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1. List of Assumptions

Assumption 1. (a) All diagonal elements of W, and M, are zero. (b) p € (-1/Tw,,1/Tw,) and
A€ (—1/?1\/[", 1/?1\/[71)

Assumption 2. Matrices W,, and M,, and (I,, — an)fl and (I, — )\Mn)fl are uniformly bounded in both

row and column sum mnorms.

Assumption 3. Elements of X, are uniformly bounded constants, X, has full column rank, and

limp— oo (X1 X,,) /1 exists and is nonsingular.

Assumption 4. ¢ = lim, E{,, exists. £ attains a unique maximum over the compact set © at the interior point

6.

Assumption 5. (a) FEvery subset of the sampling area of size ¢, contains at most m, units, where

lim,, my /¢, < C < c0. (b) Moreover,

! 1

sup — | < O0.
1<9<G., dl%::(, Py(d, dz)
Assumption 6. sup,, , , [Cov(ygi, yni)| < a(dgn), where dgy, is the distance between group g and h and

a(c) = 0 as ¢ — o0

Assumption 7. (a) There exists a sequence {q,}, with lim,_,o ¢, = 00, such that the matriz Y jv, p"W"
is nonsingular (and >3, \PM? is nonsingular) for all n and for all p € (—1/7,1/7) (and X € (—1/7,1/7)).

(b) There exists a § > 0 such that lim,, o n°/q, < co.
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Assumption 8. For all fized d > 0,
lim k2a(kd)

o

Assumption 9. The sampling area grows uniformly at a rate of \/n in two non—-opposing directions.

Assumption 10. The matrices

and

. 1 82
H(0,) = —HILIEOEH(GQ = _nh_{I;cE <(900396£n>

are positive definite.

2. Technical Lemmas

Lemmas 1-5 are used in proofs of Theorems 5.1 and 5.2. All quantities with a “tilde” superscript have
to be interpreted as approximated versions of the same quantity, obtained by replacing the inverse matrices
A, or B by the finite truncation (details on the truncation can be found in the supplemental material). For
example, 0, is the approximated partial maximum likelihood computed by finite sum approximations of the

inverse matrices, 6,, is the corresponding maximizer, and so on.

Lemma 1. Under Assumptions 1-7,

C} \

G
Z fg”fg < (1 + HX,@” ) (‘7p|2 g+1) )

Lemma 2. Under Assumptions 1-6, 8[5730) = 0,(1).

Lemma 3. Under Assumptions 1-6, fon any v € RF, v #0,

Sl<1p max HXp gXp g||2¢( pgiY) < 00
g<

Lemma 4. Under Assumptions 1-6 and 8-10, for all @ € ©, and for all g =1,...,G and dq,ds € {0,1}?,

‘ 0?py(dy, dz)

0000’
0%0,(0)  9*0n(0)
0006’ 9006’

<0
2

If further Assumption 5 holds, then

= o(1)

Lemma 5. Under Assumptions 1-6

00,(0)  00,(0)

39 = 80 +0P(1) = Op(l)
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3. Proofs of technical Lemmas

Proof of Lemma 1

For any g and any vector parameter 6 = (3, p), fy ~ N (g, =) and f, ~ N (jig, 2,), where p, = X, ;8 =

(A;l)g X8 =0, pka)g XBand py = (X1, pka)g X3 while 3, is the g—th diagonal block of X and

3, is the g—th diagonal block of the approximating matrix 3 = S oS PR WR (W)
Thus,

KL(fyllfy)

- e i )
tr(3; 12y — L) + (g — fig) Ty (1g — fig) + log |291

3|

Bl = =N = N

(6575, — o) —log (1o + (5,75 — 1) 1) + (g — i) S5 (1 — )]
(8778, 1) (5578~ 1) (14 0(1) + (tg — 10)' (g — fig)

fr (291 (26— %) (- i:g)' Egl) (14 0(1)) + (g — fig) 5 (g — fig)

IN

IN

where || - [|2 is the induced 2-norm while [|Allc = max; }_; a;; and where we have used inequality:
A28 A2
tr(A) — log [T+ A :ZAi—Zlog(l-l-)\i) :Z (Ai — Xt G- 3+~-~> < Ei:?(wo(l))

which is true if sup |\;| = o(1). Now, from tr(AB)? < tr(A)%tr(B)?, for two positive semidefinite matrices

(5 52 <ol ]

We then use the Theorem 1 in Bai and Golub (1997), to get

A B, we get

- IZ6l7 ()

)\2(2 ) A(Zy) 1 - QtI(ig)Zligz + 432(29) + tr(ig>2 + 23(29)7
A \&Hg) Al&y

where A(2,) is the minimum eigenvalue of 3,. Then, because of A(A) < tr(A)/k, for any pd k—dimensional
matrix A,
tr(Z] D) < 2t0(Z) |y 1% + tr(2,)2 + tr(2,)? + tr(X,).
Moreover, since 3 is symmetric and pd, ||, || = tr(ig) < tr(%,)?, and
a g

tr(%,) Zth+ktr((Wk Wh Z|p| Ztr (WF) Wh "))
h=0

h=0 k=0
%) h

< MYt (W) (WhRY)
h=0 k=0

= 1@ = [pIW) gl

<2Y[(X = [pIW) g 12, < 2¢pp)

where [(I—pW) 1], .. indicates the G blocks of [(I—pW)~!] corresponding to the g—th rows. The last inequality
follows from the assumption that ¥ in row sum norm assumption (assumption 3 Kelejan and Prucha).
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Moreover, we clearly have
1 NIRRT SHIE 1 $(2 n $2 2(g+1)
(B =) = 5 D I% - BlE < 1T - B < ZIS - S = O(lor2)
g=1 g=1

where 3 = o™ Z::O WF(W')=F s the finite order approximation of the whole covariance matrix X.

