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Stochastic unravelings represent a useful tool to describe the dynamics of open quantum systems, and standard
methods, such as quantum state diffusion (QSD), call for the complete positivity of the open-system dynamics.
Here, we present a generalization of QSD, which also applies to positive, but not completely positive evolutions.
The rate and the action of the diffusive processes involved in the unraveling are obtained by applying a
proper transformation to the operators which define the master equation. The unraveling is first defined for
semigroup dynamics and then extended to a definite class of time-dependent generators. We test our approach
on a prototypical model for the description of exciton transfer, keeping track of relevant phenomena, which are
instead disregarded within the standard, completely positive framework.
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I. INTRODUCTION

The investigation of open quantum systems coupled to
complex and possibly structured environments has led to
a renewed interest in the description of quantum dynamics
beyond the paradigm of completely positive (CP) semi-
groups [1–3], as fixed by the well-known Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation (ME) [4,5]. The
development of more general approaches has made it possible
to take into account memory effects and others phenomena
which are neglected within that framework; see, for example,
the recent reviews [6–8].

Mostly, the assumption to have a semigroup dynamics is
relaxed, while one holds firm that the evolution has to be
given by CP maps. If there are no initial correlations between
the system and the environment and the initial state of the
latter is fixed, the exact reduced dynamics, mathematically
obtained via the partial trace on the environmental degrees
of freedom, is indeed CP [1–3]. On the other hand, the
partial trace can hardly ever be performed explicitly, even with
powerful numerical techniques. The restriction to CP maps,
then, becomes questionable, not only when initial correlations
have to be considered [9–12], but also when one uses an
approximated description for specific open quantum systems
at hand. The weaker condition that the dynamics is positive (P)
may be enough to guarantee the consistency of the predictions
one is interested in.

In addition, when a ME is derived from some underlying
microscopic model, CP is usually obtained by introducing
some specific approximations, which, needless to say, may
overlook some relevant phenomena. As a paradigmatic ex-
ample, in the weak-coupling regime, one imposes (on top of
the Born-Markov approximation) the secular approximation.
The latter is justified when the free dynamics of the system
is much faster than its relaxation [1], which is not the case
for several systems of interest. Nonsecular non-CP evolutions,
possibly still in the semigroup regime, are extensively used,
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e.g., to model transport phenomena in nanoscale biomolecular
networks [13–16].

Certainly, CP evolutions possess several advantages, mainly
due to the general mathematical results which allow for
their full characterization, such as the Kraus decomposition
or the GKSL theorem itself [1]. Moreover, CP evolutions
have been equivalently formulated in terms of unravelings
in the form of stochastic trajectories, with jumps [17,18] or
continuous [19–24]. These methods yield a very powerful
tool to simulate numerically open-system dynamics, as well
as a deeper understanding of the different effects induced
on the system by the interaction with the environment, as
in the theory of continuous measurement (see [25] and
references therein). Also, unravelings of MEs play a role in
the foundations of quantum mechanics, in connection with
decoherent histories [26,27] and quantum state reduction
theories [28–31].

Here, we prove that a proper unraveling can be generally
formulated also for P, not necessarily CP, dynamics. We
focus in particular on a continuous form of the unraveling,
the so-called quantum state diffusion (QSD) [19–23], and
we show how it can be directly extended to the more
general case of P dynamics. The role of the rates and
Lindblad operators in the CP unraveling is replaced by the
eigenvalues and eigenvectors of a rate operator [19,21,32,33].
Our approach includes not only semigroup dynamics, but also a
more general kind of evolution: namely, P-divisible dynamics
[34–38], which has been recently taken into account within
the context of the definition of quantum Markovianity. In this
way, we provide a significant class of open-system dynamics
with a useful tool to describe physical phenomena, which
would be neglected within the usual CP framework. This is
explicitly shown by taking into account a model, which is of
interest for the description of energy transfer in biomolecular
networks [15,16,39].

The rest of the paper is organized as follows. In Sec. II, we
briefly recall the standard QSD unravelling of CP semigroups.
In Sec. III, we introduce the QSD unraveling of P semigroups,
which is then further extended to P-divisible maps in Sec. IV.
In Sec. V, we present two examples of P non-CP dynamics,
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to which we apply our formalism; the first is a simple toy
model for a qubit evolution, while the second is a significant
model for the excitation transfer in dimeric systems. Finally,
the conclusions and future perspectives are given in Sec. VI.

II. UNRAVELING OF CP SEMIGROUPS

Let us first briefly recall the standard results about (diffu-
sive) unravelings of CP semigroups, as well as the relevant
notation.

We consider a finite-dimensional quantum system, whose
state ρ is an element of the set S(Cn) of positive trace-one op-
erators on Cn. The dynamics is described by a one-parameter
family of linear maps {�t }t�0, where �t : S(Cn) → S(Cn)
evolves the state ρ at the initial time t0 = 0 into the state
ρt = �t [ρ] at time t . These maps satisfy the semigroup
property whenever �t�s = �t+s ,∀t,s � 0, and in this case
they can be expressed as �t = etG for some generator G, so
that ρt is fixed by the ME dρt/dt = G[ρt ]. The maps �t ensure
the trace and Hermiticity preservation of the system’s state ρt

if and only if the generator G can be written as [4]

G[ρ] := −i[H,ρ] +
n2−1∑
j=1

cj

[
LjρL

†
j − 1

2
{L†

jLj ,ρ}
]
, (1)

for some coefficients cj ∈ R, linear operators Lj , and a Hermi-
tian operator H = H †. According to the GKSL theorem [4,5],
the maps �t generated by G are CP if and only if cj � 0 ∀j .

