazepines, antidepressants, monoamine 

oxidase inhibitors (MAOIs), beta-adrenergic blocking agents and antihistamines are 

the class of drugs approved for the treatment of stress with different indications and 

timing of action (Curtis 2019). 

 

3 The neurotrophin system 

Neurotrophins are a protein family essential for the central nervous system 

development and maintenance promoting neural differentiation and survival, 

regulating axons and dendrites development, synaptogenesis and synaptic 

plasticity (McAllister, Katz, and Lo 1999, Huang and Reichardt 2001). Neurotrophin 

family includes four highly structurally correlated proteins: nerve growth factor 
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(NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-2 (NT-3) and 

neurotrophin-4/5 (NT-4/5). NGF was the first member to be identified 

(HAMBURGER and LEVI-MONTALCINI 1949). Only about thirty years later BDNF 

was isolated from the porcine brain (Barde, Edgar, and Thoenen 1982) and 

subsequently, the aminoacidic sequence was determined (Leibrock et al. 1989). The 

structural analogy between these proteins helped later to identify the other two 

members NT-3 and NT-4/5 in mammal's brains (Park and Poo 2013).  

All the neurotrophins are synthesized as precursors proteins constituted by a pre-

prodomain, a prodomain, and a mature domain. The pre-prodomain is cleaved and 

degraded after the neurotrophins have reached the Golgi apparatus let 

hypothesizing that its role is related to the correct shuttling from the endoplasmic 

reticulum. The resulting cleaved proteins are called proneurotrofins and have a 

weight of about 30-35kDa. Proneurotrophins then could undergo proteolytic 

cleavage or be directly secreted. Proteolytic cleavage determines the release of the 

mature domain of about 12-13kDa and the prodomain (often also referred to as 

propeptide) structure of about 15-17kDa (Seidah et al. 1996). Proteolytic cleavage 

is performed intracellularly by furins or pro-convertases (Seidah et al. 1996, 

Edwards et al. 1988), or extracellularly thanks to plasmin or different 

metalloproteases (Lee et al. 2001). Prodomain structures are highly conserved 

among the neurotrophins and also through the mammals, evolution, and mutation 

occurring in these regions are related to neurotrophins trafficking regulation from 

endoplasmic reticulum to cellular membrane during the release phase (Lee et al. 

2001). Regarding the secretion of proneurotrophins, this process can follow two 

distinct pathways: regulated or constitutive. Regulated secretion is typical of the 

neurons (Cool et al. 1995) while smooth muscle cells, fibroblasts, and astrocytes 

secrete the proteins with constitutive secretion (Nielsen et al. 2001). 

 

3.1 Receptors and signal transduction 

The biological actions of neurotrophins described above are supported by the 

interaction of these proteins with two distinct classes of transmembrane receptors: 

Tyrosine-kinase receptors (Trk), including the forms TrkA, TrkB and TrkC, and 

neurotrophin receptor p75(NTR) a member of the superclass of Tumor Necrosis 

Factor Receptor (TNFR) (Huang and Reichardt 2003). Every single mature domain 

deriving from a different proneurotrophin binds with high affinity a specific receptor. 
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NGF binds to TrkA; BDNF and NT-4/5 bind to TrkB, while NT-3 binds preferentially 

TrkC but it could also bind TrkA and TrkB in specific cells (Huang and Reichardt 

2003, Segal 2003). All neurotrophins are able to bind, even with low specificity, 

p75NTR which, in turn, is the specific receptor for every pro-neurotrophin (Lee et al. 

2001). 

 

 

Figure 3. Receptors for the neurotrophins.  

All the pro-neurotrophins bind to the p75NTR but not to Trk receptors. After proteolytic cleavage, 

every neurotrophin in its mature form binds with a specific Trk receptor but retains a weak ability to 

bind p75NTR (Bucci, Alifano, and Cogli 2014). 

 

Trk receptors are constituted by a binding site containing multiple repetitions of 

leucine-rich-regions (LRR1-3), two cysteine clusters (C1 and C2) and two 

immunoglobulin-like domains (Ig1 and Ig2). They have a single conserved 

transmembrane domain followed by the tyrosine-kinase domain (Schneider and 

Schweiger 1991). The ligand specificity is determined by the structure of the Ig2 

domain that couples with specific domains of every mature neurotrophin (Urfer et al. 

1995, Urfer et al. 1998). The binding between the mature neurotrophin and Trk 

receptor determines the activation of three possible intracellular enzymatic 

pathways: phospholipase Cγ (PLCγ), phosphoinositide 3-kinase (PI3K) and 
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Ras/Raf/MEK/MAPK (Kaplan and Miller 2000). The binding of the neurotrophin with 

the Trk receptor determines its dimerization and the subsequent trans-

phosphorylation of specific tyrosine residues (Y) at the cytosolic domain. It was 

shown that two specific phosphorylated tyrosine residues localized at the 

juxtamembrane domain and in the C-terminal (Y490 and Y785) are fundamental for 

the anchoring of adaptive molecules starting the different signal-transduction 

pathways (Stephens et al. 1994). Y490 phosphorylation determines the binding and 

phosphorylation of Shc, responsible for the recruiting of the complex Grb-2/SOS.  

This one leads to the activation of Ras, which activates transiently PI3K or the MAPK 

pathway. MAPK activation determines the phosphorylation of the transcriptional 

factor Camp Responsive Element Binding Protein (CREB). Complex Shc/Grb-

2/Gab-1 or Ras activates PI3K promoting neuronal survival through the activation 

of protein kinase B (PKB/AKT) whose role is to inactivate the pro-apoptotic protein 

BAD. 

Otherwise, the phosphorylation of Y785 determines the activation of PLCγ that 

hydrolyses phosphatidylinositol 4,5-bisphosphate (PI2P) to generate diacylglycerol 

(DAG) and inositol 1,4,5 triphosphate (IP3), thus controlling intracellular Ca2+ levels 

and the activity of protein kinase C (PKC). This signaling seems important for 

maintaining synaptic plasticity (Gottschalk et al. 1999) and has a role in neurotrophin 

release from neurons (He, Gong, and Luo 2005). Interestingly, it was discovered 

that besides the normal structure of the TrkB receptor (also called full-length TrkB), 

there are also two splicing variants named TrkB-T1 (TrkB isoform Truncated-1), 

TrkB-T2 (TrkB isoform Truncated-2) and a novel one TrkB-T4 (TrkB isoform 4).  All 

these three isoforms have the same extracellular and transmembrane domain as 

the full-length TrkB but lack the tyrosine-kinase domain which is substituted by 

respectively 23, 21 (Klein et al. 1990) and 83 amino acids (Forooghian et al. 2001) 

forming a short carboxyl-terminal tail. TrkB-T1 is highly expressed in the mature 

brain (Ohira, Shimizu, and Hayashi 1999) where it is known for its action of inhibiting 

the signal transduction mediated by full-length TrkB. TrkB-T1 forms and 

heterodimers with full-length TrkB preventing its phosphorylation and the 

subsequent signal transduction (Eide et al. 1996). It was also found that TrkB-T1 

acts independently from full-length TrkB. It can directly bind and so sequestrate 

BDNF if the levels of this latter are too abundant in the inter-synaptic space and 

release it when they return physiological (Biffo et al. 1995). TrkB-T1 was also found 
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to be able to regulate the cytoskeleton structure in cultured astrocytes and glial cells 

as well as to control the Rho-GTPase activity (Fenner 2012).  Also, TrkB-T2 is able 

to form heterodimers with full-length TrkB and blocking its signal transduction (Eide 

et al. 1996). However, its distribution in the brain is very poor (Stoilov, Castren, and 

Stamm 2002). TrkB-T4 was found for the first time in the kitten visual cortex 

(Forooghian et al. 2001) and subsequently, the mRNA was found also in human and 

mice brain, even if, as TrkB-T2, only in particular regions (Stoilov, Castren, and 

Stamm 2002). However, the lack of specific antibodies for TrkB-T2 and TrkB-T4 is 

now the major problem that researchers have to overcome to better understand 

these two isoforms. 

As stated above, the p75NTR receptor has a high affinity for the proneurotrophins 

and mediates signal pathways that are mainly associated with neuronal apoptosis 

(Teng et al. 2005). It was found that to activate signal transduction, p75NTR has to 

coordinate with another protein called SorCS2 (Nykjaer et al. 2004, Teng et al. 

2005). In particular, it was observed that the p75NTR receptor binds to the mature 

domain region while SorCS2 binds the prodomain region of the proneurotrophins 

(Teng et al. 2005, Anastasia et al. 2013). The ligand of the proneurotrophins with 

p75NTR determines the activation of several intracellular pathways such as 

stimulation of Jun-kinase and acid-sphingomyelinase, and the suppression of RhoA 

activity thus leading to apoptosis. On the other way, the activation of the nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-kB) mediates survival 

(Reichardt 2006). It was shown that TrkB activation not only mediates its own 

signals transduction but also is able to suppress Jun-Kinase cascade and 

sphingomyelinase hydrolysis but has no effect on the activation of the Nf-kB 

pathway (Dobrowsky, Jenkins, and Hannun 1995, Yoon et al. 1998).  In this way, 

upon concomitant TrkB and p75NTR stimulation, the apoptotic signal mediated by 

p75NTR is suppressed while the activated Nf-Kb signal transduction contributes 

synergically to neuronal survival (Maggirwar et al. 1998). In these cases, it seems 

that the role of p75NTR is both to enhance the affinity of the neurotrophins for the 

TrkB receptor and concomitantly increase the pro-survival cascade (Bibel, Hoppe, 

and Barde 1999). Since it was observed that p75NTR expression is up-regulated in 

the presence of nervous system lesions it was hypothesized that the main role of its 

stimulation is to help eliminate damaged cells. (Beattie et al. 2002). 
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Figure 4. Signal transduction pathways of the neurotrophins. 

Trk receptors mediate the three signal transduction pathways: phospholipase Cγ (PLCγ), 

phosphoinositide 3-kinase (PI3K) and Ras/Raf/MEK/MAPK. The binding of the neurotrophins to the 

p75NTR mediates the activation of the NF-κB and the Jun kinase, and the regulation of Rho activity 

(Kashyap et al. 2018). 

 

3.2 Brain-Derived Neurotrophic Factor (BDNF) 

3.2.1 BDNF gene 

In humans, the BDNF gene is located on chromosome 11, it has a length of about 

70kb and is constituted by eleven exons (named I-IX plus the exons Vh and VIIIh). 

Notably, exon IX is the only one coding for the pre-proBDNF protein and in this exon 

is located the single acceptor site for transcripts splicing (Pruunsild et al. 2007) 

It was observed that there are eight distinct classes of transcripts. Transcription can 

start from exon I, II, III, IV, V, Vh, VI, VII and the splicing donor site of every one of 

these exons are linked at the acceptor site on exon IX. However, recently other 

splicing donor sites that lead to the generation of 5’ UTR regions were identified at 

exons II, VI and VII (Pruunsild et al. 2007). Transcription starts from the ATG 

sequence in exon IX, however, this sequence was also identified in exons I, VII and 

VIII let hypothesize the possibility to generate different BDNF transcripts with a 

longer N-terminal sequence (Pruunsild et al. 2007).  The exon IX, coding for the 

protein and the 3’UTR region, is subjected to internal splicing and has two 

alternative polyadenylation sites leading to two distinct mRNA populations 
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characterized by different lengths of the 3’UTR regions (Timmusk et al. 1993, An et 

al. 2008). 

