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1.  ABSTRACT  

 

Polycomb Repressive Complex 1 (PRC1) is an evolutionary conserved transcriptional 

repressive complex, fundamental for lineage fate decisions and maintenance during 

development. PRC1 acts by depositing a moiety of Ubiquitin on lysine 119 on histone H2A, 

promoting nucleosome compaction and transcriptional repression. Cell identity is a 

fundamental feature, not only during development, but it has to be maintained throughout 

the entire individual lifespan.  Importantly, loss of cell identity is associated with 

pathologies, primarily with cancer.  

We recently described that, in homeostatic condition, PRC1 loss of function in LGR5 

expressing intestinal stem cells, led to severe defects in tissue maintenance due to loss of 

stem cell identity and stem cell self-renewal. This places PRC1 as a fundamental complex 

in stem cell preservation. In this context, PRC1 is necessary to repress non-lineage specific 

transcription factors, whose upregulation not only perturbs the transcriptome of stem cells, 

thus leading to identity loss, but also impairs the transcriptional control of the WNT pathway 

that is essential for stem cell self-renewal.  

The landscape is even more complicated by the evidence that tissue context plays a critical 

role in protein function. In pathological conditions, primarily in cancer, several reports have 

described opposite roles for epigenetic players, including PRC1 subunits, depending on the 

cancer type. This highlights the importance of context dependency for the correct choice of 

the therapeutic approach. This opens up the possibility that PRC1 function, or PRC1 activity 

loss, could be different among different tissue types.  

To address this point we evaluated PRC1 activity and function in a different LGR5 

expressing stem cell populations that derives from a different embryonic layer, the hair 

follicle, analyzing the phenotype of loss of PRC1 activity in this context and comparing the 
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transcriptional outcomes in the different stem cell populations to describe the influence of 

context on PRC1-loss.  

Our data support a general role of PRC1 in stem cell identity maintenance, that is 

accomplished through the regulation of the same targets. However, we show that, differently 

from intestinal stem cells, PRC1 activity loss in the hair follicle leads to the activation of a 

specific epidermal program, showing that the pool of transcription factors present in different 

stem cell population alters the transcriptional outcome of PRC1 loss.  

To add a layer of complexity to the Polycomb field and to its role in identity maintenance, 

PRC1 is composed by several subunits that define at least 5 different biochemical sub-

complexes. These complexes are specified by 6 different mutually exclusive PCGF proteins 

(PCGF1-6) that determine the ancillary subunits composing the complexes. Their role in 

embryonic development is matter of several studies, however their involvement in adult 

tissue maintenance is still obscure. Exploiting different PCGFs conditional knock out mouse 

models we aim to address the specific role of different sub complexes in the maintenance of 

tissue homeostasis, in order to define the contribution of these Polycomb complexes in the 

phenotypic outcome observed in PRC1 loss of function intestinal and hair follicle LGR5 

stem cells.  
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2. INTRODUCTION 

2.1 POLYCOMB GROUP OF PROTEINS 

2.1.1  CELL IDENTITY  

Cell identity is an important cell feature in both the research field and clinic, due to its 

connection to homeostasis preservation and pathology development. Importantly, 

establishment and maintenance of the correct identity is critical for organism development 

and for whole tissue homeostasis in adult life. A single cell, the zygote, gives rise to all of 

the hundreds of cell types composing the human body in a spatially and temporally 

coordinated and precise manner during embryogenesis and later development (Mohammad 

and Baylin 2010, Mortimer, Wainwright et al. 2019).  

This process involves different regulatory elements and mechanisms, such as morphogens, 

transcription factors and epigenetic players, that cooperate to determine the correct cell fate. 

Among them, epigenetic regulators plays a fundamental regulatory role, by integrating 

different signals at the chromatin level, shaping DNA accessibility and dictating genes 

activation and repression, thus leading to a fine regulation of all cellular processes and 

ensuring that genetically identical cells acquire different identities (Cheung, Allis et al. 2000, 

Mortimer, Wainwright et al. 2019).  

 Remarkably, these mechanisms are also conserved in adulthood where they are necessary 

to control stem cells function and whole tissue homeostasis, highlighting the importance of 

epigenetic regulation of transcription throughout the entire lifespan (Rinaldi and Benitah 

2015). However, in recent years, several studies have shown that factors involved in 

chromatin regulation can act differently in adulthood compared to development.  

Throughout life, adult stem cells have to be carefully preserved due to their fundamental role 

in replenishing the tissue from dying and, importantly, damaged cells. In this view, it is clear 

that their identity has to be tightly regulated and preserved in order to maintain homeostasis 
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within the tissue. Intriguingly, different organs present dissimilar cell turnover and damage 

rate. Indeed, several mechanisms have evolved differently in adult stem cell to integrate 

different stimuli to ensure the maintenance of homeostasis (Rinaldi and Benitah 2015) 

highlighting the importance of studying homeostatic processes in vivo in different organs.  

Importantly, how adult stem cells retain their identity while self-renewing, or lose it while 

differentiating, during homeostasis is still largely unexplored. 

Due to epigenetic players strict relation with cell identity, it is indeed not surprising that their 

deregulation is involved in aging and in the pathogenesis of different diseases, primarily in 

tumors. Cancer is a heterogeneous disease and is considered a multistep process that 

gradually leads to the loss of cellular identity meanwhile acquiring typical cancer cell 

features (Hanahan and Weinberg 2000, Hanahan and Weinberg 2011). Epigenetic players 

are affected at different levels and in a highly context dependent manner, reaching almost 

half of the total altered proteins in different cancers (Vogelstein, Papadopoulos et al. 2013).   

 

2.1.2  EPIGENETIC  

The term epigenetic was coined to define “the heritable traits that are not linked to DNA 

sequence” but its definition has been modified over time and is accepted a more 

comprehensive meaning is accepted in which “epigenetic is used to describe the mechanisms 

by which chromatin-associated proteins and post-translational modification of histones 

regulates transcription” (Helin and Dhanak 2013). Genomic DNA is folded inside the 

nucleus by histones and non-histone proteins that constitute the chromatin. Based on the 

grade of compaction, two main forms of chromatin have been described: the 

heterochromatin, which is highly compacted and transcriptionally less permissive, and the 

euchromatin, which in turn is more relaxed and accessible. However, except for a few 

genomic regions, such as repeated and non-coding regions, centromeres and telomeres, that 

constitute the “constitutive heterochromatin”, the remaining DNA portions are not static and 
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it is possible to switch between condensed “facultative heterochromatin” and decondensed 

euchromatin status by actively changing chromatin conformation (Trojer and Reinberg 

2007) with different mechanisms in order to obtain the activation or the repression of the 

genes needed.   

The nucleosome is the basic unit of chromatin and was described more than 40 years ago by 

Kornberg (Kornberg and Thomas 1974). It is composed by an octamer of histone proteins, 

whose core is made by a tetramer of histones H3-H4 and two dimers of histones H2A-H2B, 

around which are wrapped ~147 bp of left-handed DNA. This structure is stabilized by both 

protein-protein interaction, within the histone core, and several electrostatic and hydrogen 

bonds, among the DNA helix and the histones (Richmond and Davey 2003, Rohs, West et 

al. 2009). Beside the structured core of the histones, these proteins possess flexible tails that 

protrude outside the nucleosome core structure and are used as scaffold for other non-protein 

interactions. These tails can be post-translationally modified by different classes of 

epigenetic proteins, affecting histone-DNA and protein-protein interaction thus enabling 

chromatin modulation of its structure and functions.  

Nucleosomes are spaced from each other by free DNA that can be associated with the linker 

histone H1, that is attached outside the nucleosome core, where DNA exit and enter the 

nucleosome. Histone H1 is involved in chromatin compaction and is found to be present in 

the constitutive heterochromatin and in short discrete genomic regions that should be 

transcriptionally repressed, while transcribed regions are devoid of histone H1 (Trojer and 

Reinberg 2007).  

Indeed, this complex organization and its surrounding proteins interaction and modification 

is fundamental to tightly regulate gene expression. Chromatin plays an important regulatory 

role as an integrative platform for several different signaling pathways, that ultimately 

converge on histones, regulating all the cellular processes. This transcriptional fine tuning 

requires rapid rearrangements of the chromatin to allow or impede DNA accessibility 
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(Cheung, Allis et al. 2000). Four are the principal mechanisms of epigenetic controls: 

Chromatin remodeling, histone variants, DNA modification and Histones modification (Fig 

2.1). 

 

This dynamic reorganization of nucleosomes is achieved through the activity of different 

remodeling proteins and complexes which rely on the use of adenosine triphosphate (ATP) 

as source of energy to disrupt nucleosome-DNA contacts, move the nucleosome on the DNA 

filament and remove or substitute the nucleosomes. Based on protein homologies, chromatin 

remodeling players can be divided in at least 4 major families. All these proteins share the 

ATPase domain, and are characterized by unique domains, within or adjacent to the catalytic 

residues, that guarantee tissue specific expression patterns, as well as a large variety of 

different peculiar functions (Hargreaves and Crabtree 2011). Overall their function results 

in a fine regulation of nucleosome occupancy along the DNA, causing both increased or 

reduced accessibility of a genomic site, thereby affecting the transcriptional outcome 

(Sudarsanam and Winston 2000, Levine and Tjian 2003). 

Figure 2.1 Chromatin and Epigenetic modifications 

Schematic view of chromatin structure and compaction. In the figure are represented 

different epigenetic modifications and chromatin associated proteins and structures. 

Image from (Aranda, Mas et al. 2015). 

 



 19 

Another epigenetic mechanism that regulates the transcriptional control is the incorporation 

of different histone variants within the nucleosome core. In eukaryotes several histones 

variants exist, all resembling the canonical counterpart but exhibiting differences both in 

expression patterns and in their genomic recruitment and organization (Szenker, Ray-Gallet 

et al. 2011). Canonical histone proteins are encoded by large gene clusters, containing 

multiple copies that lack introns and 3’PolyA and their mRNA ends with a stem-loop 

structure needed for their stability and translation during S-phase (Dominski and Marzluff 

2007, Talbert and Henikoff 2017). On the contrary, histone variants are more similar to a 

general mRNA, as they have introns and a polyadenylated 3’end. Typically histones are 

incorporated in the DNA during replication, by contrast their variants are deposited and 

substituted throughout the cell cycle (Marzluff and Duronio 2002, Talbert and Henikoff 

2017). The replacement of canonical histone forms alters the nucleosome distribution and 

the interacting proteins, for example chromatin remodelers and modifiers, thus affecting the 

chromatin landscape with different outcomes. Histone variants, like their classical 

counterparts, are subjected to several post-translational modification, that can be either the 

same as their replication dependent canonical histone, or can be newly acquired or lost 

(Szenker, Ray-Gallet et al. 2011, Talbert and Henikoff 2017) greatly increasing the range of 

possible transcriptional outcome. 

Overall the biochemical diversity introduced with histone variants shows the importance of 

histones, they represent not only a scaffold protein for DNA compaction, but also a fine tool 

for epigenetic regulation of gene transcription through different mechanisms.  

 

Together with histones, DNA covalent modifications are the most influential epigenetic 

alteration that is able to affect the association and the downstream function of factor that 

binds DNA. Four different DNA modification have been described: 5-methyl cytosine 

(5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 
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(5aC) (Rothbart and Strahl 2014). However, the most studied and represented in the genome 

is the DNA methylation that occurs primarily at the 5-position of cytosine residues (5mC) 

in the context of CpG dinucleotides. 5mC is widespread throughout the mammalian genome 

approximately marking the 70-80% of total CpG. However, CpG island (CGIs), which are 

CpG-rich regions that are mainly found in gene promoters, are particularly refractory to this 

modification, indeed they are generally unmethylated (Illingworth and Bird 2009). DNA 

methylation is performed by specialized enzymes named DNA-methyltransferases 

(DNMTs). Two types of DNA methylation exist: one is associated with DNA-replication, 

necessary to maintains the correct methylation pattern in the newly formed cells, and the 

second, that ensures “de novo” methylation deposition, (Okano, Xie et al. 1998, Okano, Bell 

et al. 1999). Both are fundamental for the correct organism development (Okano, Bell et al. 

1999, Li 2002). Importantly, DNA methylation is a crucial epigenetic modification and its 

deregulation leads to several different pathologies including cancer  (Helin and Dhanak 

2013). 

 

Beside all the histone forms, nucleosomal proteins encounter several different covalent 

modification occurring not only on various residues on their tails, but also in their globular 

domain, thus enormously increasing the number of regulatory epigenetic signals (Jenuwein 

and Allis 2001, Rothbart and Strahl 2014). Lysine acetylation, Lysine/Arginine methylation 

and Serine/Threonine/Tyrosine phosphorylation are the best characterized histone 

modifications. However several others modification exists, such as Ubiquitination, 

Sumoilation, and Succinylation which are less abundant and their roles have been started to 

be elucidated (Arnaudo and Garcia 2013). 

Histone modifications are deposited by different proteins families called “chromatin 

writers”.  These post-translational modifications can either act directly or indirectly 

(Kouzarides 2007). The deposition of acetylation and phosphorylation can directly influence 
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the chromatin structure altering the histone positive charge and leading to a more accessible 

chromatin status. Also, the addition of the large molecules such as ubiquitin can induce a 

change in chromatin conformation by itself. Moreover, the deposited histone modification 

can be recognized by other specialized proteins called “chromatin readers” that can recruit 

to the genome Transcription Factors (TFs) and cofactors needed for the transcriptional and 

epigenetic regulation. Histone covalent modification can be actively removed by the 

“chromatin erasers” proteins, creating a complex network of proteins and histone 

modifications that ultimately lead to the precise control of transcription (Kouzarides 2007). 

Additionally, more than one modification can be present on the same histone, and can 

influence the deposition or the stability of the other histone marks and the binding affinity 

of readers and TFs in several ways creating a real histone code for transcriptional regulation 

(Jenuwein and Allis 2001, Kouzarides 2007).  

 

All of these mechanisms contribute to create a powerful platform necessary to integrate the 

cellular and extracellular signal and to promptly respond to environmental changes and their 

correct function must be accurately preserved, to prevent epigenetic and transcriptional 

deregulation that ultimately can lead to pathologies such as cancer.  

  

2.1.3  POLYCOMB PROTEINS 

Among all the epigenetic modifiers Polycomb Group of Proteins (PcG) are the most widely 

studied. Polycomb proteins are essential epigenetic regulators of embryonic development 

and cell fate differentiation. They regulate this process by repressing gene transcription of 

developmental and differentiation genes in a highly precise spatial and temporal manner.  

PcG were discovered almost 70 years ago in Drosophila melanogaster, where they control 

the expression of Homeotic (Hox) genes during development and differentiation. In 1942 a 

single male fly with ectopic sex combs present on each of its six legs was observed, which 
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led to the identification of the first PcG mutant, extra sex combs (esc). A few years later P.H. 