In addition to the GKSL theorem, another crucial feature
of CP semigroups, further motivating their ubiquitous use
to describe open-system’s dynamics, is that they can be
equivalently characterized via unravelings. An unraveling
consists of a stochastic dynamics for the pure states |ψ〉 of
the system, which reproduces the ME under stochastic average.
Here, we focus on the case of a diffusive unraveling, associated
to a stochastic differential equation (SDE) in the form [19–24]

|dψt 〉 = Aψt
|ψt 〉dt +

m∑
k=1

Bψt ,k|ψt 〉dξk,t , (2)

where Aψt
,Bψt ,k are (possibly nonlinear) operators and ξk,t

are independent complex-valued Wiener processes, with
E[dξj,t dξ ∗

k,t ] = δjkdt, E[dξj,t dξk,t ] = E[dξj,t ] = 0, where
E denotes the statistical mean. The resulting trajectories in the
Hilbert space are usually referred to as quantum trajectories.
We always assume that the SDE preserves the norm of |ψt 〉.

The connection with the statistical operator ρt is obtained
via the stochastic average E. Given the stochastic projector
Pt := |ψt 〉〈ψt | and its infinitesimal change dPt fixed by the
Itô formula, dPt = |dψt 〉〈ψt | + |ψt 〉〈dψt | + |dψt 〉〈dψt |, one
says that Eq. (2) is an unraveling of Eq. (1) when G[ρt ] =
E[dPt/dt]. In general, there exist infinite unravelings for the
same ME. In the case of CP semigroups, the QSD unraveling
is given by [19–23] Eq. (2), with m = n2 − 1 and

Aψt
= −iH − 1

2

n2−1∑
j=1

cj (L†
jLj − 2�∗

ψ,jLj + |�ψ,j |2), (3)

Bψt ,j = √
cj (Lj − �ψ,j ), (4)

where �ψ,j := 〈ψ |Lj |ψ〉.

III. UNRAVELING OF P SEMIGROUPS

A. Constructive proof of the unraveling

The previous approach can be extended to all the P, not nec-
essarily CP, semigroups (for Hilbert spaces of arbitrary finite
dimension). As long as we assume a semigroup evolution, P
dynamics provide us with the largest class of dynamics that can
have a norm-preserving unraveling for any initial condition:
any state obtained via the statistical average is automatically
positive, being the convex mixture of pure states. Later, we
will see how the semigroup assumption can be replaced by a
more general feature of the dynamics.

The unraveling of a P semigroup depends on the behavior
of a nonlinear operator, whose relevance for the unraveling of
semigroups was already noticed in [19,21,32,33]. Consider a
generator as in Eq. (1); for any normalized vector ψ ∈ Cn, we
define the generalized transition rate operator (GTRO) as the
linear combination [21,32,33]

Wψ :=
n2−1∑
j=1

cj (Lj − �ψ,j )|ψ〉〈ψ |(Lj − �ψ,j )†. (5)

The precise connection among the properties of this nonlinear
operator and the unraveling of P semigroups traces back to the
following result, which is a direct consequence of a theorem
by Kossakowski [40,41].

Lemma 1. The dynamical map �t = etG is P if and only
if, for any normalized vector ψ ∈ Cn, Wψ is a positive
semidefinite operator.

Proof. As noticed in [35], the aforementioned Kos-
sakowski’s theorem [40,41] can be rephrased as follows: given
any orthonormal basis {|ui〉}i=1,...,n,

(ρ � 0 ⇒ �t [ρ] � 0) ⇔
n2−1∑
j=1

cj |〈ui |Lj |ui ′ 〉|2 � 0, (6)

for any couple i �= i ′.
Let us consider two arbitrary states |ψ〉,|ϕ〉. Write

|ϕ〉 = a|ψ〉 + b|ψ⊥〉, (7)

where the two vectors on the right-hand side (rhs) are the
components of |ϕ〉, which are parallel and perpendicular to
|ψ〉, respectively. Notice the relations

〈ψ |(Lj − �ψ,j )|ψ〉 = 0, (8)

〈ψ |(Lj − �ψ,j )|ψ⊥〉 = 〈ψ |Lj |ψ⊥〉. (9)

Then, using Eq. (8) and Eq. (9), we obtain, for any ψ , the
equivalence

〈ϕ|Wψ |ϕ〉 = |b|2
n2−1∑
j=1

cj |〈ψ |Lj |ψ⊥〉|2 ∀|ψ〉,|ϕ〉. (10)