 

   

 

      

 

 

 

 

 

 

 

Figure 5. Structure of the human BDNF gene.   

The human BDNF gene contains 11 exons (I-IX plus Vh and VIIIh), leading to the formation of 

different transcripts. The coding sequence for the BDNF protein is located at exon IX (Cattaneo et 

al. 2016). 

 

3.2.2 BDNF synthesis and secretion 

As all the neurotrophins, the BDNF is synthesized in the endoplasmic reticulum as 

a pre-proneurotrophin named pre-proBDNF. Pre-proBDNF is constituted by the pre-

domain, the pro-domain and the mature domain. Thanks to the pre-domain signal 

sequence, the immature form of the protein are carried to the Golgi apparatus where 

the proteolytic cleavage between the pre-domain and the pro-domain takes place, 

generating the proBDNF protein (Lu 2003, Foltran and Diaz 2016). This point, two 

regions of the prodomain, named box2 and box3, interact with the protein Sortilin, 

located intracellularly the Golgi apparatus that helps the correct folding of the 

proBDNF (Chen et al. 2005). Subsequently, proBDNF could undergo another 

proteolytic cleavage between the pro-domain and the mature domain, either at the 

intracellular or extracellular level. However, a certain amount of the protein could be 

secreted as proBDNF without undergoing any other proteolytic process (Foltran and 

Diaz 2016, Mizui et al. 2016). It was observed that the amount of proBDNF 

undergoing proteolytic cleavage or being release as it changes during different 

stages of brain maturation. During the post-natal phase, the majority of the protein 

is released as proBDNF, while after the complete maturation mature BDNF is the 

dominant one (Yang et al. 2014). Intracellular cleavage could take place or in the 
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Golgi apparatus thanks to the enzyme Furin or in the secretory vesicles of both the 

constitutive or regulated secretion pathway, thanks to different enzymes of the 

family of proconvertases (Lu, Pang, and Woo 2005). Extracellularly the proteolytic 

cleavage is mediated by Plasmin or different Metalloproteases enzymes (Pang et 

al. 2004).  

 

 

 

 

                     

 

 

 

 

 

 

Figure 6.  Schematic representation of the synthesis and maturation of BDNF.  

BDNF mRNA is translated in the endoplasmic to its Pre-ProBDNF protein form. Then the protein is 

shuttled to the Golgi apparatus and in intracellular vesicles where it is cleaved to its ProBDNF or 

mature BDNF isoforms and then addressed to the secretion pathways (Kowiański et al. 2018). 

            

Once the proBDNF protein is correctly folded, it could be addressed either to the 

constitutive or to the regulated secretion pathway. In the constitutive secretion 

pathway, ProBDNF and cleaved mature BDNF are loaded in small secretory 

granules that, fusing with the cellular membrane of the cell, release their content 

without any activation mechanism needed. This mechanism is typical of non-

neuronal cells. In neurons and cultured astrocytes, it was observed that proBDNF 
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and mature BDNF trafficking is mediated by bigger vehicles that run along the axons 

and are released at the dendrites after Ca2+ mediated depolarization (Mowla et al. 

2001).  It was observed that in the mature domain of BDNF there are 4 amino acids, 

Ile 16, Glu 18, Ile 105 and Asp 106, which are fundamental for the regulated 

secretion pathway. The substitution of one of them with a different amino acid, for 

example, an Alanine, determines a reduction in the regulated secretion and an 

increase of uncontrolled constitutive release with a deleterious effect on neuron 

network (Lou et al. 2005). The above-mentioned amino acid residues interact in the 

vesicles with basic amino acid residues of the protein Carboxypeptidase E (CPE), 

the receptor responsible for proBDNF and matureBDNF sorting through the 

regulated secretion (Cool et al. 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Schematic representation of the BDNF secretion via the regulated and constitutive 

pathways. In the constitutive secretion pathway, BDNF and ProBDNF are stored in small secretory 

granules and are release directly, without any activation mechanism. In the regulated secretion 

pathway, the BDNF prodomain binds to the sortilin, which is responsible for its correct folding. The 

mature domain of BDNF interacts with the carboxypeptidase E (CPE) and it is subsequently 

addressed to the site of release (Lu, Pang, and Woo 2005).   

 

3.2.3 Central and peripheral functions of BDNF  

During development, BDNF is fundamental for the differentiation and survival 

processes of the central and peripheral nervous system contributing to axons growth 

and dendritic morphology. In the terminal phases of development and in the 

developed system, BDNF is essential to maintain synaptic plasticity and the correct 

neuronal transmission (Bibel and Barde 2000, Binder and Scharfman 2004). BDNF 
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is found in all the cerebral areas, in particular, its protein levels are higher in the 

hippocampus, amygdala, cerebral cortex and hypothalamus (Katoh-Semba et al. 

1997). Several studies showed that alteration in the BDNF level is associated with 

the onset and progression of neurodegenerative and neuropsychiatric disorders 

such as Parkinson's’, epilepsy, psychosis, anxiety, and depression (Nagahara and 

Tuszynski 2011, Lu et al. 2013). Focusing on major depression, it was observed 

that in autoptic samples of depressed patients, the protein level in the prefrontal 

cortex and hippocampus are reduced if compared to controls (Dwivedi et al. 2003) 

and that BDNF level is increased after antidepressant treatment (Chen et al. 2001).  

Regarding stress, studies on animal models and patients clearly showed that this 

condition is associated with a reduction of BDNF, in particular in the hippocampus 

and in the medial prefrontal cortex where BDNF mediates structural and 

neurotrophic support to neurons (Duman 2004) (Smith et al. 1995a). Stressful 

conditions, hyper activating the HPA-axis and enhancing cortisol release in the brain 

can mediate alterations in synaptic plasticity and neurogenesis (Duman and 

Monteggia 2006, McEwen 2007) and it was shown that cortisol over-stimulation is 

related to a reduction in glucocorticoid receptors and associated with lower BDNF 

synthesis and a reduction in the hippocampal volume (Duman 2004, Smith et al. 

1995a). 

Even if BDNF mRNA and protein level is detected at a high level in the central and 

peripheral nervous system, it must be underlined that it could also be found in 

peripheral organs such as liver, thymus, heart, lung, and spleen (Ernfors et al. 1990, 

Maisonpierre et al. 1990, Maisonpierre et al. 1991, Katoh-Semba et al. 1997). BDNF 

plays a role in angiogenesis, both in the early stages of heart development and in 

tumor-related one (Pearse et al. 2005, Yang et al. 2006). It was found that BDNF 

plays a critical role during cardiovascular system development (Caporali and 

Emanueli 2009). The expression of BDNF and its receptor TrkB is detectable from 

the first phases of fetal development (Kermani and Hempstead 2007) and it was 

observed that lacking BDNF is associated to endothelial cells apoptosis and 

reduction of cell-to-cell contact in developing cardiac vessels, leading to reduced 

contractility, haemorrhage and perinatal death (Donovan et al. 2000). In addition, 

BDNF and TrkB are essential in the adult cardiovascular system and are directly 

involved in the neovascularization that is observed after heart ischemia (Kermani et 

al. 2005). Angiogenesis could be mediated by two distinct but connected 
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mechanism. BDNF can directly stimulate the endothelial cells present in the vessel 

and expressing TrkB thus contributing to their survival or, alternatively, can act as a 

chemotactic factor enhancing the mobilization and recruitment of myeloid cells 

expressing TrkB receptor (Kermani et al. 2005, Kermani and Hempstead 2007). 

Of note, blood circulating cells such as lymphocytes and monocytes are able to 

produce BDNF (Edling et al. 2004, Kerschensteiner et al. 1999, Schulte-Herbrüggen 

et al. 2005) and it is reported that self-produced BDNF is essential for eosinophils 

to survive and sustain the allergic response (Nockher and Renz 2005, Raap et al. 

2005). BDNF can be detected in both plasma and serum but in different 

concentrations. Serum BDNF levels are 20 to 100-fold the ones found in plasma 

and this can be explained by the fact that BDNF is released from platelets (Fujimura 

et al. 2002) and leukocytes (Tuck et al. 2009) during the clotting process (Amadio, 

Sandrini, et al. 2017). BDNF is present in platelets and can be found in two distinct 

pools: cytoplasmic and stored in α-granules representing respectively 70 and 30% 

of the total content. Of note, it was demonstrated that after platelet activation by 

PAR1, only the BDNF contained in α-granules is secreted (Fujimura et al. 2002) 

along with other factors contained only in these reservoirs such as VEGF (Italiano 

et al. 2008). Different studies tried to understand the origin of platelet BDNF.  

Tamura et al showed that BDNF is expressed in human megakaryoblastic 

leukaemia MEG-01 cell line only after stimulation with TPO and cytokines (Tamura 

et al. 2012), and one of the most recent publication definitely provide evidence that 

BDNF is expressed in human and rat megakaryocytes while it is not in mice ones 

(Chacón-Fernández et al. 2016), supporting the theory that BDNF platelets derived 

from their progenitors cells, the megakaryocytes. 

However, platelets can also take-up BDNF from the environment through a 

mechanism not identified yet (Serra-Millàs 2016). Understanding the origin of 

platelet BDNF could be important in order to clarify the biological meaning of plasma 

and serum BDNF which levels have been often associated with different 

pathologies. Low level of plasma BDNF has been correlated with an increased risk 

to develop myocardial infarction (Manni et al. 2005), and represent an independent 

predictor of 4-year coronary and all-cause mortality (Jiang et al. 2011).  Similarly, 

low serum BDNF was been associated with the increased risk of CVD and mortality 

(Kaess et al. 2015). Interestingly, a higher level of serum BDNF was found in the 

blood samples of patients with unstable angina versus the ones with stable angina 
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and this level positively correlates with soluble P-selectin  (Lorgis et al. 2009, Ejiri et 

al. 2005), supporting the link between circulating BDNF and platelet activation.  

Moreover, BDNF regulates many functions of the immunity system both in the 

nervous system and in peripheral tissues. It was shown that after physical lesions, 

neurodegeneration or infective and autoimmune diseases in the nervous system, 

activated T and B lymphocytes as well as oligodendrocytes release an important 

amount of BDNF contributing to neuroprotection and reducing neuronal damage 

(Kerschensteiner et al. 1999). In peripheral tissues, the BDNF released from the 

cells of the immune system was shown to have an immunomodulatory effect (Asami 

et al. 2006).  

BDNF released from macrophages stimulates in an autocrine way their phagocytic 

activity and promoting IL-11β secretion through the activation of full length and 

truncated TrkB receptors (Asami et al. 2006). Moreover, it seems that BDNF could 

play an important role in the onset and progression of atherosclerotic plaque 

vulnerability. In animal models, BDNF and its receptor TrkB were shown to be highly 

expressed in atherosclerotic coronaries and this is associated with enhanced 

infiltration of mononucleated cells, activation of metalloproteases and stimulation of 

PAI-1 production by endothelial cells (Pepper 2001, Sun et al. 2006). In 

pathognomonic atherosclerotic coronary arteries, BDNF was found to co-localize 

with macrophages and smooth muscle cells and within cells of intima and adventitia 

(Ejiri et al. 2005). It seems that high levels of BDNF could contribute to the onset 

and progression of the atherosclerotic lesion through a mechanism of oxidative 

injury since it was shown that in vitro treatment of smooth muscle cells with BDNF 

is able to enhance their oxidative stress (Lorgis et al. 2009). 