Finally,
G G
L S (g = g S (g — i) < = 3 Nty — g 2155
a Hg — Hg) g (Mg P‘g—G Hg — Hgll2ll&g "2
g=1 g=1
< T - pWIIXBI AT — AS L2 < O(pr 2D

Putting all these together in (1) and summing with respect to g:

Q

Z LUl o) < O (IroP ) (14 1XBI3) -

Proof of Lemma 2

For the numerator, it is easy to see, from equations in the Appendix F of the main paper, that all terms
Opg(dy,d2)/0B are bounded, provided that X is bounded (Assumption 3) and each X is nonsingular (which
implies all variances o4, > 0), because both the standard Gaussian CDF and the density of a Gaussian
distribution with finite positive variance are bounded over the whole real line.

We now focus on Opgy(1,1)/0p. From Eq. (F.6),

5(913

192
bl X
Xp. g1 ) Ps 92:6 _3)1 pmﬁ
2 2
\/Ug,z - Ug17g2/09,1

o (T
+ /OO (“) ® (p2.4(u)) du (2)

—Xp, 91/3 20 791

* /xp e <0’g1 > ¢ (p2,9(u)) (%wz,g(u)du

apg ¢

where X, 4, (or %X, 4,) follows from:

X, =A'WA'X = (h+1))"W'WX.
h=0
Then using Assumption 2, Lemma 3 and arguments similar to those in the proof of Lemma 4, we have, for ¢,

(or equivalently, g),

I llao (22222 < 01, %, s (2222 — o).

g1 g1

Thus, the first term of (2) is bounded above because ® is bounded. For the second term, we have:

e u? 02 u 00 42 2 " 52
= N D = M
_xp,glﬁ g1 g1 oo - 7 3
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Further, boundedness of (I — pW)~! implies boundedness of 3 and thus of dgl.

Finally, the last term of (2): O3 4(u)/0p is an affine function of u with bounded coefficients, and thus the
integral can be bounded above by a linear transformation of the expectation [p u¢(u/oy, )du with bounded
coefficients.

We can apply similar arguments to the other terms dpy(1,0)/9p, Opy(0,1)/0p and Opy(0,0)/0p.

Proof of Lemma 3

We first prove that under the Assumptions, we have that the minimum eigenvalue of X'X, say A(n), is equal
to A(n) == nA,, where A\, = A(n)/n is the minimum eigenvalue of X/TX and is continuous, in the sense that
Ay — Ap_1 = O(n™1). Then, because of Assumption 3 lim \,, = A > 0, we have that A(n) = O(n). Moreover,
since X’X/n converges to a positive definite matrix, also A\, = O(n).!

This also implies that the minimum and maximum eigenvalues of X/ X, = X'(A ") A !X are of the same
order, in light of uniform boundedness of A'. Moreover, since x,; = (A, ');X, also %}, :%p,ill = O(n) and

VX, XY . _ _ . _ _
# > |\;ﬂl£1 2'X), i Xpi% = 1rz1fz’X’(Ap Di(A1)iXz > A(n) 1rz1fz'(Ap (A )iz = O(n).

Now we show that this implies

sup X X l26(Xp,i7) < 00
and thus the claim. Note first that the above display is always bounded if n is finite, because X is assumed to
take finite values and A;l is uniformly bounded. Then, we need to prove that it doesn’t explode as n — oo.
Note that, for any 0 < i < n,

1
X, X} 26(X,7) = (2m) 712 sup 2'X) X zexp {_27'X/p,¢xpﬂ}
lIzl[=IvIl

< (27)7Y20(n)Xexp {-'72”20(71)} —n 0.

Finally, the inequality

3 ’
Sup max 1%, Xpgll20(Xp.g:7) < 00

is obtained by applying iteratively the following argument. Given a block matrix

A A
A 11 12
Az Ay
[Allz = sup z’'Az > sup z5A92 = ||Ags|s.
[lz[|=1 lIzll=Il(z1,22)[|=1, z1=0

clearly implies sup < HXP)QX;)’g”Q < ||XPX’pH2 = ||X’po||2.

Mn fact, A < ntr(X'X)/n = O(n).



Proof of Lemma 4

We limit ourselves to the case dy = dy = 1. All other cases follow with similar steps.