Given the equation above, the proof of the Lemma is
straightforward. On the one hand, the positivity of Wψ for any
|ψ〉 implies the positivity of the rhs of Eq. (6) for any couple
of orthogonal elements of any given basis (just set |ψ〉 = |ui〉
and |ψ⊥〉 = |ui ′ 〉), from which the positivity of the semigroup
follows. One the other hand, if �t is P and hence the rhs of
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Eq. (6) is positive, the non-negativity of the rhs of Eq. (10) for
any |ϕ〉 and |ψ〉 and therefore the positive semidefiniteness of
Wψ for any |ψ〉, directly follows from setting |ui〉 = |ψ〉 and
using the decomposition of |ψ⊥〉 on the elements of the basis
|ui ′ 〉 orthogonal to |ui〉, i.e., with i �= i ′. �

This result will be the building block of the construction of
our unraveling of P semigroups. Some diffusive unravelings
which can be applied beyond CP semigroups already appeared
in the literature, i.e., for a qubit in [42] and for any finite-
dimensional system in [33]. Nevertheless, let us stress how
the definite connection between the possibility to formulate an
unraveling and the positivity of the corresponding semigroup
dynamics for any finite dimension was missing until now; see
also the recent discussion in [43].

Proceeding further, Lemma 1 implies that when we have a
semigroup of P maps and we consider the linear operator Wψ

for any fixed ψ , its eigenvalues λψ,i (i = 0, . . . ,n − 1) are
non-negative, where λψ,0 = 0 corresponds to the eigenvector
|ψ〉, so that we can write the spectral decomposition as

Wψ =
n−1∑
i=1

λψ,i |φψ,i〉〈φψ,i | =
n−1∑
i=1

λψ,i(Vψ,i |ψ〉〈ψ |V †
ψ,i),

(11)
with λψ,i � 0 and |φψ,i〉〈φψ,i | the corresponding orthogonal
projectors, satisfying 〈φψ,i |ψ〉 = 0. The second equivalence
in Eq. (11) is trivially justified by defining Vψ,i = |φψ,i〉〈ψ |,
which will also provide us with a clear physical interpretation
of the unraveling.

Now, by using Itô calculus, it is readily verified that Eq. (2)
yields the following SDE for Pt = |ψt 〉〈ψt |:

dPt =
(

Aψt
Pt + PtA

†
ψt

+
m∑

k=1

Bψt ,kPtB
†
ψt ,k

)
dt

+
m∑

k=1

(Bψt ,kPtdξk,t + PtB
†
ψt ,k

dξ ∗
k,t ). (12)

In addition, since we want the SDE to be an unraveling of the
ME fixed by G at any time t , we are assuming, in particular,
that this is the case at time t = 0, i.e., E[dPt/dt |t=0] = G[ρ0].
From this relation, along with Eq. (12), it follows that the
noise term

∑m
k=1 Bψ,kPB

†
ψ,k is given by the component of

G[P ] orthogonal to |ψ〉, i.e.,

m∑
k=1

Bψ,kPB
†
ψ,k = (I − P )G[P ](I − P ). (13)

The last statement, which was first shown in [19], can be
easily rederived consistently with our notation, as shown in
the the following. First, let us take the expectation of Eq. (12)
for a deterministic initial condition, |ψ0〉 =: |ψ〉, so that ρ0 =
P0 =: P ; since E[dPt/dt |t=0] = G[ρ0], we get

AψP + PA
†
ψ +

m∑
k=1

Bψ,kPB
†
ψ,k = G[P ]. (14)

The SDE in Eq. (2) preserves the norm of the state vector only
if

〈ψ |Bψ,k|ψ〉 = 0 ∀ψ,k. (15)

Then, if we denote by |ψ⊥〉 a vector orthogonal to |ψ〉, the norm
constraint translates into Bψ,k|ψ〉 = |ψ⊥〉. In other words, the
noise operators must produce orthogonal changes to the state
vector they act upon. For any fixed |ψ〉, this condition implies

P

(
m∑

k=1

Bψ,kPB
†
ψ,k

)
P = 0; (16)

on the other hand,

(I − P )(AψP + PA
†
ψ )(I − P ) = 0, (17)

so that by projecting Eq. (14) on the subspace orthogonal
to |ψ〉, Eq. (16) together with Eq. (17) prove the validity of
Eq. (13).

Now, with the help of simple algebra, Eq. (13) reduces to
m∑

k=1

Bψ,kPB
†
ψ,k = Wψ. (18)

We can conclude that Eq. (18) has to be satisfied by all possible
(norm-preserving) unravelings, as in Eq. (2), of the ME fixed
by Eq. (1).

Moreover, Eq. (18), along with Eq. (14), imply that the
action of the drift operator Aψ on the state |ψ〉 is determined
by Wψ and the generator G via

AψP + PA
†
ψ = G[P ] − Wψ. (19)

This means that Aψ can be set independently from the specific
solution of Eq. (18) for the Bψ,k and, in particular, Aψ is still
fixed by Eq. (3). Let us emphasize that, indeed, this is not
the only nonlinear operator satisfying Eq. (19), but any other
solution Ãψ would act on the state ψ exactly in the same way,
such that

Ãψt
|ψt 〉 = Aψt

|ψt 〉; (20)

in other words, it would lead exactly to the same unraveling
[see Eq. (2)]: in this regard, the choice of Aψ , for fixed Bψ,k and
noise ξk,t , is unique. To prove the validity of Eq. (20), consider
two different solutions, Aψ and Ãψ , to Eq. (19). Then, AψP +
PA

†
ψ = ÃψP + P Ã

†
ψ . Hence, for any state |ψ⊥〉 orthogonal

to |ψ〉, one has

〈ψ⊥|Aψ |ψ〉 = 〈ψ⊥|Ãψ |ψ〉
and, analogously for the parallel component,

Re[〈ψ |Aψ |ψ〉] = Re[〈ψ |Ãψ |ψ〉].
In principle, Aψt

|ψt 〉 and Ãψt
|ψt 〉 could differ by a purely

imaginary component parallel to |ψt 〉; but it is then easy
to see [31] that such a difference corresponds simply to an
irrelevant global phase applied to |ψt 〉.