In addition, BDNF has a role in the regulation of the energetic homeostasis of the 

organism and alterations are related to metabolic dysfunction. 

It was demonstrated that TrkB receptors are abundantly expressed in the 

hypothalamus and in the dorsal vagal complex that are the two main brain areas 

associated with the regulation of food intake and energy homeostasis (Conner et al. 

1997, Yan et al. 1997). BDNF, stimulating TrkB receptors and acting as an effector 

of the melanocortin signal pathway in these areas is able to exert its anorectic 

function (Bariohay et al. 2005) (Lebrun et al. 2006). This role of BDNF was 

understood thanks to genetically modified animal models in which heterozygous 

deletion of the BDNF gene (Kernie, Liebl, and Parada 2000), and reduction of the 



Introduction 

38 
 

expression of TrkB (Xu, Goulding, et al. 2003) were associated with higher food 

intake and obesity. These data were confirmed in humans where 58% of children 

carriers deletion of chromosome 11p have heterozygous BDNF deletions and higher 

Body Mass Index (BMI). By 10 years of age, 100% of the patients with BDNF 

deletion were obese (Han et al. 2008). Moreover, Genome-Wide Association 

Studies (GWAS) showed a clear association between variants in genetic loci close 

to BDNF gene and obesity, body weight and body mass index (BMI) (Thorleifsson 

et al. 2009, Speliotes et al. 2010). 

Starting from this evidence, different research groups tried to identify the role of 

BDNF in the adipose tissue. Firstly, it was demonstrated that BDNF levels decrease 

gradually during adipogenesis (Cheung et al. 2007, Bernhard et al. 2013) and that 

it is silencing in pre-adipocytes leads to a reduction in the differentiation ability 

(Bernhard et al. 2013). Interestingly, Adipoq-BDNF conditional knock-out mice show 

no difference in BDNF protein content in the adipose tissue when compared to WT 

littermates, suggesting that mature adipocytes do not contribute to BDNF 

production. On the contrary, Fabp4-BDNF conditional knock-out, determining a 

deletion not only in adipocytes but also in other cell types such as afferent nerve 

fibers and macrophages (Fu, Luo, and Lopes-Virella 2000, Martens, Bottelbergs, 

and Baes 2010), has low BDNF levels (Nakagomi et al. 2015). These studied 

provide evidence that the major sources of BDNF in adipose tissue are represented 

by macrophages, pre-adipocytes and other stromal-vascular components (Barouch 

et al. 2001, Nakagomi et al. 2015). 

Overall, these data clearly show an important role of BDNF in non-neuronal 

physiology and pathology, thus making new efforts necessary for the 

comprehension of its mechanisms of action. 

 

3.2.4 The BDNF Val66Met polymorphism 

BDNF gene is found to be subject to several mutations of its sequence, most of 

which are single-nucleotide polymorphisms (SNPs). Among them, the most 

characterized is the one known as rs6265, which involves a guanine to adenine 

(G>A) substitution at nucleotide 196 (G196A). This single nucleotide substitution 

leads, during the translation process, to the insertion of a methionine instead of 

valine in position 66 (Val66Met) of the prodomain of BDNF protein (Egan et al. 

2003). This polymorphism is present only in humans and its allelic frequency is 20-
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30% among the Caucasian population (Hashimoto, Shimizu, and Iyo 2004) and up 

to 40-50% among the Asian population (Choi et al. 2006). If the heterozygous form 

of the SNP per se is not associated with pathological conditions, the homozygous 

one is associated to reduction of hippocampal volume and consequent poor 

performance on hippocampal-dependent memory tasks (Egan et al. 2003) and 

higher susceptibility to develop neuropsychiatric disorders such as Alzheimer’s 

disease (Ventriglia et al. 2002) Parkinson’s disease (Momose et al. 2002), 

schizophrenia (Neves-Pereira et al. 2005, Rosa et al. 2006), schizoaffective disorder 

(Lencz et al. 2009), bipolar disorder (Sklar et al. 2002, Müller et al. 2006), anxiety 

and major depression (Hosang et al. 2014, Zhao et al. 2018). The molecular 

mechanism(s) by which the mutation leads to this phenotype is not totally clarified 

yet. The most accepted hypothesis is that this is the consequence of a reduction in 

the regulated secretion of the mature form of the protein due to the fact that the 

mutation in the prodomain region alters the interaction with the protein Sortilin 

involved in BDNF maturation (Chen et al. 2004, Chen et al. 2005). At the moment, 

no crystallized structures of BDNF protein containing the Val66Met mutation and the 

surrounding amino acidic residues are available. However, a recent in silico analysis 

showed that the mutated protein has no difference in flexibility and surface-to-

volume ratio while it affects essential motions, hydrogen-bonding and secondary 

structure particularly at its pre and pro-domain supporting the hypothesis that the 

mutation has a role in BDNF folding and maturation (De Oliveira et al. 2019). 

Interestingly, it was also observed that the prodomain could be actively secreted by 

neurons and that in presence of the Val66Met polymorphism it can act as an 

independent ligand for the receptor SorCS2 which, coupling with p75NTR, is able 

to inhibit axonal growth (Anastasia et al. 2013). As already reported, BDNF can be 

measured in plasma or serum and different studies were carried out to understand 

if the Val66Met polymorphism is accompanied by a different level of circulating 

BDNF. Interestingly, in healthy subjects, this polymorphism was associated with 

higher levels of mature BDNF in serum (Lang et al. 2009), while no differences were 

found in plasma BDNF l (Tramontina et al. 2007, Karege et al. 2005, Terracciano et 

al. 2010). Reduced BDNF levels were detected in patients with depression 

(Bocchio-Chiavetto et al. 2010), while no information is available about the levels of 

BDNF in cardiovascular patients carrying Val66Met polymorphism.  However, these 

results must be analyzed in a critical way since there are no standardized 
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procedures accepted overall and that different articles showed how the 

measurement of BDNF level in plasma and serum could be subjected to several 

biases due to the method of sample collection and manipulation and the  time and 

temperature of storage (Amadio, Sandrini, et al. 2017, Zuccato et al. 2011).  

As well as for other polymorphism correlated with mood disorders (Bondy 2007), 

also the Val66Met SNP was found to be associated with cardiovascular disease. In 

particular, it was shown that homozygous carriers of the Met with concomitant 

history of major depressive disorder have a higher risk to develop coronary artery 

disease (Bozzini et al. 2009, Liu et al. 2014). In addition, it was recently 

demonstrated that mice carrying the polymorphism in homozygosis present a pro-

thrombotic phenotype related to platelet hyperactivation, altered coagulation system 

and enhancement of proteins involved in inflammation and thrombosis (Amadio, 

Colombo, et al. 2017). Of note, also in a cohort of patients the presence of the 

polymorphism in homozygosis is associated with a higher propensity for arterial 

thrombosis related to acute myocardial infarction (Amadio, Colombo, et al. 2017).  

On the contrary, Jiang et al. demonstrated that the BDNF Met/Met genotype has a 

protective effect on the occurrence of unstable angina pectoris (Jiang et al. 2009). 

In line with this data, the CATHGEN study at Duke University Hospital showed that 

the Val/Val genotype was associated with a higher risk than Met carriers for clinical 

CVD events, with greater odds of having more diseased vessels, and lower left 

ventricular ejection fraction (Jiang et al. 2017). 

As already reported, the alteration in the BDNF signal pathway is associated with 

HPA-axis dysfunctions. In line with this, it was found that an animal model carrying 

the Val66Met polymorphism shows a reduction in cortisol response when compared 

to wild-type after a standardized stress protocol (Alexander et al. 2010). 
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1 Aim of the study 

Despite the huge growth in knowledge and advances in the prevention and 

treatment of cardiovascular disease (CVD), this pathology is still the leading cause 

of morbidity and mortality in the world, reaching 23.3 million by 2030 (Mathers and 

Loncar 2006). It was recently reported that canonical risk factors for CVD are 

predictors of about 75% of total morbidity and mortality, raising the awareness on 

the need to identify new dynamics involved in the onset and progression of these 

pathologies (Strike and Steptoe 2004). Interestingly, environmental factors such as 

stress, depression, and anxiety were recently included as new risk factors for CVD. 

Indeed, it was demonstrated that they may not only modulate the onset and 

progression of CVD but also influence the response to pharmacological treatments 

(Cohen, Edmondson, and Kronish 2015). This evidence made necessary to raise 

the awareness in clinical practice and to coin the term “behavioral cardiology” in 

which importance should be given to  “the recognition that adverse lifestyle 

behaviors, emotional factors, and chronic life stress can all promote atherosclerosis 

and adverse cardiac events” (Rozanski et al. 2005). In particular, the role of the new 

discipline would be a deeper understanding of the pathophysiology of behavior-

related CVDs and the development of effective therapeutic interventions both for 

modifying high-risk lifestyles and behaviors and for reducing psychosocial risk 

factors for patients. Besides the canonical pharmacological intervention, a growing 

body of literature showed that psychological pathologies might benefit from physical 

activity and exercise. In particular, it was shown that regular activity is associated 

with a better level of self-esteem and mood state and lower stress and anxiety levels 

(Anderson and Shivakumar 2013, DeBoer et al. 2012). In addition, the 2016 

European Guidelines on CVD prevention in clinical practice (Piepoli et al. 2016), 

strongly recommended regular physical exercise (PE) as management for the 

prevention and treatment of CVD both in healthy people and patients with metabolic 

disorders. Regular PE was found to be able to reduce systemic inflammation, 

improve endothelial function, decrease platelet and leukocyte activation and halt the 

progression of coronary stenosis (Bruunsgaard 2005, Ertek and Cicero 2012, 

Schuler, Adams, and Goto 2013, Winzer, Woitek, and Linke 2018, You et al. 2013). 

In this context, the common human BDNF Val66Met variant through the reduction 

of the activity-dependent secretion and signaling of mature BDNF, is associated not 

only to neuropsychiatric disorders, anxiety and a higher susceptibility to stress (Tsai 
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2018), but was also found to contribute to the individual propensity for arterial 

thrombosis related to AMI in a human cohort (Amadio, Colombo, et al. 2017) and to 

eating disorders and obesity (Beckers et al. 2008, Wu et al. 2010, Xi et al. 2013, 

Zhang et al. 2014, Zhao et al. 2014). Interestingly, a knock-in mouse carrying the 

human BDNF Val66Met polymorphism well recapitulate all these disorders 

observed in human patients showing a depression-like/anxiety related-behavior and 

a significantly higher body weight than wild-type littermates (Chen et al. 2006), 

associated with a pro-inflammatory and pro-thrombotic phenotype (Amadio, 

Colombo, et al. 2017). Interestingly, stressful conditions unveil the 

anxious/depressive-like behavioral phenotype in heterozygous BDNFVal66Met 

(BDNFVal/Met) mice. In addition, it was found that in homozygous Met mice the 

beneficial effect of exercise on neurobiological changes is impaired. These data 

suggest an important involvement of Met allelic mutation in terms of gene-

environment interaction (GxE) regarding the behavioral profile. However, no data 

are available regarding these GxE interactions in terms of cardiovascular risk. 

Starting from this evidence, the aim of this study was to highlight the impact of the 

interplay between Met allele environmental factors on the risk of arterial thrombosis. 

To reach this goal, homozygous (BDNFMet/Met) and heterozygous (BDNFVal/Met) 

mutant mice carrying the BDNFVal66Met mutation underwent spontaneous physical 

exercise or restraint stress protocols respectively as means to evaluate positive or 

negative environmental factors. 