In order to prove the claim, it is sufficient to show that each of the components

8%py(1,1)  8%py(1,1)

oBof’ 080,
9%pgy(1,1)  9%py(1,1)
opa3’ dp?
has bounded norm.
. 82179(1,1).
We start from: oBoF
ang(l’l) —Xp.0. 8 ,
“opos” 85’ =282 ) (020 (X0 ) X,
0 > u x.
o ¢ <> ¢ (p2,9(u)) ¢du
8,6 7xp’g1/6 O'g1 5 M
g2 rrgl
where )
Xp,goal3 + leifu
P2q(u) = 2 2 - 2
992 7 951,02/ 91
Thus,
Ppy(1,1) —Xp,0. 8
Tantr = ot 0 (222 ) @ o 008 X S

a‘PQ,g(*X;&gl B)
08

/

Jrgb( xpg1 >¢ (p2,9(— Xp,glﬁ))xihgl

—X X X ,
“Ep,g1 P ) & (@2.(— Xp,glﬂ)) Lpindu
o2 — 0912=92
92 %51
- u X; Dpa,q(u)
+/ Q/) <) ¢/ (@2,9(“)) P92 879/ d
*xp,glﬁ Ugl 2 J12192 ’6
g2 75
Xp.. B ( —Xp,0: B
_ XoonP ( .91 > D (p2,9(—%0,.8)) X}, 41 Xp.0
g, Og,
/
— X
+2¢( xmgll@) ¢ (92,9(—%p,g,.8)) L9209y,
%91 o2 — Zor02
g2 031
> u x) X,

[ et () 6oy 22y

*xpymﬁ Og1 0-32 _ 912192

g1
g g
— Xp,g.8 — F= X 0,8 x  x
< ||X/;7—9116H ¢ ( );/)’9113> ||X/p,glxp,91||2 + 2¢(0)¢ o2 9,1 ” P:92 092”2
s 7 02 o 021’92 /U 02 - 031792 /U

2
ql 92

s [T egtle () el A ) ntenl,
g
ﬂ 091 \/02 70—371 92/0 \/02 70—5271 92/0
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The result now easily follows because of Lemma 3, noting that [|x, 4, 8/5 < [|8113]1X}, 5, Xp.q, ll2 < |BII3]1X, X, [|2:

9*py(1,1) 1 %p.0. B 3/2 1X5,6Xp,9l12
Py < 0911¢) - ”Xp 91 %091 Il / +2¢(0)¢ (X g71) e
9BoB To1 02 0-21 g2 031

o u ”X/p 92%p, 92”2
w0 lenstlo () duo (X,00) <o
g1

_ _ 2
Xp,g1 o2, — 02 .,/0%

We now consider the partial derivative %%pg(l, 1) where %pg(l, 1) is computed in Appendix F:
p

92 9 —x,.,,8 ) o0 u? ol
R L e L = ] e IO

+/_Oo J¢] ¢ (o‘j]) ¢ (p2,9(u)) ;}wz,g(u)dul

Xp,91

1 1 i Y5 —p0 9 > g1 :
= (o (P22 P) 2200 oy a0 + 0 (Z222) 002, 0000 22200028 ) 5,

+é < ’Z)aﬁ) B (p2,4(7p.0.8)) Xgr + Xp. g, [uzflgza (“) ) (<p2,g(u))]

g1

[ee] u2 0'.21 u 8802, (U)
-/ i (U) 6 (p20) P25 du

#x0 [0 () 0 as) 5enolo)]

\
“=*xp,g1ﬁ

‘“=*xp,g1/6

= u / Oipa,4(u) Op2,4(u) 0%p2,4(u)
w0 (o) (¢ Genato PO ) T )

Note that, from the equations in Appendix F, 0ps 4(u)/0p depends on combinations of u (linear in w)
and coefficients of Eg, ¥, and X8 and Xgﬂ Therefore, all terms of the form ¢(p )8—“" are bounded,

provided ||2,]| < oo and |[X,| < co. Moreover, for the same reason, also the terms that can be bounded
by C - ¢(X, o NIX, 4l or C - (X, ,7)1X, 413 are bounded. It then remains to show that ||3,]| < co and
1X,4]| < 0o. Recall that,

_ A1 -1 S -1
—Ap WAP X and E—Ap WE—}—EW/(A;)

p= 8,0
Thus,
1=z < 2)Z[ A [W]l2 < oo

implies boundedness of the terms ¢ and
XX 12 = X)X, ll2 < [1X, X, 2| WW (o[ 2]l

and then because of Lemma 3:

20(X p,9:7 y) < 0.

7
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Finally,

2 _ 0o 20'.2
gwmﬁwnip(’%“U@wmumﬁ»%ﬂ+/‘ “gw(“)@wmw»m

Og: —Xp.g, 3 ﬁ Og1
[ ¢<u>¢@mW»8¢mWW4
“xp0 B8 \Tg Jdp
is again bounded in norm. With respect to the other derivatives, we only need to check that ¢ (x,;7) %wz,g(u)
has bounded coefficients and is integrable in u and that all the terms of 3 = %ZPEJ are bounded and that

o 92X . . .
X, = T52° satisfies sup; [|X,,iX], ;[|20(X,,i7) < oo for every v # 0.
Using matrix calculus, we have:

_9
=5

2

® (A'WE + SW/(A) ™) =2 (A, 'W) S+ 24 'WEW/(A)) ! + 23 (W/(A)) )

that clearly has bounded norm if |||y < oo, |A; ]2 < co and [[W]z < oo, which is implied by Assumption
2.
Further,
& _oa-1 —1 —1
X, = 24 'WA'WA X

implies || X,[|2 < 2[|X,||2[[W|3]|%]/2, therefore sup, 1%,i%, ;[20(Xp,i7) < 00, in view of Lemma 3.

