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ABSTRACT 
 
Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide.  

Although reperfusion strategies represent the currently most used life-saving approaches to restore 

the blood flow in the cardiac tissue after AMI, they also come with the drawback that they inevitably 

induce the ischemia/reperfusion injury (IRI), ultimately resulting in increased cardiomyocytes 

damage and heart failure. Many efforts have been made to clarify the molecular mechanisms involved 

in IRI. In this context, the activation of pro-survival kinases, as well as the hypoxia inducible factor 

(HIF-1𝛂), have been recognized as key steps in the cellular response to IRI. Along this line, our 

research group recently identified a novel mechanism of HIF-1𝛂 activation, PHDs independent and 

mediated by the sialidase NEU3. Interestingly, NEU3 is upregulated under chronic hypoxia in 

cyanotic congenital cardiac patients. Moreover, the induced activation of NEU3 increased myoblast 

resistance to hypoxic stress, maintaining their proliferation rate and counteracting apoptosis. 

Thus, the aim of this study was to further investigate the possible role of NEU3 in protecting cardiac 

myoblasts during IRI, both in terms of increasing their resistance to the damage and reducing fibrosis. 

Initially, we set-up an in-vitro model of IRI on H9C2 rat cardiomyoblasts. Results showed a 

modulation of NEU3 during IRI, with a progressive down-regulation during the ischemic phase, 

followed by a reactivation during the reperfusion phase. Remarkably, overexpression of NEU3 

significantly improved cardiomyoblasts resistance to IRI, both in terms of cell proliferation and 

resistance to apoptosis, as well as it induced an increased activation of the pro-survival kinases Akt 

and Erk and HIF-1𝛂, as compared to controls. Interestingly, treatment with specific Akt and Erk 

inhibitors (LY294002 and PD98059), as well as with sialidase inhibitors (DANA and LR332), 

completely reverted the beneficial effects mediated by NEU3, thus supporting the hypothesis of a 

direct involvement of the sialidase in counteracting cardiomyocytes damage during IRI, through the 

activation of pro-survival kinases and HIF-1𝛂. Moreover, we also investigated the possible 

involvement of NEU3 in regulating the process of cardiac fibrosis in response to tissue injury, which 

is characterized by the deposition of extracellular matrix proteins by activated myofibroblasts. 

Interestingly, we demonstrated that the overexpression of the sialidase NEU3 was sufficient to impair 

the fibroblasts/myofibroblasts conversion, decreasing the expression of the specific fibrosis markers 

𝛂-smooth muscle actin and collagen type-1. In addition, to confirm that the observed effects were 

mainly mediated by the NEU3-induced GM3 depletion, we silenced the GM3 synthase, which is the 

enzyme responsible of the GM3 synthesis, to mimic sialidase NUE3 overexpression. Also in this 

case, the reduction of GM3 partially inhibited cardiac fibroblasts differentiation, finally diminishing 

the fibrosis markers expression. 
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In conclusion, taken together, the results of this thesis work show that NEU3 activation has a 

cardioprotective effect during IRI, calling for further studies to unveil its full potential as a therapeutic 

target to treat cardiac ischemia and reperfusion injury and to improve patients recover after AMI.
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INTRODUCTION 
 
1. Cardiovascular diseases: Acute Myocardial Infarction 
 
Cardiovascular diseases (CVDs) still represent one of the major causes of morbidity and mortality 

worldwide (Li et al., 2019). The latest data reported by the National Institutes of Health in 2017 

revealed that 92.1 million US adults (36.6% of the total population) have at least one type of CVD 

and that the 30.87% of deaths are caused precisely by these types of diseases (Benjamin et al., 2017). 

Among CVDs, Acute Myocardial Infarction (AMI) is one of the most dangerous, being a life-

threatening condition that needs prompt and successful intervention. AMI is mostly caused by the 

rupture, ulceration, fissuring, erosion, or dissection of an atherosclerotic plaque, accompanied by 

intraluminal thrombus in one or more of the coronary arteries. This process induces a sudden decrease 

in the myocardial blood flow, consequently leading to the necrosis of the downstream cardiac tissue. 

Myocardium death becomes identifiable by the detection of an increased cardiac troponin T (cTnT) 

in plasma (Fig.1) (Reddy, Khaliq, & Henning, 2015). 

Myocardial ischemia produces a characteristic pattern of ultrastructural, cellular, molecular and 

metabolic alterations that lead to irreversible injury. It is possible to observe several changes in both 

myocardial interstitium and microvasculature. Moreover, damaged myocytes start a degenerative 

process that culminate in swelling of the cytoplasm, mitochondria and sarcoplasmic reticulum, 

accompanied by the margination and clustering of the nuclear chromatin. Therefore, cardiomyocytes 

necrosis and tissue alterations stimulate an inflammatory process associated to the activation of many 

signaling pathways that alter cellular metabolism, finally leading to irreversible cardiac damage 

(Ibanez, Heusch, Ovize, & Van de Werf, 2015). 

 
 
Fig. 1: Acute myocardial infarction illustration. Cellular damage is caused by dissection of an atherosclerotic 
plaque that induces a thrombus in one or more of the coronary arteries. 
 

 



Introduction 

 7 

1.1 Cardiac Fibrosis 
Destroyed myocardium is replaced by a collagen-based scar that, unfortunately, could not contribute 

to the myocardial contractile function, resulting in progressive chronic heart failure. This process is 

defined as cardiac fibrosis, whose major players are represented by cardiac fibroblasts. In particular, 

cardiac fibroblasts are an important component of the cardiac interstitium and play an important role 

in preserving the integrity of matrix network (Banerjee, Fuseler, Price, Borg, & Baudino, 2007). In 

a young adult heart, cardiac fibroblasts remain quiescent and do not exhibit any significant 

proliferative or inflammatory activity. However, following an ischemic episode, cardiac fibroblasts 

differentiate into myofibroblasts, which are the main effector cells of the fibrotic process In particular, 

myofibroblasts are secretory and contractile cells that accumulate within sites of injury and presents 

ultrastructural and phenotypic characteristics similar to smooth muscle cells, such as an extensive 

endoplasmic reticulum and the expression of the 𝛂-smooth muscle actin (𝛂-SMA) (Fig. 2). (Hinz, 

2010; Hinz et al., 2007). 

 

Fig. 2: Schematic representation of the fibroblasts-myofibroblasts transition 
 

Myofibroblasts transdifferentiation is promoted by the activation of TGF-𝛃 in the cardiac interstitium, 

which induces the 𝛂-SMA transcription in fibroblasts through the activation of the Small Mother 

Against Decapentaplegic Homolog 3 (Smad3) signaling cascade. Moreover, also alterations in the 

composition and in the mechanical properties of the extracellular matrix facilitate the fibroblasts-

myofibroblasts transition. Indeed, the induction of specialized matrix proteins increases deposition of 

non-fibrillar and fibrillar collagens, promoting fibrotic cardiac remodeling (Dobaczewski, Gonzalez-

Quesada, & Frangogiannis, 2010). Interestingly, it was observed that collagen type I and type III 

were increased in the remodeling fibrotic heart and, particularly, in models of myocardial infarction, 

collage type I is more and prolonged up-regulated as compared to collagen type III (Mukherjee & 

Sen, 1993). However, non-fibrillar collagen, such as collagen type IV, also has a crucial role in 

fibroblast transdifferentiation, as demonstrated by an experimental study on myocardial infarction 
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(Naugle et al., 2006). Interestingly, collagen IV disruption reduced fibrosis and attenuated 

cardiomyocytes apoptosis in the infarcted tissue, confirming its important involvement in the fibrotic 

process (Luther et al., 2012).  

However, the group of fibrotic proteins released during cardiac remodeling also includes fibrinogen, 

plasma fibronectin and the so-called matricellular proteins. (Frangogiannis, 2012) 

Fibrinogen and fibronectin are responsible of forming a temporary matrix network composed of fibrin 

and fibronectin, cooperating with TGF-𝛃 to stimulate fibroblasts proliferation and, subsequently, 

their migration and transdifferentiation (Rybarczyk, Lawrence, & Simpson-Haidaris, 2003). 

On the other hand, the matricellular proteins are a family of structurally unrelated extracellular 

macromolecules that are not components of a physiological tissue matrix. since they usually do not 

play a structural role. However, their function is principally to favor connections between cells and 

matrix proteins, transducing and modulating growth factors and cytokines responses (Bornstein, 

2009). This group of proteins includes tenascin-C, osteopontin (OPN), thrombospondins (TSPs) and 

periostin and their targets are represented by fibroblasts and inflammatory cells (Bornstein, 2009). 

In a normal heart, matrix proteins are finely regulated by a homeostatic control guided by fibroblasts. 

Alterations of the balance between collagen synthesis and degradation promotes heart abnormalities, 

related to coordination of the excitation-contraction coupling mechanism, both in diastole and in 

systole, inducing a diastolic or systolic impairment, respectively. Finally, cardiac fibrosis induces a 

ventricular remodeling in the heart trigger by left ventricular dilatation caused by a displacement of 

cardiomyocytes that induces a decrease in the number of molecular layers in the ventricular wall (Fig. 

3) (Kong, Christia, & Frangogiannis, 2014). 

 

Fig. 3:	Histological images from normal and diseased hearts, blue staining indicates fibrosis.	

 

1.2 Sphingolipids and Cardiac Fibrosis 
Bioactive sphingolipids regulate several cellular processes important for triggering cellular apoptosis, 

vascular leak and for TGF-𝛃 signaling and fibroblasts migration (Hannun & Obeid, 2008; Shea & 
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Tager, 2012). Many sphingolipids, in particular ceramides and sphingosine 1-phospate (S1P), are 

implicated in myofibroblasts differentiation and in the development and progression of cardiac 

fibrosis in vitro (Watterson, Lanning, Diegelmann, & Spiegel, 2007). Moreover, also in several 

human diseases characterized by fibrosis, the levels of the circulating S1P resulted altered (Ikeda et 

al., 2010; Shea et al., 2010). In particular, many evidences reported that mice overexpressing the 

S1P-producing enzyme and the sphingosine kinase 1, developed spontaneous cardiac fibrosis. 

Interestingly, fibrosis was attenuated when mice were crossed to S1P3-deficient mice, supporting the 

important role of sphingolipids and their receptors in promoting the fibrotic process (Takuwa et al., 

2010). Moreover, it was also observed that alterations in the sphingolipid levels induced ROS 

production and subsequently TGF-𝛃 activation, myofibroblasts differentiation and increased collagen 

production in rat cardiac fibroblasts (Gellings Lowe, Swaney, Moreno, & Sabbadini, 2009; Takuwa 

et al., 2010).  

Therefore, since some of the negative consequences related to cardiac fibrosis are cardiac hypertrophy 

and ventricular dilatation, due mainly to pressure overload and vascular wall oxidative stress, 

sphingolipids could also have a key role in the mechanisms associated with these types of cardiac 

damage (Frey & Olson, 2003; Levy, Garrison, Savage, Kannel, & Castelli, 1990). Indeed, it was 

reported that an accumulation of some glycosphingolipids (GSL) can induce oxidative stress, thus 

generating superoxides that interact with cardiomyocytes and vascular cells (Alexander, 1995; 

Chatterjee, 1998). Particularly, among GSL, lactosylceramide exerted a concentration and time 

dependent increase in hypertrophy in H9C2 cells and in freshly cultured neonatal rat ventricle 

myocytes, precisely mediated by the generation of superoxides (Mishra & Chatterjee, 2014). For this 

reason, it was supposed and demonstrated that hypertrophic mouse hearts treated with some inhibitors 

of the GSL glycosyltransferase showed a significant reduction of cardiac hypertrophy (Mishra, Bedja, 

Amuzie, Avolio, & Chatterjee, 2015).  

Thus, in conclusion, inhibiting glycosphingolipid synthesis or activity could represent 

a novel approach to mitigate cardiac dysfunctions associated with cardiac fibrosis. 
 

1.3 Therapeutic strategies for AMI 
The prompt diagnosis of AMI is fundamental to timely apply the so-called reperfusion strategies, 

which nowadays represent the gold standard life-saving approaches to treat the acute myocardial 

infarction. Among them, the most recent and effective are the fibrinolytic therapies (FT) and the 

primary percutaneous coronary intervention (P-IPC). 
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- Fibrinolytic and antithrombotic therapies are more effective in the very first hours from the 

beginning of the heart attack (<12 hours). These approaches are based on the administration of 

recombinant human tissue plasminogen activator, such as retaplase, alteplase and tenecteplase, which 

are responsible for the disruption of the clots that caused AMI. Moreover, Aspirin, Clopidogrel and 

Heparin should be given in addition to the administration of the fibrinolytic agents to prevent the 

formation of blood clots (Reddy et al., 2015).  