Homozygous BDNFMet/Met mice were used to evaluate the possible positive effect 

of physical exercise in relationship to Met allele since it is demonstrated that this 

animal model per se displays a higher body weight and a pro-thrombotic phenotype.  

Heterozygous BDNFVal/Met mice were used to evaluate the possible negative 

effect of chronic stress in relation to the presence of the Met allele since it is 

demonstrated that this model does not show per se a pro-thrombotic phenotype.  

Attention was given to understand the cellular mechanism(s) at the bases of the 

changes observed.  

In particular: 

1) to investigated the positive effect of life-style in preventing the propensity of 

thrombosis, homozygous BDNFMet/Met mice were exposed for four weeks to 

voluntary physical exercise and adipose tissue profile and pro-thrombotic 

phenotype has been evaluated  
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2) to assess whether stressful conditions unveil the prothrombotic phenotype in 

heterozygous BDNFVal/Met mice were exposed for seven days to sub-chronic 

stress and platelet activation, bone-marrow megakaryocyte profile, as well as 

gene expression of the arterial vessel wall, was analysed  .
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1 Characterization of the white adipose tissue depots in 

BDNFMet/Met mice. 

As previously reported in the literature, we observed that BDNFMet/Met mice have a 

significantly higher body weight when compared to BDNFVal/Val (34.75 ± 2.56 g. vs 

31.25 ± 1.15 g, p < 0.01) (Figure 1A). Of note, the percentage of both inguinal white 

adipose tissue (ingWAT) and epididymal white adipose tissue (epiWAT) on total 

body weight were significantly greater in BDNFMet/Met mice compared to BDNFVal/Val 

(Figure 1B and 1C). 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Weight of white adipose tissue depots in BDNFVal/Val and BDNFMet/Met mice. (A) 

Bodyweight, percentage of (B) inguinal (ingWAT) and (C) epidydimal (epiWAT) white adipose tissue 

on total mouse body weight. (i) Data are expressed as mean ± SEM. n = 6 mice/group. Student’s t-

test. ** p < 0.01. 

 

Adipose tissue depots were analysed by histological examination, showing no 

difference in the frequency distribution of adipocyte sizes in ingWAT, while in the 

epiWAT the BDNFMet/Met mice showed enrichment in small-size and a reduction in 

middle-size adipocytes when compared to BDNFVal/Val (Figure 2). 
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Figure 2. Representative images and adipocytes size distribution of white adipose tissue 

depots in BDNFVal/Val and BDNFMet/Met mice. Representative hematoxylin and eosin (H&E) staining 

images and analysis of the frequency distribution of adipocyte sizes in ingWAT and epiWAT. Size 

bar: 100 µm. Black arrow: large adipocytes, green arrow: medium adipocytes and red arrow: small 

adipocytes. Data are expressed as mean ± SEM. n = 6 mice/group. Student’s t-test. * p < 0.05, 

 

Then the molecular signature underlying the distinct morphological feature of the 

epiWAT has been investigated. The expression of Pparγ, C/ebp-α and C/ebp-β 

genes, key regulators of the adipogenic program, along with Adipoq are reduced in 

BDNFMet/Met than BDNFVal/Val mice, while no differences were found regarding the 

expression of Fabp4 (Figure 3A). BDNF Val66Met polymorphism was also 

associated with an increase in the mRNA level of Adra2a, Sirt1, and Sorl1, genes 
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known to regulate energy balance and adipocyte morphology (Figure 3A, 3B and 

3C).  

The epiWAT of BDNFMet/Met mice displayed a pro-inflammatory profile with increased 

expression levels of Il-6, Tnf-α, Tgf-β, Mcp-1, and Pai-1 when compared to 

BDNFVal/Val, although a similar mRNA level of TF was found (Figure 3B).  

Concomitantly with the enhanced inflammatory profile, epiWAT of BDNFMet/Met was 

accompanied by greater expression of CD80, an M1 inflammatory macrophage 

marker, and with a reduction of CD163, an alternatively activated M2 macrophage 

marker (Figure 3B).  

Of note, BDNFMet/Met mice have a higher BDNF mRNA level in epiWAT. Interestingly, 

epiWAT expresses the TrkB-full length and the TrkB-T1 of the BDNF receptors while 

no mRNA for the Trk-T2 truncated isoform was detected. no differences were found 

between the genotypes. The expression of TrkB-full length and the TrkB-T1 did not 

differ between the two genotypes (Figure 3C) 

 

 

 

 

 

  

 

 

 

Figure 3. Gene expression profile of epidydimal white adipose tissue (epiWAT) in BDNFVal/Val 

and BDNFMet/Met mice. mRNA levels of genes related to (A) adipogenesis, (B) inflammation and (C) 

BDNF/TrkB pathway in epidydimal white adipose tissue (epiWAT) of BDNFVal/Val and BDNFMet/Met 

mice. Data are expressed as mean ± SEM. n = 6 mice/group. Student’s t-test. * p < 0.05, ** p < 0.01, 

*** p < 0.005. 
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2 Evaluation of the role of mutant BDNFVal66Met protein on 

adipogenesis. 

To understand the impact of the mutated BDNF Val66Met protein on adipogenesis, 

in vitro studies were performed. Pre-confluent C3H10Ts1/2 murine mesenchymal 

stem cells were stimulated with ProBDNFVal or ProBDNFMet synthetic peptides 

and then the adipogenic program was induced.  

Flow cytometry analysis revealed that ProBDNFMet treatment is able to decrease 

the percentage of cells with low granularity (non-induced; R1) and increased those 

with high granularity (R4) both at 3 and 9 days post-induction (Figure 4A). In 

addition, similar levels of lipid accumulation, evaluated with Oil-Red-O staining, were 

found on day 9 when comparing the cells treated with the two peptides (Figure 4B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of proBDNFMet on adipogenic differentiation of C3H10T1/2 cells. (A) 

Percentage of different cells population based on their granularity profile analyzed by flow cytometry 

(R1: noninduced, R2-R3: growing granularity, R4: high granularity) on day 3 (D3), day 5 (D5) and 

day 9 (D9) of differentiation. (B) Representative images of Oil-Red-O staining and absorbance 

measurement in C3H10T1/2 cells. Data are expressed as mean ± SEM. n = 5 independent 

experiments/group. Student’s t-test. * p < 0.05, ** p < 0.01, and *** p < 0.005. 
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Interestingly, the analysis of the expression profile of the genes Pparγ, C/ebp-α, and 

C/ebp-β, which are involved in adipogenesis, showed a reduction in their level in 

fully differentiated cells (day 9) after treatment with ProBDNFMet.  

In this experimental condition, among the genes that were previously modulated in 

epiWAT of BDNFMet/Met mice, only Sorl1 was enhanced by the ProBDNFMet 

treatment at late stages of differentiation (day 9) (Figure 3A and Figure S1).  

 

Figure 5. Effect of proBDNFMet on adipogenic differentiation of C3H10T1/2 cells. Analysis of 

the transcript levels of genes involved in adipogenesis. Data are expressed as mean ± SEM. n = 5 

independent experiments/group. Two-way ANOVA followed by Bonferroni post hoc analysis. * p < 

0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001. 
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3 Effect of physical exercise on adipose tissue phenotype of 

BDNFVal66Met mice 

According to International cardiovascular guidelines that recommend regular PE as 

management for the prevention and treatment of CVD, we evaluated the potential 

beneficial effect of PE on adipose tissue and on the pro-thrombotic phenotype in 

BDNF Val66Met knock-in mice.  

BDNFVal/Val and BDNFMet/Met mice underwent 4 weeks of free voluntary exercise in 

cages equipped with a running wheel. As previously reported, no difference in the 

daily running distance was found between BDNFVal/Val and BDNFMet/Met mice 

(BDNFVal/Val: 6.676 ± 0.720 Km and BDNFMet/Met 6.657 ± 0.602 Km; p = 0.9837). In 

addition, we showed that PE did not affect the percentage of ingWAT and epiWAT 

on the total body weight in both BDNFVal/Val and BDNFMet/Met mice, compared to 

sedentary mice (Figure 6). 

 

Figure 6. Impact of free voluntary exercise on the mass of adipose tissue depots. (A) Inguinal 

(ingWAT) and (B) epidydimal (epiWAT) white adipose tissue mass on total mouse body weight. Data 

are expressed as mean ± SEM. n = 6 mice/group. Two-way ANOVA followed by Bonferroni post hoc 

analysis. * p < 0.05, ** p < 0.01, and **** p < 0.001. 

 

PE-induced a change in the profile of the frequency distribution of adipocyte sizes 

in the ingWAT of both genotype. However, this effect was more evident in 

BDNFVal/Val than in BDNFMet/Met mice (Figure 7A). Interestingly, in the epiWAT, 

BDNFVal/Val running mice displayed a significant enrichment in small-size adipocytes 

and a reduction in medium-size ones compared to sedentary mice, whereas 

BDNFMet/Met mice showed an opposite trend, even if less marked (Figure 7B). 
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Figure 7. Impact of free voluntary exercise on epiWAT morphology. Representative hematoxylin 

and eosin (H&E) staining images and analysis of the frequency distribution of adipocyte sizes in (A) 

ingWAT and (B) epiWAT. Data are expressed as mean ± SEM. n = 6 mice/group. Student’s t-test. * 

p < 0.05, ** p < 0.01, **** p < 0.001. 

 

Val/Val Met/Met 

S
E

D
 

R
U

N
 

Val/Val Met/Met 

S
E

D
 

R
U

N
 

A 

B 



Results I 

53 
 

Notably, PE strongly influenced the gene expression profile of epiWAT. In particular, 

in BDNFVal/Val, 4 weeks of PE enhanced the mRNA level of Adipoq, whereas it did 

not modify the expression of genes involved in the adipogenic program (Figure 8A) 

and into inflammation compared to the sedentary ones. In BDNFMet/Met mice, PE was 

not sufficient to affect the expression of adipogenic genes, but it was sufficient to 

improve the inflammatory profile, decreasing the expression of Il-6, Tnf-α, Tgf-β, 

Mcp-1 and Pai-1 (Figure 8B), and to switch the M1/M2 macrophage polarization, 

reducing the expression of CD80 and increasing the expression of CD163, (Figure 

8C).  

In addition, the expression of Sorl1 was markedly reduced by PE in both BDNFVal/Val 

and BDNFMet/Met mice, whereas Adra2a and Sirt1 were only slightly but not 

significantly decreased in BDNFMet/Met running mice (Figure 8A and 8B). PE 

modulated conversely the BDNF expression in the two groups of mice. In particular, 

BDNF mRNA levels increased in BDNFVal/Val running mice and reduced in 

BDNFMet/Met running when compared to their respective sedentary controls. Of note, 

the expression of both TrkB-full length and TrkB-T1 isoform was slightly but not 

significantly increased in both groups of mice after exercise (Figure 8C). 
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Figure 8. Impact of free voluntary exercise on the gene expression profile of adipose tissue 

isolated from BDNFVal/Val and BDNFMet/Met mice. (A) Adipogenesis, (B) inflammation and (C) 

BDNF/TrkB pathway-related mRNA levels in epiWAT of sedentary and running BDNFVal/Val and 

BDNFMet/Met mice. Data are expressed as mean ± SEM. n = 6 mice/group. Two-way ANOVA followed 

by Bonferroni post hoc analysis. * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001. 
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4 Effect of physical exercise on pro-thrombotic phenotype in 

BDNFMet/Met mice 

Finally, we investigated the ability of 4 weeks of PE to improve the pro-thrombotic 

phenotype already observed in BDNFMet/Met [23], in terms of platelet and leukocyte 

aggregates and arterial thrombosis FeCl3-induced. 