Now, an inspection of d¢/dp easily shows that ¢ (x,v) 0%¢p/dp* is bounded because of boundedness of 3,
3, 3 and of sup; ||z:2;[|¢(x,.i7) for z; equal to any of the vectors x, i, %, :,%,; and because of nonsigularity
of each X,.

Finally, if Assumption 7 holds, then all elements of 3,, A, X, and their derivatives (Ep, etc...) can be

replaced by their truncated sum approximation, with (focusing on 3 only, w.lo.g.), ||, — f]p|| — 0 because

of Lemma 1.

Proof of Lemma 5

The claim 8[(;730) = %g@) + 0,(n"12) = 0,(n"1/2), follows if we prove that
00,(0)  00,(0) 1y
sup - =0,(n""*).
il T E——T p

The above result follows if we can show that, for all g, and for any dq,ds = 0, 1:

= 0y(n"1/?) 3)

H Opg(dy, da; 6)/00 B 8]5g(d1, dy; 6)/00 H
pg(di,d2; 0) Dg(d1,d2;0)

where pgy(di, d2; 0) = py(di,dz) and py(dy,da; @) = py(di, da) follow equations:
b (o) = [ Lo () @ sng () du
g \A1,0d2) = - - g2¥2,9
{591“>_591Xp,y1ﬂ} 991 991 ’

o2 respectively.

computed using the exact and approximated values of X, and o4, g4,, 031, i
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We will prove (3) for d; = da = 1. The other cases follow by the same arguments. First note that

py(1,1) Py(1, ) - py(1, 1) 9 Pe(1,1)  py(1,1)
< o[ At 28L ) i
- 00 Dg(1, 1) Pg(1,1)
because for assumption 5. Moreover, %H = O(1) if the first term is o(1), because we already proved
(see the proof of Theorem 5.1) that H%H < 00. So, we need to prove HWH =o(n~'/?) and

(ﬁ - ﬁ) ‘ = o(n™1/2). To prove the latter it is enough to show that [p,(1,1) — 5,(1,1))| = o(n~1/2).

From the definition of p, and p,, we have in fact:

~ u 1 (7 1 Xp 926+ 91 = ugl
o) syl [ (22 ) <o) e g

091 g1 2 051 .92
g2 o'_gl
991,92 91
0 Ug, Xp,g.8 + oz U Xp,g.8 + Zug,
+ gb - @ L — (b 1 du
g 2 - g1
xp,glﬁ g1 2 91,92 =2 91,92
T, o2 99, 52
91 91

52
jod 471 92
G2 — %
g1

_xp,glﬁ ) Xp7g2,8 n o’q1 92 Ug,
+/~ ¢(fh)q> dug, = A+ B+C

where we used the tilde to distinguish between exact and approximated terms and we have assumed (w.l.o.g.)

= evy—a| (1+ %01 (v = 2)*(k+ 1)),

that —X, 4,8 < —X, 4, 3. Then, because of |e*—e¥| < e¥|y— x\

</60 () (HO( ))% 0l o)

Similar bounds can be found for B and C, because of the continuity of the functions ¢, ® and of the integral:

we get

Ug,  Ugy Ug,  Ug,

09 1 09 1 Ug 1 09 1

B < O(|(%p,i — %x,.4)8]) + O(|det(2~]g) —det(2y))]) + O(Hig —3llr) = O(‘p7'|2(q"+1))

and C < O(|(Xp,i — %p,i)3|). All these terms are negligible because of Assumption 7 and |p7| < 1.
The same steps and the continuity of all functions entering in dpg4(ds, d2)/00 also yield

Ha(pg(l, 1) — (1, 1)) H = o(n~V/2).

00
4. Approximation of ¥, and X,,.

As already pointed out by Wang et al. (2013), the terms o,,, o4, and oy, 4,, that are essential for the

computation of the probabilities p,, can not be easily written in closed form as functions of p and the weight



matrix. In our case, things are made even worse by the fact that the vectors x, 4, are complex transformations
of the whole design matrix that also depends on p.
In this section we give details on the approximation of the terms X, , and o,4. based on finite series
expansion for (I — pW)~!, mentioned in section 3 of the main paper.
The contribution of each pair g on the loglikelihood depends on the rows g1, g2 of the matrix Ap_1 and on
the submatrix 3 . Under Assumption 1,
o0
-1 _ kynrk
Ap - Z W,
k=0
implies,
o0
Eyrrk
X, =Y pP"WHX
k=0
and, for i =1, 2,
n (oo} (k)
k
j=1k=0
where wl(? is the ([,7)—term of the matrix W*. Then x, 4, can be approximated by truncating the series
expansion to the g—th term.

Similarly, since
3= Ap_l(A;))_l — Zpkwk th(‘x7l)h7
k=0 h=0

we could approximate,

q q 2q min(k,q)
~ ~ —1] ~ /) _
X=A, (A) 1—§ Pkwk§ Ph(wl)h—E Pk E Wh(wl)k "
k=0 h=0 k=0 h=0

This approach can be convenient in the case of large samples, to avoid inversion of large matrices and is

especially useful in the dense matrix case.