- P-IPC approaches are indicated for the treatment of patients after 12 hours from the onset of the 

heart failure symptoms. P-IPC is also known as Coronary Angioplasty, which is a technique based 

on the insertion of a balloon catheter to widen the occluded coronary artery, favoring the 

reoxygenation of the infarcted heart tissue. Indeed, balloon inflation inside the coronary is 

accompanied by the insertion of a bare metal or drug eluting stent to keep the blood vessel opened.  

P-IPC, when performed in a timely manner, is more effective than FT. However, P-IPC is not 

universally available, because only specialized interventional cardiology centers could perform this 

type of interventions (Reddy et al., 2015; Roule et al., 2016). 

 

2. Ischemia and Reperfusion Injury 
Reperfusion strategies are able to considerably reduce mortality in infarcted patients. However, they 

have some negative side effects that can induce cardiac injury and increase the extent of myocardial 

damage, reducing the beneficial effect of the intervention. This process has been named as Ischemia 

and Reperfusion Injury (IRI), which is defined as a myocardial damage caused by the restoration of 

coronary blood flow after an ischemic episode. Therefore, the identification of IRI existence may at 

least in part explain the discrepancy between the rate of death after an AMI, which is around 10%, 

and the incidence of cardiac failure following AMI, which instead is almost 25% (Buja, 2005). In 

particular, four different cardiac dysfunctions have been associated to IRI: myocardial stunning and 

reperfusion-induced arrhythmias are a reversible form of damage, whereas microvascular obstruction 

and lethal myocardial reperfusion injury are the most dangerous complications which could 

irremediably compromise cardiac function (Yellon & Hausenloy, 2007).  

Myocardial stunning is a post-ischemic mechanical dysfunction that typically resolves between 48 

and 72 hours after the ischemic episode (Neri, Riezzo, Pascale, Pomara, & Turillazzi, 2017). On the 

other hand, reperfusion-induced arrhythmias are defined as disturbance of the cardiac rhythm that 

arise as a consequence of partial or total restoration of blood flow in the cardiac tissue that 
was previously ischemic. These arrhythmias are potentially harmful, but effective treatments are 

available (Hearse & Tosaki, 1987). The microvascular obstruction is characterized by the block of 
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the blood flow in the coronary artery with the absence of effective physical vessel obstruction (Ito, 

2006).  

Finally, we focused mainly on the last type of cardiac dysfunction, the lethal reperfusion injury, which 

is the component of cell death occurring as a consequence of reperfusion and it was demonstrated 

that mediates cardiomyocytes death in a different and independent manner from the ischemic injury 

(Manning & Hearse, 1984). 

 

2.1 Lethal Ischemia and Reperfusion Injury: molecular mechanisms 
Lethal IRI is a complex phenomenon involving many players, all contributing to the final damage 

inflicted to the cardiac tissue. The deprivation of oxygen during the ischemic phase results in the 

inhibition of the myocardial contractile function, caused by mitochondrial membrane depolarization 

and ATP depletion. Moreover, the switch from fatty acids metabolism to glycolytic metabolism 

induces lactate accumulation, which reduces the intracellular pH lower than 7.0 and unbalances ion 

exchanger on the membrane, ultimately increasing intracellular Ca2+ levels (Avkiran & Marber, 

2002). Finally, acidosis during ischemia prevents the opening of the mitochondria permeability 

transition pore (MPTP), counteracting the effects of the influx of Ca2+ in the mitochondrion (Garcia-

Dorado, Ruiz-Meana, & Piper, 2009). 

 

2.1.1 Mitochondrial Permeability Transition Pore 
Reperfusion after ischemia induces a rapid correction of the pH level but conversely promotes the 

MPTP opening, leading to cardiac damage due to the uncoupling of the electron transport chain with 

the oxidative phosphorylation and due to an increase in the reactive oxygen species (ROS) production 

within the mitochondria (Hausenloy & Yellon, 2013). In particular, MPTP is a high conductance 

nonselective channel that regulates the permeability of the inner mitochondrial membrane to solutes, 

being also involved in the physiological regulation of Ca2+ and the ROS homeostasis (Garcia-Dorado 

et al., 2009; Xia, Li, & Irwin, 2016).  

Reperfusion induces the mitochondrial permeability transition, increasing the inner membrane 

permeability and causing mitochondrial dysfunctions such as depolarization, cessation of ATP 

synthesis, inhibition of respiration, pyridine nucleotide depletion, Ca2+ release and matrix swelling. 

Moreover, this swelling stimulates the cytochrome-c release from the organelles and, consequently, 

the activation of pro-apoptotic signals inside the cells (Bernardi & Di Lisa, 2015; Manning & Hearse, 

1984; Xia et al., 2016). 

 



Introduction 

 12 

2.1.2 Oxidative stress  
MPTP opening, as previously reported, leads a massive burst of ROS production that include 

superoxide anion (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals, causing oxidative stress. 

Small amounts of ROS are physiological and positive in normal cell signaling but damaged 

mitochondria produce large quantities of ROS which finally results in Ca2+ overload, further 

increasing the opening of MPTP (Fig. 4) (Hausenloy & Yellon, 2013; Xia et al., 2016).  

 

 

Fig. 4: Schematic representation of the mechanism of myocardial ischemia reperfusion injury.  

 

Oxidative stress is also associated to the reduction of the bioavailable nitric oxide (NO) during 

ischemia and reperfusion injury. NO is produced by NO synthases, which exist in 3 different 

isoforms: endothelial (e-NOS), neuronal (n-NOS) and inducible (i-NOS). NO has been recognized 

cardioprotective against IRI. However, it was observed that prolonged ischemia reduces the activation 

and the activity of the NOS, thus exacerbating cardiac damage. In particular, NO mediates its 

protective role through its anti-inflammatory and anti-oxidative functions, promoting the activation 

of distinct mechanisms, including the activation of cGMP, the enhancement of the cyclooxygenase-

2 and the inhibition of the mitochondrial Ca2+ influx (Hausenloy & Yellon, 2013). Moreover, NO 

cardioprotective effects were demonstrated in eNOS knockout mice, which showed an increase of 
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post-ischemic myocardial injury following IRI, as compared to eNOS overexpressing mice, in which, 

on the contrary, the cardiac functional recovery was improved (Kanno et al., 2000).  

In parallel, oxidative stress can be produced also by the xanthine oxidase system and the NADPH 

oxidase system. Xanthine oxidoreductases are a complex group of enzymes that play a crucial role in 

purine catabolism. During the restoration of blood flow after ischemia, xanthine oxidase reacts with 

O2, inducing the formation of xanthine and uric acid, using oxygen as an electron acceptor. During 

this reaction, O2
- and H2O2 are released, inducing high levels of oxidative stress (Brunner et al., 2003; 

Kanno et al., 2000).  

The Nox/Duox family of NADPH oxidase also produces ROS during ischemia and reperfusion injury. 

Indeed, it was reported that Nox overexpressing enzymes increase their activity in IRI and rapidly 

generate O2
- , which is then transferred to H2O2 that passes through the inner mitochondrial membrane 

and lead NO degeneration. 

Moreover, during IRI, the cells release several chemical molecules that activate NADPH oxidase, 

such as the phospholipase A2, which triggers a cell signaling pathway, ultimately promoting local 

inflammation (Wu et al., 2018). 

 

2.1.3 Inflammation 
Inflammation is the last player that contributes to the pathogenesis of lethal myocardial ischemia and 

reperfusion injury. Indeed, acute and chronic immune response is able to induce functional 

deterioration of the heart. It was also observed that IRI induces sterile inflammation in cardiac tissue, 

characterized by the activation of the complement, the innate and the adaptive immune system. In 

particular, neutrophils adhere and infiltrate the vascular tissue, thus activating platelets that can 

interact whit vascular endothelia, shifting from the low-affinity state to the high-affinity state. This 

activation induces the release of inorganic polyphosphate that, directly, activates several factors, 

which contribute to coagulation and inflammation. Moreover, 𝛄𝛅 T-cells, CD4+ and CD8+ contribute 

to tissue injury by releasing pro-inflammatory interleukins and chemokines (Eltzschig & Eckle, 2011; 

Yang et al., 2005). 

Moreover, recently, various endogenous ligands called Danger-Associated Molecular Patterns 

(DAMPs) have been associated to the inflammatory process induced by IRI, besides leukocytes. 

DAMPs act as “danger signals” during IRI and promote inflammation, finally accelerating apoptosis. 

Several Toll-Like Receptors (TLRs) present on leukocyte and parenchymal cells are able to bind and 

respond to these signals inducing damage to several cellular structures (Fig. 5) (Eltzschig & Eckle, 

2011). 
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Fig. 5: Schematic representation of the immunological mechanism of pattern recognition in myocardial 
ischemia/reperfusion  
 
The complex molecular scenario associated with IRI has prompted the researchers to investigate 

different possible approaches to counteract Ischemia and Reperfusion Injury. Among them, the most 

effective therapies for limiting the infarct size are represented by Ischemic Preconditioning (IPC), 

Ischemic Postconditioning (IPoC) and Remote Ischemic Conditioning (RIPC).  

 

3. Ischemic Preconditioning 
The ischemic preconditioning is obtained by the induction of several cycles of transient non-lethal 

ischemia that attenuate tissue injury during the subsequent ischemia and reperfusion, and is 

characterized by a biphasic protective effects.  

The early phase occurs immediately after ischemia and lasts for 2 or 3 hours. During this phase, pro-

survival proteins prevent harmful modification within the heart. 

 On the other side, the late phase occurs 12/24 hours and last till 48/72 hours after the initial 

preconditioning. During this period of time, cytoprotective proteins are produced, protecting 

cardiomyocytes from cell death (Frank et al., 2012; Xia et al., 2016).  
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3.1 Pro-survival kinases and the RISK pathway in IPC 
The cardioprotective effects of the IPC are mainly mediated by its capacity to stimulate the activation 

of numerous pro-survival protein kinases, such as the protein kinase C (PKC), the mitogen activated 

protein kinase (MAPK), the extracellular signal-regulated kinases 1/2 (ERK 1/2) and the protein 

kinase B or Akt, which could be grouped together in the so-called reperfusion injury salvage kinase 

(RISK) pathway (Javadov, Jang, & Agostini, 2014). In particular, several studies reported that PKC 

is activated during IPC by a signaling pathway triggered by the phosphatidylinositol 3-kinase (PI3K), 

a crucial enzyme, which regulates metabolism and cell survival. Indeed, PI3K activates Akt by 

phosphorylation, increasing the production of NO and, subsequently, inducing the activity of PKC, 

ultimately contributing to the beneficial effects of IPC (Tong, Chen, Steenbergen, & Murphy, 2000; 

Ytrehus, Liu, & Downey, 1994).  

PI3K regulates also cardiac cell metabolism during IPC because it promotes the increase of the 

glycogen synthesis whereas, at the meantime, it induces the inhibition of the glycogen breakdown 

through Akt phosphorylation, thus inactivating the glycogen synthase kinase (GSK) and protecting 

the cardiac tissue from the anaerobic metabolic shifting during IRI (Tong et al., 2000; Ytrehus et al., 

1994). 