As previously shown, in the BDNFMet/Met mice there was a higher number of 

circulating blood cells, platelet activation state and enhanced arterial thrombosis 

[23]. PE restored the physiological number of platelets and leukocytes, and the 

natural percentage of platelet/leukocyte aggregates in response to ADP in 

BDNFMet/Met mice, without affecting significantly these parameters in BDNFVal/Val 

mice (Figure 9). 

 

 

 

 

 
 

Figure 9. Effect of voluntary physical exercise (PE) on the prothrombotic phenotype of 

BDNFVal/Val and BDNFMet/Met mice. Number of circulating platelets, leukocytes and percentage of 

platelet/leukocytes in whole blood analyzed by flow cytometry measured in sedentary and running 

BDNFVal/Val and BDNFMet/Met mice. n = 6 mice/group. Two-way ANOVA followed by Bonferroni post 

hoc analysis. ** p < 0.01, *** p < 0.005. 

 

FeCl3 application to carotid artery reduced the blood flow in all BDNFMet/Met 

sedentary mice, leading to a stable occlusion in 100% of mice, whereas only a slight 

reduction was observed in BNDFVal/Val mice. Of note, PE ameliorated arterial 

thrombosis, preventing completely the occlusion of the carotid artery in BDNFMet/Met 

mouse group (Figure 10A and 10B). 

Overall, these data show that a paradigm of 4 weeks of free voluntary exercise is 

able to prevent the pro-thrombotic phenotype of BDNFMet/Met mice. 
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Figure 10. Effect of free voluntary exercise on the pro-thrombotic phenotype of BDNFVal/Val 

and BDNFMet/Met mice. (A) Arterial thrombosis induced by topical application of FeCl3 to the carotid 

artery and blood flow monitored in sedentary and running BDNFVal/Val and BDNFMet/Met mice. (B) Time 

to thrombotic occlusion. Data are expressed as mean ± SEM. n = 6 mice/group. Two-way ANOVA 

and Three-way ANOVA with repeated measures followed by Bonferroni post hoc analysis. ** p < 

0.01, *** p < 0.00
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1 Discussion I 

Although mutations, as well as genetic variants of BDNF have been associated with 

increased in body weight and eating disorders in both human and animal models 

(Chen et al. 2006, Ieraci et al. 2016, Kernie, Liebl, and Parada 2000, Lebrun et al. 

2006, Lyons et al. 1999, Monteleone and Maj 2013, Nakazato et al. 2012, Noble et 

al. 2011, Rosas-Vargas, Martínez-Ezquerro, and Bienvenu 2011, Speliotes et al. 

2010, Thorleifsson et al. 2009), the factors and mechanisms involved still remain to 

be elucidated. Nowadays, it is known that BDNF-TrkB signaling is an important 

downstream target of melanocortin 4 receptor (MC4R) pathway involved in the 

regulation of energy balance and food intake (Rosas-Vargas, Martínez-Ezquerro, 

and Bienvenu 2011, Xu, Barnes, et al. 2003, Yeo et al. 2004). After confirming 

literature data showing a higher bodyweight of BDNFMet/Met mice compared to 

BDNFVal/Val, we found that this difference is mainly determined by an increase in the 

mass of epiWAT and ingWAT. Histological analyses clearly showed a substantial 

difference in adipocytes size distribution in the epiWAT, with enrichment in small-

size cells in BDNFMet/Met mice. The higher epiWAT mass associated with a higher 

number of small adipocytes, might trace back to hyperplasia, a well-known 

mechanisms of defense that the adipose tissue can undergo in obesity after a 

threshold of hypertrophy is reached (Choe et al. 2016, Heilbronn, Smith, and 

Ravussin 2004, Jernås et al. 2006). 

In support of this statement, we observed a higher expression of Adra2a and Sorl1 

in the epiWAT of mutant mice. In particular, besides the known anti-lipolytic effect 

exercised by Adra2a activation, it was demonstrated that Adra2a overexpression is 

associated with adipose tissue hyperplasia in animal models (Valet et al. 2000). This 

data was confirmed by human studies were the increased in alpha-/beta- 

adrenoreceptor ratio, as well as gain-of-function mutations of the Adra2, are 

associated with obesity (Lafontan et al. 2002, Långberg et al. 2013, Moro et al. 

2005). In addition, the alteration in Sorl1 expression suggests the role of this gene 

in metabolic disease. In particular, the upregulation of the expression of Sorl1, gene 

coding for the protein Sorla, has been related to reduced lipolytic activity in 

adipocytes (Schmidt et al. 2016) and GWAS analyses have associated Sorl1 with 

obesity in humans and in mouse models (Smith et al. 2010, Thorleifsson et al. 2009). 

The paradigm that overweight and obesity are related to adipose tissue 

inflammation, that is partially responsible for the systemic low-grade inflammation 
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found in people affected by these conditions is well established (Ellulu et al. 2017). 

Of note, we found that the accumulation of epiWAT in BDNFMet/Met mice was 

accompanied by a higher expression of the M1 pro-inflammatory marker CD80, of 

the monocyte chemoattractant protein-1 (Mcp-1) and of the mediators of 

inflammation such as Pai-1, Tnf-alpha, and Il-6.  

The connection between adipose tissue inflammation and thrombosis may be well 

explained by the relationship between the higher levels of inflammatory transcripts 

and the great number and activation state of circulating leukocytes and platelets. 

It is demonstrated that the onset and progression of thrombosis is strictly linked to 

the presence of inflammatory proteins in the circulation (Berg and Scherer 2005, 

Bodary 2007, Odrowaz-Sypniewska 2007) that are able to directly enhance platelets 

activation and leukocytes ability to produce in turn inflammatory factors such as Il-

6, Tnf and Cox-2 (Berg and Scherer 2005, Davì et al. 2002, Freedman et al. 2010, 

Furuncuoğlu et al. 2016, Santilli et al. 2012, Vilahur, Ben-Aicha, and Badimon 2017).  

The inflammatory profile observed in BDNFMet/Met mice could also be related to the 

reduced levels of Pparγ found in BDNF mutant mice. PPARγ, alongside the role of 

master regulator of adipogenesis, is also involved in the regulation of adipose tissue 

inflammation being able to down-regulate inflammatory adipokines. Specifically, 

PPARγ activation down-regulates the expression of inflammatory markers such as 

MCP-1 and TNFα and thus reduces inflammation in activated macrophages (Li et 

al. 2004, Okuno et al. 1998, Ricote et al. 1998, Xu, Barnes, et al. 2003). Moreover, 

PPARγ activation induces adiponectin expression thus further contributing to 

reducing chronic inflammation (Yamauchi et al. 2001).  

Here we showed for the first time that BDNF expression is enhanced in the epiWAT 

of mutant mice, supporting the hypothesis that BDNF Val66Met polymorphism could 

contribute to adipose tissue pathophysiology. Previous studies performed using 

BDNF-(si)RNA-mediated knockdown in the 3T3 cell line showed a reduced 

adipogenic differentiation ability, supporting the hypothesis that BDNF expression is 

of functional relevance for the adipogenic commitment. Indeed, after a first phase, 

BDNF expression is dramatically downregulated during adipocyte differentiation and 

mature adipocyte was found to contribute only marginally to the neurotrophin 

production in the adipose tissue (Bernhard et al. 2013). 
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Interestingly, we showed that the treatment of C3H10T1/2 cells with Pro-BDNFMet 

before the induction of cell commitment is able to well recapitulate the expression 

profile of genes found to be altered in the epiWAT of BDNFMet/Met mice.  

The reduction of Pparγ and the up-regulation of Sorl1 expression induced by Pro-

BDNFMet went along with the increased percentage of mature adipocytes evaluated 

by flow cytometry, suggesting a clear role of the BDNF polymorphism in 

adipogenesis. However, Pro-BDNFMet was not able to affect Adipoq and Adra2a 

as well as Pai-1 expression, let us hypothesize that the entire process of 

adipogenesis may involve factors deriving from the stromal vascular cells fraction. 

Indeed, it is suggested that mesenchymal progenitor/stem cells, preadipocytes, 

endothelial cells, pericytes, T cells, and macrophages and not mature adipocytes 

are the main source of adipokines and PAI-1 in adipose tissue, and that the stromal 

vascular fraction in the adipose tissue increases with increasing degree of obesity 

(Cancello and Clément 2006). Adipose tissue accumulation represents an 

independent and modifiable risk factor for CVD (Ortega, Lavie, and Blair 2016), and 

recently the European Guidelines of cardiology strongly recommended regular PE 

as a valuable management strategy for the prevention and treatment of CVD and 

metabolic disorders (Lee, Jackson, and Blair 1998, Piepoli et al. 2016). 

In the present study, we demonstrated that in mice carrying the BDNF Val66Met 

human polymorphism, four weeks of PE were sufficient to positively modulate 

epiWAT morphology and inflammatory profile with an associated reversion of the 

pro-thrombotic phenotype. Of note, PE was demonstrated to have an important role 

in the morphological changes observed in the adipose tissue, that can be ascribed 

to the improvement of the metabolic profile and lipolysis exerted by exercise through 

the reduction of the expression of Sorl1 and Adra2a (Polak et al. 2005, Schmidt et 

al. 2016, Stanford and Goodyear 2016). 

PE was demonstrated to have a positive effect not only by reducing adipose tissue 

accumulation (Woods, Vieira, and Keylock 2009, You et al. 2013), especially the 

visceral one (Bruun et al. 2006, Vieira et al. 2009), but also reducing chronic 

inflammation associated with different diseases (Goh, Goh, and Abbasi 2016).  

The beneficial effect of PE was found to be mediated by its ability to decrease 

mitochondrial dysfunction and to reduce oxidative stress through AMPK and PGC-

1α pathway (Kjøbsted et al. 2018, Lira et al. 2010), with a direct reduction of 

adipokines released from the adipose tissue. This reduction goes alongside with a 
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decrease of macrophage infiltration through the reduction of Toll-like receptors on 

monocytes and macrophages, that is able to limit macrophage M1 polarization (Goh, 

Goh, and Abbasi 2016). PE action is also mediated by the induced release of anti-

inflammatory molecules from skeletal muscle and leukocytes (Leal, Lopes, and 

Batista 2018). 

We showed that PE in BDNFMet/Met mice is able to decrease the transcript levels of 

inflammation mediators, to reduce classical activation (M1) of macrophages, and 

negatively affect the number of circulating leukocytes and platelets. These 

modifications are able to ameliorate the pro-thrombotic phenotype observed in 

mutant mice. Interestingly, the expression of Bdnf was found to be differently 

modulated by PE in the two genotypes, with an increase in its levels in BDNFVal/Val 

mice and a decrease in mutant mice. These results may be related to the different 

adipose tissue morphology found in the two genotypes, suggesting an important 

correlation between adipocyte dimension and BDNF levels. In fact, a higher 

percentage of small adipocytes was associated with high levels of Bdnf (e.g. 

sedentary BDNFMet/Met and running BDNFVal/Val), and vice versa, since low levels of 

the transcript were measured when the mean adipocyte dimension was higher (e.g. 

sedentary BDNFVal/Val and running BDNFMet/Met).  