5. Other proofs

This Section includes some proofs that are omitted in the main paper.
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5.1. Proof of Theorem 3.1

Repeating the steps in Wang et al. (2013), we can easily get

pg(1,1) = P(yy =1Lygp=1)=Py,, =P (yg, =1]|yg =1)
Xp,g1 3
o (X BV (P =1 ) [ =D
1
Xp,g.0 + Uilz’m Ug
= @ <Xp’91ﬁ> II.:.:ug1|y:svl:1 ® : = :
Og1 2 _ %514
g2 ng
oo 1 Xp,g,0 + 0212192 Ug
- [ Lo (“) 1 A (4)
—Xn,glﬁ g1 g1 2 _ 031,92
g2 o2

g1

from ug, | ug, ~N (Tg%ugl, (1- 72)0272> and noting that the conditional density of ug, |yg, =1 is:

g

14 (m)
Tg1 991

plug, | yg, = 1) =Hug, = =4, 8} ———%-

()

In a similar way:

x /6 + 91292u
Xp,g ﬁ P92 o g1
pg(l,o) = & ( . 1 > Eugl‘x7yg1_1 1
g1 02 912~92
g2 951
X
= ¢ ( /;7—!]1/6) _pg(L 1)a (5)
g1

Xp,g1 8 Xp.g28 + T g,

pg(o’ 1) = <1 - (/’afh)) Eugl\X,yglzo (b =

Ogy 2 _ %3192
g2 ogl
991,92
—Xp 91/8 1 u Xp»gzﬁ"_ 2 Ugy
-/ o(5)e | duy, (6)
—0o0 091 0-91 2 051192
092 - agl
991,92
x *xmylﬂ 1 u XP79218 + 2 Ug
py(0,0) = (1 ) (Pgl'6>) ,/ — <91> ) a1 duy,
Ogy —oco Og1 Og, 2 %

g2 z:rg1

(1 i (X';Zﬁ» —py(0,1). (7

The identity of all the formulas with the two equivalent expressions in the statement of the Theorem is
straightforward.
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5.2. Proof of Theorem 5.1

Following the notation introduced in section 2 above, let

6,, = arg max !7"(0; v, X),
Oco

where /,, is the approximated partial maximum loglikelihood defined there. Moreover, to discriminate between
the exact bivariate probabilities and those based on the g—th order finite sum approximation, we denote the
last by py(d1,d2), and the former by p,(di, d2)?. There is the following link between the 0, and £,,:
1 pg. (dy1,d
n(0;y, X ZIE Z —{yg, =di,yg, = dg}log]M | X | +E(4,(0;y,X))
G pg (dla d2)
d=(d1,ds) : (8)

=E (¢,(0;y,X)) — éz KL(p,,

|Pg.)-

Thus, consistency and asymptotic normality of 0 come from the analogous properties of the PML estimator,
and from negligibility of the term é >y K L(pg,|Dg,)-

We first prove consistency of the PML estimator 0, = arg max £,,(0;y,X). This can be proved by using the
same arguments of Wang et al. (2013): in particular, given Assumption 4, we need to prove ¢,,(8) —¢(8) = 0,(1)
and stochastic equicontinuity of £,,(0). The first result follows by repeating exactly the same arguments as
those of Lemma 1 in Wang et al. (2013).

In order to prove stochastic equicontinuity, following Wang et al. (2013), we need to show that

G
(9pg dl,dg)/80
E — | = 0p(1
Sup — g1 ‘12 pg dl,dQ) ;D( )

for all dy, ds.

The term at the denominator of the above equation is bounded away from zero because of Assumption 5.
Moreover, all derivatives dpy(d,d2)/06 are Op(1) from Lemma 2.

Thus, stochastic equicontinuity of £,, follows as in Lemma 3 of Wang et al. (2013) and this implies consistency
of 6.

The proof of the consistency of 8,, follows from the asymptotic equivalence of 8,, with the PML estimator
0, = argmax £, (0;y,X), which is a consequence of Lemma 1. In fact, Assumption 3 implies, for all finite

n/G, that || X8|z = O(1) for all B in the interior of the compact parameter space ©. Thus, by Assumption 7
(a), & Zle KL(f,]|fs) = o(1) which implies, because of (8) and Theorem 4.1-(i), that 10, — 0, = op(1).

2Note that the only difference between the two probabilities Pg(d1,d2) and pg(dy,dz) is the computation of terms X, and of

the elements of 3.

12



5.8. Proof of Theorem 5.2

The result is proven in two steps. First, we decompose v/Gp(8 — 0) = v/Gn(0 — 0) + /G (0 — 0y), and
show that the first term is negligible with respect to the second, where 0 is the pairwise ML estimator based
on the exact computation of £,,.

Second, we prove that m(é — 6p) has the asymptotic Gaussian distribution \/CTn(é — 0y) —4a
N (0,H(60)"J(60)H(6p)~"). This second part follows the lines of the proof of Theorem 2 in Wang et al.
(2013) and those of Pinkse and Slade (1998).

We start by showing that /G, (8 — 8) = 0,(1). Using the mean value theorem,

90,(0)  90,(8)  9°,(07)
06 06 0006’

~ ~ 2 * ~ A
(0*0):85)%7;3’)(0*0)

implies

~ ~ 2 * -1 0
Vano-0) = (Tad)) Ve

06000’

oy —1
Boundedness of (82;5;2, )) follows from Lemma 4, then if

9L, (0)  90,(0)
00 96

+0p(n~2) = 0p(n"?) (9)

the negligibility of +/ Gn(é — 9) follows. The proof of (9) is in Lemma 5.