Lewis named another heterozygous mutant with extra sex comb that were lethal in 

homozygous conditions Polycomb (Pc), and in the following years other mutants were 

discovered (Poynter and Kadoch 2016). However, it was only years later that the function of 

PcG genes was fully appreciated, when in Pc mutant embryos drastic homeotic 

transformations of thoracic and abdominal segments which were posteriorly shifted  were 

observed (Lewis 1978, Poynter and Kadoch 2016). This phenotype was shown to antagonize 

mutations in BX-C, a gene cluster encoding for Hox genes, suggesting that Pc plays a role 

as BX-C inhibitor, a theory confirmed by later studies (Poynter and Kadoch 2016, 

Schuettengruber, Bourbon et al. 2017). Years later from PcG discovery, other regulators of 

Hox genes were discovered. Their mutation caused embryonic segments transformation into 

a more anterior ones, thus antagonizing the Polycomb phenotype. This new set of genes 

where named Trithorax group of proteins (TrxG) (Ingham 1983, Ingham 1985, Ingham 1985, 

Struhl and Akam 1985, Kennison and Tamkun 1988). Crosstalk among PcG and TrxG 

ensure the correct establishment of segmentation along the anteroposterior axis of drosophila 

melanogaster body.  

PcGs function in the regulation of developmental genes trough repression, is also strongly 

conserved in mammals (Morey and Helin 2010). Moreover, in the last few decades 

Polycomb proteins were found to be implicated in several different processes including 

control of cell cycle progression, senescence, X-chromosome inactivation, stem cell 

differentiation and, importantly, pathologies such as cancer (Morey and Helin 2010). 

Mammalian orthologues of fly PcGs began to be acknowledged in early 90’s with the 

identification of Bmi1 (Psc in Drosophila) and its role in cancer development (Haupt, 

Alexander et al. 1991, Haupt, Bath et al. 1993). Based on biochemical purification in 

drosophila melanogaster, PcG proteins were divided into two different complexes Polycomb 

Repressive Complex 1 and 2 (PRC1 and 2). This division is maintained also in mammals 
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where the PRCs possess additional subunits and their structures and composition became 

more complex and context dependent (Aranda, Mas et al. 2015). 

 

PRC1 and PRC2 have specific catalytic functions and mediate transcriptional repression via 

modification of histones tails and chromatin compaction. PRC1 catalyzes the deposition of 

a moiety of ubiquitin on lysine 119 of histone H2A (H2AK119Ub1) while PRC2 is 

responsible for the deposition of mono-, di-, tri-methylation on lysine 27 of histone H3 

(H3K27me1/me2/me3) (Cao, Wang et al. 2002, Muller, Hart et al. 2002, Cao, Tsukada et al. 

2005, Stock, Giadrossi et al. 2007). 

 

In line with their essential role in drosophila also during development, mammalian PcGs 

plays a fundamental role in development also. PRC2 complex ablation results in early 

embryonic lethality and the same is true for the loss Rnf2/RING1B for PRC1 subunit (Faust, 

Schumacher et al. 1995, O'Carroll, Erhardt et al. 2001, Voncken, Roelen et al. 2003, Pasini, 

Bracken et al. 2004). Of note, it is increasingly evident that genes important for development 

largely overlap with those that govern adult renewal potential and identity of stem cells 

(Mohammad and Baylin 2010), emphasizing the importance of Polycomb regulation of 

developmental genes also in adult tissue. In the last few years the characterization of PRCs 

composition, structure, functions and regulation has started to take place, not only for the 

importance of these complexes in development, but also for the evidence of their 

involvement in human disease including cancer.  

 

2.1.3.1  POLYCOMB REPRESSIVE COMPLEX 2 

Drosophila PRC2 core is composed by Enhancer of Zeste (E(z)), Suppressor of Zeste (Su(z)) 

and Extra sex combs (Esc). In mammals the subunits composing the core complex are well 

conserved, and it is composed of either EZH1 or EZH2 (homolog of E(z)), SUZ12 (homolog 



 24 

of Su(z)) and EED (Embryonic Ectoderm Development, homolog of Esc) (Pasini, Bracken 

et al. 2004, Morey and Helin 2010, Poynter and Kadoch 2016). EZH1/2, which are mutually 

exclusive within the complex, exert the catalytic activity through their SET domain 

performing al the three methylation status of H3K27 (Margueron, Li et al. 2008), while the 

SUZ12 and EED scaffold proteins are necessary for the enzymatic activity of the complex 

(Cao and Zhang 2004, Pasini, Bracken et al. 2004). In particular, the EED subunit, through 

its WD40 domain, is able to recognize H3K27me3, thus establishing a positive feedback 

loop that enhance the PRC2 activity up to 7-fold suggesting a mechanism for PRC2 mark 

level maintenance throughout the cell cycle (Margueron, Justin et al. 2009). These three 

subunits are present in a 1:1:1 stoichiometry within the complex and constitute the minimal 

composition for the catalytic activity of PRC2 (Smits, Jansen et al. 2013) (Fig 2.2).   

The mutually exclusive catalytic subunits are the only two core proteins that are paralog. 

Interestingly EZH2 loss causes early embryonic lethality, while EZH1 knock out mice are 

viable, fertile and shows a normal phenotype, meaning that EZH2 can fully compensate for 

EZH1 activity. On the contrary, EZH1 can only partially complement EZH2 in H3K27 

methylation. Moreover, the two proteins show dissimilar expressions patterns. EZH1 is 

ubiquitously expressed at constant levels during the cell cycle, whereas EZH2 seems to be 

more expressed in actively dividing cells (Margueron, Li et al. 2008). Their expression 

patterns are also different at temporal and differentiation levels, in fact, while EZH2 

decreases during cell differentiation, EZH1 increases (Margueron, Li et al. 2008, Mousavi, 

Zare et al. 2012, Xu, On et al. 2015). Moreover, although both EZH1 and EZH2 have H3K27 

methylation ability, EZH2 shows 20-fold greater ability in mark deposition, compared to 

EZH1 that, in turn, seems to be more efficient in chromatin compaction. EZH1 and EZH2 

shows only partial redundancy also in terms of catalytic activity. EZH1 seem to be associated 

to H3K27 mono-methylation on region of active transcription, while EZH2 is commonly 

associated to di- and tri-methylation deposition in transcriptional repressed genomic loci 

(Mousavi, Zare et al. 2012, Xu, On et al. 2015).  These evidences imply a non-redundant 
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functionality for the two different PRC2 complexes, increasing the complexity of PRC2 in 

mammalian organism. 

Histone methylation plays a key role in transcriptional regulation by acting through different 

mechanisms. Overall it can influence the chromatin architecture leading to a differential 

modulation and interaction with TFs and proteins involved in the transcription initiation and 

elongation (Wagner and Carpenter 2012, Helin and Dhanak 2013).  

Remarkably, in contrast to other histone modifications, methylation does not have an 

univocal effect and, depending on the methylation degree, it can result in either active or 

repressive transcription (Bannister and Kouzarides 2011). Historically, PRC2 functionality 

has been associated only to H3K27me3 and gene repression, however it sequentially deposits 

all the three methylation-status on H3K27 with different specific outcome (Ferrari, Scelfo et 

al. 2014). H3K27me3 is preferentially deposited in correspondence of CpG-rich promoter 

region of silenced genes, H3K27me2, is associated to large transcriptional silenced regions 

and H3K27me1 is deposited throughout all the gene bodies of actively transcribed genes. 

Figure 2.2 Schematic representation of Polycomb repressive complex 2 

In the cartoon, taken from (Margueron and Reinberg 2011), are shown PRC2 core 

and ancillary subunits with their putative interaction with chromatin. 
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Significantly, combinatorial patterns provide an important regulatory platform to regulate 

expression. In the case of H3K4me3, deposited by the COMPASS complexes (Shilatifard 

2012), and H3K27me3 concomitant modifications, found together in murine Embryonic 

Stem Cells (mESCs) at the so called “poised” or “bivalent” genes. These genes are typically 

related to development, which, owning both active and repressive status, are able to be 

promptly switched on and off when needed during differentiation (Brookes, de Santiago et 

al. 2012, Voigt, Tee et al. 2013). In differentiated cells these domains tend to disappear, 

retaining only active or repressive marks depending on their role in specific tissue (Ku, 

Koche et al. 2008), however new bivalent genes are formed (Mikkelsen, Ku et al. 2007, 

Mohn, Weber et al. 2008, Oguro, Yuan et al. 2010, Jadhav, Nalapareddy et al. 2016, Cohen, 

Zhao et al. 2018, Pivetti, Fernandez-Perez et al. 2019).      

PRC2 core is associated with several accessory subunits, that are dispensable for its 

enzymatic activity, but participate in the regulation of its histone modification deposition, 

by modulating the catalytic activity or the complex association to the genome. Among all, 

the most important are the histone chaperone RbAp48/46 (retinoblastoma associated 

proteins 48/46) which are required for catalytic activity in vivo (Ketel, Andersen et al. 2005), 

AEBP2 which enhance KTM activity in vitro (Cao, Wang et al. 2008), three different 

Polycomb-like proteins (PCLs; PHF1, MTF2, PHF19) that through their TUDOR domain 

recognize the H3K36me3 mark, suggesting a role in silencing initiation of active gene 

(Ballare, Lange et al. 2012), and JARID2 that recognizing the GC-GA rich DNA elements 

is involved in PRC2 recruitment at genes for proper ESC differentiation (Pasini, Cloos et al. 

2010). 



 27 

2.1.3.2  POLYCOMB REPRESSIVE COMPLEX 1 

Polycomb repressive complex 1 (PRC1) is composed by numerous subunits and these 

proteins form several different subcomplexes that are biochemically different among each 

other and are potentially different in terms of biological function (Gao, Zhang et al. 2012). 

In Drosophila melanogaster PRC1 core is composed by Polycomb (Pc), Polyhomeotic (Ph), 

Posterior sex combs (Psc) and Sex comb extra (Sce, also known as dRING) (Morey and 

Helin 2010). In mammals, the situation is extremely more complicated. For each subunit at 

least two homologues have been discovered. Mammalian PRC1 core is composed by one 

catalytic subunit that deposits a single molecule of ubiquitin on lysine 119 of histone H2A, 

mutually exclusive among Really Interesting New Gene 1A and 1B ( RING1A and RING1B,  

Sce homolog), one out of six different Polycomb Group Ring Finger protein (PCGF, Psc 

homolog) (Fig 2.3) and one out of three Polyhomeotic-like protein (PHC1, PHC2 and PHC3, 

Ph homolog) (Morey and Helin 2010). PRC1 complex then can be further subdivided into 

two major classes of complexes named “canonical” and “non canonical” PRC1 based on the 

presence respectively of the CBX subunit (Chromobox, Pc homolog) or its mutually 

Figure 2.3 Schematic representation of Polycomb repressive complex 1  

In the cartoon, modified from (Aranda, Mas et al. 2015), are shown PRC1 core and 

ancillary subunits with respect to the specific PCGFs associated to the complex and 

their recruitment specificity oh chromatin. 
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exclusive counterpart, RYBP, that determines the mechanisms of PRC1 recruitment to 

chromatin. Moreover, in mammals several different CBX paralogues exist (CBX2,4,6,7,8) 

and RYBP can be substitute by YAF2 (Morey and Helin 2010, Gao, Zhang et al. 2012). 

Accordingly to mass spectrometry analyses performed in mammalian cells by Gao and 

colleagues (Gao, Zhang et al. 2012), at least 5 different biochemical, and probably 

functional, PRC1 sub-complexes exist. Each of these sub-complexes can interact with 

specific proteins that can direct the complex to specific targets.  

All of these complexes catalyze for H2AK119 Ubiquitin (Ub) deposition, that is a 76-

aminoacid protein conserved among all eukaryotic organisms, implicated in several 

mechanisms including protein degradation, cell cycle, protein trafficking and transcriptional 

regulation (Zhang 2003). Ub is attached to a lysine residue through an isopeptide bond, and 

this addition is a complex process involving three different enzymes:  E1 activating protein, 

E2 conjugating enzyme and lastly an E3 ligase, that is responsible for target recognition and 

catalyze the binding reaction (Pickart 2001), that in PRC1 complex are either RING1A or 

RING1B. This modification is implicated in transcriptional regulation and is associated with 

gene repression and chromatin compaction (Ogawa, Ishiguro et al. 2002, Cao, Tsukada et 

al. 2005, Zhou, Zhu et al. 2008, Zhou, Wang et al. 2009). As for other modifications, histone 

ubiquitination is reversible, and several specific deubiquitinating enzymes exist (DUBs).  

Polycomb protein BAP1 has been identified as H2A-specific histone DUB and its loss 

significantly increase the levels of H2AK119Ub1 on PRC1 targets (Scheuermann, de Ayala 

Alonso et al. 2010). However, DUBs roles are poorly investigated. Importantly, BAP1 is 

commonly found to be mutated in mesotheliomas and uveal melanomas (Carbone, Yang et 

al. 2013, Murali, Wiesner et al. 2013), highlighting the importance of maintaining the correct 

epigenetic mark deposition to prevent neoplastic pathology.   
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Based on Gao’s and coworker’s data, the minimal canonical PRC1 complexes contains either 

RING1A or RING1B, Mel18/ PCGF2 or Bmi1/ PCGF4 and one CBX subunit (Gao, Zhang 

et al. 2012).  

The different CBXs proteins are mutually exclusive within the complex, and their inclusion 

in PRC1 seems to be regulated during development. CBX7 seems to be the main component 

in ESCs and is substituted by CBX2 and CBX4 in differentiated cells (Morey, Pascual et al. 

2012, O'Loghlen, Munoz-Cabello et al. 2012). CBX subunit is considered the determinant 

for canonical PRC1 recruitment on the chromatin (Aranda, Mas et al. 2015) in fact through 

its Chromobox domain, is able to recognize and bind H3K27me3 PRC2 deposited mark, 

thereby recruiting PRC1 on PRC2 targets, where the two complexes cooperate in silencing 

the target locus. This mechanism is supported by the large overlap between PRC2 and 

RING1B targets and by the loss of RING1B from the chromatin in absence of PRC2 activity.  

However, in recent years a new paradigm arise, and by ChIP-seq analyses performed by Gao 

and colleagues, and in accordance with other studies, emerged that RING1B peaks only 

partially overlap with H3K27me3, all of which colocalized with Mel18/ PCGF2 or Bmi1/ 

PCGF4 and CBX proteins, suggesting distinct role for CBX- and RYBP (Boyer, Plath et al. 

2006, Pasini, Bracken et al. 2007, Trojer, Cao et al. 2011, Gao, Zhang et al. 2012). Moreover, 

it is important to know that upon loss of PRC2 activity, the global H2AK119Ub1 levels 

remains largely unaffected, suggesting that PRC1 activity does not require PRC2 (Tavares, 

Dimitrova et al. 2012).  

Non canonical PRC1 complexes incorporate RYBP (Ring and YY1 Binding protein) or 

YAF2 (YY1 Associated Factor 2) instead of CBX. These complexes lack the subunit that 

recognize PRC2 mark, meaning that they are tethered to chromatin in a PRC2 independent 

manner (Tavares, Dimitrova et al. 2012). Moreover, RYBP containing complexes, beside 

the classical PRC1-PRC2 targets, can binds different subsets of targets, suggesting that 

PRC1 possess other mechanisms for its recruitment on the genetic material and can regulate 
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different cellular processes (Morey, Aloia et al. 2013). Differently from canonical 

complexes, where only Mel18/ PCGF2 and Bmi1/ PCGF4 can bound CBX subunit, all 

PCGFs proteins are able to interact with RYBP and YAF2 (Gao, Zhang et al. 2012). 