All in all, to define a proper unraveling of a P semigroup,
we are simply left with formulating a solution of Eq. (18). A
natural choice is given by the spectral decomposition of Wψ ,
which, by virtue of the positivity of the semigroup and then
Lemma 1, is characterized by the non-negative eigenvalues
λψ,k . Hence, let us set m = n − 1 and

Bψ,k = √
λψ,kVψ,k. (21)

It is then easy to see that Bψ,k as in Eq. (21) satisfies
Eq. (18) and, along with Aψ as in Eq. (3), defines a SDE
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as in Eq. (2), which provides us with a proper unraveling
of the P semigroup generated by Eq. (1). We thus arrive
at the wanted result: Eqs. (3) and (21) generalize the QSD
unraveling of CP semigroups to the case of P, not necessarily
CP, semigroups. Note that for cj � 0, a solution to Eq. (18) is
directly provided by m = n2 − 1 and Bψ,k = √

ck(Lk − �ψ,k),
so that one recovers Eq. (4). On the other hand, when some cj

takes on a negative value (as in the P, non-CP case), a solution
of Eq. (18) as in Eq. (4) would give a set of SDEs as in
Eq. (2), which are not consistent with the average dynamics:
by deriving the stochastic MEs through Pt := |ψt 〉〈ψt |, one
would get the positive coefficients |cj |.

The crucial point for extending the unraveling to every P
semigroup is the observation that the role of the rates cj can
be replaced by the eigenvalues λψ,i in the spectral decompo-
sition (11) of Wψ , whose positivity is ensured by Lemma 1.
Accordingly, the operators Vψ,i replace the Lindblad operators
Lj (of course, 〈ψ |Vψ,i |ψ〉 = 0). The physical meaning of the
unraveling defined here is hence quite clear: the eigenvalues
and eigenvectors of the GTRO set, respectively, the strength of
the diffusive processes and how they act on the elements of the
Hilbert space. In particular, Vψt ,i maps the stochastic state at
time t , |ψt 〉, into the state |φψt ,i〉, which appears in the spectral
decomposition of Wψt

and is orthogonal to |ψt 〉. To deal with
P, but not CP semigroups, we exploit the diagonalization of
the GTRO, while in the CP case the coefficients and operators
in the Lindblad generator directly fix the quantum trajectories;
the difference between the two cases will be illustrated later
for a specific example.

B. CP and norm preservation

As a further remark, we note how the previous results imply
that, indeed, the requirement of getting a closed ME from a
diffusive norm-preserving SDE does not imply, by itself, CP.
This was shown by direct counterexample in [44] (see also
Sec. V A) and it can be easily related to the lack of norm
preservation of the ME unraveling extended to an arbitrary
ancilla.

To see this, let us recall that a linear map � : S(Cn) →
S(Cn) is CP if and only if the map � ⊗ I : S(Cn ⊗ Cn) →
S(Cn ⊗ Cn) is P. Let G and G ′ be the generators of � and
� ⊗ I, respectively. Assume � (at least) P, and call dψ the
norm-preserving unraveling of its generator. Moreover, we
define dψ ′ to be a particular extension of the original SDE to
an enlarged Hilbert space, such that it reproduces, on average,
G ′. Then, we are led to the following diagram:

dψ dψ

G[ρ] G [ρ ]

(22)

where the vertical arrows represent the operations of unravel-
ing and taking the stochastic average, and the horizontal ones
stand for tensoring with auxiliary operators, in such a way that
the diagram commutes.

Now let us assume that �t is not CP. Then, there exist
ρ ′ ∈ S(Cn ⊗ Cn) such that ρ̄ = (�t ⊗ I)[ρ ′] = E[P ′

t ], where
P ′

t = |ψ ′
t 〉〈ψ ′

t |, is not a proper quantum state, i.e., ρ̄ is either

not positive, not trace one, or both. However, any operator
obtained via stochastic average is positive, being the convex
combination of the positive operators P ′

t . Then, if � ⊗ I is
not P, it must be the case that Tr(E[P ′

t ]) = E[Tr(P ′
t )] �= 1,

i.e., |dψ ′〉 does not preserve the norm of all state vectors. In
summary, under the hypothesis that diagram (22) commutes,
asking that the extended SDE be norm preserving is a sufficient
condition for the CP of �.

IV. UNRAVELING OF P-DIVISIBLE DYNAMICS AND
RELATION WITH MARKOVIANITY

Our approach can be straightforwardly generalized to a
much wider class of dynamics, which goes beyond the class
that can be treated via the usual unravelings for CP maps. We
consider now evolutions where the coefficients, and possibly
the operators, in the ME depend on time. This allows one to
describe several situations of interest, where the semigroup
approximation cannot be used, because time inhomogeneous
and non-Markovian effects become relevant [6–8].