In order to prove

VG (6 — 60) — N (0, H(89) " J(60)H(6,) ),

we can repeat the same steps in Wang et al. (2013).
We sketch the main steps of the proof. For more details we refer to Wang et al. (2013).

Using the mean value theorem,

_00,(0)  00,(80)  9*,(07) .
0=—36 =06 ' og0e" ¢ %)

Thus, for some 8 such that [|0* — 8| < ||@ — 6|,

) 020,67\ 0,(0)
@(0_00)__< 9000’ ) 90

Then, we first need to prove that all terms composing a?éég,) are bounded (therefore integrable), in order

to conclude, by invoking consistency of 0 and the law of large numbers, that

2 *
lim hl6) )

Jlim S = H(6). (10)

To prove this, the same exact arguments of Theorem 2 of Wang et al. (2013) apply. First, the bounds

Opg(di,d2) 0%pg(di,d2)
00 0000’

‘<ooandH

< 0o come from Lemma 2 and Lemma 4 respectively.
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In order to have the weak limit of /G, (6 — 6;), we finally need to show that

3200y v o),

Following Wang et al. (2013), and as in Theorem 1 of Pinkse and Slade (1998), we invoke Bernstein’s

blocking methods and the McLeish’s central limit theorem for dependent processes (McLeish, 1974). This
states that, if, for the triangular array Ty, = H?Ql(l +4yD,, j), where 1> = —1 and v is a real constant, the
following conditions are satisfied: (i) {T}, k, } is uniformly integrable; (ii) ET,, x, —n 1; (iii) Z?;l D2 . —,1;
(iv) max;<p, |Dnj| = 0, then Y57 Dy j —4 N(0,1).

Following the reasoning in Wang et al. (2013), the (sequence of) regions where the observations are located
is split into a,, areas of size v/b, x v/b,, with a, growing at a faster rate than b, and such that a,b, = n.
Moreover, a, and b,, are chosen so that b,, < nt/2-¢ uniformly in n and a(m)an — 0. Let A, ; represents the
set of indices of observations falling into the j—th area, and write D, ; = G~1/2 EgeAn,j Apn.g where A, g is
implicitly defined by z’'v/GJ(8y) /2 (%9900 =G-1/2 25:1 A, g4, for an arbitrary vector s.t. ||z|| = 1. It then
remains to prove conditions (i)—(iv) to ascertain that the sum Z;Zo D, =G™1/? ZS’;I Ap,g is asymptotically
normal.

For the proofs of conditions (iv) and (i), we just follow Wang et al. (2013). Conditions (ii)-(iii) follow from
Lemmas 4-7 in Wang et al. (2013).

5.4. Proof of the inequality (14): Couv(y1,y2) < CCou(ys,ys) for some C < 0o

Proof. From the definition of y; and y» we clearly have that

Cov(yr,y2) = E(y1y2) — Pr(y1 = 1) Pr(y2 = 1)
= / <u> [Pr(ya =1ly7 € du) — Pr(y2 = 1)] du
—z,, lﬁ 01 (o2
= [ g () [pon o (25)]
B 793 1ﬁ Ul a 02
- [ e (%zﬁ) (-5 o (2)
z/,Qﬁ e 1 u
< ‘b(’;z )/%ﬁ %0 (%)

< p120(0)C

du

(SIS

(wz(u) - GE'}iﬁ) 2

U P12 _H U P12 H u P12
o i, 62< \/@)Jr 63( m)* ‘

where Hey are the probabilistic Hermite polynomials, C' < oo because the Gaussian distribution has finite

moments of all orders and where pi2 is the correlation of the latent variables yj and 3. O

6. Score vector

In this section we are going to derive the score vectors of the SAR(1) probit and SARAR(1,1) probit models.
These formulas will be used to easily study the behavior of the score vector, and to perform a more efficient
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computation of the partial maximum likelihood estimator.

6.1. SAR(1) probit
In order to compute the score vector for the optimization of the quasi pairwise loglikelihood, we need to

compute the derivatives of p,(dy, d2) with respect to 3 and p. We recall some notation used in the main paper:

vaglﬁ + uggng,gz XP»gzlg + UUZIT’”
and @2 4(u) = =2 (11)

. g2
1) = 2 2 2 / 2 2 2
991 7 991,92 /ng 092 951,92/ 1

where sg, = 2(d; — 1/2). We first consider differencing with respect to 3:

Opy(1,1) ii/m ¢(“)¢>(<p2,g(U))dU

8ﬂ 818 Og, fxp,gl,B 9g,
_ L =%48 _ / /°° Lo (w9
= o (TP ) e rnnB X+ [ o () gp® enatw
1 —X, 0.3 1 [ u X/
- ¢(p’gl>q’(sﬁ2, (B %p + [ ¢()¢<m, (0) — 282y
Og1 Og J P P 0g1 7xp,glﬁ Og I o2 7‘731,5;2
g2 o2

After some algebra, we obtain:

= u _ Xp,9:03 OO o _ (uogy + Xp,9:809,1,9 /ng)2
/— ,6 gb (091) (b (@Q,Q(u)) du B ¢ ( 092 > /—xmm/@ \/ﬂ o { 2 (02 02 - 02 ) } du