However, the most important target of IPC is the mitochondrion. Indeed, it was observed that 

preventing MPTP opening by the administration of Cyclosporin A at the beginning of the reperfusion 

phase, reduced infarct size by 40-50% in animal models and protected human atrial trabeculae during 

IR (Hausenloy, Maddock, Baxter, & Yellon, 2002). Therefore, the inhibition of MPTP opening has 

been considered the final step of the IPC process since it is triggered by the activation of the RISK 

pathway. Indeed, the rapid activation of the pro-survival kinase signaling cascade, is sufficient to 

counteract the MPTP opening, protecting mitochondria from ATP depletion and rigor contracture. In 

particular, the stimulation of the PI3K and Akt could increase NO synthesis, inhibiting MPTP opening 

in rat cardiomyocytes (Shanmuganathan, Hausenloy, Duchen, & Yellon, 2005). Conversely, the use 

of the inhibitors LY294002 and SH-6, specific for PI3K and Akt respectively, completely counteract 

their protective action against the MPTP opening, confirming the main involvement of the RISK 

pathway in this process (Shanmuganathan et al., 2005). Furthermore, it was also observed that 

ERK1/2 phosphorylation levels are modulated during IPC. In particular, the mitochondrial ROS 

induced by precondition promote the activation of this kinase, contributing to the reduction of the 

infarct size in murine models (Fig. 6) (Davidson, Hausenloy, Duchen, & Yellon, 2006; Samavati et 

al., 2002). 
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3.2 Hypoxia Inducible Factor-1 (HIF-1) in IPC 
Recent studies reported that the inhibition of the MPTP opening could also be triggered by the 

transcriptional heterodimeric complex Hypoxia Inducible Factor-1 (HIF-1). HIF-1 is an oxygen-sense 

transcription factor which is considered the master regulator of the cellular hypoxic response, 

orchestrating a protective reaction mediated by the activation of about 200 genes, some involved in 

the regulation of the cell survival and the heart response to IRI (Ong & Hausenloy, 2012).  

HIF-1𝛂 enzymatic complex is composed by an oxygen-sensitive 𝛂-subunit (120 kDa) and a 

constitutively expressed 𝛃-subunit (91-94 kDa) whom stabilization is finely regulated by prolyl 

hydroxylases (PHDs). Indeed, the activity of HIF-1𝛂 is inhibited in normoxic conditions due to its 

hydroxylation on two specific proline residues in the Oxygen-dependent Degradation Domain (ODD) 

operated by PHDs, targeting HIF-1𝛂	to ubiquitination and proteasomal degradation (Wang, Jiang, 

Rue, & Semenza, 1995). On the contrary, under hypoxic conditions, PHDs are inhibited, allowing the 

accumulation and translocation of HIF-1𝛂 to the nucleus where it dimerizes with HIF-1𝛃, favoring 

its binding to hypoxia-responsive elements present and activating transcription. Three different PHDs 

isoforms have been identified which specifically regulate different isoforms of HIF-𝛂. In particular, 

the most ubiquitous isoform is PHD2, which is specific for HIF-1𝛂 degradation and not for HIF-2𝛂. 

All the three isoforms are present in the heart, but the most abundant are PHD2 and PHD3 (Ong et 

al., 2014).  

However, HIF-1𝛂 could also be regulated by protein kinase phosphorylation. Indeed, Akt and 

ERK1/2 stimulate a signaling cascade, which is important to induce HIF-1𝛂 activation in response to 

hypoxia. Interestingly, it was observed that the inhibition of these pro-survival kinases in rat 

cardiomyocytes was sufficient to abolish both HIF-1𝛂 activation and the cardioprotective effects of 

IPC (Milano et al., 2013; Ong et al., 2014). 

Thus, it is well accepted that HIF-1𝛂 stabilization plays a crucial role to improve myocardial tolerance 

to acute IRI and its up-regulation increases the synthesis of important target genes, such as 

erythropoietin (EPO), the vascular endothelial growth factor (VEGF), the hemeoxygenase-1 (HO-1) 

and i-NOS, which are all implicated in IPC-mediated cardioprotection (Ong & Hausenloy, 2012; Ong 

et al., 2014). 

However, also HIF-1𝛂 could exert its cardioprotective role by interacting with mitochondria. As 

mentioned before, the production of ROS during IRI guides the opening of the MPTP. Conversely, 

the metabolic switch from oxidative phosphorylation to anaerobic glycolysis induced by HIF-1𝛂, 

counteracts ROS generation and prevents the MPTP opening. In particular, the glycolytic enzyme 

hexokinase II (HK-II), a downstream target gene of HIF-1𝛂, is able to bind mitochondria during 
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ischemia and early reperfusion, considerably contributing to the protective effects of IPC in the heart 

(Ong et al., 2014). The reprogramming of the basal metabolism induced by HIF-1 is the principal 

physiological mechanism that mediate the protective process against cardiac IRI. To support this 

evidence, it has been demonstrated that the stabilization of HIF-1𝛂 in normoxia by a novel specific 

PHD inhibitor (GSK360A) increased HK-II levels during IRI, stabilizing the cell metabolism and 

limiting the production of oxidative stress and preventing MPTP opening, ultimately maintaining the 

mitochondrial integrity (Ong et al., 2014). 
 

 
Fig. 6: Schematic representation of the mechanism of ischemic preconditioning cardioprotection 
 

4. Ischemic Postconditioning 
Although IPC offers some potential benefits to counteract myocardial ischemia, this approach is not 

really practicable due to the pre-requisite for any preconditioning intervention, which need to be 

applied prior to the onset of ischemic phase that, in the case of an acute myocardial infarction, is 

difficult to predict. On the contrary, intervening against IRI, following the onset of acute myocardial 

infarction, represent a more attractive and feasible prospective. Thus, ischemic postconditioning 

approaches could be considered the best strategies for cardioprotection (Hausenloy, 2013). 
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IPoC was first described in 2003 when it was demonstrated that, after 60 minutes of coronary 

occlusion, 3 cycles of 30 seconds of reperfusion followed by 30 seconds of occlusion, were able to 

considerably reduce the post-ischemic myocardial infarct size in rabbit (Zhao et al., 2003). 

Furthermore, also in some clinical settings and surgeries, the application of IPoC induced a significant 

reduction of the infarct size, also increasing functional recovery (Hausenloy & Yellon, 2006). In 

particular, the cardioprotective effect of IPoC is mainly mediated by two molecular pathways: the 

Survival Activating Factor Enhancement pathway (SAFE) and the already mentioned RISK pathway.  

 

4.1 The SAFE pathway in IPoC 
The SAFE pathway is triggered at the onset of reperfusion by a moderate increase of the tumor 

necrosis factor-𝛂 (TNF-𝛂), which binds its receptor TNFR2 and phosphorylates STAT3, promoting 

its translocation into the nucleus, ultimately inducing the transcription of several stress-response 

genes. Moreover, in murine models of IRI, phospho-STAT3 migrates also in the mitochondria, 

regulating the respiratory chain and preserving the MPTP opening (Lacerda, Somers, Opie, & Lecour, 

2009). Conversely, in humans, it seems that STAT5, instead of STAT3, plays a relevant role in 

cardioprotection (Rossello & Yellon, 2018). Interestingly, it was also observed in mice that the 

STAT3 knockout not only counteracted the cardioprotective effects of IPoC, but also it compromised 

the phosphorylation of Akt, suggesting the hypothesis that Akt could be activated by STAT3 during 

IPoC, and supporting the existence of a cross-talk between the SAFE and the RISK pathway (Xia et 

al., 2016).  

 

4.2 The RISK pathway in IPoC 
The RISK pathway has an important role in the setting of ischemic postconditioning. Indeed, it was 

observed that, in rat hearts, IPoC induced a significant increase of Akt levels, responsible for the 

activation of NOS and p70S6K (Tsang, Hausenloy, Mocanu, & Yellon, 2004).  

As already described for IPC, this protective signaling cascade converges on mitochondria. 

Specifically, the principal target is represented by the MPTP, whose opening is counteracted. In 

particular, IPoC induces the phosphorylation and the inactivation of several pro-apoptotic signals, 

such as Bcl-2 and BAD, which exert their apoptotic action exactly promoting the MPTP opening 

(Rossello & Yellon, 2018). Furthermore, the activation of NOS, mediated by Akt, stimulates the 

increase in NO production, as well as the inhibition of GSK3𝛃, thus counteracting the opening of 

mitochondrial pore (Davidson et al., 2006; Hausenloy, Tsang, & Yellon, 2005). Finally, it was also 

observed that ERK1/2, stimulated by IPoC, forms functional complexes with an isoform of the 
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mitochondrial PKC, which importantly counteracts the MPTP opening, ultimately conferring 

cardioprotection (Baines et al., 2003; Brookes et al., 2000). 

Based on these premises, the components of the RISK pathway Akt and ERK1/2 seem to be a 

convergence point of both ischemic pre-and postconditioning, thus representing potential novel 

therapeutical targets to protect cardiac tissue against IRI. In this regard, the pharmacological up-

regulation of pro-survival kinases during reperfusion through the administration of specific drugs 

could be pursued as a potential innovative cardioprotective approach in the clinical–setting (Fig. 7) 

(Rossello & Yellon, 2018). 

 
Fig. 7: Schematic representation of the mechanism of myocardial ischemic postconditioning cardioprotection.  
 

5. Remote Ischemic Conditioning 
Remote conditioning is defined as a technique characterized by one or more cycles of non-lethal 

ischemia reperfusion in a tissue or an organ distant from the heart, which could be applied both before 

ischemia (remote preconditioning) ore after the ischemic event (remote postconditioning, RIPC) 

(Schmidt et al., 2007). This approach was discovered in 1997, when it was observed that repeated 

occlusion of rabbits’ limb could reduce the infarct size after IRI (Birnbaum, Hale, & Kloner, 1997). 

RIPC was subsequently applied also on humans during cardiac surgeries, resulting cardioprotective, 

as demonstrated by the reduction of serum troponin release (Xia et al., 2016).  
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Interestingly, the remote stimuli could be different, such as chemical, pharmacological, electrical or 

mechanical. The signals are then transferred from the periphery to the target organ, where the final 

cellular response is activated (Kleinbongard, Skyschally, & Heusch, 2017). 

Unfortunately, the mechanism of RIPC still remain unclear, although several signaling mediator have 

been recognized, including NO, pMAPK, STAT3, ROS, PKC, Akt and ERK1/2, which are the same 

molecules involved in both IPC and IPoC (Heusch, Botker, Przyklenk, Redington, & Yellon, 2015). 

Moreover, in patients undergoing heart surgery with a cardiopulmonary bypass it was also observed 

that HIF-1𝛂	expression was increased in the right atrial tissue by RIPC, supporting the possible 

involvement of HIF-1𝛂 in the regulation of the remote protective response (Albrecht et al., 2013). In 

any case, as well as for IPC and IPoC, mitochondria have been identified as the major common 

intracellular targets during remote ischemic conditioning (Kleinbongard et al., 2017). 

Therefore, it is interesting to observe how all the ischemic conditioning strategies described (IPC, 

IPoC and RIPC) converge on the activation of pro-survival kinases, especially AKT and ERK1/2, 

and on the stimulation of the master regulator of the cell response to hypoxia, HIF-1𝛂. Many efforts 

have been made to better clarify the molecular mechanisms regulated by these molecules, which 

nowadays represent the most important targets for the development of therapeutic strategies against 

IRI. 

 

6. The sialidase NEU3  
The sialidase NEU3 is a member of the mammalian sialidases family (neuroaminidases or NEUs), 

which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, especially 

gangliosides such as GD1a and GM3. In humans, four different isoforms of sialidases have been 

recognized, differing for kinetics properties, response to external stimuli and principally for their 

subcellular localization. Indeed, NEU1 is located in lysosomes; NEU2 within the cytosol; NEU3 is 

associated to the plasma membrane and NEU4 is known as the mitochondrial sialidase (Monti et al., 

2010). In particular, the membrane-bound sialidase NEU3 covers an important role in the regulation 

of the transmembrane signaling at the level of the cell surface. Moreover, NEU3 possess a trans-

activity because it could interact with gangliosides present on the membrane of adjacent cells, thus 

modulating cell to cell interactions and many signaling cascades (Papini et al., 2004). Along this line, 

the hydrolytic removal of neuraminic acids from gangliosides could influence many cellular 

processes, such as cell proliferation and differentiation (Fig. 8) (Scaringi et al., 2013; Zamora, Ryan, 

d'Alarcao, & Kumar, 2015). 
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Fig. 8: Schematic representation of sialidase NEU3. NEU3 removes sialic acid from gangliosides exposed on 
the outer membrane of adjacent cells.  
 