The difference observed might be due to the different impact of the stromal vascular 

cell fraction involved during adipocytes turnover and also to the different contribution 

of the peripheral nervous system (Kim et al. 2014, Rigamonti et al. 2011, White and 

Ravussin 2019). In line with this hypothesis, it must be underlined that PE failed to 

enhance the mRNA of Bdnf in the central nervous system of BDNFMet/Met mice (Ieraci 

et al. 2016) with possible consequences also on the levels of BDNF transcript in the 

peripheral nervous system. Along with this, it is worth to be mentioned that, in 

opposite to data presented here regarding the beneficial effect of PE on adipose 

tissue inflammation and thrombosis, the same BDNFMet/Met murine model did not 

show beneficial neurobiological changes induced by exercise (Ieraci et al. 2016). 
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1 Sub-Chronic Restraint Stress (RS) induced activation of the 

hypothalamic-pituitary-adrenal axis and altered body weight 

To evaluate the possible impact of the BDNFVal66Met polymorphism on the 

response of the hypothalamic-pituitary–adrenal (HPA) axis during chronic stress, 

BDNFVal/Val and BDNFVal/Met mice underwent 7 days of sub-chronic restraint stress 

(RS). Both BDNFVal/Val and BDNFVal/Met stressed mice displayed a higher adrenal 

glands/body weight ratio, parameter that was used as a proxy of HPA axis activation 

and stress response. When compared to controls no differences were found 

between the genotypes, suggesting an equivalent response to stress (Figure 1A). 

Of note, 7 days of RS induced a progressive reduction in the bodyweight of 

BDNFVal/Val mice, while in BDNFVal/Met mice, after a reduction during the first 4 days 

of stress, the weight returned to basal levels during the following days (Figure 1B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Evaluation of stress response in BDNFVal/Val and BDNFVal/Met mice. Mice underwent 

Sub-chronic stress (RS) treatment for 7 days, 2 h/day. (A) Adrenal gland weight to bodyweight ratio. 

(B) Delta (Δ) body weight of stressed (RS) and not stressed (CTRL) BDNFVal/Val and BDNFVal/Met mice 

at day 4 and day 8. Data are expressed as mean ± SEM. n = 8 mice/group. Two-way ANOVA and 

three-way ANOVA with repeated measures followed by Bonferroni post hoc analysis, p values were 

obtained by using log-transformed variables. * p < 0.05, ** p < 0.01, **** p < 0.005 BDNFVal/Val (CTR) 

vs. BDNFVal/Val stressed (RS) mice, °°° p < 0.005 BDNFVal/Met (CTR) vs. BDNFVal/Met stressed (RS) 

mice and §§§§ p < 0.00015 BDNFVal/Val stressed (RS) vs. BDNFVal/Met stressed (RS) mice. 
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2 RS predisposed BDNFVal/Met mice to thrombosis 

It was previously shown that chronic stress is able to increased depressive-like and 

anxiety-like behaviours and to impair working memory in BDNFVal/Met mice through 

the hyperactivation of the HPA axis. Since the continuous stimulation of the HPA 

axis is known to be a potential mechanism by which stress may increase the risk of 

arterial thrombosis, we wanted to evaluate the possible interaction between stress 

and BDNF polymorphism regarding the thrombotic profile. To do this, we evaluated 

arterial thrombus formation in vivo after the topical application of FeCl3 to the 

exposed carotid artery. BDNFVal/Met stressed mice displayed a significant reduction 

in the blood flow soon after the starting of the measurements, while only a slight 

effect was observed in BDNFVal/Val stressed mice (Figure 2A). In line with this, a total 

occlusion (flow reduction >90%) was reached only in stressed BDNFVal/Met mice after 

an average time of 20 min (Figure 2B).  
Overall, these data show that sub-chronic stress is able to elicit the pro-thrombotic 

phenotype of BDNFVal/Met mice, while heterozygous Met allele per se is not sufficient 

to predispose to this condition. 
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Figure 2. Effect of restraint stress on arterial thrombosis in BDNFVal/Val and BDNFVal/Met mice. 

Arterial thrombosis was induced by the topical application of FeCl3 to the carotid artery in mice. (A) 

Blood flow in the carotid arteries of stressed (RS) and not stressed (CTRL) BDNFVal/Val and 

BDNFVal/Met mice groups. (B) Time to thrombotic occlusion. Data are expressed as mean ± SEM. n = 

6 mice/group. Two-way ANOVA and Three-way ANOVA with repeated measures followed by 

Bonferroni post hoc analysis, p values were obtained by using log-transformed variables. **p < 0.01 

and **** p < 0.001. 

 

3 RS increased circulating blood cell number and platelet 

activation state 

The analyses of circulating blood cells and platelet function in our experimental 

protocol showed the main genotype effect between BDNFVal/Val and BDNFVal/Met mice 

regarding those parameters. 

RS increased the number of leukocytes (Figure 3A) and platelets (Figure 3B), as 

well as the percentage of reticulated platelets (Figure 3C) in both BDNFVal/Val and 

BDNFVal/Met mice when compared to the control littermates (CTR). Remarkably, the 

effect of RS was more pronounced in BDNFVal/Met platelets than in BDNFVal/Val 

(Figure 3B, C). 

Figure 3. Effect of restraint stress on circulating blood cell number. Numbers of circulating (A) 

leukocytes and (B) platelets. (C) Percentage of reticulated platelets analysed by flow cytometry in 

stressed (RS) and not stressed (CTRL) BDNFVal/Val and BDNFVal/Met mice. Data are expressed as 

mean ± SEM. n = 6 mice/group. Two-way ANOVA followed by Bonferroni post hoc analysis, p values 

were obtained by using log-transformed variables. * p < 0.05, ** p < 0.01,  *** p < 0.01and **** p < 

0.001.  
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In addition, while in platelets the activation of integrin αIIbβ3 (GPIIbIIIa) (Figure 4A) 

and the expression of P-selectin (Figure 4B) in response to thrombin (THR) and 

ADP of BDNFVal/Val stressed mice was comparable to mice not exposed to RS, 

platelets from BDNFVal/Met stressed mice displayed a significant hyper-reactivity. 

 

Figure 4. Effect of restraint stress on platelet activation in BDNFVal/Val and BDNFVal/Met mice. (A) 

GPIIbIIIa activation (JON/A-PE antibody) and (B) P-selectin expression was evaluated by flow 

cytometry analyses in washed platelets at basal condition or after exposure to ADP (5 µM) or 

thrombin (THR 0.05 U/mL) from stressed (RS) and not stressed (CTRL) BDNFVal/Val and BDNFVal/Met 

mice. Data are expressed as mean ± SEM. n = 6 mice/group. Two-way ANOVA followed by 

Bonferroni post hoc analysis, p values were obtained by using log-transformed variables. * p < 0.05 

and ** p < 0.01. 

 

In addition, the percentage of platelet/leukocyte aggregates in response to ADP was 

enhanced in both BDNFVal/Val and BDNFVal/Met mice after RS when compared to their 

control littermates. However, this parameter was more markedly increased in 

stressed BDNFVal/Met mice compared to both BDNFVal/Met mice after RS and 

BDNFVal/Met control mice (Figure 5). 
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Figure 5. Effect of restraint stress on platelet/leukocyte aggregates in BDNFVal/Val and 

BDNFVal/Met mice. Percentage of platelet/leukocytes in whole blood isolated from stressed (RS) and 

not stressed (CTRL) BDNFVal/Val and BDNFVal/Met mice. Data are expressed as mean ± SEM. n = 6 

mice/group. Two-way ANOVA followed by Bonferroni post hoc analysis, p values were obtained by 

using log-transformed variables. * p < 0.05, ** p < 0.01 and *** p < 0.005.  

 

4  RS increased bone-marrow megakaryocytes number without 

affecting their maturation state 

To understand if the change in the number of platelets observed after RS derived 

from an alteration of the megakaryopoiesis, we performed immunocytochemistry 

analysis on the femur bone marrow. 

Analysis of the sections of femur bone marrow showed that the number of 

megakaryocytes (MKs) is enhanced in both stressed BDNFVal/Val and BDNFVal/Met 

mice (Figure 6 A and B). Nonetheless, MKs had similar dimensions (Figure 6C) and 

nuclear complexity (Figure 6D) and the analysis of size distribution showed a similar 

distribution in the mononucleated, binucleated, or polynucleated cell subpopulations 

among all the analyzed groups. 
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Figure 6. Effect of restraint stress on bone-marrow megakaryocytes. (A) Hematoxylin and Eosin 

(H&E) staining of bone marrow. Asterisks indicate MKs; (B) quantification of panel (A) expressed as 

megakaryocytes per field (40× magnification). Analysis of (C) area and of (D) nuclear complexity in 

megakaryocytes.from stressed (RS) and not stressed (CTRL) BDNFVal/Val and BDNFVal/Met mice. Data 

are expressed as mean ± SEM. n = 8 mice/group. Two-way ANOVA followed by Bonferroni post hoc 

analysis, p values were obtained by using log-transformed variables. * p < 0.05 and **** p < 0.001. 

 

5 RS altered the expression of Tissue Factor and BDNF but not 

the expression of Sirt1 

Since tissue factor (TF) activity is known to be modulated by stress (Stämpfli et al. 

2014), we decided to examine its expression and activity in carotid artery tissue. 

Interestingly, while TF activity was enhanced in both BDNFVal/Val and BDNFVal/Met 

stressed mice in carotid tissue (Figure 7A), RS induced TF mRNA expression only 

in BDNFVal/Met mice (Figure 7B). The analysis of Sirt1 mRNA expression, known to 

be an important modulator of TF and arterial thrombosis [29,30] did not find 

significant changes among all the groups analyzed (Figure 7C).  
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Interestingly, we found that BDNF expression was comparable between BDNFVal/Met 

and BDNFVal/Val mice, and RS reduced its expression in both genotypes but this 

decrease was greater in BDNFVal/Val mice (Figure 7D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Impact of restraint stress on Tissue Factor, BDNF and Sirt1 expression in arterial 

tissue. (A) Tissue Factor (TF) activity and (B) TF, (C) Sirt1, (D) BDNF mRNA levels in arterial tissue 

of stressed (RS) and not stressed (CTRL) BDNFVal/Val and BDNFVal/Met mice. Data are expressed as 

mean ± SEM. n = 8 mice/group. Two-way ANOVA followed by Bonferroni post hoc analysis, p values 

were obtained by using log-transformed variables. * p < 0.05, ** p < 0.01, and *** p < 0.005.  
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1 Discussion II 

The interaction between genes and environmental (GxE) factors were widely 

studied in the last few years, discovering that many multifactorial diseases, including 

CVD, may result from these relations (Svensson et al. 2017, Bondy 2007, Elosua 

2018). 

Of note, genetic variants of some neurotrophins, including the BDNF Val66Met, 

were found to make the carriers more susceptible to stressors (Hashimoto, Shimizu, 

and Iyo 2004). In line with this, a recent meta-analysis of gene-environment 

interaction showed an interaction between life stress and BDNFVal66Met 

polymorphism in relation to depression (Zhao et al. 2018). Here, we provide 

evidence that seven days of RS, already reported to promote anxiety/depressive-

like phenotype in heterozygous BDNF Val66Met (BDNFVal/Met) mice (Yu et al. 2012), 

are sufficient to unveil arterial thrombosis in BDNFVal/Met mice through the enhanced 

platelet activation and coagulation pathway.  