PCGFs proteins are mutually exclusive within the complex, defining different non canonical 

complexes core, that associate with different ancillary proteins.    

PRC1 containing PCGF1/NSPC1 (also named PRC1.1), is the homolog of dRAF complex 

in Drosophila. A fundamental subunit of the complex is the histone H3K36 demethylase 

KDM2B, that, through its CxxC domain, drives the complex on CpG rich DNA regions 

(Blackledge, Zhou et al. 2010, Barrero and Izpisua Belmonte 2013, Scelfo, Piunti et al. 

2015).  

PCGF3 and PCGF5 have been found to bind the same interactors, thereby defining two 

biochemically redundant complexes. AUTS2, together with FBRS and FBRSL1, which has 

no previous association with PRC1, have been recovered in Mass spectrometry analyses for 

the two PcG proteins (Gao, Zhang et al. 2012, Scelfo, Piunti et al. 2015). Interestingly, in a 

study in central nervous system development, AUTS2 is able to tether PCGF5 to chromatin 

where it can activate transcription via CK2 and P300 recruitment, opening a new field on 

active transcription and polycomb complexes (Gao, Lee et al. 2014). Moreover, a recent 

work carried out in our laboratory in ES cells define a novel interaction of PCGF3 with USF1 

transcription factor and demonstrated that this interaction is necessary for PCGF3 chromatin 

localization, thus introducing a novel player in polycomb recruitment field (Scelfo, 

Fernandez-Perez et al. 2019).   

Lastly, PCGF6/MBLR can associate with several different proteins defining a huge complex 

containing E2F6, DP1, MGA, MAX, WDR5 and L3MBTL2. In the past years, it has been 

demonstrated that PRC1.6 occupies E2F6 binding sites and recently that MGA mediates 

PRC1.6 recruitment on chromatin on T-box sequences (Trojer, Cao et al. 2011, Gao, Zhang 

et al. 2012).  
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Despite all these new advances our PRC1 knowledge about the biology and the molecular 

functions is still largely not understood.   

 

2.1.4 POLYCOMB RECRUITMENT 

Polycomb complexes must be recruited on chromatin to exert their function. In Drosophila 

Melanogaster PcG recruitment is mediated by Polycomb Responsive Elements (PREs), as 

demonstrated at Hox genes (Busturia and Bienz 1993, Sengupta, Kuhrs et al. 2004). PREs 

are distal cis-regulatory elements, few hundred bp long, that are devoid of nucleosomes and 

can be present upstream or downstream of their target promoter, in introns or in the majority 

of cases close to the transcriptional start site (TSS). 

In mammal the recruitment represents a major issue. Despite PRCs core are well conserved, 

mammals lack PRE- binding proteins and PRE-elements remains elusive in the genome. In 

general, mammalian PcGs preferentially bind non methylated CpG rich promoters of their 

target genes and CpG-rich sequence itself mediates PRC2 recruitment (Mendenhall, Koche 

et al. 2010, Lynch, Smith et al. 2012, Riising, Comet et al. 2014). 

The classical model of Polycomb recruitment is a two-step mechanism: first PRC2 is 

recruited on its targets and mediates the methylation of histone H3K27, which is recognize 

by CBX subunit that subsequently tether PRC1 complex on the chromatin where RING1B 

ubiquitinates the K119 of histone H2A. These two modifications lead to chromatin 

compaction and transcriptional silencing.  

However, with the new discovery of CBX lacking non canonical PRC1 complexes, this 

model remains valid only for canonical complexes targets.  

Moreover, it has been demonstrated that H3K27me3 distribution does not completely fit the 

binding of PRC1, and example of PRC1 peaks devoid of H3K27me3 exist (Gao, Zhang et 

al. 2012, Tavares, Dimitrova et al. 2012). Furthermore, H2AK119Ub1 deposited by PRC1 
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has been suggested to play a key role in PRC2 recruitment (Schwartz and Pirrotta 2014), 

shedding a new light on the complexity of Polycomb recruitment on chromatin. 

Since PRC1 and PRC2 core component do not have DNA binding properties, several 

alternative recruitment mechanisms have been proposed for their engagement to the 

chromatin that includes the association with other ancillary proteins (such as PCL1-3, 

AEBP2, JARID2, KDM2B…) or with specific transcription factors, the influence of 

chromatin signatures (apart from CpG-island also histone variants and histone 

modifications), the interaction with long non-coding RNAs and the status of Polymerase II 

(PolII). 

PRC1.1 component BCOR (BCL6 Co-repressor) is able to recruits PCGF1 containing 

complex on BCL6 targets (Morey and Helin 2010), and KDM2B demethylase is able to 

tether PRC1.1 on H3K36 methylated histones (Barrero and Izpisua Belmonte 2013 , He, 

Shen et al. 2013, Xu, On et al. 2015). On the other hand, PRC1.6 associate with several 

proteins and it has been demonstrated that either MGA, E2F6 and L3MBTL2 can drive 

PCGF6 localization on chromatin (Stielow, Finkernagel et al. 2018, Scelfo, Fernandez-Perez 

et al. 2019). Last, PCGF5 has been reported to interact with AUTS2, that mediates it 

recruitment on DNA. Moreover, our laboratory has demonstrated that PCGF3 is able to 

interact with USF1 that mediates PCGF3 tethering on the chromatin on its specific E-box 

motifs (Scelfo, Fernandez-Perez et al. 2019).   

PRC2 can be targeted to the DNA through JARID2 protein that have been shown to binds 

most of PcG target genes and to be necessary for binding. This interactor protein contains 

an AT-rich interaction domain (ARID) and a Zn-finger domain, both with the potential to 

bind DNA. Despite some studies have shown that JARID2 is necessary for PRC2 binding, 

inhibition of JARID2 has only minor effect on H3K27me3 and Jarid2 KO mice shows a 

milder effect on development compared to PRC2 KO ones, indicating that other mechanisms 
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can regulates PRC2 genomic targeting (Ku, Koche et al. 2008, Li, Margueron et al. 2010, 

Pasini, Cloos et al. 2010).  

As previously mentioned, other mechanisms can recruit Polycomb complexes on the 

chromatin. It has been reported that both long non-coding RNA HOTAIR, expressed in 

HOXC cluster and necessary for efficient silencing of HODX locus (Rinn, Kertesz et al. 

2007), and, Xist non-coding RNA, that initiate the process of X Chromosome inactivation, 

can directly recruit PRC1 on the genes or chromosome that should be inactivated 

(Schoeftner, Sengupta et al. 2006). Also, the phosphorylation status of Polymerase II has 

been shown to affect PcG occupancy. PolII can be modified within its carboxyl-terminal 

domain and exclusive phosphorylation of Serine 5 in ESCs, is associated with developmental 

genes that are in a poised status, with transcription ready to be initiated or repressed upon 

differentiation stimuli and PRC1 and PRC2 marks co-occurrency (Brookes, de Santiago et 

al. 2012, Voigt, Tee et al. 2013, Ferrai, Torlai Triglia et al. 2017). 

From 2010 many groups focused on a deep characterization of PRC1 subcomplexes 

molecular mechanisms and functions and their interdependency with PRC1 and PRC2. It 

has to be mention that accordingly to new studies non canonical PRC1 complexes can 

localizes on active chromatin, with roles that can be different from the classical Polycomb 

transcriptional repression (Cohen, Zhao et al. 2018, Fursova, Blackledge et al. 2019, Pivetti, 

Fernandez-Perez et al. 2019, Scelfo, Fernandez-Perez et al. 2019) and that, least for PCGF3 

and PCGF5, their involvement in active transcription has been validate (Zhao, Huang et al. 

2017, Scelfo, Fernandez-Perez et al. 2019).  

 

2.1.5 POLYCOMB BIOLOGY 

mESCs derive from the inner mass of the pre-implantation embryos at the stage of blastocyst 

and represent an excellent model system to study the mechanisms for establishing the correct 
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cell-fate acquisition and transitions, in fact they are pluripotent cells that when cultured in 

the correct environment can self-renew or can be induced to differentiate, recapitulating in 

vitro the three embryonal layers found in vivo (Aloia, Di Stefano et al. 2013). Polycomb 

complexes are highly expressed in ESCs where they are bound preferentially to CpG-rich 

promoters of genes encoding for developmental factors (Boyer, Plath et al. 2006, Bracken, 

Dietrich et al. 2006). Generally, ESCs possess an open chromatin structure with low levels 

of DNA methylation and high levels of activating histone modification that must be finely 

regulated to balance self-renewal and pluripotency, and differentiation (Orkin and 

Hochedlinger 2011). Upon differentiation the chromatin shift from a more open status to a 

more closed one with the concomitant accumulation of H3K27me3.  

For these reasons ESCs, are widely used in Polycomb field to perform mechanistic and 

biological studies. Moreover, both straight and conditional KO mouse models have been 

developed to study phenotypes arising from PcG loss, during embryogenesis and later 

development. Importantly, only in recent years Polycomb complexes started to be 

investigated in adulthood, thus only little is known about PRCs roles in adult tissue 

maintenance. 

PRC2 core subunits are necessary for early step of embryogenesis in vivo and straight KO 

mice for these subunits died early in post-implantation stages (Faust, Schumacher et al. 1995, 

O'Carroll, Erhardt et al. 2001, Pasini, Bracken et al. 2004). Notably, deficient mESCs can 

be derived from KO mice blastocysts. These mESCs do not display self-renewal impairment 

despite the loss of H3K27me2/3 and a pervasive activation of genes related to differentiation 

(Richly, Aloia et al. 2011). On the contrary ancillary proteins Jarid2 deletion cause defects 

in neural tube formation (at 15.5 dpc), and Pcl2 (Mtf2) results in loss of left-right symmetry 

in chicken embryos but results dispensable in mouse (Takeuchi, Yamazaki et al. 1995, 

Wang, Wang et al. 2004, Wang, He et al. 2007). Nevertheless, PRC2 plays an important role 

in embryonic and adult hematopoietic stem cells (HSCs). Ezh2 loss impairs embryonic HSCs 
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self-renewal but does not affect adult stem cell function in the bone marrow, except for 

lymphopoiesis. By contrast, in line with the different expression pattern of EZH1 and EZH2 

which are more expressed in differentiated and undifferentiated status respectively, Ezh1 

depletion highly affect adult HSCs total numbers, impairing HSCs self-renewal and 

quiescence, alleviating the repression of Ink4a/Arf locus and Bmp2 (Margueron and 

Reinberg 2011, Mousavi, Zare et al. 2012, Aloia, Di Stefano et al. 2013, Xu, On et al. 2015). 

Regarding PRC1, loss of RING1B activity results in embryonic lethality due to gastrulation 

arrest, while Ring1a KO mice are viable (de Napoles, Mermoud et al. 2004). Ring1b 

deficient ESCs shows reduced levels of H2AK119Ub1 and the deregulation of some target 

genes but maintain the expression of pluripotency markers (Richly, Aloia et al. 2011). 

Notably depletion of both PRC1 catalytic subunits severely impairs ES self-renewal (Endoh, 

Endo et al. 2008). 

In later development, mice in which Ring1b, Ezh2 or Eed is depleted in central nervous 

system shows impairment of this transition leading to an incorrect neuronal development 

(Hirabayashi, Suzki et al. 2009). Moreover, it has been demonstrated that RING1B is 

required for maintenance of neural stem cell in an undifferentiated status (Roman-Trufero, 

Mendez-Gomez et al. 2009).    

In accordance with the dispensability of PRC1 subunits, except for RING1B in mouse 

development, single PCGFs depletion in ESCs does not affect self-renewal properties, 

however it affects cell differentiation. This is the case for PCGF1 which is dispensable for 

ES colony formation and maintenance but PCGF1 KO cells fail to repress stem cell markers 

upon induction of differentiation (Yan, Zhao et al. 2017). Moreover, it has been 

demonstrated that PCGF1 is needed in HSCs to repress HoxA gene promoter in order to 

terminate self-renewal program in progenitor cells (Ross, Sedello et al. 2012). 

Mel18/ PCGF2 and Bmi1/ PCGF4 KO have been studied for long time, and their single 

genetic ablation results in defects in anterior-posterior specification of skeleton, while the 
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concomitant deletion of both canonical PCGFs results in a more severe developmental 

defects that results in mice death at 9.5 dpc (van der Lugt, Domen et al. 1994, Alkema, van 

der Lugt et al. 1995, Akasaka, Kanno et al. 1996). Moreover, Bmi1/PCGF4 has been largely 

investigated in hematological pathology and in hematopoietic stem cells (HSCs). It has been 

reported to inhibit the Ink4a/Arf locus, that encodes for p16 and p19 cell cycle inhibitors, 

and mice depleted for Bmi1 in HSCs show a reduced postnatal population of stem cells and 

impaired self-renewal (Park, Qian et al. 2003). Moreover, Bmi1 loss causes an aberrant 

activation of Ebf1 and Pax5 developmental genes that promotes a premature lymphoid 

lineage specification (Oguro, Yuan et al. 2010).  Interestingly, even though is reported as 

BMI1 paralog, Mel18 has been proposed as tumor suppressor via BMI1 downregulation 

(Zhang, Sheng et al. 2010), while in other cancer it can act as oncogene (Wiederschain, Chen 

et al. 2007), highlighting again the extreme variability of PRCs proteins among different 

contexts.   

Endoh and colleagues investigated the role of PCGF6 in mESCs and found that Pcgf6 KO 

affects the rate of cell proliferation without affecting the morphology of cells. Moreover, 

according to MAX ablation in ESCs, PCGF6 depletion leads to the ectopic expression of 

meiosis-related and germ-cell related genes. They also reported that ablation of Pcgf6 results 

in viable and fertile mice, although not at normal mendelian ratio. Lethality was observed at 

blastocyst stage of embryonic development and in post-implantation stages. Moreover, one 

third of embryos at 10.5 dpc exhibit growth retardation (Endoh, Endo et al. 2017).  

Lastly a role for PGF3/5 in correct ESCs development have been reported. Indeed loss of 

Pcgf3/5 results in a pronounced decrease of mesoderm markers, thus implying an active role 

in transcription of PCGF3 and PCGF5, as suggested by other reports (Gao, Zhang et al. 2012, 

Zhao, Huang et al. 2017, Scelfo, Fernandez-Perez et al. 2019).  
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Polycomb proteins have been shown to act also in skin development and maintenance. 