6.1 Pathological role of NEU3 
Sialidase NEU3 has been studied mainly for its tumorigenic potential and its involvement in cancer 

progression. Particularly, it was demonstrated that altered sialylation is closely related to malignant 

properties, including metastatic potential and invasiveness (Miyagi, 2008). Moreover, an aberrant 

expression of NEU3 has been linked to the carcinogenesis process, causing an alteration in the 

regulation of the transmembrane signaling at the cell surface (Lau & Dennis, 2008; Scaringi et al., 

2013). Furthermore, it was observed that an up-regulation of the membrane-bound sialidase NEU3 is 

associated to various human cancers, such as kidney, ovary, prostate and predominantly colorectal 

cancer (Shiga et al., 2015; Takahashi et al., 2015). Indeed, it was reported, in vivo, in transgenic 

mice, that NEU3 participated to the formation of colonic aberrant crypt foci. In particular, NEU3 

overexpression triggered the activation of the Wnt/𝛃-catenin signaling pathway, participating in its 

crosstalk with the endothelial growth factor receptor (EGFR) pathway, whose activation is considered 

to be essential for the initiation and progression of colon cancer (Takahashi et al., 2015). Therefore, 

the alteration of gangliosides content and composition on the cell membranes caused by NEU3 up-

regulation, is related to the maintenance of the cellular self-renewal and the tumorigenic potential in 

transgenic mice (Tringali et al., 2012).  

Neu3

GM3

Active	Site
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Furthermore, there are evidences that also in human cells NEU3 is significantly up-regulated in colon 

cancers, altering the sialylation state of cell surface glycoproteins and their resistance to apoptosis. 

Indeed, in this study, it was observed that colon cancer HCT-116 cells showed increased expression 

of NEU3 in terms of both mRNA levels and enzymatic activity. Moreover, NEU3 up-regulation 

resulted in the inhibition of apoptosis, accompanied by the increase of the anti-apoptotic gene Bcl-2 

and a decrease of the caspase-3 and caspase-9 expression. In particular, the NEU3-mediated 

inhibitory role of apoptosis could be also driven by the accumulation of lactosylceramide, which is 

the product of GM3 degradation, thus confirming that NEU3, through sphingolipids modulation, 

might influence several cellular processes, such as cell death (Kakugawa et al., 2002). 

 

6.2 Physiological role of NEU3 
Although the sialidase NEU3 has been mostly characterized for its pathological role in tumors, this 

protein is highly conserved in all species and, basically, it is expressed in almost all tissues (Miyagi 

& Yamaguchi, 2012). Thus, based on these premises, it is quite obvious that NEU3 should also play 

some physiological roles. 

To this regard, few years ago, our research group focused its attention on the NEU3 involvement in 

physiological processes.  

Interestingly, we previously demonstrated that the NEU3 localization on the plasma membrane is 

really dynamic and that this enzyme could be found also in endosomal vesicular structures (Cirillo et 

al., 2016). Indeed, NEU3 could be present in two different cell districts, the plasma membrane and 

the cytosol, suggesting the possible existence of a dynamic equilibrium of the enzyme within the cell, 

and supporting its involvement in regulating several cellular processes. In particular, our study 

revealed that NEU3 has a different role on the cell membrane and in the endosome. Indeed, it was 

observed that the endosomal compartment functions as a storage for the inactive form of the enzyme, 

which is ready to be translocated to the outer plasma membrane leaflet, when required, such as in 

response to stress conditions (Cirillo et al., 2016). 

Regarding stress conditions, our interest moved in the direction of discovering the involvement of 

NEU3 in the cell response to the hypoxic stress. 

To this purpose, the enzyme was both stably overexpressed and silenced in murine skeletal myoblasts 

C2C12, that were cultured under hypoxic conditions and compared with controls C2C12. This study 

showed that NEU3 overexpressing cells (L-NEU3) proliferated more than controls in normoxia, 

whereas silenced cells (i-NEU3) grew less than control cells. Interestingly, at 1% O2, L-NEU3 had a 

proliferation reduction that was much lower than controls. Conversely, i-NEU3 cells underwent a 
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very big drop in cell proliferation. Moreover, L-NEU3 cells showed a marked reduction in caspase 

3/7 activation, accompanied by a lower degree of cytotoxicity, as compared with wild-type C2C12. 

On the other hand, i-NEU3 were characterized by higher caspase activation and cytotoxicity degree 

than controls. Therefore, this study revealed that an increase of both sialidase expression and activity 

in skeletal myoblasts was protective against hypoxic conditions (Scaringi et al., 2013). Moreover, to 

support our findings, NEU3 expression is regulated by Sp1/Sp3 transcription factors, which are also 

up-regulated in hypoxia (Yamaguchi et al., 2010) 

However, the most interesting finding of our work was the identification of a novel molecular 

mechanism of HIF-1𝛂 activation, which is different from the “canonical” inhibition of prolyl 

hydroxylase 2 (PHD2) and is mediated by the sialidase NEU3 and the EGFR pathway activation. In 

particular, we demonstrated that NEU3 can activate the EGFR pro-survival signaling cascade by 

controlling ganglioside GM3 content, which is a known EGFR auto-phosphorylation inhibitor 

(Scaringi et al., 2013). Therefore, NEU3 up-regulation causes a reduction of this ganglioside, 

promoting EGFR activation and inducing its downstream signaling pathway, which includes several 

pro-survival kinases, such as Akt, p70S6K and ERK1/2, ultimately leading to an increase of the HIF-

1𝛂 levels. Finally, the increased expression of HIF-1𝛂,	together	with	the	activation	of	several	pro-

survival	kinases,	were the responsible of the protective effects induced by the sialidase NEU3 against 

acute hypoxia (Fig. 9) (Scaringi et al., 2013). 

 
Fig. 9: Scheme of EGFR signaling pathway activated by NEU3-induced GM3 reduction.  

 

More recently, our research group investigated the role of NEU3 in the response to hypoxic conditions 

also in humans. For this purpose, we performed our analysis on heart biopsies, from the right atrial 

appendage of cyanotic patients undergoing surgeries for congenital heart defects, whose hearts are 

exposed to chronic hypoxia, contributing to the disease pathophysiology (Piccoli et al., 2017).  
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Obviously, HIF-1𝛂 expression of cyanotic patients was increased both in terms of mRNA and protein 

levels, as compared to acyanotic cardiac patients, who have been used as controls. Moreover, the 

expression of several HIF-1𝛂 downstream targets, involved in glucose metabolism, such as the 

glucose transporter protein type-1 (GLUT1), the pyruvate dehydrogenase kinase-1 (PDK1) and the 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were more expressed in cyanotic samples, 

confirming the shift from the oxidative to the glycolytic metabolism (Piccoli et al., 2017). 

Interestingly, also the expression of the sialidase NEU3 was affected by chronic hypoxia. Indeed, 

both its mRNA levels and the protein associated to the plasma membrane were increased in cyanotic 

patients, as well as the expression of the transcription factors SP1 and SP3, as compared to control 

samples. Furthermore, cyanotic patients showed an increased activation of the EGFR, as well as of 

its downstream targets ERK1/2, AKT and p70S6K, confirming our hypothesis of a direct involvement 

of the sialidase NEU3 in regulating HIF-1𝛂 levels under chronic hypoxia conditions, through the 

stimulation of the EGFR signaling cascade (Fig. 10). Finally, to support our findings, sialidase NEU3 

expression positively correlates with HIF-1𝛂 expression levels in both cyanotic and acyanotic 

patients (Piccoli et al., 2017). 

 
Fig. 10: Representation of a novel HIF-1α mechanism of activation in congenital cyanotic patients mediated 
by NEU3. 
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AIM OF THE STUDY 
It is now clear that many mechanical, extracellular and intracellular processes are involved in the 

pathogenesis of ischemia and reperfusion injury, and several interconnected critical factors have been 

identified as responsible for cardiac tissue damages (Ferdinandy, Schulz, & Baxter, 2007). Many 

efforts have been made seeking cardioprotective approaches to be applied as adjunctive tools to 

existing reperfusion interventions and, in particular, ischemic preconditioning and postconditioning 

strategies resulted as the most effective therapies for limiting the infarct size (Yellon & Hausenloy, 

2005). Both strategies converge on the activation of a molecular mechanism which involves a 

signaling cascade known as RISK pathway and on the activation of HIF-1𝛂. HIF-1𝛂 plays a critical 

role in orchestrating the cell defense machinery against ischemia through the transcriptional 

activation of up to 200 genes, which are critical for cell survival and metabolic adaptation to low 

oxygen, which therefore may be important during IRI (Ong et al., 2014; Tekin, Dursun, & Xi, 2010).  

As previously described, our research group discovered a new pathway of HIF-1𝛂 activation during 

hypoxia, which is different from the inhibition of prolyl hydroxylase 2 and is mediated by the sialidase 

Neu3 and the EGFR signaling cascade.  

Therefore, based on our previously results in hypoxic condition, and well aware that hypoxia is a 

fundamental component of the ischemic phase, we wondered whether an up-regulation of NEU3 

could also increase myocardial cell resistance to IRI.  

To pursue this aim, we employed both molecular and cellular biology approaches. We developed an 

in vitro model of ischemia and reperfusion that was used to study how NEU3 expression and activity 

were modulated under IRI conditions. The same model has been employed to test whether NEU3 

overexpression could also promote cardiac myoblast survival against ischemia and reperfusion.   

Moreover, considering the involvement of the sphingolipid metabolism in the regulation of the 

cardiac fibrosis process, which is strictly correlated with IRI, the effects of NEU3 overexpression 

have been also analyzed in an in vitro model of fibrosis, using human cardiac fibroblasts. 

Clearly, the possibility to demonstrate that the sialidase NEU3 is crucial during the cardiac cells 

response to IRI and that its up-regulation could increase cardiac resistance to the ischemia and 

reperfusion damage, both increasing cardiomyocytes survival and reducing the scar formation, arise 

new translational perspectives related to this protein. Therefore, sialidase NEU3 could represent a 

possible novel target for the development of more effective therapeutic strategies for CVDs treatment.
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MATERIALS & METHODS 
1. Cell culture and treatments 

 
A. H9C2 Cardiomyoblasts 

H9C2 rat cardiomyoblasts were obtained from Sigma-Aldrich and cultured in Dulbecco’s modified 

Eagle’s medium with low glucose (DMEM, Sigma-Aldrich), containing 10% fetal bovine serum 

(FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin at 37°C in 5% CO2, 

95% air-humidified atmosphere. To mimic ischemic conditions, cells were cultured for different time 

lengths in an hypoxic hood (SCI-tive, Baker Ruskinn) in the presence of DMEM without glucose, L- 

glutamine, phenol red, sodium pyruvate and sodium bicarbonate. Cells were brought back to 37°C in 

5% CO2, 21% O2 and cultured in DMEM low glucose with supplements to simulate reperfusion.  

 

B. Cardiac fibroblasts  
Human cardiac fibroblasts were obtained from right atrial appendage biopsies of patients who 

underwent cardiac surgery correction with extracorporeal circulation at the Cardiac Surgery Division 

of the IRCCS Policlinico San Donato Hospital. All subjects, who respected the inclusion and 

exclusion criteria, gave their informed consent before being enrolled in the study, which was 

conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the 

Ethics Committee. 

Cardiac fibroblasts were cultured in Dulbecco’s modified Eagle’s medium with high glucose 

(DMEM, Sigma-Aldrich) containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml 

penicillin and 100 mg/ml streptomycin at 37°C in 5% CO2, 95% air-humidified atmosphere. 

 

2. Fibroblasts activation 
Cardiac fibroblasts were plated at 80-90% confluency and serum-starved for 48 hours. Then, human 

recombinant TGF-𝛃 (Peprotech) was added to a final concentration of 10 ng/ml for 72 hours. 

 

3. Stable overexpression of NEU3 in H9C2 cells and cardiac fibroblasts 
One day before transfection, H9C2 were plated at a density of 1 x 105 cells in growth medium 

without antibiotics to reach 70-80% confluency at the time of transfection. Cells were divided in 

two groups: one transfected with a Neu3 Lentiviral Vector (Rat) (CMV) (pLenti-GIII-CMV-GFP-

2A-Puro) (Applied Biological Materials) and one transfected with a scramble (SCR) plasmid, used 

as controls, according to the ViaFect™ Transfection Reagent manufacturer’s protocol. 
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Transfected clones were isolated using 10 mg/ml puromycine (Invivogen) and were checked for both 

NEU3 expression and activity. The clone with the highest NEU3 expression and activity was selected 

for the further experiments.  

Cardiac fibroblasts, instead, were infected with a lentiviral system containing the human sialidase 

NEU3 coding sequence.  The stably overexpressing NEU3 cells were isolated after selection with 5 

µg/ml blasticidin (Thermo Fisher Scientific), and used for the further experiments. 