Consider a time-dependent generator Gt . Once again, trace
and Hermicity preservation constrain it to have the form as in
Eq. (1), at any time t , i.e., one has

G[ρ] := −i[H (t),ρ]

+
n2−1∑
j=1

cj (t)

[
Lj (t)ρLj (t)† − 1

2
{Lj (t)†Lj (t),ρ}

]
,

(23)

where now we have a time-dependent Hamiltonian as well
as time-dependent rates and Lindblad operators. Note that
the CP of the dynamics does not imply the positivity of the
coefficients (since, indeed, the GKSL theorem does not apply).
The most general conditions to guarantee CP, not to mention
P, of the resulting dynamical maps �t = T exp(

∫ t

0 Gsds)
(with T the time-ordering operator) are actually not known.
Nevertheless, the positivity in time of the coefficients, cj (t) �
0, guarantees that the dynamics is CP and can be decomposed
into intermediate CP maps [3,45]: for any t � s � 0, there is
a CP map �t,s such that

�t = �t,s ◦ �s. (24)

In this case, the dynamics is said to be CP divisible and
this property has been identified with the Markovianity of
the quantum dynamics in [46]. Note that the positivity of the
coefficients allows one to extend the QSD unraveling of CP
semigroups to this case: one has simply to replace cj → cj (t),
Lj → Lj (t), and H → H (t) in Eqs. (3) and (4).

The unraveling defined via Eqs. (3) and (21) can also be
extended to ME with time-dependent coefficients, which need
not be positive functions of time. Consider any ME leading to
a dynamics which, instead of being CP divisible, is P divisible,
which means that the decomposition in Eq. (24) still applies,
but now we make the weaker requirement that the maps �t,s are
P [34]; this property, in turn, has been identified with quantum
Markovianity in [35]. The construction presented before can be
immediately generalized to this situation since the equivalence
in Lemma 1 still applies. Indeed, the extension of Lemma 1
to the case of P-divisible dynamics directly follows from the
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analogous extension of the theorem by Kossakowski, pointed
out in [35]. To see this, let us consider a ME as in Eq. (23).
The resulting dynamical map �t is P and can be decomposed
via Eq. (24) with P �t,s if and only if

n2−1∑
j=1

cj (t)|〈ui |Lj (t)|ui ′ 〉|2 � 0, (25)

for any couple i �= i ′ [35]. But then, similarly to the proof for
the semigroup case, one can show that the latter condition is
equivalent to the positivity of Wψ , defined as in Eq. (5), with
the replacements cj → cj (t) and Lj → Lj (t), so that Eqs. (3)
and (21), with the proper introduction of time dependence,
define a valid unraveling of a generic P-divisible ME.

Of course, there are several open-system dynamics which
are not P divisible and, therefore, cannot be unraveled via
our approach, but where other diffusive [47,48] or jump [49]
techniques can be exploited. On the other hand, our approach
yields a direct generalization of the construction for the
semigroup case, without calling for hierarchical equations
or for correlations between different trajectories, which are
instead usually required by the above-mentioned techniques.

As a final remark, we note that Eqs. (2), (3), and (21)
comprise the most general (Markovian) dynamics of collapse
models [28–31]. Here, it suffices to say that collapse models
consist of a modification of the Schrödinger equation with
the addition of nonlinear stochastic terms, which ensure the
localization of the wave function. The dynamics of collapse
models is usually defined as a diffusion process in the Hilbert
space [given by a SDE as in Eq. (2)], although piecewise
evolutions involving jumps processes are also possible [28].
If we limit to a dynamics as in Eq. (2), the requirement of
getting a closed linear average description, which is physically
motivated by the request of no superluminal signaling [50,51],
is not enough to guarantee the CP. As said, this traces back
to the possible lack of norm preservation of the SDE trivially
extended to an arbitrary ancilla. Such an extension, indeed,
would be rather unmotivated for collapse models, since the
collapsing field would act also on the ancilla, possibly in a
nonlocal way: in this context, the CP of the ensemble dynamics
is an extra assumption, not emerging from fundamental
requirements.

V. EXAMPLES

A. Unraveling of a non-CP qubit ME

Here, we consider the unraveling of the non-CP semigroup
which was first derived in [42,44]. Although the physical
relevance of the model is not clear, it is the first example
of an unraveling of a P, but non-CP semigroup and it was thus
used in [44] to prove that the CP of the average dynamics is
not guaranteed by the existence of a Markovian unraveling.
We will show now how such a result can be straightforwardly
rederived and further clarified using our method.