Interestingly, Ezh2 loss during embryonic skin development accelerates the differentiation 

process by transcriptionally upregulating epidermal-related genes, without affecting other 

PcG pathways. However, by birth, PRC2 histone mark reappears, shedding light on the 

possible compensatory effect of EZH1 postnatally. Importantly, loss of both Ezh1 and Ezh2 

affects general skin development, in two opposite ways: Hair follicles appendages, which 

derives from epidermal progenitors, shows a compromised formation and maintenance, in 

contrast the epidermis is hyperproliferative and survives long-term engraftment (Ezhkova, 

Pasolli et al. 2009, Ezhkova, Lien et al. 2011). Among the two complexes, PRC1 exert a 

major role in skin compartment. It has been reported recently that during epidermal 

development, PRC1 ablation in epidermal progenitors leads to fragile skin phenotype, with 

tissue thinning and mechanical stress susceptibility (Cohen, Zhao et al. 2019). Moreover, 

impaired hair follicle formation during epidermal development has been recently reported 

also for PRC1 ablation (Cohen, Zhao et al. 2018). 

Adult tissues are maintained by stem cells that sustain the cells renewal. Intestinal tissue are 

renewed in 5 days and stem cells located at the bottom of the tissues sustain this regeneration 

(Barker, van Es et al. 2008). PRC1 and PRC2 accomplish two different roles during adult 

intestinal homeostasis, as demonstrated by their respectively KOs in intestinal epithelium 

and intestinal stem cells (Chiacchiera, Rossi et al. 2016, Chiacchiera, Rossi et al. 2016, 

Chiacchiera and Pasini 2017). PRC1 depletion in intestinal stem cells (ISCs) leads to loss of 

stem cell identity and stem cell exhaustion affecting ISCs self-renewal potential, 

independently from Ink4a/Arf. On the contrary PRC2 is necessary to maintain the correct 

balance among secretory and absorptive lineage in the intestinal epithelium. Moreover, 

PRC2 ablation does not affect ISCs maintenance but is required for regeneration of the tissue 

upon irradiation.  
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Taken together this study highlight the extreme context dependency of PcGs and the need to 

deeply investigate these complexes in other models and in several tissues. Additionally, a 

deep knowledge about Polycomb roles in adult stem cell homeostasis and in their role in 

regeneration upon damage is still missing.   

 

2.1.6 POLYCOMB DEREGULATION AND CANCER 

Due to Polycomb role in development and differentiation regulation is not surprising that 

their deregulation frequently occurs in several cancer (Jones and Baylin 2007). 

Overexpression of PcG genes have been observed in either hematological malignances and 

solid tumors including Medulloblastoma and tumors originating from colon, liver, lung, 

breast and prostate (Raaphorst 2005). Moreover Polycomb genes have been shown to be 

recruited on chromatin by interacting with multiple chimeric fusion proteins such as PLZF-

RARA and TMPRSS2-ERG (Boukarabila, Saurin et al. 2009, Yu, Yu et al. 2010).  

Compare to PRC2, PRC1 seems to be less affected in cancer development probably for its 

fundamental role in stem cell maintenance, however some subunits have been found 

important in cancer development. Bmi1/PCGF4 collaborate with c-Myc oncogene in 

lymphomagenesis (Haupt, Bath et al. 1993), and is aberrantly expressed also in solid tumors 

including squamous cell carcinoma (Sparmann and van Lohuizen 2006). Bmi1/PCGF4 role 

as oncogene is further confirmed by its enhanced expression correlation with poor prognosis 

(Mohty, Yong et al. 2007, Shafaroudi, Mowla et al. 2008). Its oncogenic function has been 

mainly attributed to Ink4a/arf locus repression, however its paralog Mel18/PCGF2 shows 

tumor-suppressor features being frequently lost in cancer (Zhang, Sheng et al. 2010, 

Schwartz and Pirrotta 2013). However, as mentioned above, these differences are context 

dependent and Mel18 acts as oncogene in some cancer type. The same duality is maintained 

also for CBX7 that have been proposed as both oncogene and tumor suppressor in solid and 
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hematological tumors (Scott, Gil et al. 2007, Forzati, Federico et al. 2012, Klauke, Radulovic 

et al. 2013, Shinjo, Yamashita et al. 2014). 

 

PRC2 components are more involved and compromised in cancer. EZH2, SUZ12 and PCL3 

are frequently overexpressed in different tumors (Sparmann and van Lohuizen 2006). EZH2 

overexpression has been linked to aggressive and advanced metastatic stages of the 

pathology and is typically associated poor prognosis (Kleer, Cao et al. 2003). 

However, recent studies suggest a complex scenario for EZH2, which can act both as 

oncogene and tumor suppressor depending on the cellular context. For this reason, either 

activating or inactivating mutations can be found for EZH2. Interestingly, its overexpression 

seems to correlate more with solid tumors, while hyperactivating and inactivating mutation 

with hematological malignances (Ernst, Chase et al. 2010, Morin, Johnson et al. 2010, 

Sneeringer, Scott et al. 2010, Ntziachristos, Tsirigos et al. 2012).  

Of note, PRCs are involved in the regulation of pathways implicated in the emergence of 

cancer stem cells, such as Hedgehog, WNT and Notch pathways. Due to this role Polycomb 

deregulation has important implications. As an example, it has been demonstrated that WNT 

pathways is a major factor in colorectal cancer development (Zhao, Chen et al. 2009, 

Vermeulen, De Sousa et al. 2010, Takebe, Harris et al. 2011). Of note PRC1 depletion 

studies in murine intestinal epithelium has underly the necessity of a functional PRC1 for 

WNT driven intestinal cancer (Chiacchiera, Rossi et al. 2016).        

 

2.2 THE HAIR FOLLICLE 

The skin is the largest organ of the body and is the first barrier protecting animals against 

several insults, such as UV radiation, pathogens, dehydration and is constantly subjected to 
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several traumas (Fuchs 2016). In adults the tissue is maintained by stem cells that provides 

new cells to substitute the older and damaged ones.  

The skin is composed by two major compartments: the Interfollicular Epidermis (IFE) and 

the hair follicles (HFs), with its associated appendage, the Sebaceous Gland (SG).  

The IFE, or epidermis, is a stratified epithelium whose innermost layer, that is called Basal 

Layer (BL), is attached to a basement membrane, a structure composed by extracellular 

matrix and that is rich in growth factors. Among all the different layers that compose the 

epidermis, only the BL has the ability to proliferate. Once a cell divides, it detaches from the 

BL and migrate upward while differentiating. The outermost layer is composed by dead 

keratinocytes, the cells that compose the vast majority of the epithelium, that forms flattened 

scales that are sloughed from the skin and replaced continuously by the underlying 

keratinocytes (Fuchs 2016). 

 

Most mammals have hairs that guaranties warmth and protection (Fuchs 2016). Differently 

from IFE the hair follicle does not regenerate continuously. Instead, it encounters cyclical 

bouts of proliferation and hair growth (Anagen), followed by the destruction of exceeding 

cells (Catagen) and finally the quiescent phase (Telogen). Due to their abundance in mouse 

and their peculiar cycle, which stages are well characterized (Paus, Muller-Rover et al. 1999, 

Saxena, Mok et al. 2019), it emerged as one of the best systems to explore homeostasis and 

stem cells of adult tissue, with the possibility to explore both quiescent and resting phase of 

the stem cells and their differentiation.  

Murine HFs are specified during late embryogenesis and mostly develops after birth in a 

synchronized process called morphogenesis, that start the first cycle. By the end of the 

morphogenesis, approximately 16 days after delivery (Postnatal day 16, P16), the follicles 

are formed, and after catagen and telogen a new synchronized hair cycle begins at P28 (Paus, 
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Muller-Rover et al. 1999, Muller-Rover, Handjiski et al. 2001). This is the last synchronized 

wave of hair regeneration during mouse life and ends with a long quiescent phase named 

“long telogen” that last at least four weeks (from week 7, or from P49). After the long telogen 

phase, mouse fur starts to regenerate in an asynchronous way, forming patches of anagen, 

telogen and catagen follicles (Muller-Rover, Handjiski et al. 2001). However, it is possible 

to re-synchronize the hair cycle by waxing mouse back-skin and forcing the hairs to re-enter 

the anagen phase, that occurs normally without differences respect to spontaneous anagen 

(Muller-Rover, Handjiski et al. 2001).  At each cycle a new hair shaft is formed and the older 

one is eventually shed, for the vast majority of time in an active process called exogen 

(Schneider, Schmidt-Ullrich et al. 2009).        

Mature hair follicle is composed by several specialized parts that can be divided in two 

compartments: the first, that constitute the upper part of the HF, remains static throughout 

the cycle, and it is composed by the infundibulum, that is a transition zone between HF and 

Figure 2.4 Schematic representation of Hair follicle 

In the figure, taken from (Morgan 2008), are represented HFs during the proliferating (anagen) and 

resting (telogen) phase, showing the different cellular population within the HF.  
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IFE, the isthmus, where the arrector pili muscle is inserted, and the HF associated sebaceous 

gland; the second, the lower part of the hair follicle, changes during the cycle and actively 

participate to this process, and its composition changes during the different cycle phases 

(Schneider, Schmidt-Ullrich et al. 2009) (Fig 2.4). The quiescent follicle presents, in its 

lower part, the bulge, that houses stem cells and melanocytes, and the secondary hair germ, 

or hair germ (HG), that contains other stem cells, that will be discussed in the next sections. 

Anagen induces many changes in this lower follicle part, that greatly extend downward in 

the subcutis forming the bulb, that contains all the proliferating cells, the matrix 

keratinocytes and the HF pigmentary units that cooperate to form the new hair shaft. Also 

the bulge participate in this processes, although it do not change in morphology and 

positioning. Anagen phase will be discussed in detail in the following sections. 

Outside the HF structure an important associated mesenchymal structure is the Dermal 

Papilla (DP) that is composed by mesenchymal cells that cluster together forming a defined 

structure. Its role is to sustain anagen progression through the production and diffusion of 

signaling molecules, such as Fgf7 and Fgf10, that stimulate proliferation in the associated 

HF (Greco, Chen et al. 2009, Driskell, Clavel et al. 2011). 

 

2.2.1  MORPHOGENESIS  

Hair follicle cycle does not create new follicles, but only regenerate the hairs. HFs are 

specified in late embryonic development in a temporally and spatially tightly controlled 

process called morphogenesis (Paus, Muller-Rover et al. 1999, Saxena, Mok et al. 2019), 

that leads to the creation of adult HFs.    

Historically, the guide written by Paus and colleagues in 1999 dictated the basis for 

morphogenesis stage recognition (Paus, Muller-Rover et al. 1999). However, in the last 20 

years advanced mouse genetics, molecular and imaging methods have enabled numerous 

studies that increased our knowledge at phenotypical, functional and molecular levels, that 
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have been summarized by Saxena and coworker this year (Saxena, Mok et al. 2019). 

Morphogenesis requires the formation of two important structures, the placode (PC), in the 

developing epidermis, and the dermal condensate (DC) in the underlying mesenchymal 

subcutis. These two structures necessitate the activity of the WNT pathway to be specified, 

as demonstrated by the glabrous phenotype of mice depleted for WNT signaling mediator 

Wintless (Wls) in the epidermal progenitors and by beta-catenin ablation in the dermis 

(Zhang, Tomann et al. 2009, Chen, Jarrell et al. 2012). Before morphogenesis begin, at stage 

0, epidermis is a uniform layer of cells without any morphological signs or molecular 

specification of HFs formation. What is known is the presence of a widespread WNT 

signaling activity in the upper dermis, which is critical HF specification signal, called “first 

dermal signal”, that is still not identified (Zhang, Tomann et al. 2009). Absence of WNT 

signaling, either in epidermis or in the dermal compartment, results in absence of pre-PC in 

the epidermis (Saxena, Mok et al. 2019). During the first stages, the unknown dermal signal 

induces the specification of the pre-PC, that is morphologically undistinguishable from the 

epidermis, that still present a peculiar molecular pattern with active WNT signaling 

(Huelsken, Vogel et al. 2001, Andl, Reddy et al. 2002, Zhang, Tomann et al. 2009), Edar 

(Barsh 1999, Headon and Overbeek 1999, Schmidt-Ullrich, Tobin et al. 2006) and Fgf20 

(Huh, Narhi et al. 2013) expression. This specification induces the gradual formation of the 

DC that enlarge while the PC, that appears thicker and composed by tightly packed vertically 

oriented cells, starts to move downward in the underlying dermis. This invagination is 

concomitant with the expression of a master regulator of hair follicle cycle, Shh (Huelsken, 

Vogel et al. 2001, Rhee, Polak et al. 2006, Zhang, Tomann et al. 2009, Tomann, Paus et al. 

2016). Particularly, asymmetric division creates 2 layers of PC, the upper one expressing 

Sox9 and with diminished WNT signaling, that will specify for bulge-HFSCs, and the lower 

one that maintain Shh expression and active-WNT pathway that will specify for matrix (Mx) 

cells, and, at the end of morphogenesis for a second HFSCs population (Nowak, Polak et al. 

2008). At later stage hair peg is similar to an adult HF. Basal PC cells continue to express 
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Shh and Pcad, while the Outer Root Sheath (ORS) is starting to differentiate (Saxena, Mok 

et al. 2019) and the inner Mx start to produce the Inner Root Sheath (IRS) that develop the 

hair. In the next stages, the hair shaft is elongating and will exit from the hair canal emerging 

from the epidermis.  

After morphogenesis, the anagen hair follicles enter the first catagen phase. The ORS and 

the IRS shrink due to programmed apoptotic events. However, not all cells are lost during 

this process, but some ORS cells will constitute the HG that, together with the bulge, houses 

the HFSCs populations (Jaks, Barker et al. 2008). 

 

2.2.2  ADULT HAIR FOLLICLE: ANAGEN AND TELOGEN 

Anagen hair follicle is an elongated structure composed by several different concentric 

layers. The bulge characterizes the end of the permanent non-cycling region and is separated 

from the anagen bulb by a long stretch of suprabulbar epithelium. The bulb is composed by 

the Mx cells that rapidly proliferates to give rise to all the differentiated cells of the hair 

shaft. Full anagen hair follicle is composed by eight different concentric layers, each one 

expressing a peculiar keratins pattern (Schneider, Schmidt-Ullrich et al. 2009). At the 

outermost part of the HF it is identifiable the ORS, marked by LGR5 expression.  Deeper in 

the HF, the IRS is composed by the companion layer, Henle’s layer, Huxely’s layer and IRS 

cuticle. In the middle of the follicle reside the new hair shaft that is composed by the hair 

cuticle, the cortex, and finally the medulla (Schneider, Schmidt-Ullrich et al. 2009, 

Genander, Cook et al. 2014). To date, many molecular markers of HFs lineages have been 

discovered: among them, Gata3, Cut1 and BMPs are important for IRS formation, while 

Sox9 and Shh for ORS maintenance and formation (Schneider, Schmidt-Ullrich et al. 2009).     

 

Telogen can last up to several weeks. During this phase HFs are at their minimal size and 

comprises only quiescent stem cells in the bulge and in the HG, which is in close contact 
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with the DP. To date most of the transcriptomic studies on telogen follicles have been 

performed in bulk on the whole population of HFSCs, or on subsets of cell enriched for 

specific markers. However, recently, Joost and coworkers profiles the whole epidermis and 

the hair follicle at single cell level (Joost, Zeisel et al. 2016). This work revealed that telogen 

HFs are extremely heterogenous and different subpopulation can be identified within the 

follicle, confirming already known markers and expression gradients, but also discovering 

new markers and new cell populations. 