	

4. RNA extraction and gene expression by quantitative PCR (qPCR) 
Total RNA was isolated with ReliaprepTM RNA cell miniprep system (Promega), following the 

manufacturer’s protocol.. Then, 1 µg of RNA was reverse transcribed to cDNA with the iScript cDNA 

synthesis kit (Bio-Rad), according to the manufacturer’s instructions. Real time PCR was performed 

with 10 ng of cDNA template, 0.2 µm primers, and 1× GoTaq® qPCR Master Mix (Promega) in 20 

µl of final volume, using a StepOnePlus® real time PCR system (Applied Biosystem). The 

amplification protocol was: 95°C for 2 min, 40 cycles of 5 seconds each at 95°C, 30 seconds at 57°C 

and 30 seconds at 72°C, and a final stage at 72°C for 2 minutes. 

The relative quantification of the expression of target genes was calculated by the equation 2−ΔΔCt 

using the RPLI gene as an housekeeper. Melting curves were monitored to guarantee the accuracy 

and the specificity of the amplicon. All reactions were performed in triplicate. The primers sequences 

are listed in Table 1. 
 

Gene Forward Primer Reverse Primer 

Rat NEU3 5’-ATGCCCTCTGATGGACAGAT-3’ 5’-CATGTCCCTGATGGTGCTC-3’ 

Rat RPL13A 5’-TCTCCGAAAGCGGATGAACAC-3’ 5’-CAACACCTTGAGGCGTTCCA-3’ 

Human NEU3 5’-TGGTCATCCCTGCGTATACC-3’ 5’-TCACCTCTGCCACTTCACAT-3’ 

ACTA2 5’-CTGGACTCTGGAGATGGTG-3’ 5′-GCAGTAGTAACGAAGGAATAGC-3′ 

Collagen 1 5’-CGACCTGGTGAGAGAGGAGTTG-3’ 5’-AATCCATCCAGACCATTGTGTCC-3’ 

UBC 5’-CTGGAAGATGGTCGTACCCTG-3’ 5’-GGTCTTGCCAGTGAGTGTCT-3’ 

S14 5’-GTGTGACTGGTGGGATGAAGG-3’ 5’-TTGATGTGTAGGGCGGTGATAC-3’ 
 

Table 1: qPCR primers sequences 
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5. Sialidase Activity Assay 
Sialidase activity assay was performed to investigate the enzymatic functionality of the sialidase 

NEU3. The activity of the enzyme was determined by an assay based on the 2′-(4-

Methylumbelliferyl)-𝛂-D-N-acetylneuraminic acid. The removal of the sialic acid by the 

neuraminidase results in the formation of a fluorescent product, which is directly proportional to the 

neuraminidase activity in the sample. 

In particular, H9C2 cell samples were obtained by scraping and centrifugation and then resuspended 

in PBS with a protease inhibitor cocktail (SIGMA-Aldrich). Subsequently, they were lysed by two 

cycles of sonication and centrifuged at 800 x g for 10 min to eliminate all nuclear components and 

the residues of broken cells. The obtained supernatant was centrifuged at 30000 x g for 75 min with 

an AvantiTM J-30I Centrifuge (Beckman) to isolate the membrane fraction. The sialidase activity 

associated to this fraction was assayed by incubating 30 µg of protein with the 4-MU-NeuAc at pH 

3.8 for 1 hour at 37°C. At the end of the incubation, glycine 0.2 M was added to each sample to stop 

the entire reaction. The fluorescent signal was read by a multiplate reader (Varioskan Lux, Thermo 

Scientific) with an excitation wavelength of 365 nm and an emission filter of 448 nm. 

 

6. Cell growth analysis 
Cell count was performed by the trypan blue assay on H9C2 plated in 35 mm Petri dishes after 12 

hours of ischemia and 12 – 24 – 36 – 48 hours of reperfusion. Cell number was determined by the 

automated cell counter Countess II FL™ (Life Technologies). 

 

7. Cytotoxicity detection 
CellToxTM Green Cytotoxicity Assay (Promega), was used to investigate the cytotoxic effect of the 

ischemia-reperfusion treatment on H9C2 cells, according to the manufacturer’s instructions. 

The CellToxTM Green Cytotoxicity Assay measures changes in the membrane integrity that occur as 

a result of cell death. This assay system uses a proprietary asymmetric cyanine dye that is excluded 

by viable cells but, preferentially, stains the dead cell’s DNA. When the dye binds the DNA in cells 

with impaired membranes is activated and emits fluorescence. Viable cells do not produce any 

appreciable increases in fluorescence. 

Thus, the fluorescent signal emitted by the dye bonded DNA is directly proportional to cytotoxicity. 

Briefly, 2.5 x 103 cells were plated in triplicate in 96 dark-walled plates, exposed to 12 hours of 

ischemia and 3 – 6 – 12 – 24 – 48 hours of reperfusion. Buffer containing a 1:1000 dilution of CellTox 

Green Dye was added to each well and incubated at room temperature in the dark for 15 minutes. The 
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fluorescent signal was detected by Varioskan Lux with an excitation wavelength of 480-500 nm and 

an emission filter of 520-530 nm. 
	
8. Apoptosis assay 
Apoptosis was evaluated by nuclear DAPI staining. 7 x 104 cells were plated in 35 mm Petri dishes 

and exposed to 12 hours of ischemia and 3 – 6 – 24 – 48 hours of reperfusion. At any time-point 

analyzed, cells were fixed in paraformaldehyde 4% for 15 min at room temperature (RT) and then 

washed 3 times with PBS. Blocking and permeabilization were performed in PBS with 5% BSA + 

0.1% Triton-X100 for 15 min RT, followed by staining with Hoechst 33258 (1:500 dilution) for 15 

min at RT in the dark. Apoptotic cells were analyzed under a fluorescent microscope (Olympus TH4-

200) with magnification 20x. The % of cell death was obtained by counting the number of altered 

nuclei in 15 different fields for each sample, which was then normalized by the number of the total 

nuclei.  

 

9. Caspase 3/7 activation assay 
Caspase 3/7 activation were analyzed using a luminescent assay (Caspase-Glo® 3/7 Assay Kit, 

Promega). The Caspase-Glo® 3/7 assay provides a proluminescent caspase-3/7 substrate, which 

contains the tetrapeptide sequence DEVD. This substrate is cleaved by caspase to release 

aminoluciferin, a substrate of luciferase used in the production of light. Mixing the Caspase-Glo® 

3/7® reagent to the samples results in cell lysis, followed by the caspase-mediated cleavage of the 

substrate and the generation of a luminescent signal. Thus, the luminescence detected is proportional 

to the caspase activity of the samples. 

Briefly, H9C2 cells were seeded 7 x 104 in 35 mm Petri dishes and then exposed to 1 – 3 – 6 – 12 

hours of ischemia and 3 – 6 – 12 - 24 – 48 hours of reperfusion. At the end of each time-point, 350 

µl of Caspase-Glo® 3/7 Reagent were added to the samples and incubated 1 hour at RT in the dark. 

At the end of the incubation, 200 µl of each sample were transferred into a 96 white-walled plate in 

triplicate and the luminescent signal was measured using Varioskan Lux. In parallel, for each time-

point, a cell count was performed by trypan blue assay as described in paragraph 5. The levels of 

Caspase 3/7 activation were calculated as the ratio of caspase activity detected, normalized by the 

number of cells.  
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10. Protein extraction and Western Blot analysis 
For protein expression analysis, cells were lysed with RIPA buffer (1% Nonidet P-40 in 50 mm Tris-

HCl, pH 7.5, 150 mm NaCl, 0.1% sodium deoxycholate, 1% protease inhibitor cocktails), incubated 

in ice for 30 minutes and then centrifuged at 13000 x g for 15 minutes at 4°C. The supernatant was 

collected and the Protein concentration was determined by the Pierce BCA Assay Kit (Thermo 

Scientific). Then, 30 µg of total protein were denatured for 5 min at 100°C in Sodium Dodecyl Sulfate 

(SDS) sample buffer and separated by SDS-Page, before being transferred to nitrocellulose 

membranes. To block non-specific binding sites, membranes were incubated with Tris-HCl buffer 

pH 7.5 (TBS) containing 5% bovine serum albumin (BSA) or 5% non-fat dried milk for 1 hour and 

then incubated with primary antibodies at 4°C overnight. The following primary antibodies were 

used: anti-𝛂-SMA (1:5000, Sigma Aldrich), anti-collagen I (1:1000, Invitrogen), anti-GM3 synthase 

(1:1000, Santa Cruz), anti-phospho-Akt T308 (1:1000, Cell signaling), anti-Akt (1:1000, Cell 

signaling), anti-phospho-p44/42 MAPK (p-Erk1/2) T202/Y204 (1:1000, Cell signaling), anti-p44/42 

MAPK (Erk1/2) (1:2000, Cell signaling), anti-HIF-1𝛂 (1:1000, Cell signaling), anti-Calnexin 

(1:10000, Abcam). The membranes were washed with TBS + 0.1% Tween20 4 times for 5 min, and  

incubated with the appropriate secondary antibodies HRP-conjugated for 1 hour at RT. Membranes 

were subsequently washed with TBS + 0.1% Tween20 and bands were identified using LuminataTM 

Forte Western HRP Substrate (Millipore Corporation) as reported in the relative protocol. Each 

experiment was performed in triplicate and the quantitative analysis of the bands intensity was 

performed using the Image Studio Lite software. 
	

11. NEU3 chemical inhibition in H9C2 
For the chemical inhibition of NEU3, the cells have been treated with both the general mammalian 

sialidase inhibitor 2,3-Dehydro-2-deoxy-N-acetylneuraminic acid (DANA) and the sialidase NEU3 

specific inhibitor C9-modified Zanamivir analogue (LR332), used at 50 µM concentration. 

The molecules have been both synthesized in collaboration with our chemistry laboratory at the 

University of Milan. 

 

12. Dual- Luciferase Reporter Assay 
The stability of HIF-1𝛂 in cells exposed to different time length of ischemia (1 – 3 – 6 – 12 hours) 

has been evaluated using the Dual-Glo® Luciferase Assay System Kit (Promega). 

The Dual-Glo® Luciferase Assay allows a high-throughput analysis in mammalian cells containing 

the reporter genes Firefly Luciferase (ODD-Luciferase-pcDNA3) and Renilla luciferase (pRL-
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CMV). This reagent, directly added to cell medium, induces cell lysis and acts as a substrate for the 

firefly luciferase. Addition of the Dual-Glo® Stop and Glo® Reagent quenches the luminescence 

from the firefly reaction by at least 10,000-fold and provides the substrate for Renilla luciferase in a 

reaction that can also be read within 2 hours (with a similar retention in signal). 

In particular, H9C2 were seeded 5 x 103 in a 96-well plate and exposed to 1 – 3 – 6 – 12 hours of 

ischemia. Cells were transfected with an ODD-luciferase-pcDNA3 (80 ng) or an empty-luciferase-

pcDNA3 (80 ng) and pRL-CMV (8 ng), used as an internal control, according to the ViaFect 

Transfection Reagent® protocol (Promega). At the end of the treatment, an equal volume of Dual-

Glo® Luciferase Reagent to the volume of culture medium was added to the samples, mixed well and 

incubated for 30 minutes at RT in the dark. When the incubation was concluded, the solution was 

transferred to 96-well white plates and the luminescence emitted at 550 nm by the Firefly luciferase 

was measured using Varioskan Lux (Thermo Scientific). Then, to turn off the luminescence of the 

Firefly luciferase and provide the substrate for the Renilla luciferase, it was added an equal volume 

to the original culture medium of Dual-Glo® Stop and Glo Reagent. After 30 minutes of incubation, 

luminescence emitted was detected at 480 nm with Varioskan Lux (Thermo Scientific).  
HIF-1𝛂 stability levels have been obtained by calculating the ratio of luminescence from the 

experimental reporter (ODD) to luminescence from the control reporter. 