Hence, consider the non-CP semigroup acting on S(C2)
and generated by

dρt

dt
=

3∑
j=1

cj (σjρtσj − ρt ), c1 = c2 = −c3 = 1, (26)

where σj are the usual Pauli matrices σ1 ≡ σx , σ2 ≡ σy , and
σ3 ≡ σz. The GTRO associated to Eq. (26) is

Wψ =
3∑

j=1

cj (σj − sj )|ψ〉〈ψ |(σj − sj ), (27)

with sj := 〈ψ |σj |ψ〉, and it has spectral decomposition

Wψ = λ1|ψ〉〈ψ | + λ2|ψ⊥〉〈ψ⊥|,
where the eigenvalues are λ1 = 0 and λ2 = 2 s2

3 , while the
eigenvectors are |ψ〉 and |ψ⊥〉 orthogonal to |ψ〉. The first
eigenvalue and eigenvector can be easily found by noticing
that Wψ |ψ〉 = 0, as Eq. (8) ensures [see also the discussion
before Eq. (11)]. Then, we are left with verifying that

(
Wψ − 2 s2

3

)|ψ⊥〉 =
3∑

j=1

cj

(
σjPσj − sjPσj − 2s2

3

)|ψ⊥〉

= 0. (28)

To show that, we project Eq. (28) on the basis vectors 〈ψ | and
〈ψ⊥|, respectively. Since, for any j ,

〈ψ |σjPσj |ψ⊥〉 = 〈ψ |σj |ψ〉〈ψ |σj |ψ⊥〉
= 〈ψ |sj |ψ〉〈ψ |σj |ψ⊥〉
= 〈ψ |sjPσj |ψ⊥〉,

we have

〈ψ |(Wψ − 2 s2
3

)|ψ⊥〉 =
3∑

j=1

cj 〈ψ |(σjPσj − sjPσj )|ψ⊥〉

= 0. (29)

On the other hand, since
∑3

j=1 s2
j = 1 and rj =

|〈ψ |σj |ψ⊥〉|2 = 1 − s2
j , we have

〈ψ⊥|(Wψ − 2 s2
3

)|ψ⊥〉 =
3∑

j=1

cj 〈ψ⊥|σjPσj |ψ⊥〉 − 2s2
3

=
∑

j

cj rj − 2s2
3 = 0. (30)

Equation (29) together with Eq. (30) prove Eq. (28), which
implies Wψ = 2s2

3 |ψ⊥〉〈ψ⊥|.
Then, according to Eqs. (11) and (3), the noise and the drift

terms which define an unraveling of Eq. (26) are given, for any
|ψ〉, by

Bψt
=

√
2s3|ψt⊥〉〈ψt |,

Aψt
= −iH − 1

2

3∑
j=1

cj (σj − sj )2,

so that

|dψt 〉 = −iH − 1

2

3∑
j=1

(σj − sj )2|ψt 〉dt +
√

2 s3|ψt⊥〉dξj,t .

(31)
Clearly, one can verify that Eq. (31) is norm preserving
(〈ψ |dψ〉 + 〈dψ |ψ〉 + 〈dψ |dψ〉 = 0) and generates, on aver-
age, the ME in Eq. (26).
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B. The Bloch-Redfield equation for a dimer system

As a specific, physically relevant application of our ap-
proach, we consider an example given by a simple description
of a dimer system, which nevertheless represents a useful
model to investigate exciton transfer, for example, in biomolec-
ular complexes [15,16,39].

The state of the excitation is associated with a three-level
system: two levels for the excitation being in one or the
other site, and one level for the absence of excitation. The
most relevant sources of noise are the pure dephasing and
the recombination process. Using a perturbative approach
(e.g., projection operator techniques) up to second order and
the Born-Markov approximation, one gets the Bloch-Redfield
equation [1]. This equation usually does not guarantee the
positivity of the evolution and it is then further approximated
by a Lindblad equation, which even ensures that the dynamics
is CP. The Lindblad equation is obtained via the secular
approximation (SA), which essentially neglects all the terms
coupling population and coherences of the system. However,
this approximation is not always justified from a physical
point of view, as it calls for a large difference in the time
scales of the free evolution and the dissipative relaxation
of the system. To overcome this difficulty and retain all the
relevant phenomena in the dimer evolution, yet in a semigroup
description of the dynamics, a partial SA was introduced
in [15]. The latter discards only some terms which couple
population and coherences, while it preserves the most relevant
ones. The resulting ME implies a P, but, in general, not CP
evolution. Hence, it provides us with a natural benchmark to
test our method.

The ME, both after the full and the partial SA, can be written
as [15]

ρ̇ij (t) =
3∑

kl=1

Rχ

ij ;klρkl(t), (32)

where ρkl(t) = 〈k|ρ(t)|l〉. We will use the notation χ = CP

for the full SA, while χ = P for the partial SA. In order to
write the ME (32) into the Lindblad form as in Eq. (1), let us
report the explicit expression of the coefficients Rχ

ij ;kl . In the
case of the partial SA, they are given by (see Eq. (11) in [15])

RP
11,11 = RP

22,22 = RP
33,33/2 = −4,

RP
11,33 = RP

33,11 = RP
22,33 = RP

33,22 = 4,

RP
11,12 = RP

22,21 = RP
31,32 = RP

32,31 = −71i,

RP
22,12 = RP

11,21 = RP
13,23 = RP

23,13 = 71i,

RP
21,11 = RP∗

12,11 = −RP∗
12,22 = −RP

21,22 = −1 + 71i,

RP
12,12 = RP∗

21,21 = −8 − 46i,

RP
13,13 = RP∗

31,31 = −9 + 12210i,

RP
23,23 = RP∗

32,32 = −9 + 12256i, (33)

and all the other coefficients are equal to 0; as one can directly
check, this provides us with a P, but not CP evolution. On
the other hand, as widely discussed in [15], a CP evolution is
obtained with a full SA, which means that the terms coupling

populations and coherences are set to 0:

RCP
11,12 = RCP

22,21 = RCP
31,32 = RCP

32,31 = 0,

RCP
22,12 = RCP

11,21 = RCP
13,23 = RCP

23,13 = 0,

RCP
21,11 = RCP

12,11 = RCP
12,22 = RCP

21,22 = 0, (34)

while all the other coefficients in Eq. (33) are not changed.
The parameters appearing in the two MEs express, in units
of cm−1, the effect of dephasing and recombination noise,
which are modeled as a spatially uncorrelated noise with
an ohmic spectrum [15], as well as the Hamiltonian part of
the dynamics. In particular, note that the energy difference
between the ground state and the two excitonic states is two
or three orders of magnitude larger than any other relevant
parameter in the free Hamiltonian [52], which explains the
appearance of imaginary components in the ME parameters
which are much bigger than the other values.

As described in Sec. III, to define our unraveling, we
first need to write the Lindblad form of the ME, which can
be readily obtained following Ref. [4]. First, note that the
generator G can be directly reconstructed via the coefficients
in Eq. (32) since

Rχ

ij ;kl = 〈i|Gχ [|k〉〈l|]|j 〉. (35)

Then, consider the basis of operators on C3 given by
{τi}i=0,...,8, with τ0 = 1/

√
3, while the τis with i = 1, . . . ,8

are the Gell-Mann matrices over
√

2 (to guarantee the normal-
ization with respect to the Hilbert-Schmidt scalar product).
Hence, the so-called nondiagonal form of the generator G is
given by

G[ρ] := −i[H,ρ] +
8∑

ij=1

dij

[
τiρτ

†
j − 1

2
{τ †

j τi,ρ}
]
, (36)

with

H = 1

2i
(τ † − τ ), τ = 1

3

8∑
i=1,k=0

Tr{τkτiG[τk]}τi,

dij =
8∑

k=0

Tr{τj τkτiG[τk]}, i,j = 1, . . . ,8. (37)

The matrix of coefficients dij is Hermitian, as the dynamics
is Hermiticity preserving; so there is a unitary matrix U , with
elements Uij , which diagonalizes it. The resulting coefficients
of the diagonal matrix are just the coefficients cj appearing in
the diagonal form of G in Eq. (1), and the matrix U also defines
the corresponding Lindblad operators Lj : explicitly, one has

cj =
8∑

kk′=1

U ∗
kj dkk′Uk′j , Lj =

8∑
i=1

Uij τi . (38)

For the generator GP fixed by Eq. (33), we get the coefficients

c1 = 2 +
√

5, c2 = c3 = c4 = c5 = 4,

c6 = 1
3 (4 +

√
19), c7 = 2 −

√
5, c8 = 1

3 (4 −
√

19),

(39)

062101-6



STOCHASTIC UNRAVELING OF POSITIVE QUANTUM . . . PHYSICAL REVIEW A 95, 062101 (2017)

where, note, the last two are negative, thus witnessing the non-
CP of the resulting semigroup dynamics. The corresponding
(canonical) Lindblad operators are

L1 = −f1,−τ1 + f1,+τ3, L7 = f1,+τ1 + f1,−τ3,

L2 = τ4, L3 = τ5, L4 = τ6, L5 = τ7,

L6 = if2,−τ2 + f2,+τ8, L8 = −if2,+τ2 + f2,−τ8,

f1,± =
√

1

2
± 1√

5
, f2,± =

√
1

2
± 2√

19
; (40)

finally, the Hamiltonian part of the dynamics is given by

H = −71
√

2τ1 −
√

2

3
τ2 + 23

√
2τ3 − 12233

√
2

3
τ8. (41)

The unraveling operator Aψ is hence directly defined by
Eq. (3), while Bψ,k is obtained via the evaluation of the GTRO
in Eq. (5) and its diagonalization; see Eqs. (11) and (21).

Repeating the same calculations for the generator GCP fixed
by the full SA, i.e., Eq. (34), we directly get a diagonal form
of the generator, with (positive) coefficients

c1 = c2 = c3 = c4 = c5 = 4, c6 = 8
3 , (42)

and Lindblad operators, as well as the Hamiltonian, given by

L1 = τ3, L2 = τ4, L3 = τ5, L4 = τ6,

L5 = τ7, L6 = τ8,

H = 23
√

2τ3 − 12233

√
2

3
τ8. (43)

Here, since the dynamics is CP, one could apply the usual
formulation of the (diffusive) unraveling, which is directly
fixed by Eqs. (3) and (4).