 

Hair follicle stem cells can be divided in two populations: a quiescent population in the bulge 

region, and a primed population in the lower bulge and in the HG (Hsu, Li et al. 2014). 

Stem cells in the bulge are characterized by the expression of K15 and CD34 surface marker 

(Cotsarelis, Sun et al. 1990, Trempus, Morris et al. 2003, Blanpain, Lowry et al. 2004, 

Morris, Liu et al. 2004) and shows the potential to retain histone labels over a long period 

(Braun, Niemann et al. 2003, Tumbar, Guasch et al. 2004). Initial studies, led to the creation 

of the “bulge activation hypothesis” model that foresaw, at the anagen onset, the activation 

of a subset of stem cells and their progeny-derived migration that ultimately creates the 

matrix (Cotsarelis, Sun et al. 1990, Oshima, Rochat et al. 2001, Cotsarelis 2006).  

In 2008, Jaks and colleagues identified a stem cell population marked by LGR5 expression, 

an orphan receptor previously identified as WNT target gene in colon cancer (Barker, van 

Es et al. 2007, Barker, van Es et al. 2008, Jaks, Barker et al. 2008). Through in vivo lineage 

tracing analyses carried out in Lgr5-CreERT2-Rosa26-LoxSTOPLox-LacZ mouse strain, 

the authors demonstrated that this population resides in the lower bulge area, where it 

partially overlaps with CD34 expressing cells, and in the HG. This population forms the 

ORS in anagen follicle, and part of these cells are maintained after catagen constituting the 

new lower bulge and HG (Ito, Kizawa et al. 2004). Moreover, they described that LGR5-

HFSCs are the first cells that proliferates during anagen and expresses genes indicative of 

an active Hedgehog pathway, such as Gli1 and Gli2, and importantly also Shh itself. In 
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contrast with the previous literature, CD34 or Bulge-HFSC population do not actively 

participate to anagen progression and they remain in the bulge area while anagen progress 

(Jaks, Barker et al. 2008). Importantly, bulk RNA-seq analyses revealed that bulge-HFSCs 

and HG-HFSCs are transcriptionally largely indistinguishable and interchangeable (Greco, 

Chen et al. 2009, Rompolas, Mesa et al. 2013). 

 

During anagen onset and progression LGR5-HFSCs are the first cells to respond to the 

proliferation stimuli, and importantly they have been shown to be necessary for hair follicle 

regeneration, and their loss impair HF cycle. However, CD34 bulge-HFSCs are able to 

reconstitute LGR5-HFSCs population, restoring HF cycle (Hoeck, Biehs et al. 2017), further 

demonstrating that LGR5 stem cells are necessary for anagen progression. 

The molecular detail of stem cell activation still remains unknown. However, telogen phase 

set a critical threshold for anagen induction that anagen-promoting factors must overcome 

to start a new hair cycle (Blanpain, Lowry et al. 2004, Lin, Chudova et al. 2004, Morris, Liu 

et al. 2004, Tumbar, Guasch et al. 2004, Rendl, Lewis et al. 2005). During telogen, BMP 

and WNT inhibition by TCF3 and DKKs impede stem cell activation. Cycle start when WNT 

activation, and consequently beta-catenin stabilization, combined with focal expression of 

BMP inhibitors in the DP is reached. Nevertheless, is not known how WNT signal is initiated 

(Fuchs 2007, Fuchs 2008), but it has been demonstrated that waves of BMP signals occurs 

in the telogen dermis, thus defining high BMP telogen phases, during which HFs are 

refractory to proliferation, and low BMP telogen phases which render HFs competent to 

anagen induction (Plikus, Mayer et al. 2008). At the anagen onset, HG promptly proliferates 

as first (Greco, Chen et al. 2009, Lien, Polak et al. 2014), develops into the Mx, a pool of 

Transient Amplifying cells (TACs) that rapidly proliferate and terminally differentiate to 

form the IRS and the hair shaft. Lower bulge stem cells proliferate to form the ORS, that 

envelop the other HF structures (Hsu, Pasolli et al. 2011, Rompolas, Mesa et al. 2013). 

During early anagen phases, the upper bulge starts to cycle few times, induced by short-
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living progenitors derived from the lower bulge that start to express Shh, generating the new 

bulge for the next hair cycle and replenishing the niche, however, the bulge progressively 

moves away from the DP thus returning to quiescence (Hsu, Pasolli et al. 2011, Hsu, Li et 

al. 2014, Hsu, Li et al. 2014). Matrix cells, in contrast move downward engulfing the DP 

and continue to proliferate, sustained by active WNT and SHH pathways. Moving away, due 

to their division, from the proliferating part of the bulb and entering into the pre-cortical 

matrix, the cells start to terminally differentiate and to create the hair shaft (Schneider, 

Schmidt-Ullrich et al. 2009).     

 

During catagen, TAC undergoes apoptosis, however some ORS sparse cells remains, 

forming the new HG. Nevertheless, one inner layer of terminally differentiated K6 positive 

cells, the companion layer, remain in the telogen follicle, anchoring the hair and providing 

inhibitory signals to the HFSCs of both bulge and HG, through BMP6 and FGF18 expression 

(Hsu, Pasolli et al. 2011). 

 

2.2.3 PATHWAYS IN HAIR FOLLICLE STEM CELLS 

Several pathways are important for the correct maintenance of HF during all cycle phases. 

Among them the most important are Hedgehog pathway, specifically SHH, WNT/beta-

catenin and BMP-antagonist, that boost the cell cycle, and BMP and FGF that, conversely, 

induce cycle arrest or catagen (Hebert, Rosenquist et al. 1994, Paus and Foitzik 2004, 

Cotsarelis 2006). 

Hedgehog signaling pathway controls several different processes, among them cell growth, 

survival, cell fate, and pattern specification (Varjosalo and Taipale 2008). SHH molecule 

binds to its receptor Patched (Ptc) activating a signaling cascade that drive the activation of 

zinc-finger TFs GLI1-3, that in turn modulate the expression of their target genes. In the 
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absence of SHH, Ptc inhibit Smoothened (Smo) transmembrane proteins, that is required for 

GLI2 and GLI3 stabilization and Gli1 transcription (Cohen, Kicheva et al. 2015).   

 

In HF, SHH pathway is essential for its formation and its proliferation during anagen 

progression (St-Jacques, Dassule et al. 1998, Chiang, Swan et al. 1999). LGR5-HFSCs 

express high levels of GLI1 and GLI2, and importantly also present abundancy of Shh 

transcript level, addressing a possible autocrine function to reinforcing this pathway in 

LGR5-HFSCs (Jaks, Barker et al. 2008). In a recent work by Zhang and colleagues (Zhang, 

Tsai et al. 2016), in vivo depletion of Shh from K15 expressing cells, that specify for both 

bulge and HG stem cell population, shows the essential role of this pathway also in the 

flanking environment. Particularly, Shh deletion in K15 generates a TAC population 

deprived for this molecule that is impaired in proliferation, resulting in early anagen block.  

 

Another important player governing HFs development and adult cycle is the WNT pathway. 

This pathway is activated when WNT ligand engage its receptor complex Frizzled-LPR5-

LPR6. This binding inhibits beta-catenin destruction, continuously exerted by Adenomatous 

Polyposis Coli (APC) within the so called “destruction complex”, leading to beta-catenin 

nuclear accumulation. In the nucleus TCF/LEF family members, already localized on 

chromatin are repressed by Groucho binding. When beta-catenin enters the nucleus it is able 

to bind TCF/LEF protein unseating TLE/Groucho from the complex, thus leading to 

transcriptional regulation of beta-catenin targets (Nusse and Clevers 2017). As previously 

mentioned, WNT pathway exert a major role in HF development. Indeed, mice that 

ectopically express WNT inhibitor that impede LPR binding to Frizzled, shows a complete 

impairment of HFs morphogenesis, preventing the expression of PC molecular markers and 

its specification (Andl, Reddy et al. 2002).    
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Interestingly, mice expressing the non-degradable form of beta-catenin in epidermal 

progenitors shows an accelerated and excessive PC formation, however, most of the 

developing HFs failed to produce hair, suggesting that a tight regulation of beta-catenin in 

both proliferation and differentiation is needed (Narhi, Jarvinen et al. 2008).   

 

WNT pathway is counteracted by BMP inhibitory signal. Indeed, the balance between these 

two pathways set a critical threshold that has to be overcome to induce HF in anagen 

(Schneider, Schmidt-Ullrich et al. 2009).  

 

BMP belongs to the TGF-Beta family of secreted signaling molecules. BMP binds to its 

membrane receptor BMPRI or ALK2-6, activating the signaling pathway. This receptor-

ligand binding is followed by the recruitment of BMPRII which phosphorylate BMPRI 

leading to its activation, thus starting a cascade of phosphorylation events that involves 

receptor-regulated SMAD (R-SMAD1/5/8), that in turn activates SMAD4, the effector 

SMAD protein, that translocate into the nucleus and activates transcription of its target. 

 

BMP signaling is important to tightly regulate the resting phase of the HF cycle. During 

telogen BMP2/4 are expressed, thus making HFs refractory to growth stimulation 

(Schneider, Schmidt-Ullrich et al. 2009). Importantly when quiescent HFSCs are depleted 

for Bmpr1a they rapidly adopt features of activated HFSCs, progressing in the cell cycle, 

without the possibility to return to quiescence, however, these bulbs do not form any hair 

shaft and most of them transform in cyst structure, highlighting BMPs important role, not 

only in governing quiescence, but also in differentiation programs (Genander, Cook et al. 

2014).    
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2.2.4 POLYCOMB AND HAIR FOLLICLES 

 

The high grade of stem cell plasticity is tightly governed at epigenetic and transcriptional 

level. In 2009 Ezhkova and colleagues showed that lineage definition and progression of the 

hair follicle is governed, at least in part, by PRC2 complex, through the repression and the 

de-repression of chromatin (Ezhkova, Pasolli et al. 2009, Ezhkova, Lien et al. 2011). In the 

same year, Lien and colleagues analyzed the different chromatin states of various HFs 

populations: anagen HFSCs, quiescent HFSCs and the derived TAC (Lien, Guo et al. 2011). 

They identify some genes whose transcriptional repression change during lineage 

progression, as an example, matrix related genes are silenced in both quiescent and anagen 

HFSCs, while become activate in TAC population. On the contrary stemness genes are 

repressed in TAC and devoid of H3K27me3 PRC2 mark in both quiescent and anagen 

HFSCs, showing that epigenetics plays a fundamental role in tightly regulate lineage 

choices.  

Recently, it has been demonstrated that both PRC2 or PRC1 loss, severely affected HFSCs 

formation (Ezhkova, Lien et al. 2011, Dauber, Perdigoto et al. 2016, Cohen, Zhao et al. 

2018). Remarkably, these works were performed during morphogenesis, the process that 

define stem cell population within the HF, while PRC1 role in adult HFSCs is still largely 

unexplored. 

 

2.3 INTESTINE 

Intestine is the second most extended epithelial tissue of the body (Gehart and Clevers 2019). 

Being an interface with the external environment, it accomplishes two main functions: it is 

deputed to nutrients uptake meanwhile guaranties protection against the harsh environment. 

Several insults from luminal content damage intestinal cells, inducing a high rate of cell 
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death every day. Thus, tissue must be renewed constantly throughout the entire life, without 

losing its absorptive and protective function, and it has been estimated that a new epithelial 

tissue is renewed and formed in 3 to 5 days. Intestine divides into two major parts: the small 

intestine, that exert the absorptive role, which is further subdivided in duodenum, jejunum 

and ileum, and the large intestine, which functions are water re-absorption and undigested 

contents compaction, and is composed by caecum, proximal and distal colon and rectum.  

The intestinal epithelium is structured in functional modules constituted by crypts-villus 

units (Barker 2014) (Fig 2.5). Absorptive function is mainly carried out by enterocytes that 

are present on the villi, that compose the differentiated part of the intestinal tissue. Villi are 

finger-like protrusion that spread from the intestinal surface toward the lumen, enormously 

increasing the absorptive surface of the epithelium. In the opposite direction, epithelial 

invaginations form the less differentiated and staminal part of the tissue, the intestinal crypts 

of Lieberkün, where the intestinal stem cells (ISCs) that sustain tissue regeneration are 

housed (Barker 2014). Each villus is surrounded by at least six crypts cooperating to 

maintain the villus cell population.  

Intestinal epithelium is composed by several different cell populations that are more or less 

represented in the tissue depending on the intestinal tract. 

Differentiated cells are located mainly along the villi and comprise: the Enterocytes, that 

accomplish the absorptive role; the Goblets cells, that produce the mucins, needed for 

modulating the interaction among intestinal epithelium and intestinal bacterial population 

and, in the last part of the small intestine, to help the passage of compact stools in the colon 

(Birchenough, Johansson et al. 2015); the Enteroendocrine cells, that produce hormones 

needed to regulates the digestive system (Worthington, Reimann et al. 2018). Rarer  

populations are the Tuft cells, which role is to rapidly increase in cell number and to 

promptly activate type 2 immune response during helminths inflammation (Howitt, Lavoie 

et al. 2016), the Cup cells, whose function is not known and the M cells, that reside on 
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lymphoid Peyer’s patches and transport antigens from the gut lumen to the underlying 

lymphoid tissue. 

 

At the crypts base, a high cycling stem cell population fuels tissue regeneration producing 

transient amplifying cells that are pushed upward in the luminal compartment and exit the 

crypt within two days. Paneth cells, the only differentiated cells in the crypts, contribute to 

protective role producing and secreting defensins and lysozyme to help the antimicrobial 

protective role (Bevins and Salzman 2011). Importantly, Paneth cells escape this upward 

migration and conversely migrate downward to re-occupy the crypt base where they can 

remain from 6 to 8 weeks (Scoville, Sato et al. 2008, Barker, van Oudenaarden et al. 2012) 

(Fig 2.5).  

As mentioned above, intestine encounters high damage rate and cell death. Therefore, crypts 

containing stem cells must be well protected from the harsh environment to minimize their 

damage. First, crypts are not in close contact with digestive and absorptive system, and they 

are connected to the lumen only with a 6um opening that limited the exchange. Secondly, 

mucus produced by Goblet cells, physically creates a barrier over this opening.  

 

Within the crypt, Paneth cells plays a fundamental role in ISCs protection. This cell type 

produces a wide variety of antimicrobial products such as lysozyme, defensins and 

phospholipase A2 that, not only protect the stem cells but are exported in the lumen as 

integral part of mucosal protection (Gehart and Clevers 2019). Despite the protective 

environment, stem cells can suffer mutations, toxins and other environmental factors. Stem 

cell competition provide another mechanism for tissue protection, limiting the ability of 

deteriorated cells to create their progeny. The limited space of the crypt creates this 

competition that stochastically leads to either loss or dominance of one clone in a single 

crypt. Cells that displays mutations that delay their division or provoke irregular cell cycle 

or enhance apoptosis, are displaced from the intestinal tissue, limiting the insurgence of 
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neoplastic proliferation to those cells that can proliferate outside the stem cell niche (Gehart 

and Clevers 2019).    