It has been hypothesized that the higher propensity to anxiety and depressive 

related disorder (Yu et al. 2012) observed in Met carriers may be due to dysfunctions 

in adrenergic and HPA axis (Alexander et al. 2010) and recently it was demonstrated 

that Met polymorphism has an influence on the cortisol responsivity to stress, 

thereby implying a Met-allele role in BDNF and cortisol integrative system (de Assis 

and Gasanov 2019). Indeed, a significant reduction in hippocampal volume (Frodl 

et al. 2007) and the hyperactivation of the amygdala (Montag et al. 2008) are 

observed in both Met allele carriers and in subjects under stressful conditions 

(Geuze, Vermetten, and Bremner 2005, Ressler 2010). In particular, hippocampal 

neurons are known to exert an inhibitory effect on the activation of the HPA axis, 

whereas the activity of the amygdala exerts a significant excitatory effect on the axis 

let hypothesizing common mechanism at the bases of these pathologies. A recent 

meta-analysis demonstrated that BDNF and cortisol systems are integrated by the 

glucocorticoid receptors dynamics and that BDNF and cortisol undoubtedly play 

distinct and complementary roles in the physiology of the nervous system in which 

cortisol proves to be the regulator of positive as well as negative effects (de Assis 

and Gasanov 2019). It is well known that the activation of HPA axis under stressful 

condition promotes dysregulation of both norepinephrine (McEwen 2007) and 

coagulation system (e.g., tissue factor and the plasminogen activation inhibitor-1) 

(Uchida et al. 2012, Yamamoto et al. 2002), and affects platelet number (Chen et 
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al. 2016, Sandrini et al. 2017) and functionality (Stämpfli et al. 2014, Dong et al. 

2015, Heidt et al. 2014), thus enhancing the risk of arterial thrombosis.  

Interestingly, the increased activity of the amygdala has been recently associated 

with increased risk of CVD events and with increased activity of the bone marrow 

(Tawakol et al. 2017). 

Here we observed that, according to previous data obtained from both human and 

animal models, sub-chronic stress is sufficient to enhance the number of bone 

marrow MKs, circulating leukocytes and platelets and to induce platelet activation 

(Chen et al. 2016, Sandrini et al. 2017, Heidt et al. 2014).  

All these alterations are strongly and significantly increased in stressed 

BDNFVal/Met mice and, surprisingly, well recapitulate the phenotype observed in non-

stressed BDNFMet/Met homozygous mice (Amadio, Colombo, et al. 2017). 

Recently, Stämpfli et al. showed that acute RS is able to induce arterial thrombosis 

in mice without affecting the activity and the expression of TF in the vessel wall 

(Stämpfli et al. 2014). Of note, we observed that in BDNFVal/Val mice sub-chronic RS 

increases TF activity without modifying mRNA, suggesting that protracted stress 

may able to modulate TF in a post-transcriptional manner. Remarkably, both TF 

expression and activity were positively modulated in BDNFVal/Met mice under sub-

chronic stress. However, if it was demonstrated that in BDNFMet/Met mice TF 

expression was positively modulated following a reduction of Sirt1 activity (Amadio, 

Colombo, et al. 2017), no effect was observed on this gene after sub-chronic stress 

in all experimental groups considered. In line with this evidence, experiments will be 

performed to understand which pathways are involved in the modulation of TF 

induced by protracted stress in order to unveil new possible targets. 

It is well known that both BDNF Met allele variant and stressful conditions are 

associated with lower expression of BDNF in the central nervous system (Yu et al. 

2012, Chao 2003). However, no data are available about the impact of this 

polymorphism and/or stress in other tissues. We show that BDNF mRNA levels are 

only slightly but not significantly reduced in the arterial tissue of BDNFVal/Met mice 

compared to BDNFVal/Val.  

In addition, sub-chronic RS induced a reduction in BDNF expression in both 

BDNFVal/Met and BDNFVal/Val, even if it was significant only in BDNFVal/Val. This 

suggests that a certain basal level of expression in arterial tissue is necessary, 

supporting previous data showing the fundamental role of this neurotrophin in the 
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development and maintenance of the vasculature (Caporali and Emanueli 2009, 

Donovan et al. 2000, Kermani and Hempstead 2007). 

Finally, in line with a previous study of chronic RS (Jeong, Lee, and Kang 2013), our 

data showed a weight reduction in stressed BDNFVal/Val mice along the experimental 

time. As previously found, the weight loss observed during the stress can be 

explained by an early decrease in food intake and subsequently to an increased in 

energy expenditure and in body temperature (Jeong, Lee, and Kang 2013). In 

contrast, in BDNFVal/Met mice we observed a weight loss only in the first few days of 

RS, followed by a weight gain, with a return to basal levels on the eighth day.  

This trend might be explained by the critical role of BDNF in the regulation of food 

intake and body weight control (Lebrun et al. 2006) since BDNF is an anorexigenic 

factor (Lebrun et al. 2006). Low levels of BDNF in the hippocampus and dorsal-

vagal complex (Rios 2011), as well as mutation in the BDNF gene (Lyons et al. 

1999, Coppola and Tessarollo 2004, Gray et al. 2006), are associated with 

hyperphagia, weight gain, and obesity. On these premises, we hypothesize that sub-

chronic stress may unmask the hyperphagic phenotype in BDNFVal/Met mice 

reversing the initial weight loss by enhancing food intake. 
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1 Conclusions 

Despite the advances in prevention and treatment strategies, cardiovascular 

diseases (CVDs) still remain the leading cause of morbidity and mortality worldwide. 

It was recently reported that conventional risk factors for CVDs are predictors of the 

majority, but not the totality, of morbidity and mortality, raising the awareness on the 

need to identify new dynamics involved in the development of onset and progression 

of these pathologies (Stamler, Wentworth, and Neaton 1986). Interestingly, 

environmental factors such as stress, depression, and anxiety were recently 

included as new risk factors for CVDs for their ability to modulate not only the onset 

and progression of CVDs but also the response to therapies (Cohen, Edmondson, and 

Kronish 2015). The emerging role of the impact of lifestyle behavior on CVDs lead to 

coin the term “behavioral cardiology” as “an emerging field of clinical practice based 

on the recognition that adverse lifestyle behaviors, emotional factors, and chronic 

life stress can all promote atherosclerosis and adverse cardiac events” (Rozanski et 

al. 2005) . In particular, the role of the new discipline would be a deeper 

understanding of the pathophysiology of behavior-related CVDs and the 

development of effective therapeutic interventions both to modify high-risk lifestyles 

and behaviors and to reduce psychosocial risk factors for patients. In the last years, 

a growing body of the literature showed that psychosocial pathologies benefit from 

non-pharmacological interventions such as physical exercise. In particular, it has 

been shown that regular activity is associated with a better level of self-esteem and 

mood state and lower stress and anxiety levels. In addition, the 2016 European 

Guidelines on CVD prevention in clinical practice, strongly recommended regular 

physical exercise (PE) as management for the prevention and treatment of CVD 

both in healthy people and patients with metabolic disorders (Piepoli et al. 2016). 

Brain-derived neurotrophic factor (BDNF), a protein member of the neurotrophin 

family, has been considered a suitable candidate to study the cellular and molecular 

mechanism at the bases of CVDs related to psychosocial disorders. BDNF is highly 

expressed in the brain and it can be detected also in macrophages, endothelial cells, 

megakaryocytes, and platelets. Besides its neuropoietic action, BDNF modulates 

cell survival and differentiation, vascular development and heart function (Donovan 

et al. 2000).  Intriguingly, expression and release of BDNF might be altered by genetic 

and/or epigenetic modifications which, in turn, may affect BDNF availability and 

function. In this context, the human BDNFVal66Met variant is known to determine a 
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reduction of the activity-dependent secretion and signaling of mature BDNF, to 

associate with neuropsychiatric disorders, anxiety and a higher susceptibility to 

stress (Tsai 2018), and to contribute to the individual propensity for arterial 

thrombosis related to AMI (Amadio, Colombo, et al. 2017) and to eating disorders and 

obesity in humans (Beckers et al. 2008, Zhao et al. 2014). Interestingly, a knock-in 

mouse carrying the human BDNFVal66Met polymorphism represents a good model 

of all these pathologies observed in human patients showing a depression-

like/anxiety-related behavior and a significantly higher body weight than wild-type 

littermates (Chen et al. 2006), associated with a pro-inflammatory and pro-thrombotic 

phenotype (Amadio, Colombo, et al. 2017). 

Interestingly, stressful conditions unveil the anxious/depressive-like behavioral 

phenotype in heterozygous BDNFVal66Met (BDNFVal/Met) mice, suggesting an 

important involvement of Met allele in terms of gene-environment interaction (GxE) 

regarding the behavioral profile. However, the interplay between Met allele and 

stress in relation to CVD, and in particular to arterial thrombosis, is completely 

unknown. With this study, we demonstrated that sub-chronic stress is sufficient to 

unveil also the prothrombotic phenotype in BDNFVal/Met mice affecting the number 

and functionality of blood circulating cells, and the expression of key thrombotic 

molecules in arterial tissue. Moreover, it is known that the homozygous Met mice 

have an impairment in the beneficial neurobiological changes observed with 

exercise. However, no data are available regarding the effect of physical exercise 

on the thrombotic risk (Sandrini et al. 2018).  

In vitro data showed in this study support the role of Pro-BDNFMet in adipogenesis 

in line with data obtained in the white adipose tissue of BDNFMet/Met mice. 

Spontaneous physical exercise is able to induce positive morphological changes 

and reduce the inflammatory profile of the adipose tissue. These beneficial effects 

might be at the bases of the observed reduction in the pro-thrombotic phenotype 

detected in this animal model.   

This study supports the important interaction between both positive and negative 

environmental factors and the Met allele of the BDNF gene in relationship to arterial 

thrombosis showing a new possible gene-environment interaction (GxE). Human 

studies will be crucial to confirm this possible gene-environment interaction and to 

assess if it needs to be taken into account to deploy better strategies of clinical 

management of the arterial thrombosis risk in patients carrying this polymorphism. 
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1 Animal models and in vivo procedures 

BDNF Val66Met mice were kindly provided by Francis S. Lee from the Weill Cornell 

Medicine University (NY). They were generated introducing the human Val66Met 

mutation in an ApaIApaI fragment containing the BDNF prodomain and put into a 

targeting vector. To verify protein expression a carboxyl-terminal His tag was inserted 

using the PCR mutagenesis strategy. The loxP-Neo cassette was introduced into an 

EagI site as a positive marker of selection. A pGK-thymidine kinase cassette was used 

as a negative selectable marker. The targeting vector was comprised of a 1.5 kb short 

arm, a 4.8 kb long arm, a 1.5 kb targeted sequence carrying the Val66Met mutation, 

and the Neo cassette that was flanked by two loxP sites. Linearized targeting vectors 

were inserted into 129 mouse strain embryonic stem (ES) cells by electroporation. 

DNA derived by G418/FIAU-resistant ES clones were screened using a diagnostic 

BglII + BamHI restriction enzyme digestion using the 5' probes external to the targeting 

vector sequence. Four positive ES clones were injected into C57BL/6 blastocysts, 

which were then introduced into pseudo-pregnant females. Chimeric animals were 

mated with C57BL/6 to produce heterozygous animals, and these mice were 

subsequently crossed with mice expressing Cre-Recombinase in germ cells to excise 

the neo cassette. BDNF Val/Val mice, heterozygous (BDNFVal/Met) and homozygous 

(BDNFMet/Met) mice for Met/Met mutation were generated by interbreeding 

heterozygotes. 