Now, our unraveling proceeds as the usual diffusive unrav-
eling, with the addition that we have to diagonalize the GTRO
in order to have the rate and noise operators providing the
trajectories. In particular, the algorithm giving each trajectory
goes as follows. First, m = n − 1 Wiener processes with
derivatives dξk,t , with k = 0, . . . ,m and n the dimension of the
Hilbert space, are generated over a computational time domain
[0,δt,2δt, . . . ,T ]. Then, given the rates and the operators
defining the ME (32) in the P case [see Eqs. (39)–(41)], the
expectation values �ψ0,j , the drift operators Aψ0 , and the GTRO
Wψ0 of Eqs. (3) and (5), respectively, are computed for a given
initial state |ψ0〉 at time t0. Next, Wψ0 is diagonalized, the
positivity of its eigenvalues is checked (a negative eigenvalue
would stop the algorithm), and the noise operators Bψ0,k are
constructed according to Eq. (21). Now, the state |ψ1〉 after
the first time step δt is computed through the iterative formula
|ψ1〉 = exp[(−iH + Aψ0 )δt + ∑m

i=1 Bψt0 ,idξi,0]|ψ0〉 and then
normalized. Finally, the state |ψ0〉 is updated to |ψ1〉 and the
algorithm starts over with the evaluation of �ψ1,j , Aψ1 , and
Wψ1 at time t1 = t0 + δt .

In Figs. 1(a) and 1(b), we report some trajectories for the
evolution of the, respectively, first and second site populations,
which are obtained by means of the unraveling of the P
dynamics after the partial SA [see Eqs. (32) and (33)],
thus demonstrating the effectiveness of our approach on a
physically relevant model. Let us stress that the traditional
unravelings for CP semigroups could not be applied to these

0.5

0  0.1 0.2 0.3 0.4 0.5

0.5

(a)

(b)

0.5

0  0.1 0.2 0.3 0.4 0.5

0.5

(c)

(d)

FIG. 1. Trajectories for the evolution of the population of (a)
site one and (b) site two; each trajectory corresponds to a different
realization of the solution of the SDE in Eq. (2), with Aψt

as in Eq. (3)
and Bψt

as in Eq. (21), and derived by diagonalizing the GTRO at
each point of the computational time domain. The deterministic initial
state is |ψ(0)〉 = |2〉, while the state at time t is |ψ(t)〉 = α(t)|1〉 +
β(t)|2〉 + γ (t)|3〉. Evolution of the population of (c) site one and (d)
site two given by the ensemble average of 1000 trajectories of our
unraveling (blue/dark), and the solution of the Lindblad equation after
full SA (yellow/light). In the inset, the ensemble average (blue/dark)
and the solution of the P ME (green dotted) are shown to agree within
the standard deviation of the mean (vertical bars) of the trajectories.
The initial state is set as ρ(0) = |2〉〈2|.

dynamics since they require a Lindblad equation and, thus,
in this context, a full SA. Crucially, the latter would cancel
any coupling between population and coherences, therefore
potentially disregarding some significant phenomena. This is
explicitly shown in Figs. 1(c) and 1(d), where we compare the
evolution of the populations obtained by solving the Lindblad
equation after the full SA and the populations obtained by
averaging 1000 trajectories of our unraveling. The former
completely neglects significant oscillations [15], which are
instead fully captured by the unraveling of the P dynamics.

As a final remark, we note that in the model at hand, the P
of the dynamics was guaranteed by itself. On the other hand,
if we want to apply our unraveling to a more complex system,
starting from a generic ME as in Eq. (1) or in Eq. (23), in which
we do not know whether or not it is P (divisible), we can still
be sure that as long as the algorithm works, we are not dealing
with ill-defined (i.e., nonpositive) states. In other words, any
detected phenomenon cannot be traced back to a nonphysical
description of the system’s statistics. In fact, imagine that, on
the contrary, the solution of a given ME maps the state of
the system at a certain time t , ρ(t), into a nonpositive state
ρ(t + δt). If we now look at the unraveling, this means that
the GTRO will not be a positive operator, for at least one of the
stochastic states at time t giving ρ(t) on average. But then the
algorithm will stop due to the appearance of nonpositive rates
[see Eq. (11)], witnessing the nonpositivity of the map leading
from time t to t + δt . This is fully analogous to what happens
for, e.g., the non-Markovian quantum jumps approach [49],
which can be safely applied to any ME, whose CP, or even P,
may not be guaranteed.

VI. CONCLUSIONS

We have introduced a continuous unraveling for dynamics
which are P, but not necessarily CP. Our approach directly
generalizes the QSD method: the rates and operators extracted
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from the ME have to be replaced by, respectively, the
eigenvalues and eigenvectors of a proper rate operator. We
have taken into account the case of semigroup dynamical maps
and, additionally, we have extended our result to include a more
general class of open-system evolutions, so that our unraveling
can be applied to every P-divisible dynamics.

By virtue of the unraveling of P dynamics, one can avoid
imposing approximations which could introduce significant
errors in the system of interest, such as imposing the secular
approximation on top of the weak-coupling approximation.
This has been shown explicitly in a case study by investigating
the population evolution in a dimer system.

Certainly, our approach can be improved in many regards.
A crucial point will be to simplify the task of diagonalizing
the GTRO at each time step, e.g., by looking for possible
connections between its spectral decompositions at subsequent
times. Also, it will be of interest to study how and to what

extent the range of applicability of our method can be further
extended, for example, combining it with other unraveling
techniques [47–49], which apply to general non-Markovian
dynamics. Finally, a central question, which is at the moment
still open, is whether the unraveling we presented here can be
formulated in terms of continuous measurements [24,25].
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