Paneth cells are interspersed with ISCs, putting in close contact ISCs with at least one Paneth 

cell. At the crypt base, Paneth cells do not contribute only to stem cells and intestine defense, 

but they also provide nourishment for ISCs. Paneth cells are source of WNT ligand, 

epidermal growth factor (EGF) and Notch signaling (Sato, van Es et al. 2011). Recently it 

has been discovered that Paneth cells and ISCs has different metabolism: while stem cells 

depend on mitochondrial oxidative stress, Paneth cells undergoes glycolysis with lactate as 

end product (Rodriguez-Colman, Schewe et al. 2017). Importantly, lactate is used in ISCs 

as substrate for mitochondrial metabolism. Of note, oxidative metabolism is a source of 

DNA damage, however lactate has been shown to act as a radical scavenger and antioxidant 

in vitro, open the possibility that lactate can both boost ISCs metabolism and protect them 

from oxidative stress.  

Mesenchymal cells provide another important source of signals for stem cell niche 

specification and maintenance. Fibroblast, myofibroblast, pericytes, neural cells, vascular 

cells and smooth muscle, do not create only a physical and structural support for the tissue, 

Figure 2.5 Schematic representation of intestinal tissue 

In the figure, taken from (Gehart and Clevers 2019), the intestinal tissue, with enlargement on 

the crypts and villi structures. In the pictures are represented the major cell types constituting 

the differentiated and the undifferentiated compartment. 
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but they provide signals that help to regulates stem cell behavior (Gehart and Clevers 2019). 

Several studies have pointed out the important role of mesenchymal cells as source of WNT, 

R-Spondin, BMPs and BMP inhibitor, however, a deep characterization of cell population 

is still lacking. Importantly, also crypts influence the microenvironment through ligands 

secretion such as Sonic and Indian Hedgehog, that are important for smooth muscle 

maintenance in adult tissue.          

During homeostasis ISCs, also known as Crypt base columnar (CBCs) cells for their 

morphology, give rise to all differentiated cells types in the intestinal tissue meanwhile 

maintaining the ISCs population. To face the high rate of cell death and damage that occurs 

at the top of the villi, they proliferate every 24 hours, generating the transit amplifying (TA) 

progeny that localize in the middle of the crypts and that in turn divide every 12-16 hours to 

sustain the massive intestinal cells loss, migrating upward while differentiating (Barker 

2014, Leung, Tan et al. 2018).  

However, adult stem cells are crucial also for tissue regeneration after injury. In adult 

intestinal tissue two different stem cell population have been described: beside CBCs, 

committed precursors derived from columnar cells, the so called +4 cells, can dedifferentiate 

into a multipotent state and participate to intestinal regeneration. This mechanism requires a 

high rate of cell plasticity that is established and maintained through particular chromatin 

state that characterize intestinal crypts cells (Elliott and Kaestner 2015, Beumer and Clevers 

2016, Leung, Tan et al. 2018). This high plasticity give rise to two different models for tissue 

homeostasis: the “stem cell zone mode” and the “+4 model”. 

Initially, in 1977, the mapping of long-lived cells containing all cell lineages, drived the 

postulation of “+4 model” as stem cells governing tissue homeostasis. In this model stem 

cells were positioned just above Paneth cell at the +4 position from the crypt base (Potten 

1977). CBCs as intestinal stem cells were discovered in the same years by Cheng and 

Leblond (Cheng and Leblond 1974), however, it was only twenty years later that Bjerknes 
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and colleagues challenged the “+4 model” proposing the “stem cell model” where CBCs 

were identified as the intestinal stem cells (Bjerknes and Cheng 1999).  

Despite the great advance in intestinal stem cells identification, only in 2007 Barker and 

colleagues, provides, through genetic mouse model and lineage tracing analyses, the proof 

for CBCs stemness (Barker, van Es et al. 2007, Barker, van Es et al. 2008). As first, based 

on a study of WNT pathway in cancer cell lines, Lgr5 (Leucine-rich repeat-containing G-

protein coupled Receptor 5) was identified as one of the best targets of this signaling cascade. 

The generation of the mouse model Lgr5-CreERT2-Rosa26-LoxSTOPLox-LacZ, that 

enable the visualization of the progeny derived from LGR5 expressing cells, reveals that 

LGR5 is an effective marker of CBCs intestinal stem cells and that from these  proliferating 

cells, ribbons of LacZ marked cells progressively extend from crypts bottom to the villi tips 

(Barker, van Es et al. 2007, Barker, van Es et al. 2008). 

 However, other genetic studies, addressed +4 cells as a second long-term stem population 

within the crypts and in the last years new studies contributed to clarify the molecular 

identity of this stem cell reserve (Sangiorgi and Capecchi 2008, Montgomery, Carlone et al. 

2011, Takeda, Jain et al. 2011, Powell, Wang et al. 2012). Buckzaki and colleagues 

demonstrated that after a transient H2B-GFP expression, that is diluted and lost in several 

cell division, two distinct population retains GFP expression: Paneth cells and a cell 

population characterized by both Lgr5 and +4 markers expression. Additionally, these cells 

express markers of differentiated secretory cells and contribute to Paneth cells formation 

during physiological tissue renewal. However, after irradiation, these long-lived cells revert 

to a multipotent state regenerating the whole intestinal epithelium (Buczacki, Zecchini et al. 

2013). Further experiments demonstrated that upon LGR5 expressing cell loss, by irradiation 

or with genetic models to induce specific cellular death, CBCs are depleted from the tissue 

and the homeostatic regeneration is lost. Indeed, within few days after CBCs loss, LGR5-

expressing cells reappears and perfectly reconstitute the tissue. This regeneration is impaired 

if reappearance of LGR5 expressing cells is continuously blocked, meaning that CBCs are 
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essential for tissue regeneration (Dekaney, Gulati et al. 2009, Tian, Biehs et al. 2011, van 

Es, Haegebarth et al. 2012, Metcalfe, Kljavin et al. 2014). 

 

In this new model two coexisting stem cell populations participate to intestinal epithelium 

maintenance, the LGR5-CBCs expressing cells that replenish the intestinal tissue during 

homeostatic conditions, and long-lived cells serve as a stem cells reserve-pool in case LGR5-

ISCs are lost upon tissue damage or generally when needed (Tetteh, Farin et al. 2015).  

 

Still, this ability of dedifferentiate to drive tissue regeneration, seems to be wider than 

expected and other reports identified new precursors of both absorptive and secretory 

lineages as cells involved in stem cell pool and tissue regeneration after damage, highlighting 

the importance of dedifferentiation to ensure the tissue maintenance (Gehart and Clevers 

2019).    

 

2.3.1  PATHWAYS IN INTESTINAL TISSUE 

This elaborate organization is maintained throughout a complex network of interactions 

among different cell types.  

 

The most important and studied are Wingless integration site (WNT), Bone Morphogenetic 

Protein (BMP), NOTCH and Epidermal Growth Factor (EGF) pathways.   

To ensure tissue regeneration different pathways tightly regulates cells fate determination. 

The most important and studied are Wingless integration site (WNT), Bone Morphogenetic 

Protein (BMP), NOTCH and Epidermal Growth Factor (EGF) pathways.   

 

The WNT pathway is tightly correlated with stemness, in fact mutations in its components 

are the first cause of colorectal cancer onset and development. WNT ligands binds to 

Frizzled-LPR5-LPR6 receptor complex, that inhibit beta-catenin destruction, leading to 
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nuclear accumulation and, upon binding with TCF/LEF family members, transcriptional 

regulation (Nusse and Clevers 2017). 

The role of WNT pathway during homeostasis has been intensively investigated with 

different approaches both in vivo and in vitro. A gradient of WNT ligands is established in 

intestinal compartment, starting from the crypt base, where it reaches the higher 

concentration, and being lost at the interface between crypt and lumen. Importantly, during 

development WNT is necessary for Paneth cells specification, that subsequently become the 

main source of WNT ligands (van Es, Jay et al. 2005). Inhibition of WNT signaling severely 

affects intestinal epithelium leading to stem cell loss and rapid animal death (Fevr, Robine 

et al. 2007, van Es, Haegebarth et al. 2012). Others important players in WNT signaling are 

R-Spondins soluble proteins. Despite the abundance of WNT ligands at the crypt base, their 

ability to activate the pathway rely on R-spondin binding to LGR5 receptor. This binding 

provokes the sequester of RNF3 or ZNRF3 E3 ligase that, when free, ubiquitinates the 

Frizzled receptor, thus leading to its degradation. Indeed, R-Spondin/LGR5 interaction 

results in increased sensitivity to WNT pathway (de Lau, Peng et al. 2014).     

 

BMP belongs to the TGF-Beta family of secreted signaling molecules, and the pathway is 

activated when BMP engages its membrane receptor BMPRI or ALK2-6, followed by the 

recruitment of BMPRII which phosphorylate BMPRI leading to its activation. A sequent 

cascade of phosphorylation events involves R-SMAD1/5/8, that activate the effector 

SMAD4, that translocate into the nucleus and activate transcription of its targets. Conversely 

to WNT, BMP restricts the stemness potential in the crypts, and its gradient is opposed to 

the WNT ones, starting from the villus and diminish reaching the crypt base. BMP signal 

cascade is able to negatively regulate the stem cell specific transcriptional program (He, 

Zhang et al. 2004, Qi, Li et al. 2017). 

 In the crypt, BMP inhibitor molecules, such as Noggin and Gremlin 1-2, tightly titrate the 

free BMP, thus impeding stem cell exhaustion.  
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NOTCH pathway is one of the most direct form of cell-to-cell communication. The 

canonical transduction molecule involves a ligand, tethered on the cell membrane that binds 

the transmembrane receptor on the adjacent cell. In mammals five different ligands (DLL1, 

3, 4 and Jagged1, 2) and four notch receptors (NOTCH1-4) exist. Ligand-receptor binding 

induces Notch cleavage by gamma-secretase and the release of notch intracellular domain 

(NCID) that translocate into the nucleus. RBPJ is a transcriptional repressor in absence of 

signal, however, upon NCID binding, the dimers recruit MALM1-4 resulting in 

transcriptional activation of the target genes. NOTCH signaling is able to activate either 

proliferation, differentiation or cell death depending on the context. In the small intestine 

NOTCH ligands are expressed by secretory precursors and Paneth cells, while stem cells 

express NOTCH1 and 2. Genetic ablation of NOTCH 1 and 2 or their ligands DLL1 and 4 

induces stem cells and TA cells to differentiate toward the secretory lineage, severely 

impairing the absorptive ability of the intestinal epithelium (Sato, van Es et al. 2011, 

Guruharsha, Kankel et al. 2012, Sancho, Cremona et al. 2015). 

 

Last, EGF-ERBB pathway comprises four transmembrane receptor tyrosine kinases 

(EGFR/ERBB1, ERBB2-4) and 13 secreted ligands, all sharing the epidermal growth factor 

domain. Upon ligand binding, ERBB1 and ERBB4 can form homodimers or heterodimers, 

that activate the signaling cascade. Phospho-activated receptors can bind different adaptor 

proteins responsible for RAS GTPase recruitment and MAPK cascade activation.  

EGF signaling pathway promotes intestinal cell growth and proliferation, as demonstrated 

by mice lacking or defective for EGF pathway components (Miettinen, Berger et al. 1995, 

Threadgill, Dlugosz et al. 1995, Lee, Yu et al. 2009).    
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2.3.2  POLYCOMB AND INTESTINE 

Signaling pathways converge on chromatin to tightly regulate cell differentiation. Several 

are the TFs and the epigenetic players involved in this tight and complex network, and some 

of them shows fundamental roles.  

Secretory lineage specification is controlled by NOTCH signaling pathway through HES1, 

a direct NCID target. Hes1 is expressed in proliferating cells and is required for ISCs and 

TA cells maintenance (Kayahara, Sawada et al. 2003, Suzuki, Fukui et al. 2005). Loss of 

NOTCH signaling or Hes1 deletion leads to the upregulation of ATOH1 TF (Jensen, 

Pedersen et al. 2000, Ueo, Imayoshi et al. 2012), that can be considered the master regulator 

of secretory lineage, as demonstrated by the lethality due to the complete absence of 

secretory cells in Atoh1 deficient mice (Yang, Bermingham et al. 2001). On the contrary 

ATOH1 ectopic expression results in prenatal death due to the complete transformation of 

intestinal cells in secretory cells (VanDussen and Samuelson 2010). These data demonstrate 

that ATOH1 is necessary and sufficient to specify for secretory lineage, and its expression 

must  be strictly regulated.  

Epigenetic analyses of H3K27me3 PRC2 mark along the crypts-villus axis revealed that 

almost 40% of repressed genes in enterocytes are active in ISCs, among them Myc, Ascl2 

and Lgr5 (Jadhav, Nalapareddy et al. 2016). In non-secretory cells Atoh1 promoter is 

enriched for H3K27me3 and inhibition of NOTCH signaling correlates with PRC2 mark 

decrease and Atoh1 increase (Chiacchiera, Rossi et al. 2016). Accordingly, EED loss, 

leading to the disruption of PRC2 activity, increases Atoh1 levels and expand goblet and 

enteroendocrine cells populaitons, meaning that PRC2 activity is essential to maintain 

repressed Atoh1 in cells where it should be silenced. 

However, Polycomb plays other important role in intestinal tissue. PRC2 is required for 

intestinal regeneration when LGR5 population is lost, as upon irradiation, by repressing 

INK4A/ARF locus (Chiacchiera, Rossi et al. 2016). On the other hand, independently from 

p16 and p19 activation, PRC1 is strictly required to maintain stem cell identity, preserving 
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the correct transcriptional profile, by repressing non-lineage-specific genes. In PRC1 

deficient mice, the massive upregulation of genes belonging to other cell types, directly 

interfere with TCF4/beta-catenin binding, leading to stem cell loss (Chiacchiera, Rossi et al. 

2016) identifying PRC1 as a fundamental complex for ISC identity and self-renewal 

preservation.  
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2.4  AIMS  

Cell identity is an essential feature that is preserved, controlled and modulated throughout 

life. In this context, PcG proteins exert a critical role defining transcriptional identity during 

development as well as during adult tissue homeostasis. Our laboratory has previously 

demonstrated that PRC1 activity is fundamental for ISCs identity and for the integrity of the 

whole intestinal tissue. An important aspect of Polycomb biology, starting from its 

pathological behavior in cancer settings, suggest that PcG activity in adult tissue is highly 

context dependent. This may also involve the high biochemical heterogeneity that exist 

among Polycomb Repressive complexes with a particular emphasis on PRC1 activity that 

can exist in six distinct sub-forms. Therefore, taking advantage of LGR5-GFP-ires-

CreERT2/Ring1a-/-/Ring1bfl/fl/Rosa26Lox-stop-Lox LacZ mouse model, the major aim of 

this project is to investigate the role of PRC1 in a different stem cell compartment in which 

the LGR5 receptor is expressed: the hair follicle. This tool allowed us to compare two 

different adult cycling stem cells, that develop from different embryonic layers, during adult 

tissue homeostasis. This will provide understanding about PRC1functional similarities and 

specificities in these two stem cell populations at a molecular level, thus defining if and how 

cell identity and the associated environment are able to reshape Polycomb activity. 