All animals were housed in a temperature-controlled, 12 h light/dark cycle environment 

with ad libitum access to water and fed on a standard pellet diet. All experiments were 

approved by the National Ministry of Health-University of Milan Committee and of 

DGSA (N° 12/2012, 12/2015 and 349/2015). All surgical procedures were performed 

in mice anesthetized with ketamine chlorhydrate (75 mg/kg; Intervet) and 

medetomidine (1 mg/kg; Virbac).  

 

1.1 Genotyping 

Offsprings were genotyped by PCR analysis of ear punch-derived genomic DNA using 

the following primers: 

Val R (Val)  5’-CTCTTCGATGACGTGCTCAA-3’ 

Primer S (Val/Met) 5’-TCATACTTCGGTTGCATGAAGG-3’ 

His R (Met)            5’-ATAAATCCACTAGTGGTGGTGG-3’ 
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1.2 Restraint Stress procedure 

Sub-chronic stress was induced by restraint stress (RS) test performed as previously 

described (Yu et al. 2012). Briefly, BDNFVal/Val and BDNFVal/Met mice were divided 

randomly into stressed (RS) and control (CTRL) groups. RS was performed daily for 2 

h for 7 consecutive days, in well-ventilated polypropylene restrainers. At the end of the 

stress session, mice were returned to their home cage. CTRL mice were handled for 

2 minutes and then returned to the home cage. All mice had free access to food and 

water during the study. Mice were weighed and sacrificed 24 h after the last session 

of restraint stress. 

 

1.3 Free Voluntary exercise protocol 

Mice underwent a free voluntary exercise protocol as already described (Ieraci et al. 

2016). Briefly, BDNFVal/Val and BDNFMet/Met mice were allocated randomly into running 

and control groups in cages equipped with or without running wheels, respectively, for 

4 weeks with free access to food and water. 

 

2 Arterial Thrombosis Model 

For the experimental arterial thrombosis model, the left carotid artery of anesthetized 

mice was dissected free and placed in the probe (model 0.7V, Transonic System) 

connected to a transonic flow meter (Transonic T106). After blood flow was stabilized 

(baseline flow constant for 7 min at least 0.8 ml/sec), a 1 × 1 mm strip of filter paper 

(Whatman N°1) soaked with FeCl3 (10% solution; Sigma-Aldrich) was applied over the 

carotid artery. After 3 min, the filter paper was removed, the carotid artery was washed 

with PBS, and the flow was recorded for 30 min. An occlusion was considered to be 

total and stable when the flow was reduced by >90% from baseline until the 30-minute 

observation time, with the flow during this period not changing by more than 1% from 

baseline per second. 

 

3 Blood Analyses 

3.1 Whole Blood Counts 

Blood was collected into 3.8% sodium citrate (1:10 vol: vol) from anesthetized mice by 

cardiac venipuncture, and the differential white blood cell and platelet count were 

performed on a Beckman Coulter AU480. 
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3.2 Platelet–Leukocyte Aggregate Analysis 

Platelet/monocyte and platelet/neutrophil aggregates were analysed as previously 

described (Amadio, Tarantino, et al. 2017). Briefly, citrated blood was stimulated where 

indicated with ADP for 5 minutes and red blood cells were lysed by FACS Lysing 

solution (BD Biosciences); samples were stained with the anti-CD45, anti-CD41, and 

anti-CD14 or anti-Lys6G (eBiolegend, Cat. 103101, 133901, 150101, and 127601, 

resp.) and analysed by flow FACS “Novocyte 3000.” A minimum of 5000 events was 

collected in the CD14+ or Lys6G+ gate. 

 

3.3 Platelet Studies 

Washed platelets (WPs) were obtained from platelet-rich plasma (PRP), isolated 

following centrifugation at 100 for 10 min of citrated blood as previously described 

(Barbieri et al. 2015), with serial centrifugation and addition of 0.2 mM PGI2 and 

0.01 mg/l apyrase. Platelet pellets were resuspended in HEPES-Tyrode’s buffer 

(137 mM NaCl, 20 mM HEPES, 5.6 mM glucose, 0.35% bovine serum, 1 mM MgCl2, 

2.7 mM KCl, and 3.3 mM NaH2PO4). 

25 μl of WPs (5 × 104/μl in HEPES-Tyrode’s buffer supplemented with 1 mM CaCl2) 

was mixed with a saturating concentration of PE-conjugated JON/A (Emfret Analytic, 

Cat. M023-2) antibody, raised against the activated form of GPIIbIIIa (αIIβΙII integrin), 

or with anti-CD62P and FITC-conjugated antibody (P-selectin; BD Biosciences, Cat. 

553744), and the mixture reacted with different concentrations of ADP or thrombin for 

15 minutes at room temperature. The reaction was stopped by 400 μl ice-cold PBS, 

and samples were analysed within 30 minutes. Platelets were identified by forward and 

side scatter distribution and by anti-CD41 positivity. 

Reticulated platelets (RP) were identified by the thiazole orange method (Barbieri et 

al. 2015): 10 μl of PRP was incubated with 390 μl of thiazole orange (Retic-Count; BD 

Biosciences) or PBS as control and anti-CD41 at room temperature for 10 minutes, in 

the dark. Immediately after incubation, samples were analysed by flow cytometry 

collecting 10000 CD41-positive events; the percentage of RP was recorded, and the 

absolute number of RP was calculated by multiplying by the platelet count. 

 



Materials and methods 

81 
 

4 Bone marrow Analyses 

4.1 Megakaryocyte histology 

Immunohistochemistry was performed on BM and adipose tissue. Tissues were fixed 

overnight in 4% formalin, embedded in paraffin, cut at 3 μm, and mounted on polarized 

slides. Before paraffin embedding, BM samples were decalcified in 10% EDTA, pH 8 

for 10 days. BM and adipose tissue sections were stained in Hematoxylin and Eosin 

(H&E). The number and area of megakaryocytes were evaluated in hematoxylin and 

eosin-stained sections by counting 5–7 40x microscopic fields for each tissue sample 

(Trakala et al. 2015). The number and size of adipocytes were evaluated in 

hematoxylin and eosin-stained sections by counting five 5× microscopic fields for each 

tissue sample using the ImageJ-Macro Adipocytes Tool. 

All images were digitalized by a Zeiss Axioskop (Carl Zeiss) equipped with an 

intensified charge-coupled device (CCD) camera system (Photometrics).  

 

5 Measurement of TF Activity in Aortic Tissue 

Aorta samples were lysed with 15 mM n-Octyl-B-d-glucopyranoside lysis buffer at 37 

°C for 10 min, sonicated at 20 kHz for 20 s and diluted with 25 mM HEPES saline. The 

total protein concentrations of the homogenates were determined using the Bradford 

method. 40 µL of carotid artery homogenate (1.25 μg/uL), or vehicle were mixed with 

40 µL citrated pooled wild-type mouse plasma and 40 µL CaCl2 (final concentration 5 

mM), and procoagulant activity was quantified by a one-stage plasma recalcification 

time assay (Chlopicki et al. 2004). Clotting times were expressed in relative units/µg 

protein based on a standard curve of serially diluted human thromboplastin 

preparation. Plasma deficient of Factor VIIa as well as preincubation with specific TF-

neutralizing antibody was used to demonstrate TF dependence of procoagulant 

activity. 

 

6 Cell culture, treatment, and differentiation  

C3H10T1/2 were cultured in DMEM medium supplemented with 100 U/mL penicillin 

(Gibco, Rodano, Milan, Italy), 100 µg/mL streptomycin (Gibco, Rodano, Milan, Italy) 

and 10% FBS, at 37°C in 5% CO2/95% air atmosphere. Cells were plated in 6 well 

plates at a concentration of 3.5x104 cells/ml, and when reached the 80% of confluence 

(day -2) were treated with 10 ng/ml of ProBDNFVal or ProBDNFMet synthetic peptide 

(Alomone Labs, Jerusalem, Israel). Forty-eight hours later (day 0), cells were treated 
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with adipogenic commitment mix (5 µg/ml Insulin, 2 µg/ml Dexamethasone, 0.5 mM 

IBMX and 5 µM Rosiglitazone; all from Cayman Chemical, Arcore, Italy). Insulin (5 

µg/ml) was added at day 3, 5 and 7 until day 9 when the complete differentiation of the 

cells was reached.  

 

7 Adipogenesis evaluation by flow cytometry and Oil-Red-O 

After ProBDNFVal or ProBDNFMet treatment, C3H10T1/2 cells were analyzed during 

adipogenesis by flow cytometry as previously described (Lee et al. 2004). Briefly, at 

day 3, 5 and 9 cells were harvested in ice-cold PBS and analyzed by flow cytometry 

and according to granularity (SSC-H) divided into four categories that correlate with 

the increased level of cell lipids accumulation after adipogenic commitment. In 

particular, non-induced cells were detected into the R1 gate, while cells with increasing 

granularity were identified in the regions from R2 to R4. 

Oil-Red-O staining was performed as already described (Kraus et al. 2016) on day 9. 

Lipid content was quantified as absorbance at a wavelength of 518 nm using a Tecan 

Infinite M1000 plate reader spectrophotometer (TECAN, Männedorf, Switzerland). 

 

8 Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) 

Total RNA was isolated from adipose tissue or C3H10T1/2 cells with TRIzol Reagent 

(Sigma-Aldrich, Saint Louis, MO, USA) and Direct-zol RNA extraction kit (Zymo 

Research, Irvine, CA, USA) according to the manufacturer’s instructions. One µg of 

RNA was reverse-transcribed using iScript Advanced cDNA Synthesis Kit (Bio-Rad 

Laboratories, Segrate, Milan, Italy). qPCR was then carried out using the primer 

sequences shown in the table. 
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Table 1. Primers sequences of the analysed genes. 

 

  

Samples of cDNA were incubated in 15 µL Luna® Universal qPCR mix containing the 

specific primers and fluorescent dye SYBR Green (New England Biolabs, Pero, Milan, 

Italy). RT-qPCR was carried out in triplicate for each sample on the CFX Connect real-

time System (Bio-Rad Laboratories, Segrate, Milan, Italy) as previously described 

(Sandrini et al. 2018). Gene expression was analyzed using parameters available in 

CFX Manager Software 3.1 (Bio-Rad Laboratories, Segrate, Milan, Italy). 

 

9 Adipose Tissue Histology and Quantification of Adipocyte Size 

and Number 

Immunocytochemistry and analysis of adipocytes were performed in inguinal (ingWAT) 

and epididymal (epiWAT) white adipose tissue. Tissues were fixed overnight in 4% 

formalin, embedded in paraffin, cut at 5μm, and mounted on polarized slides. The 

number and size of adipocytes were evaluated in hematoxylin and eosin-stained 

sections by counting five 5x microscopic fields for each tissue sample using the 

ImageJ-Macro Adipocytes Tool. Images were taken with a Zeiss Axioskop (Carl Zeiss, 

Milan, Italy) equipped with an intensified charge-coupled device (CCD) camera system 

(Photometrics, Tucson, AZ, USA). 
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10 Statistical Analyses 

Statistical analyses were performed with GraphPad Prism 6.0 and SAS versus 9.4 

software (SASA Institute). Data were analyzed by Student’s t-test, one, two or three-

way ANOVA with repeated measures for main effects of treatment and time or stimuli 

when necessary, followed by a Bonferroni post hoc analysis as appropriate. Values of 

<0.05 were considered statistically significant. Data are expressed as mean ± SEM. 
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