 

13. Immunofluorescence staining 
H9C2 cells were plated in 6-well plates 3 x 105 for one day. Subsequently, cells were subjected to 

serum starvation for 48 hours and then treated with TGF-𝛃 10 ng/ml for 72 hours. At the end of the 

treatment, cells were washed 3 times in PBS and fixed for 15 min in 4% paraformaldehyde at room 

temperature. For permeabilization and blocking, the cells were incubated for 1 hour in the presence 

of PBS 0.1% Triton X-100 (TX-100) and 5% fetal bovine serum (FBS) at RT. Then, cells were 

incubated with an anti-Smooth Muscle 𝛂-Actin antibody (Sigma-Aldrich) diluted 1:200 in PBS 0.1% 

Triton X-100 (TX-100) and 5% FBS for 2 hours at RT. Subsequently, cells were washed 3 times in 

PBS and incubated with an anti-mouse FITC-conjugated secondary antibody (Jackson 

ImmunoResearch) for 1 hour at RT. After 3 washing in PBS, cell nuclei were stained with Hoechst 

33258 (1:500 dilution). At the end of the staining, cells were analyzed under a fluorescent microscope 

(Olympus TH4-200) equipped with an acquisition camera, with magnification 10x. Finally, the 𝛂-

SMA positive cells were compared to the 𝛂-SMA negative controls. 
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14. GM3 synthase silencing 
Specific siRNA duplexes targeting the GM3 synthase, siRNA transfection reagents, and reduced-

serum transfection medium were purchased from Santa Cruz Biotechnology. The day before 

transfection, 7 x 105 cardiac fibroblasts were seeded in each well of a 12-well cell culture plate in 

DMEM low glucose, containing 10% FBS without antibiotics and incubated for 24 hours at 37°C and 

5% CO2. The next day, transfection complexes were prepared using 3 µg of GM3 synthase siRNA, 

siRNA transfection reagent, and transfection medium according to the manufacturer's protocol and 

were added to each well. A scrambled siRNA (Santa Cruz Biotechnology) was used as negative 

control. 

 

15. Statistical Analysis 
For all quantified data, mean ± SD values are presented. The Student’s t-test was used to determine 

significance using Prism 8 Software. P values of less than 0.05 were considered to be significant. All 

P value were calculated from data obtained from at least of three independent experiments. All error 

bars represent the standard deviation of the mean. 

All the results are expressed as Relative Quantity (R.Q), which allows to measure differences between 

different samples, and represented as fold increase or decrease in comparison to a reference sample 

control (CTRL=1).  
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RESULTS  
The results obtained during my PhD, finalized to investigate the possible involvement of sialidase 

NEU3 in the cardiac response to ischemia and reperfusion injury, will be presented and analyzed in 

this chapter. 

 

1. Ischemia and Reperfusion in vitro model 
Before starting to perform any experiment, we optimized an in vitro model of ischemia and 

reperfusion injury (IRI), using rat cardiomyoblasts H9C2. To mimic ischemia, cells were cultured for 

12 hours at 1% O2 in a hypoxic chamber with pre-conditioned ischemic medium (DMEM no glucose, 

without any supplement). Cells were then switched to normoxic condition (21% O2) in complete 

growth medium (DMEM low glucose, 10% FBS) up to 48 hours, to obtain reperfusion (Fig. 1). To 

validate our in vitro model, proliferation and toxicity have been evaluated after 12 hours of ischemia 

and at different time lengths of reperfusion. Results showed that IRI treatment caused a marked 

reduction in cell proliferation, together with a progressive increase in cell toxicity, that reach a peak 

right after the ischemic treatment (12 hours) and at 24 hours of reperfusion (Fig. 2A-B). 
 

 
Fig 1: Schematic representation of the ischemia and reperfusion in vitro model. 

 

 

Fig 2: Effects of IRI on H9C2 in terms of proliferation (A) and cytotoxicity (B). Data represent mean ± SD of 

5 independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01; 

***P<0.001. 
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2. NEU3 modulation under ischemia and reperfusion 
Subsequently, to investigate how ischemia and reperfusion could influence sialidase NEU3, we 

evaluated NEU3 mRNA levels and the sialidase activity during IRI. Interestingly, we observed an 

initial up-regulation of NEU3 in the early phase of ischemia, followed by a progressive decrease in 

the sialidase expression and activity that culminated after 12 hours of ischemia exposure. NEU3 was 

then reactivated during reperfusion (Fig. 3A-B). 

 

 
Fig. 3: Effects of IRI on NEU3 expression (A) and activity (B). Data represent mean ± SD of 3-5 independent 
experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001; ##P<0.01; ###P<0.001. 
 

3. NEU3 overexpression in cardiomyoblasts H9C2 
To further investigate the role of NEU3 in IRI, we stably overexpressed the enzyme in H9C2 cells 

with a lentiviral vector containing the rat sialidase NEU3 coding sequence and a Green Fluorescent 

Protein (GFP) that allowed us to identify the transfected cells (Fig. 4A). Control cells were transfected 

with an empty scramble (SCR) vector. Several clones were selected and tested for NEU3 expression 

and activity and the clone which showed the highest sialidase activity (about 3-fold higher than 

controls) was used for the further experiments (Fig. 4B). 

Then, SCR and NEU3-overexpressing cells (hereafter simply NEU3-cells) were subject to IRI, as 

described above, and a cell growth analysis was performed. As expected, both SCR and NEU3 treated 

cells showed a decrease in cell proliferation as compared to untreated controls, but comparing the 

two cell lines, we observed that NEU3 up-regulation was sufficient to maintain significant higher 

levels of cell proliferation than SCR controls after 12 hours of ischemia and during the entire 

reperfusion phase (Fig. 4C). Remarkably, NEU3 overexpression was also able to considerably reduce 
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apoptosis. Indeed, as revealed by the nuclear DAPI staining, the number of apoptotic cells, which are 

characterized by chromatin condensation and nuclear blebbing, was significantly lower after NEU3 

up-regulation, as compared to SCR cells (Fig. 4D). Furthermore, we also evaluated caspase 3/7 

activation during IRI. Caspase-Glo® analysis revealed a 3-fold reduction of caspase activation in 

NEU3 cells, as compared to SCR, mainly during the ischemic phase. However, a significant lower 

level of activation is maintained in NEU3 cells also during the entire reperfusion phase (Fig. 4E). 
 

 
 

Fig. 4: Effects of NEU3 overexpression in H9C2 exposed to IRI. Plasmid vector for NEU3-overexpression. 
The GFP marks the transfected cells (A). Analysis of NEU3 expression and activity of the selected H9C2 
overexpressing clone (B). Analysis of the effects of the IRI exposure on SCR and NEU3 overexpressing cells 
in terms of cell proliferation (C), apoptosis (D) and Caspase 3/7 activation (E). Data represent mean ± SD of 
4 independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01; 
***P<0.001; ****P<0.0001. 
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4. NEU3 overexpression and the RISK pathway 
In order to investigate the molecular mechanism leading to NEU3-induced protective effects, we 

analyzed the activation of the pro-survival kinases Akt and Erk1/2, two of the main components of 

the RISK pathway. SCR and NEU3 cells were exposed to our model of IRI and Akt and Erk1/2 

activation was evaluated by Western Blot, by comparing the ratio between the inactive and the active 

(phosphorylated) forms of both proteins. All the bands analyzed corresponded to the expected 

molecular weights and their intensity has been normalized by the intensity of the calnexin protein, 

which was used as housekeeper (data not shown). Results revealed that both kinases showed a 2-fold 

increase in the activation levels in NEU3 overexpressing cells at any time point analyzed, as 

compared to controls (Fig. 5). 

 
 

Fig. 5: Western Blot analysis of Akt and Erk1/2 activation in SCR and NEU3 H9C2 during IRI. Data represent 
mean ± SD of 4 independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; 
**P<0.01; ***P<0.001; ****P<0.0001. 
 
Therefore, to confirm the real involvement of the RISK pathway activation in the beneficial effects 

mediated by NEU3, we inhibited Akt and Erk1/2 in H9C2 cells using two specific inhibitors. In 

particular, LY294002 (LY), which is a potent, cell permeable inhibitor of the phosphatidylinositol 3-

kinase (PI3K), is able to block the PI3K-dependent Akt phosphorylation, and PD98059 (PD), which 

instead is a highly selective inhibitor of the MEK1 activation and of the MAP kinase cascade, was 

used to block ERK phosphorylation on both threonine and tyrosine residues (Fig. 6A). Initially, 

several inhibitor concentrations were tested on wild-type H9C2 cells and the activation of both Akt 

and Erk1/2 was evaluated by Western Blot, as already described before, following the stimulation 

with the epidermal growth factor (EGF), which is a known activator of the RISK pathway (Fig. 6B). 

Based on these data, the most suitable concentration of both inhibitors resulted the 50 µM, which has 

been selected for the further treatments  
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Fig. 6: Specific inhibitors of Akt (LY294002) and Erk1/2 (PD98059) activation (A). Western blot analysis of 
Akt and Erk1/2 activation after treatment with both inhibitors, following the stimulation with EGF (100 ng/ml) 
(B). Data represent mean ± SD of 3 independent experiments. Statistical significance was determined by 
Student’s t test. *P<0.05; **P<0.01. 
 
 

At this point, to test the consequences of the RISK pathway inhibition on the protective effects 

mediated by the sialidase NEU3, SCR and NEU3 cells were treated with both LY and PD (50 µM) 

and exposed to our IRI in vitro model.  

Initially, the levels of Akt and Erk1/2 activation have been analyzed by Western Blot to confirm the 

effectiveness of the inhibitors treatment following the cell exposure to IRI. As expected, both cell 

lines, treated with LY, showed a progressive decrease of Akt activation, which is more evident during 

the entire reperfusion phase. Similarly, PD treatment induced a marked reduction of Erk1/2 activation 

on SCR and NEU3 cells at any time point analyzed (Fig. 7). 

 
Fig. 7: Representative images of the effects of the treatment with the specific inhibitors of Akt (LY294002) and 
Erk1/2 (PD98059) on SCR and NEU3 H9C2 cells exposed to IRI. Western blot analysis of Akt and Erk1/2 
activation. The experiments have been repeated 4 times, independently. 
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Then, in order to evaluate the inhibitors treatment effects on cell survival and death, we performed a 

cell growth analysis, as described in details in the material and methods section.  

Interestingly, results revealed that LY and PD completely abolished the protective effects mediated 

by NEU3 up-regulation, rendering NEU3 overexpressing cells sensitive to IRI, as well as the control 

cells. In particular, the reduction in cell survival reached the peak at 48 hours of reperfusion, since 

NEU3 cells treated with both inhibitors showed an almost 3-folds lower cell growth levels as 

compared to untreated samples (Fig. 8). 
 

 
Fig. 8: Cell growth analysis of SCR and NEU3 H9C2 cells exposed to IRI following the treatment with the 
specific inhibitors of Akt (LY294002) and Erk1/2 (PD98059). Data represent mean ± SD of 5 independent 
experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001. 
 

Interestingly, the cell growth results were also confirmed by the apoptosis analysis.  

As shown by the images and the graphs, NEU3 cells treated with LY and PD presented increased 

number of apoptotic nuclei, as compared to the untreated samples. In particular, after the inhibitors 

treatment, the percentage of NEU3 H9C2 apoptotic cells increased from 5% to around 25%, which 

is a level exactly comparable to SCR controls, during both ischemia and the entire reperfusion phase 

(Fig. 9).  
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Fig. 9: Apoptosis analysis of SCR and NEU3 H9C2 cells exposed to IRI following the treatment with the 
specific inhibitors of Akt (LY294002) and Erk1/2 (PD98059). White arrows identify apoptotic cells and 
chromatin condensation. Data represent mean ± SD of 5 independent experiments. Statistical significance was 
determined by Student’s t test. ****P<0.0001. 
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5. HIF-1α activation is regulated by NEU3 under ischemia and reperfusion 
As previously described, HIF-1𝛂 is the major regulator of the cell response to hypoxia and has been 

identified as one the crucial mediators of cardioprotection during stress conditions. Since we already 

identified, in hypoxic skeletal and cardiac muscle, a novel mechanism of HIF-1𝛂 activation mediated 

by the sialidase NEU3, through the EGFR pathway, we decided to investigate whether the same 

sialidase could also promote HIF-1𝛂 triggering during IRI in H9C2. To this purpose, we evaluated 

the stability of the HIF-1𝛂	 protein during the ischemic phase. In particular, we measured the 

activation of the HIF-1𝛂 oxygen-responsive domain (ODD) by a specific luciferase assay.  