Furthermore, since PRC1 activity is divided in six different biochemical complexes that are 

specified by the expression of the six distinct and mutually exclusive PCGFs paralogues, the 

second aim of my project is to translate the knowledge generated in our laboratory in more 

simple models such as embryonic stem cell in a more complex biological system like the 

intestinal epithelium. To achieve this, we decided to deeply investigate PCGFs biological 

function taking advantage of tissue-specific conditional KO mouse models to define the role 

of each PCGF protein, thus of PRC1 sub-complexes, respect to the general role that PRC1 

activity exert in this tissue.  
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3. MATERIALS AND METHODS 

 

3.1  ETHIC STATEMENT 

Mice were maintained accordingly to the guidelines set out in Commission Recommendation 

2007/526/EC, 18 June 2007, on guidelines for the accommodation and care of animals used 

for experimental and other scientific purposes. All experiments were performed in 

accordance with the Italian Laws (D.L.vo 116/92 and following additions), which enforces 

EU Directive 86/609 (Council Directive 86/609/EEC of 24 November 1986 on the 

approximation of laws, regulation, and administrative provisions of the member states 

regarding the protection of animals used for experimental and other scientific purposes. 

 

3.2  MOUSE MODELS 

LGR5-specific conditional knockout mice were generated crossing a C57BL6 strain straight 

knockout for Ring1a (Ring1a-/-) through the insertion of a PGK-HPRT deletion cassette  (del 

Mar Lorente, Marcos-Gutierrez et al. 2000), and with LoxP sites flanking exons 3 to 5 of 

Ring1b (Ring1bfl/fl) (Cales, Roman-Trufero et al. 2008) with LGR5-GFP-ires-CreERT2 

(Barker, van Es et al. 2007). These mice were further crossed with Rosa26lox-stop-lox LacZ 

transgenic mice for in vivo lineage tracing (Barker, van Es et al. 2007). Specific PCGFs 

conditional KO mice, that allow the depletion of different exons of the various genes, were 

bred either with LGR5-CreERT2 and Rosa26lox-stop-lox Lacz or AhCre background 

strains, which are described below. The correctness of the genotype was confirmed by 

polymerase chain reaction (PCR) with specific primers performed on genomic DNA 

extracted and purified from tail or ear skin, as described in the next paragraph.  
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Cre-recombinase protein is an enzyme that directs recombination between two strands of 

DNA with specific sequences called loxP sites (“locus of crossover in Phage P1”) (Oumard, 

Qiao et al. 2006). Upon Cre activity, the removal of the genomic region between the loxP 

sites induces the deregulation of the target genes. Ring1b recombination elicits the start 

codon of the transcript thereby, inhibit the start recognition and consequently the 

transcription and the protein production. On the contrary, LacZ transcript is blocked by the 

presence of an upstream STOP codon that is removed by Cre cleavage, thus permitting beta-

galactosidase expression and translation.  

LGR5-GFP-ires-CreERT2 transgene constitutively expresses, only in LGR5-expressing 

cells, a Cre-recombinase protein fused to a modified fragment of the Estrogen Receptor, that 

Figure 3.1 Schematic representation of the mouse model used 

The mouse strain is homozygous straight knock-out for Ring1a gene and harbor floxables 

alleles for Ring1b genes. It has been further complemented with a lineage tracing construct, in 

homozygosity, that allows the expression of LacZ gene after the removal of a stop cassette 

inserted before the LacZ start codon.  

Cre Recombinase and GFP are under the LGR5 promoter that allows their expression only in 

cells where the receptor is expressed. Cre-ERT2 encodes for a cytoplasmic therefore inactive 

form of the enzyme that is translocated in the nucleus upon tamoxifen metabolites binding.  
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sequesters the enzyme in the cytoplasm, where it cannot exert its function. The estrogen 

receptor antagonists (i.e. Tamoxifen molecule) (Fig 3.1) binds the ERT2 fragment of the 

fusion protein, enabling its nuclear translocation where it can actively cleave loxP sites.  

Differently from LGR5-specific CreERT2 expression, Rosa26lox-stop-lox LacZ possess a 

more ubiquitous expression potential thanks to ROSA26 promoter, however beta-

galactosidase transcript can be expressed only upon Cre nuclear import, thus limiting LacZ 

expression only in LGR5 stem cells and their progeny in our mouse model.  

 Cre mediated recombination of LGR5-CreERT2 strains was induced by performing four 

intraperitoneal injection of Tamoxifen (Sigma-Aldrich) dissolved at 75mg/kg in corn oil.  

Tamoxifen is a prodrug that possess little affinity for the ER, indeed, to obtain the active 

molecule is metabolized in the liver by Cytochrome P450 to 4-hydroxytamoxifen (4-OHT) 

or N-desmethyl-4-hydroxytamoxifen (Desta, Ward et al. 2004). 

AhCre mouse model (Ireland, Kemp et al. 2004) mediate Cre recombinase expression upon 

CYP1A1 promoter which is highly activated by lipophilic xenobiotic binding. Induction of 

Cre transcription is obtained by 4 intraperitoneal injection of beta-naphthoflavone dissolved 

at 80 mg/kg in corn oil. This mouse model allows Cre expression in whole intestinal 

epithelium, with the only exception of Paneth cells.  

 

3.3  GENOTYPES 

Skin from tails or ears were conserved at RT for few days in 100% ethanol until the 

extraction. Ethanol was discarded and the samples were washed with 1X PBS to remove the 

remaining alcohol. Samples were digested in 200 L Digestion buffer (TRIS-HCl pH 7,5 10 

mM, EDTA pH8 10 mM, NaCl 10 mM, SDS 0,5%) with 0.5 mg/ml Proteinase K at 52°C 

for at least 5 hours or overnight shaking. Digested tissues were then purified by adding 1 

volume of each Guanidine thiocyanate solution (Guanidine Thiocyanate 0,345 g/ml, EDTA 
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pH8 10 mM, TRIS-HCl pH 7,5 10 mM, NaCl 10 mM) and 75% Ethanol. The mixture was 

vortexed, transferred to EconoSpinTM Spin Column for DNA (Epoch Life Science), fudge to 

13000 RPM for 3’ at RT and the flow-through was discarded. The column was then washed 

with 500 L of Washing Buffer (Ethanol 25%, 2-Propanol 25%, NaCl 100 mM, TRIS-HCl 

pH8 10 mM) and subsequently with 600 L of 75% Ethanol, removing the flow-through 

after each centrifugation. The column was dried fudging 5’ at 13000 RPM at RT and the 

DNA were eluted in 50 l of DNase-RNase free water.  

5 L of this DNA were used for each PCR.   

 

3.4  HAIR FOLLICLE PURIFICATION 

LGR5 positive stem cells were purified from back skin of treated mice at different time 

points according to the experimental plan. After mice were euthanized, the fur was removed 

with razor and back skin near the tail were lifted with tweezer and cut, gently peeling the 

skin from the underlying tissue. Back-skin obtained were washed in ice cold PBS, laid and 

pin, without over-stretching the tissue, with intern facing up. Under a stereomicroscope, 

subcutaneous fat and blood vessels were accurately removed to expose the hair bulbs, and 

the tissue were digested using Collagenase (0,8 g/L) in Dulbecco’s Modified Eagle’s 

Medium (DMEM) for 45 minutes at 37°C. After this incubation, back-skin were scraped off 

and the collected HFs were further digested to obtain a single cell suspension with 2.5% 

trypsin in PBS with the addition of Deoxyribonuclease 1 (DNse1: 1600 U/ml) for 10’ at 

37°C. Fetal bovine serum (FBS) was added to the single cell suspension to neutralize trypsin. 

Cells were pelleted at 2000 RPM at 4°C for 5 minutes and washed in ice-cold PBS to remove 

FBS and trypsin residues. To remove hairs and aggregates the single cell, suspension was 

filtered with a 70 m cell strainer. The obtained suspension, enriched for HFs single cells, 

were resuspended in the correct buffer depending on the application.   
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3.5  CRYPTS PURIFICATION 

Small intestine was taken from mice and immediately processed due to its fast degradation. 

Intestine was flashed with ice-cold PBS twice, opened longitudinally and the villi were 

manually removed by scraping the tissue. Intestine was then chopped into around 5mm 

pieces and incubated in 30 ml of cold PBS containing 2mM EDTA, and kept on ice for 15 

minutes. After this incubation, the falcon was inverted twice to move the mixture and release 

remaining villi in the supernatant, that was carefully removed. Intestinal pieces were further 

incubated with 5mM EDTA in PBS for 45 minutes rocking at 4°C, after which fragments 

were let sit on the falcon base and the supernatant was removed. Tissue containing crypts 

was resuspended in 20 ml of ice-cold PBS containing 1% of FBS and vigorously shacked 

ten times, and supernatant containing the released crypts were filtered using a 70 M cell 

strainer. This passage was performed twice with new 20 ml of PBS-FBS 1% solution. Crypts 

were pelleted at 1000 RPM at 4°C and washed with ice-cold PBS-FBS 1%, and pelleted at 

800 RPM at 4°C to clean the purification from small fragmented tissue.  

Obtained crypts were used for lysate preparation or processed for other techniques, or 

alternatively incubated for 15 minutes in DMEM solution containing Trypsin 0.1%, DNaseI 

800 U/ml and 10 M Rock inhibitor Y-27632 (Selleck chemicals) to obtain a single cells 

suspension. Dissociated cells were resuspended in the buffer needed for further analyses. 

 

3.6  VILLI PURIFICATION         

Villi that were manually removed during crypts extraction were collected in ice cold PBS. 

Once pelleted, the supernatant was removed, and the villi were carefully resuspended in 50 

mL of ice-cold PBS with 3mM EDTA. Villi were incubated 10 minutes rocking at 4° C and 

fudged at 1200 RPM at 4° C for 10 minutes. Supernatant was removed, and the villi 
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resuspended and washed in 50 mL of ice-cold PBS with 1% FBS, and passed through a 100  

M cell strainer, changing the strainer when mucus stuck the flow, in order to recover only 

villi. The purified villi were pelleted as previously described, and washed in PBS. Next, the 

pellet was lysed as described in the next paragraph. 

 

3.7  LYSATES PREPARATION AND WESTERN BLOTTING 

ANALYSES 

The obtained pellet, from either crypts or villi, was lysed with S300 extraction buffer (TRIS-

HCl pH 8 20 mM, NaCl 300 mM, Glycerol 10%, Igepal 0.2%) with protease inhibitors, 

sonicated to disrupt DNA, fudged at 13000 RPM for 30 minutes at 4° C. After the 

centrifugation, the supernatant was quantified. Lysate was then diluted and preserved with 

LAEMLLI buffer to 1x concentration to reach the desired protein concentration, usually 1 

or 2 g/L. 40ug of total lysate were separated on SDS-PAGE and transferred on 

Nitrocellulose membrane. The membranes were then saturated with 5% low-fat dried milk 

in TBS-Tween 0.01% and incubated with the specific antibody following time and dilution 

reported in Table1. 

After primary antibody binding membranes were washed in TBS-Tween 0.01% and 

incubated with the correct secondary antibody as reported in Table 2. Excess of milk and 

secondary antibodies were washed prior to signal revelation, which was carried out with 

Clarity™ Western ECL Substrate (Bio Rad) and acquired using ChemiDoc XRS+ (Bio Rad). 

 

3.8  TOTAL RNA EXTRACTION 

Total RNA extraction was performed lysing the cells with TriZol and following the Direct-

zol RNA MiniPrep protocol (Zymo research) and then retrotranscribed to obtain cDNA. 

Briefly, crypts were lysed in TriZol and an equal volume of 95% ethanol was added to the 
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lysate. RNA was applied to a Zymo-spin column and washed by centrifugation, and then 

DNA was removed by a short DNase I treatment directly on the column. Pure RNA was 

washed twice and recovered in a sterile collection tube and quantified at NanoDrop.  

500 to 1000 nanograms of purified RNA was used for each retro-transcription reaction. RT 

was performed with ImProm-II™ Reverse Transcriptase reagents, following Promega 

standard transcription protocol.  

Retrotranscribed cDNA was analyzed by RT-qPCR with Gotaq(r) Qpcr Master Mix 

(Promega) with the primers list described in Table 3. 

 

3.9  FLOW CYTOMETRY 

Single cell suspensions obtained following the protocol described above were fixed 10’ at 

RT, with 4% Paraformaldehyde (PFA) in PBS without Methanol to crosslink the cells 

avoiding damaging the membrane, and preventing GFP leaking from the cytoplasm. PFA 

were blocked by adding the same volume of Glycine solution (Glycine 0,1 M, NaN3 0,01% 

in PBS) to the crosslinking reaction, in order to saturate the crosslinker, pelleted by 

centrifugation at 2000 RPM for 5’ at RT and washed with PBS. Cells were then 

permeabilized with Triton buffer (Triton 0,25% in PBS) for 7’ at RT at dark, washed and 

blocked for 30’ at RT at dark, with a solution of 5% FBS in PBS to diminish antibody non-

specific binding.  

Cells were then pelleted, and primary antibody diluted in PBS were added to the cells 

according to Table 1. After primary antibody binding, cells were pelleted and washed with 

BSA 1% in PBS to remove any residual primary antibody, followed by incubation with 

secondary antibody (Table 2) performed at dark. Cells were finally washed to remove the 

excess of secondary antibody, diluted in PBS and the fluorescence were read on FACS 

Calibur. 
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3.10  FACS 

In order to obtain a pure population of HFSCs, we exploited the GFP expression of LGR5-

GFP-ires-CreERT2 mouse strain. Single cell suspensions obtained following the protocol of 

hair follicle purification were washed once in PBS and resuspended in Sorting Medium 

(DMEM, 1;100 Penicillin and streptomycin (17-602, Lonza), 1:100 L-Glutamine (17-605E, 

Lonza), Hepes, EDTA pH8 2 mM, DNase1 (800 U/mL) and Y27632 (selleck Chemicals) 20 

M)). Cells were further filtered with 40 M cell strainer prior Sorting. 

Single cells from intestinal purification were resuspended in Sorting Medium (Advanced-

DMEM, 1:100 Penicillin and Streptomycin (17-602, Lonza), 1:100 L-Glutamine (17-605E, 

Lonza), Hepes, EDTA pH8 2 mM, DNase1 (800 U/mL), Y27632 (Selleck Chemicals), N2 

50x, B27 200x and NAC (N-Acetyl Cysteine) 100x and further filtered with 40 M cell 

strainer prior Sorting.    

Single GFP positive LGR5-HFSC were FACS-sorted using either FACSMelody or 

FACSJazz cell sorters (BD Biosciences). To discriminate between living and dead cells, we 

added Propidium Iodide to a final concentration of 25 g/ml.  