Xp,91 g1~ g2 g1,92
X
=0 (2222) 0 (010 (50080 {7, — e
g2
Thus,
Ipe(1,1) i Xp,0.8 _ ' i Xp,g28 _ '
8,6 - g ¢ g, o (502,9( xp,g1ﬁ))xp,g1 + Ty ¢ g P (501,9( XﬂaQQﬁ))xpng' (12)
Similarly,
apg(lvo) — iq) <XP7916> _ apg(lv 1) — ¢ <vaglﬁ> X/P791 _ apg(la 1)
op op Og1 B 9g1 Og: op
= o (228) (1= 8 as (X BX — 0 (552 ) 0 o1y (3B e (13
and, by repeating the same steps,
Opy(0,1) 1 Xy 9,3 1 Xp g3
G == Lo (222 ) 0 8K+ 50 (Z222) (1= @ 018Ky (1)

ag? =~ (") (1= @ (Py(~%8)) X} g, — 70 (") (1= @ (019(~%0.5.8)) %) 5, (15)

991 992 Tgg
In order to compute the derivatives with respect to p, we need to define:
-1
— X, _ A, X _ _AflaAp
r ap dp P dp
15

X

-1 _ A1 -1
A'X = A 'WA; X,



ox 0 1 0 -1 1 -1
- g - W) ' = (2 ') - 2 (A’
O — = pW) ™ (1= W)™ (8 =) (5 A
0A, -1 _ -1 1
=-A, 16 ( p) _Apl(A) (Al) (16)
_ -1
=AW + W' (A)) .
Now, we denote by X, = (% Xy, %y, )" and
Z':g: 'O.-gl 0.-9'12~,92
091792 Ug2

the submatrix corresponding to rows g1, g> and the g—th diagonal block matrix, respectively of X = Xp and

> = %. We further note that, from

2 2
d2 a091 _ aU{h aogl —9 8091
g1 dp dog, Op 9 9p
Oog, _ [}21 o _1 _ 1 ‘.731
we have o = 200 and thus Bp7e = o2 Bop and
) ) 2 )
gl(/j) u\_ u U uagl_(b U 091=¢ U u Og
Opo o o2 o 203 o 203 o o2 203
91 91 91 91 g1 g1 91 g1 91 91

Then, we can write down the derivatives with respect to p,

0 x
T p(L1) = (ﬁ) B (92.5(~Xp g1 8)) K1 B

0g 0g

[e%e] 9 2
() () B

Xp, 91

1 > u P
' 0—7‘(]1 _xPyglﬁ (b (091) (b (()DQ,g(U)) %@2x9(u)du

= L‘Z) (W) P (p2,4(—%p,6,8)) %4, 8+ B + C.

Og Og

The integral in B can be computed by parts and we obtain, after some computations:

.2
B=n [—"Mlﬁ ¢ ("P’“") B (2.9 (—xp0,8)) — Z222B g (ﬁ> B (91,6 (~%p.55))

2
203, Og1 Og1 Og2 Og2

5 |1/2
+0g1,g§| 29| (b(xp’gl'B)¢(g02,g(—xp,g1/3))}

05103, Og1

2.2 2
where |¥,| = oy 07, — oy . . Note moreover that

6 (—") 6 (P20(~%0:B) & (J) ? (P10(~%0.528))

=, [1/2 = 1=, [1/2 = f(%p,018:Xp,g3),

is the bivariate density of (ug,,ug,) ~ N (0,X,) at (x, 4,8, Xp,4,0):

1 1 _
[(Xp.0.8,%p.9.8) = W exp {_Q(Xpygu@» Xpygz/@)/zg 1(Xp»91ﬁv Xp»gzﬁ)} .
16



Thus,

-2
B = Ugl

Xp,g18
~ 5.2
20%,

Og1

_Xp,glﬂ(z)

Og1

e ()

To compute the integral in C, we first note that

B (.9(—xp0,0)) — 2228

Xp,g23

Tg1,921 2]
g

2 2
051032

(

)@ (0120020 +

g

o
. . 2 -2 2 \2 X + 292, . 2 2 )
0p2,4(u) _ Xgo 8+ (0'917.!12 Ogy — 0'911920'91) U/(Ugl) 1 p.a2P o5 (('TQ . 2091,92091,92%91 — Tg1,9:901 )
- 2 _ 52 2 \1/2 2 _ 42 2 \3/2 92 2 )2
p (02, — 02, g2/08)" 2(03, = 03,,9./02,)% (03,)
=a+bu
where ) ) ) 4
0= 9 4 3+ 2041.9:991.9275, ~ 791,0:99: ~ 79: %4
- 1/2 7792 3/2
12| / 204,32, /
2 2 2 3 2
_ 1 0-91 092 . .92 0'920'91792 Ugl,gg 0'91792 Ggl .2
b= 23, [3/2 2 Ogi,g2 — 0y, | 2 T T3 I Tgz | -
g 091 ng 0'91 g1

Then, by noting that (performing a change of variable)

oo

C= ¢ (u) @ (p2,9(ucg,)) (a+ bog, u)du
*xp,g1ﬂ/091
Xp,g2 B * L (uog, +Xp,9:8091,95/091092)
:q&(%)/ a+ bo u—exp{ff - : du
o ) ), 8T 2 P 2 [S41/02,
) 1/2 1/2
— ¢ (Xp»gzﬁ)/ 12| {aijggl <‘29| v — Xp,928 Tg1,9 )} d(v)dv
Ogs —01,9(xp,9,3) 91992 0g10g2 Ogs 0g10g3
we get
|23/ b0 |31/ X,.0,8 O X, 0,08
C = g1 x X + a — bo P92 91,92 P92 P —x .
o2 02, J(%p,9.8:%5,9,8) or T, B Gg T, ¢ 74, (¢1,9(=%p,9.8))