Results revealed that HIF-1𝛂 stability was already increased in NEU3 H9C2 after 1 hour of ischemia 

and was maintained higher than SCR cells at 3 and 6 hours of ischemia (Fig. 10A). Moreover, to 

confirm these evidences, the levels of HIF-1𝛂 were analyzed by Western Blot. As shown in figure 

10B, NEU3 overexpression induced a significant increase of the protein, which was 2-folds higher 

than controls in all the time points analyzed (Fig. 10B). 
 

 
 
Fig. 10: ODD luciferase assay (A) and western blot analyses (B) of HIF-1α during IRI. Data represent mean 
± SD of 3 independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; 
**P<0.01; ***P<0.001. 
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6. NEU3 inhibition in cardiomyoblasts H9C2 
To further demonstrate the direct involvement of sialidase NEU3 in the cardioprotection against IRI, 

the enzyme was inhibited through the N-Acetyl-2,3-dehydro-2-deoxyneuraminic acid or DANA, 

which is a general inhibitor of the mammalian sialidases. Initially, several DANA concentrations 

were tested (10 - 50 - 100 µM) on NEU3 overexpressing cells to identify the best conditions for 

treatment. As expected, we observed a dose-dependent reduction of the sialidase activity, measured 

by an assay based on the synthetic substrate 2’-(4-Methylumbelliferyl)-𝛂-D-N-acetylneuraminic acid 

(4-Mu-NeuAc), as described in the materials and methods section. The 50 µM concentration of 

DANA was able to reduce NEU3 activity to levels comparable to controls, therefore being selected 

for the further experiments (Fig. 11).  

 
Fig. 11: NEU3 activity analysis in NEU3 overexpressing treated with 10-50-100 µM DANA. Data represent 
mean ± SD of 3-5 independent experiments. Statistical significance was determined by Student’s t test. 
**P<0.01; ***P<0.001. 
 

Thus, we exposed SCR and NEU3 H9C2, treated with 50 µM DANA, to our IRI model and we 

performed a cell growth analysis. The results showed that, while DANA did not modify the sensitivity 

of control cells to ischemia and reperfusion, the treatment of NEU3 overexpressing cells with the 

inhibitor completely counteracted the beneficial effects mediated by the sialidase up-regulation, 

significantly reducing their resistance to levels comparable to SCR cells (Fig. 12A).  

These data were also confirmed by the apoptosis analysis. As shown by the images and the graphs, 

NEU3 cells treated with 50 µM DANA presented an increased number of apoptotic nuclei, as 

compared to the untreated NEU3 samples. In particular, after the inhibitor treatment, the percentage 

of NEU3 H9C2 apoptotic cells increased from 5% to around 20% at any time point analyzed, which 

is a level comparable to SCR controls. On the contrary, DANA treatment on SCR cells exposed to 

IRI did not modify the number of apoptotic cells (Fig. 12B).  
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Fig. 12: Cell growth (A) and apoptosis (B) analysis of SCR and NEU3 H9C2 cells exposed to IRI following 
the treatment with the sialidases inhibitor DANA (50 µM). Data represent mean ± SD of 3 independent 
experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001. 
 
However, because it is well known that DANA affects all the four different isoforms of sialidases, 

we concomitantly used a recently identified inhibitor, which is a C9-modified Zanamivir analogue 
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(LR332), that has been demonstrated to be selective on the sialidase NEU3 (Guo et al., 2018). Several 

LR332 concentrations were tested (10 - 50 - 100 µM) on NEU3 overexpressing cells to identify the 

best conditions for treatment. Also in this case, we observed a dose-dependent reduction of the 

sialidase activity, measured on 4-Mu-NeuAc. The 50 µM concentration of LR332 resulted the lower 

concentration able to reduce NEU3 activity to levels comparable to controls, therefore has been 

selected for the further experiments (Fig. 13).  

 

 
Fig. 13: NEU3 activity analysis in NEU3 overexpressing treated with 10-50-100 µM LR332. Data represent 
mean ± SD of 3-5 independent experiments. Statistical significance was determined by Student’s t test. 
*P<0.05. 
 

At this point, NEU3 overexpressing cells were treated with LR332 50 µM, exposed to IRI, and the 

cell growth analysis was performed. As expected, the inhibition of the sialidase activity was sufficient 

to counteract the beneficial effects mediated by NEU3 up-regulation, as already demonstrated by 

DANA treatment, reducing considerably cell proliferation in NEU3 overexpressing cells, which is 

now comparable to controls (Fig. 14A).  

The reduction of the cardioprotective effects mediated by the sialidase NEU3 inhibition have been 

also confirmed through the analysis of apoptosis. As shown by the images and the graphs, NEU3 

cells treated with 50 µM LR332 underwent a significant increase of apoptotic cells, as compared to 

the untreated ones. In particular, after the inhibitor treatment, the percentage of NEU3 H9C2 

apoptotic nuclei shifted from 5% to around 30% during both the ischemia and the reperfusion phases, 

thus reaching levels similar to SCR cells. On the contrary, LR332 treatment on SCR cells exposed to 

IRI did not modify the number of apoptotic cells during the ischemic phase, whereas induced a slight 

increase of apoptosis after 24 – 48 hours of reperfusion (Fig. 14B). 
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Fig. 14: Cell growth (A) and apoptosis (B) analysis of SCR and NEU3 H9C2 cells exposed to IRI following 
the treatment with the sialidases inhibitor LR332 (50 µM). Data represent mean ± SD of 3 independent 
experiments. Statistical significance was determined by Student’s t test. **P<0.01; ***P<0.001; 
****P<0.0001. 
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7. The role of NEU3 in Cardiac Fibrosis 
Considering that high levels of sphingolipids increase TGF-𝛃 activation, promoting the 

myofibroblasts differentiation in cardiac tissue, and that NEU3 is responsible of the modulation of 

GM3 levels,	we wondered if sialidase NEU3 could also be involved in the regulation of the cardiac 

fibrotic process. Thus, in order to verify whether NEU3 could directly influence the fibroblasts-

myofibroblasts transition, we treated cardiac fibroblasts, which have been isolated by our research 

group from auricles of cardiac surgery patients, with TGF-𝛃 for 72 hours to induce their 

differentiation into active myofibroblasts. Results revealed that the treatment with TGF-𝛃 was 

sufficient to promote the expression of several specific markers of myofibroblasts such as the 𝛂-

smooth muscle actin (𝛂-SMA) and collagen type-1, both in terms of mRNA and protein expression 

(Fig. 15A). Moreover, immunofluorescence analysis further confirmed myofibroblasts differentiation 

since cardiac cells appeared positive for 𝛂-SMA, following TGF-𝛃 treatment, as compared to 

untreated controls (Fig. 15B). 

 
 

Fig. 15: mRNA and protein expression analysis of the specific myofibroblasts markers	𝛼-SMA and collagen 
type-1 in cardiac fibroblasts treated with TGF-𝛃 (A). Immunofluorescence analysis of	𝛼-SMA positive cardiac 
fibroblasts treated with TGF-𝛃 (B). Data represent mean ± SD of 3 independent experiments. Statistical 
significance was determined by Student’s t test. *P<0.05. 
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At this point, we investigated whether the sialidase NEU3 was affected by the fibroblasts-

myofibroblasts transition. Interestingly, we observed that TGF-𝛃 treatment induced an alteration in 

both NEU3 expression and activity. In particular, we detected a 25% reduction of the NEU3 mRNA 

level and a 50% decrease of its enzymatic activity (Fig. 16). 

 
Fig. 16: Effects of TGF-𝛃 treatment on NEU3 expression and activity. Data represent mean ± SD of 5 
independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; ****P<0.0001. 
 

8. NEU3 overexpression in cardiac fibroblasts 
Subsequently, to further investigate the role of NEU3 in the fibrosis process, we infected human 

cardiac fibroblasts with a lentiviral vector containing the human sialidase NEU3 coding sequence to 

stably overexpress the enzyme. Control cells were infected with an empty scramble (SCR) lentivirus. 

Cardiac fibroblasts were then tested for NEU3 expression and activity to confirm the effective NEU3 

up-regulation.  

 
Fig. 17: Analysis of NEU3 expression (A) and activity (B) of the overexpressing cardiac fibroblasts. 
Ganglioside GM3 levels analysis in NEU3 overexpressing cardiac fibroblasts (C). Data represent mean ± SD 
of 3 independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; 
***P<0.001. 
 

As expected, the infected cells showed a significant increase of the mRNA expression of the sialidase 

NEU3 as well as a 5-folds up-regulation of its enzymatic activity (Fig. 17A-B). Moreover, the 

analysis of the ganglioside GM3, which is one of the preferred target of the sialidase, revealed a 

significant decrease in the overexpressing cells, as compared to SCR controls (Fig. 17C). 
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At this point, both SCR and NEU3 cardiac fibroblasts were treated with TGF-𝛃 to induce fibroblasts 

differentiation and activation, as mentioned in the previous paragraphs, and the expression of fibrosis 

markers was evaluated. Interestingly, the mRNA expression of the 𝛂-SMA and the collagen type-1 

showed a statistical significant increase in both cell lines upon TGF-𝛃 treatment. However, this 

increase in NEU3 fibroblasts was appreciably lower than in SCR cells for both genes. Indeed, 𝛂-

SMA and collagen type-1 expression was 20- and 7-folds higher in TGF-𝛃 treated SCR cells, as 

compared to untreated controls, whereas it reached only a 6-folds and 3.5-folds increase in NEU3 

fibroblasts, respectively (Fig. 18A). Consistent results were obtained in the analysis of 𝛂-SMA and 

collagen type-1 protein expression (Fig. 18B). 
 

 
Fig. 18: mRNA (A) and protein (B) expression analysis of the specific myofibroblasts markers	𝛼-SMA and 
collagen type-1 in SCR and NEU3 cardiac fibroblasts treated with TGF-𝛃. Data represent mean ± SD of 3 
independent experiments. Statistical significance was determined by Student’s t test. *P<0.05; **P<0.01. 
 
The inhibitory effect on the fibroblasts/myofibroblasts transition mediated by the up-regulation of the 

sialidase NEU3 was also confirmed morphologically by the immunofluorescence analysis of the 𝛂-

SMA. Therefore, as shown by the pictures below, there was a marked increase of 𝛂-SMA positive 

cells in SCR fibroblasts, upon TGF-𝛃 treatment, as compared to untreated cells. On the contrary, we 

did not observe any significant difference in the 𝛂-SMA expression between TGF-𝛃-treated NEU3 

overexpressing fibroblasts and the relative control cells (Fig. 19).  
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Fig. 19: Immunofluorescence analysis of	𝛼-SMA positive SCR and NEU3 cardiac fibroblasts treated with 
TGF-𝛃. Images are representative of 3 independent experiments. 
 

9. GM3 synthase silencing in cardiac fibroblasts 
Finally, to confirm that the observed effects are mainly mediated by the NEU3-induced GM3 

depletion and the consequent block of TGF-𝛃 pathway activation, we investigate whether the specific 

silencing of the GM3 synthase, which has opposite effects than NEU3, could mimic the sialidase 

overexpression. To this purpose, cardiac fibroblasts were transfected with specific siRNA duplexes 

targeting the GM3 synthase and their mRNA and protein expression was evaluated by Real-Time 

PCR and Western Blot. Results revealed a 70% reduction of the GM3 Synthase mRNA expression, 

which was accompanied by a 35% reduction also of the protein levels (Fig. 20). 
 

 
 
Fig. 20: mRNA and protein expression analysis of GM3 synthase in cardiac fibroblasts treated with specific 
siRNA duplexes targeting the enzyme. Data represent mean ± SD of 3 independent experiments. Statistical 
significance was determined by Student’s t test. *P<0.05; **P<0.01. 
 

Control and GM3 synthase-silenced cells (shGM3 cells) were then treated with TGF-𝛃 to induce 

fibroblasts differentiation and activation. The mRNA and protein expression analysis of the fibrosis 

markers showed results consistent with the data obtained in the NEU3 overexpressing cells. In 

particular, both 𝛂-SMA and collagen type-1 showed a statistical significant increase in both cell lines 
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upon TGF-𝛃 treatment. However, this increase in shGM3 fibroblasts was appreciably lower than in 

SCR cells for both genes (Fig. 21A). Moreover, same results were obtained in the analysis of 𝛂-SMA 

and collagen type-1 protein expression (Fig. 21B), as well as by the 𝛂-SMA immunofluorescence 

(Fig. 22). 

 
Fig. 21: mRNA (A) and protein (B) expression analysis of the specific myofibroblasts markers	𝛼-SMA and 
collagen type-1 in SCR and shGM3 cardiac fibroblasts treated with TGF-𝛃. Data represent mean ± SD of 5 
independent experiments. Statistical significance was determined by Student’s t test. *P<0.05. 
 

 
 
Fig. 22: Immunofluorescence analysis of	𝛼-SMA positive SCR and NEU3 cardiac fibroblasts treated with 
TGF-𝛃. Images are representative of 3 independent experiments. 
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10. Ischemia and Reperfusion in vivo model 
Recently, we developed also an in vivo murine model of IRI, which consist of the transient ligation 

of the left anterior descending coronary artery (LAD) for 30 minutes, followed by reoxygenation of 

the tissue. Briefly, as shown in the pictures below, the surgical procedure consisted in opening the 

mouse chest between the second and the third rib to expose the left ventricle. Once recognized and 

located the LAD, a silk suture was passed under the coronary vessel and a 5 mm long piece of tubing 

was placed. Then the knot was tightened around the artery and tubing simulating the ischemic phase. 

To confirm the occlusion of the LAD a paler color in the anterior wall of the LV appeared. After 30 

minutes of ischemia, the tubing was removed to simulate reperfusion (Fig. 22A). 

The significant reduction of the principal cardiac parameters such as the ejection fraction (Fig. 22B) 

and the fractional shortening (Fig. 22C) established the induction of cardiac damage. Furthermore, 4 

weeks after surgery, the formation of an extensive scar tissue was identified by the specific Masson’s 

trichrome staining, thus confirming the effectiveness of our in vivo model, which will be employed 

to fully characterize the role of the sialidase NEU3 in the cardiac response to IRI. 

 
Fig. 22: Ischemia and Reperfusion in vivo mouse model. Left anterior descending artery ligation was obtain 
using a small plastic tube, subsequently removed to reoxygenate the tissue (A). Ejection fraction (B) and 
fractional shortening (C) analyses in murine hearts. Scar tissue formation analysis by Masson’s Trichrome 
staining (D). Data represent mean ± SD of 5 independent experiments. Statistical significance was determined 
by Student’s t test. ***P<0.001.
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DISCUSSION & CONCLUSIONS 
This thesis work is based on the recent discovery by our research group that HIF-1𝛂 can be activated 

by a novel mechanism, that is different for the canonical inhibition of PHD2, and is mediated by 

sialidase NEU3. In particular, our group reported that NEU3 was able to activate HIF-1𝛂 in skeletal 

and cardiac muscle during hypoxia, increasing cellular resistance to hypoxic stress through 

ganglioside GM3 inhibition (Piccoli et al., 2017; Scaringi et al., 2013). Thus, main goal of this thesis 

was to test the hypothesis that sialidase NEU3 could play a role in cardiac cell response to IRI. 

Initially, we tested this hypothesis on an in-vitro model of IRI that we devised and optimized during 

this Ph.D. thesis. This allowed to observe that a 12-hours cycle of ischemia (1%O2) in nutrient-free 

medium and followed by a period of reperfusion under normal growing conditions (21%O2), has been 

effective to reduce cell proliferation and viability in H9C2 cell model, confirming the extremely 

sensitivity of rat cardiomyoblasts to IR. Moreover, we founded that sialidase NEU3 was modulated 

under these conditions. In particular, the downregulation observed at the end of the 12 hours of 

ischemia followed by a reactivation of the expression levels and enzymatic activity during 

reperfusion, suggested that probably H9C2 cells decreased NEU3-mediated pro-proliferating signals 

because of severe stress due to the absence of nutrients and oxygen; NEU3 was then reactivated in 

the surviving cells during reperfusion, as a recovery mechanism to counteract the reperfusion injury. 

Furthermore, based on our previously results, in which we revealed that an up-regulation of sialidase 

NEU3 increased the activation of cell survival mechanisms in skeletal muscle cells under hypoxia 

(Scaringi et al., 2013), we stably overexpressed the enzyme in H9C2 to test the effect of NEU3 on 

cardiac cells during IR. Interestingly, we found that induced overexpression of NEU3 significantly 

increased cell resistance and reduced apoptosis in cardiomyoblasts exposed to IR; on the other hand, 

NEU3 chemical inhibition completely abolished the positive effects of the enzyme. In fact, both 

DANA and NEU3-specific inhibitor (LR332) treatment reduced cell viability and increased cell death 

during IR. Overall, these results seemed to support the hypothesis that NEU3 could play a 

cardioprotective role in counteracting IRI. 

To further confirm this hypothesis, we investigated the molecular mechanism associated to NEU3 

beneficial effects and, as anticipated, we analyzed the RISK pathway and HIF-1𝛂 activation. Initially, 

we focused our attention on pro-survival kinases Akt and ERK1/2, because many evidences reported 

that pro-survival kinases activation exerts cardioprotection against IRI. Indeed, it was observed that 

expression of constitutively active Akt was able to protect murine myocardium to reperfusion injury, 

minimizing myocyte apoptosis in the damaged region of the heart (Fujio, Nguyen, Wencker, Kitsis, 

& Walsh, 2000). Moreover, it was observed that Akt and ERK1/2 appear to act as a point of 
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convergence between IPC and IPoC and their activation during ischemia, but mainly at time of 

reperfusion, exerts strong protection against IRI through several signaling pathway that include the 

inhibition of  mPTP opening (Hausenloy et al., 2005). long this line, we evaluated Akt and ERK1/2 

activation in our model of IR, which let us observe that both kinases activation was higher in NEU3 

overexpressing cells as compared to our controls, supporting the hypothesis of a possible involvement 

of pro-survival kinases in the molecular mechanism responsible of NEU3 positive effects. This was 

confirmed when we inhibited Akt and ERK1/2 using the specific inhibitors  LY294002 and PD98059. 

Indeed, the significant increase in cell resistance observed in NEU3 overexpressing cells during IR 

was completely lost following the treatment with the inhibitors, confirming the real involvement of 

the RISK pathway activation in the cardioprotective mechanism. 

Then, we investigated whether NEU3 could also influence the activation of HIF-1𝛂, another 

important element in the cellular response to the ischemic stress. Actually, HIF-1𝛂 up-regulation  was 

associated with improved myocardial tolerance to acute IRI due to the activation of its downstream 

target genes, including erythropoietin (Cai et al., 2003), hemeoxygenase-1 (Ockaili et al., 2005) and 

nitric oxide synthase (Natarajan, Salloum, Fisher, Kukreja, & Fowler, 2006). Moreover, HIF-1𝛂 

stabilization triggered the metabolic switch from oxidative phosphorylation to anerobic glycolysis, 

reducing mitochondrial ROS production during IRI and counteracting mPTP opening at the onset of 

myocardial reperfusion (Ong & Hausenloy, 2012).  

Our results revealed that NEU3 up-regulation stabilized HIF-1𝛂 during the ischemic phase of IRI and 

also considerably increased the expression levels of this transcription factor, confirming our 

previously results obtained under hypoxia (Scaringi et al., 2013) and supporting the hypothesis of 

NEU3 mediated HIF-1𝛂 activation as response also to the ischemic phase of IRI. 

Then, we focused our attention on  cardiac fibrosis, which is an integral components of most cardiac 

pathologic conditions (Berk, Fujiwara, & Lehoux, 2007). Given the low regenerative capacity of the 

heart (Bergmann et al., 2009), the repair process aims to remove the dead cardiomyocytes with a 

fibrotic scar produced by activated fibroblasts. This response is fundamental since it stabilizes 

ventricular walls, preventing their rupture (Park, Nguyen, Pezhouman, & Ardehali, 2019). However, 

its uncontrolled progression provokes chamber dilatation, hypertrophy, increases stiffness, impaired 

electrical coupling, ultimately leading to heart failure (Fan, Takawale, Lee, & Kassiri, 2012). The 

principal players of this mechanism are the cardiac fibroblasts that under appropriate stimuli could 

transdifferentiate toward their active form, becoming myofibroblasts (Travers, Kamal, Robbins, 

Yutzey, & Blaxall, 2016). The director stimulator of fibroblasts-myofibroblasts transition is TGF-𝛃, 

which induces the activation of specific markers of myofibroblasts, such as a-SMA and collagen type 
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1 (Meng, Nikolic-Paterson, & Lan, 2016). TGF-𝛃 signaling is finely regulated and among its 

principal modulator there is ganglioside GM3, which was able to increase TGF-𝛃 response. 

Particularly, it has been demonstrated that ganglioside GM3 boosts the effects of TGF-𝛃 through the 

direct interaction with the TGF-𝛃 R1 in human lens epithelial cells, promoting the epithelial-to-

mesenchymal transition (Kim et al., 2013). 

In this PhD work, we found that both the expression and the activity of endogenous sialidase NEU3 

were down-regulated in cardiac fibroblasts, upon fibrosis induction through TGF-𝛃 stimulus. As a 

consequence, the forced overexpression of the enzyme, significantly decreases the effects of TGF-𝛃 

on cardiac fibroblasts, reducing their activation toward the myofibroblasts phenotype, as was 

demonstrated by lower expression levels of the fibrosis markers in NEU3 overexpressing cells.	Thus, 

these data indicate that NEU3 up-regulation was able to reduce myofibroblasts activation and the 

fibrotic process. 

Then, we hypothesized that this effect could be mediated by the reduced content of the ganglioside 

GM3 by NEU3. Indeed, we widely demonstrated the pivotal role of NEU3 in regulating the 

intracellular levels of GM3 (Anastasia et al., 2008; Papini et al., 2012; Piccoli et al., 2017; Scaringi 

et al., 2013), even in adjacent cells (Papini et al., 2004). To further support this hypothesis, we 

mimicked NEU3 overexpression effects on reducing myofibroblasts differentiation by silencing GM3 

synthase. Remarkably, we observed the reduction of both the mRNA and protein expression of a-

SMA and collagen type 1 in GM3 silenced cells had the same effects of NEU3 up-regulation on 

fibrosis induction, confirming that NEU3 effects are mediated by a decrease of GM3 levels. 

In summary, our results revealed that endogenous sialidase NEU3 is modulated under ischemia and 

reperfusion in cardiomyoblasts. In particular, NEU3 up-regulation increased cardiac cells resistance 

to ischemia and reperfusion injury, ultimately maintaining cell proliferation and counteracting 

apoptosis. Our results support the notion that thee effects are due to a NEU3-mediated activation of 

the RISK pathway, and the modulation of HIF-1𝛂 during ischemia.  

Finally, we also observed that sialidase NEU3 modulated the fibro-myofibroblasts transition, as 

NEU3 activation eventually reduced the shifting of fibroblast to myofibroblast phenotype through 

the decrease in GM3 cell content. 

Clearly, further investigations are needed to fully elucidate NEU3 role in cardiac IR. In particular, 

we are investigating the effects of NEU3 on cardiac cell metabolism under ischemia and reperfusion, 

and we will analyze the oxidative metabolism and the mitochondrial functionality. Moreover, the 

development of an in vivo model of IR will be fundamental to implement our results. Indeed, we will 

be able to study NEU3 expression in the infarcted area and the risk area of rat hearts subjected to IRI. 
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Furthermore, we are going to generate a cardiac-specific transgenic mouse model overexpressing 

NEU3, in which we will be able to evaluate the effects of the sialidase upregulation on the cardiac 

tissue after IRI, analyzed both in terms of heart morphology and function. We will also be able to 

investigate the effect of inducible NEU3 overexpression on the fibrotic process, particularly we will 

measure the extension and the distribution of the scar, in order to confirm our in vitro results also in 

the animal model. 

Overall, the results of this thesis work let us envision a possible role of NEU3 in developing novel 

therapies to counteract the detrimental effects of ischemia-reperfusion, including the development of 

cardiac fibrosis. However, we can’t foresee a direct activation of NEU3 as a therapeutic strategy. In 

fact, a sustain upregulation of NEU3 has been reported in many solid tumors (Kakugawa et al., 2002; 

Takahashi et al., 2015), and it could be very difficult to genetically fine-tune its activity. Therefore, 

a pharmacological approach, that would mimic NEU3 effects would be intrinsically safer. Along this 

line, in our laboratory, we are developing novel synthetic small molecules that, at least in vitro, 

showed encouraging results in mimicking NEU3 activation by inhibiting GM3 synthesis. Further 

studies in this direction are currently undergoing and will proceed beyond this thesis work. 
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