Finally, by putting all the terms together and after some tedious calculations, we get

dpy(1,1) _ f (X008 Xp,9:8) 2% _ 52 Tavez _ 52 9192
ap 2 91,92 g1 031 g2 0-32
. )
Xp,g.0 X B 09 Xpg B
2P0 ) $ _ —
+ ¢ ( g ) (@2,9( Xp,!hlg)) < O 2031 Ogr (17)
X, 0.3 X5,B 02, X, 4.0
+ ¢ ( P92 ) P (901, (—X ) ﬂ)) g2 _ g2 P92 .
092 7 poz 092 2032 Ug2

Similar steps lead to,

Opy(dy, da) 825152f(xp,g1ﬂaxp,gzﬂ) (2(-7 _ 2 Jaug2 _ 52 Ugl,gz)
- 91,92
8/) 2 s 0—5271 92 052
. )
Xp,0:8 X B g Xpg.B
_ Zoail” ) p _ _
¢( g ) (@279( Xm!hﬁ)) < Ogr 20_31 g (18)
X I¢] Xgq, 8 o Xp.g I6]
0 (2258 (1 @ o1y, ) T2 - T 2ol ),
092 I Fae 092 2032 ng

for all dy,dy € {0,1}2.
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6.2. SARAR(1,1) probit

In the SARAR(1,1) specification, the probabilities p,(di, dz) follow the same equation used for the SAR(1)
case. However, when defining the quantities in py(di,ds), one has to bear in mind that the components

02 ,02,,0g,., NowW depend on both p and X through the variance covariance matrix:

S = A, BB VALY = (T pW) @ aM) T @ -aM) A - pw) (19)

Thus, also in computing the derivatives of each pgy(di,ds) the simultaneous dependence of ¥ = X,, ) on
p and A has to be considered. This, however, does not in general alter the structure of the derivatives with
respect to B and p. It is in fact easy to see that Opy(di,ds)/0B follows equations (12), (13), (14) and (15).
Similarly, Opy(d1, d2)/0p follows equations (18). Note moreover that, by writing

0% 0, 1510 _

Fp _ 87p (Ap lB/\l(BAl)/(Ap 1)/)
_ A;1WA;1B;1(B;\1)I(AP_1)/ 4 A;lBXI(B;\l)l(Ap_l)lw/(A;l)/
=AW +ZW'(A,1)

we can use the same equation as in the right—had-side of (16) to compute all the components of ilp. We now

focus on the derivative 3y = % /d\:

¥y =A'B'MB; (B ') (A1) + A BB )M (B (ALY 0)
— A;lBglMApz + EA'[,M’(B;I)’(A;l)’.

Finally, using equation (20), we can compute the elements of 35, namely 62, (N),02,(N),0g,,9,(A) to be used

in the following derivatives dpy(d1,d2)/OA:

il " Lo(k) [(“2—1) 70 g (a0 + 6 025(0) &”gj(“’] o

—xp,glﬁ Og, 991 031 31
Opo(1,0) _ _, (%p.0:8 5, (N)Xp.. 8 Opy(1,1)
OA O 203, OA (21)
0py(0,1) /xﬁmﬁ 1 a2 52, (N) 002.4(u)
o = o) | 1) T @ )+ 0 (na) Z
apg(()?()) _ (b Xp,glﬂ 0—31 ()‘)vagllg _ 6pg(071)
ON 0g 203, o 7

with

g9
= u 1

o, (\)

. . 991,92 . .
Ip2,9(u) _ Tgi,9 ()‘)031 - 091,92031()‘) Xp.0:8 +u=ch ( _ 20917920917920‘)‘731 - 031,g20§1(>\))

4
091

1
oA 2 2 2 2( 9 2 2\3/2
9911/99:%32 ~ 951,92 (ggz 991,92 /‘791)
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Formulas in equation (21) can be simplified through integration, as for the other terms of the score. Some

calculations lead to a formula very similar to equation (17):

Ipg(L,1) _ f(Xp,0:8:%p,.3) . ) Og1,92 -2 091,92
— s s 2 _ s _ 91,
8)\ 2 091 »g2 ()‘> 0’g1 ()‘) 0_31 ng ()‘) 032
-2 -2
Xp,0.8 9 (A) Xp,0.8 Xp,9:0 99, (A) Xp,9:
— B e K — B - i 92T ) P — B I —
¢ ( T ) (p2,6(=%p,6.8)) 2031 T o Gon (1,6(=%p,6.8)) 2032 s
(22)

The other derivatives can be easily derived adjusting equations (18) in the same way.
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7. Other Figures
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Figure 1: Spatial heterogeneity of the total marginal impacts for each regressor during the second time horizon. Blue lines represent

marginal impacts relative to the mean value.
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Figure 2: Spatial heterogeneity of the total marginal impacts for each regressor during the third time horizon. Blue lines represent

marginal impacts relative to mean value.
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