  

3.11  IMMUNOFLUORSCENCE 

Back-skin from ctrl and dKO mice were harvested as described in the first passage of “Hair 

follicle purification” protocol. The back skin obtained were briefly fixed in 4% PFA for 3 

hours at 4°C covering all the skin and gently shaking. The materials were then incubated at 

least overnight in 30% Sucrose in PBS to cryopreserve the tissues and avoid freezing 

damages. Back-skins were then embedded in O.C.T (Tissue-Tek 4583), that is a water 

soluble mixture of glycols and resins that provides an optimal matrix for cryostat sectioning, 
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and stored at -80°C. Embedded tissue were cut at 7um and slides were collected and stored 

at -80°C until staining.  

Sections were prewarmed at RT for few minutes and washed twice with 0,1% Tween 20 in 

Tris-Buffered Saline (TBS-T) to eliminate the residual matrix, and blocked with 5% donkey 

serum in TBS-T for one hour at RT. Primary antibody were then incubated overnight at 4°C  

(specified in Table.1). The following day, slices were washed twice with TBS-T and 

incubated for 1 hour at RT with secondary antibody (specified in Table 2) and 4’,6-

diamidino-2-phenylindole dihydrochloride (DAPI, 32670, Sigma- Aldrich) and mounted 

with Mowiol 4-88 (81381, Sigma-Aldrich). Images of back-skin were taken with Leica SP8 

confocal microscope.   

 

3.12  PROXIMITY LIGATION ASSAY 

The proximity ligation assay (PLA) is a powerful technique that enables both the 

visualization of endogenous proteins, or proteins modification, and the protein-protein 

interactions directly in situ on histological section and with high sensitivity.  With the 

collaboration of another lab member we set up the following protocol to perform this assay 

on anagen induced pure HFSCs populations.  

Anagen-induced HF were purified as described and were sorted to obtain LGR5-HFSCs 

from Ctrl and dKO mice. Collected cells were spotted on a coverslip pre-coated with Cell-

Tak (Corning) adhesive, that is composed by polyphenolic proteins extracted from marine 

mussel (Mytilus edulis), that creates a not-charged adhesion matrix suitable for PLA which, 

in turn, requires the use of charged molecules. Briefly, the correct amount of Cell Tak 

adhesive was resuspended in a sufficient volume of filtered Sodium bicarbonate 0,1M pH 8 

necessary to overlay the coverslip lied down in a 24 wells plate, incubated for 30 minutes at 

RT, then the mixture was removed, and the coverslip washed with pure water.  
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Cells were pelleted after sorting and resuspended in 300 L of sorting medium, and gently 

applied to the coated coverslip. After 4 hours at 4°C, cells were efficiently anchored to the 

matrix and were fixed with 4% PFA in PBS for 10’ at RT, washed and permeabilized with 

Triton 0.1% in PBS. Excess of permeabilization buffer were washed out with fresh PBS and 

the cells were subjected to Sigma-Aldrich PLA protocol using Duolink In Situ Orange 

Starter Kit Mouse/Rabbit. Cells were incubated with 1 drop of Duolink Blocking Solution 

for one hour at 37°C in a humidity chamber (Figure 3.2 step 1). Blocked samples were then 

subjected to specific antibodies binding (Figure 3.2 step 2), diluting both primary antibodies, 

which were raised in different animals (Ring1B-Mouse and Bmi1 or Rybp-Rabbit), together 

in Duolink Antibody diluent, as specified in Table 2, and incubating cells in humidity 

Figure 3.2 Proximity ligation assay protocol 

Schematic workflow of PLA protocol highlighting the principal steps of the technique. 
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chamber for 1hours at RT. Primary antibody solution was then removed and the samples 

were washed twice to take away any antibody trace. To detect whether two different proteins 

can interact, PLA involves the usage of PLUS and MINUS charged PLA Probes, that are 

oligonucleotides-labelled secondary antibody that when in close proximity (less than 40nm) 

can interact (Figure 3.2 step 3). The probe binding requires one-hour incubation in pre-

warmed humidity chamber at 37°C followed by two washes to eliminate the residual probes. 

If the proteins are in close proximity, so that the DNA probes can interact, during the ligation 

step (Figure 3.2 Step 4), that is carried out for 30’ at 37°C in humidity chamber, Ligase 

enzyme is able to close the loop among the two probes. After ligation step, the enzyme and 

the reaction buffer were washed out. The circular loop created by the probes is a suitable 

platform for the Polymerase to work, and the loops are amplified several times during the 

reaction, that is carried out at 37°C and last 100 minutes, incorporating in the nascent 

concatenamer fluorescent oligonucleotides that amplify the ligation signal (Figure 3.2 Step 

5). The treated coverslips were the mounted on a slide with the mounting medium added 

with DAPI, to counterstain the Nuclei. Stained samples were acquired with Leica SP8 

confocal microscope and interactions a visualized as discrete dots in the cell nuclei.  

 

3.13  HISTOLOGY  

Back skin and intestinal tissues from treated mice were collected at the indicated time points 

depending on the experimental work. Isolated samples were immediately fixed overnight at 

4°C in Formaldehyde (FA), flattened in the inclusion cassettes without overstretching the 

tissue. Tissues were then dehydrated in Ethanol solution, at increasing concentrations, to 

substitute the water present in the tissue, incubated with Xylene and included in Paraffin. 

Embedded samples were then cut with microtome at 5  m thickness, and the slices were 

subjected to Hematoxylin\Eosin Y staining. Briefly, samples were rehydrated, tissue were 

stained with Hematoxylin (Harris Hematoxylin Solution, Sigma Aldrich) for 2’ at RT and 
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coloration excess were removed with EtOH/ 0.5% HCl and were fixed, after two washes, 

with Ammonium Hydroxide 0,2% in water for 15’ at RT. Cell cytoplasm were counter 

stained with Eosin Y, and the excessive coloration were removed with 95% Ethanol in water, 

and slices were then processed with ethanol 100% and Xylene. Stained sections were then 

mounted with Eukitt (Bio-Optica) and images were acquired with either Olympus BX51 or 

Leica DM6 widefield microscopes. 

 

3.14  LINEAGE TRACING: HAIR FOLLICLE 

Our mouse model LGR5-GFP-ires-CreERT2/Ring1a-/-/Ring1bfl/fl/Rosa26Lox-stop-Lox 

LacZ, thanks to Rosa26 Lox-stop-Lox Lacz transgene allows the tracing of LGR5 stem cell 

progeny through the production of Beta-galactosidase molecule. 

Freshly prepared back-skin of treated mice, collected at the time point, indicated in the 

experimental workflow, were prefixed for 30’ at RT in PBS containing Gluteraldehyde 

0.2%, NP-40 0,02% and PFA 2%. Tissues were washed three times for 10’ with fresh PBS, 

and incubated gently shacking for 30 minutes at RT in the equilibration buffer (MgCl2 2mM, 

NP-40 0,02% and Sodium Deoxycholate 0,1% in PBS). Equilibrated back-skin was then 

stained overnight at RT with 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and 1mg/ml X-Gal (5-

bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) diluted in equilibration buffer. Cells 

that derive from stem cells in which CreERT2 was nuclear, will express beta-galactosidase, 

which in turn catalyzes the hydrolysis of X-Gal into galactose and 5-bromo-4-chloro-3-

hydoxyndolo. This latter compound is further oxidized into 5,5’-dibromo-4,4’-dichloro-

indigo, which possesses the characteristic blue color, providing a visual assay for lacZ 

activity. Stained samples were then washed abundantly in PBS at RT, and the skin were 

fixed overnight with 4% PFA in PBS before paraffin embedding, that is carried out as 

described in Histology section. Embedded tissue was cut at 5um section and rehydrated 

following the standard rehydration steps for histology, gradually decreasing the Xylene and 
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the alcohol in the tissue. Section were then counter-stained with Nuclear Fast Red solution 

for 10’ at RT under chemical hood, dehydrated and mounted. 

 

3.15  LINEAGE TRACING: INTESTINE 

Freshly recovered intestinal tissues were washed once in ice cold PBS, and prefixed for 2 

hours at 4°C in PBS containing Gluteraldehyde 0.2%, NP-40 0,02% and PFA 2%. Tissues 

were washed three times for 10’ with fresh PBS and incubated gently shacking for 30 

minutes at RT in the equilibration buffer (MgCl2 2mM, NP-40 0,02% and Sodium 

Deoxycholate 0,1% in PBS). Equilibrated intestinal tissues were stained overnight at RT 

with 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and 1mg/ml X-Gal (5-bromo-4-chloro-3-indolyl-

beta-D-galactopyranoside) diluted in equilibration buffer. The day after staining, intestinal 

tissue was abundantly washed with PBS and fixed over-night in 4% PFA. Before beginning 

the dehydration step, intestines were flattened and embedded as described in the Histology 

section.  

 

3.16  RNA-SEQUENCING 

Singlets of HFSCs, isolated from mice back-skin as previously described, were FACS-sorted 

thanks to GFP protein and collected in 0,5ml tubes, previously coated with 20% FBS in PBS. 

Cells were immediately processed in sorting tubes following Smart-seq2 protocol 

(Switching Mechanism at the 5’ end of the RNA Transcript) (Picelli, Faridani et al. 2014) 

with minor modification. This protocol is extremely useful, first because the amount of 

material needed is extremely small, compared to other RNA sequencing protocol, as it is 

designed to work with less than 1000 cells, and secondly allowing the operator to reduce the 

material waste, by coupling sample collection and processing without wash and fudge 

alternation. We collected 3000 cells per sample that were directly lysed in 2 L of Lysis 
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buffer composed of Triton X-100 0,2% and Ribonuclease inhibitor (4 U/L) in pure water. 

One microliter of each 10 mM oligo-dT30Vn and 10 mM deoxynucleotide triphosphate were 

added to the samples that were then incubated for 3’ at 72°C, to allow RNA unfolding and 

oligo annealing with the polyA end of messenger-RNA. After this step, Reverse 

Transcription coupled with Template switching was performed by adding to the sample a 

mix containing SuperScript III reverse transcriptase enzyme 100U/L (Invitrogen) and 

buffer, RNase Inhibitor 10U/L, Betaine 1M, DTT 5 mM, MgCl2 6 mM and TSO 1 M 

(Template Switching Oligo) (Fig 3.3) RT was performed following the published protocol. 

cDNA was then Pre-Amplified using KAPA taq HotStart enzyme working in High Fidelity 

buffer. To perform the Pre-amplification, 15 L of the preamplification mix (KAPA taq 

HotStart, KAPA HiFi Buffer, MgCl2 0,5 mM, dNTPs 0,3 mM, ISPCR primer 0,1 M) were 

directly added to the retro-transcribed samples and were incubated in the thermal cycler for 

14 amplification cycles following temperature of the published protocol (Fig 3.3). Samples 

were then purified with AMPure XP beads (Agencourt AMPure XP, Beckman Coulter) 

equilibrated at RT for at least 30 minutes. An equal volume of AMPure beads was added to 

pre-amplified cDNA and the mix was incubated at RT for 8’ to let the DNA binds the beads. 

Beads with DNA were immobilized with a magnet and were washed with 100 L of 80% 

Ethanol and dried for 10 minutes to remove any alcohol residue. cDNA was eluted with 20 

L of pure water and eventually stored at -20°C.  Eluted cDNA was quantified with Qubit 

colorimetric quantitation assay (Thermo Fisher Scientific, Q32854), and the quality was 

checked with High-sensitivity DNA assay of Bioanalyzer instrument (Invitrogen). Poor 

quality cDNA, presenting short DNA fragments at the Bioanalyzer, possibly derived from 

degraded RNA and was discarded. 2 nanograms of good quality pre-amplified cDNA were 

used for fragmentation reaction (Tagmentation) and library preparation (Fig 3.3). Smart-seq 

protocol enables DNA cutting and the ligation of adapters, needed for amplification of the 

library and the sequencing, at the same time. cDNA was tagmented with 100 ng of 
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homemade Tn5 enzyme pre-annealed with A/B-MEDS (Mosaic End Double-Stranded) 

oligonucleotides in working buffer containing TAPS-NaOH pH 8.5 5mM , PEG 8000 8%for 

5 minutes at 55°C. Immediately after tagmentation reaction, the samples were put in ice to 

inhibit the enzyme that were further stripped 5’ at RT with 5 l of SDS 0,2%. Enzyme and 

buffer were removed by a quick AMPure purification (AMPure beads 1:1 ratio, 8’ at RT for 

Figure 3.3 SMART-Seq2 library preparation protocol  

Brief and schematic workflow of SMART-seq2 protocol highlighting the principal steps for 

library preparation.  Figure from (Picelli, Faridani et al. 2014).  
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DNA binding, 5’ on the magnet (flow-through were discarded), 17,75 L of pure water for 

DNA elution).  PCR mix (KAPA HiFi buffer, KAPA Taq HotStart, dNTPs 0,3mM, Ad1 

Primer (i5 primer for Illumina sequencing Without Barcode) 2 M and Ad2.X Primer 2 M 

(i7 primer for Illumina sequencing containing different Barcodes) were directly added to the 

eluted tagmented DNA and were amplified following the program: 72°C 3’, 98°C 30’’, 14 

cycles of  three steps amplification 98°C 10’, 62°C 30’’, 72°C 30’’, followed by the final 

elongation at 72°C for 5’. Amplified library DNA were then purified with AMPure, as for 

the pre-amplification step, quantified by Qubit and the quality was checked with High-

sensitivity DNA assay for Bioanalyzer. Libraries that showed enrichment of DNA fragments 

that span around 200 and 800 bp length, were then sequenced using Illumina HiSeq 2000.    

 

3.17  RNA SEQUENCING ANALYSES 

The RNA sequencing analyses were performed by a bioinformatic of the lab. Reads were 

aligned to the mouse reference genome mm9 using TopHat v2.1.1 (Trapnell, Pachter et al. 

2009) with parameters --no-coverage-search and --library-type-fr-unstranded.  PCR 

duplicates were removed using Picard tool from Broad Institute 

(http://broadinstitute.github.io/picard/).  

Gene counts were calculated using HTSeq-count v0.8.0 (Anders, Pyl et al. 2015) with 

parameters --stranded=no --mode=intersection-nonempty using RefSeq mm9 annotation 

downloaded from the University of California, Santa Cruz (USCS genome browser). 

Differential expression analyses were carried out using R package DESeq2 v1.20 (Love, 

Huber et al. 2014) using default parameters. Genes with an absolute log2(fold change) of 1 

and false discovery rate of <0.1 were considered ad Differentially expressed and used for 

analyses. Gene enrichment analyses on down- and up- regulated genes were performed using 

DAVID 6.8 online tool (Huang da, Sherman et al. 2009). Pre-ranked Gene Set Enrichment 

Analyses (GSEA) (Subramanian, Tamayo et al. 2005) were performed using gene lists 

http://broadinstitute.github.io/picard/
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(Signature Gene Lists) from multiple skin cell population obtained from (Rezza, Wang et al. 

2016). The analysis was performed using default parameters (weighted as enrichment 

statistic) and ranking the input gene list using log2(fold change) data obtained from DESeq2. 

To assess the expression of differentially expressed genes in dKO vs Ctrl HFSC in other 

mouse tissues, we used public RNA-seq data (Bam Files) deposited by ENCODE at 

https://hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicreRnaSeq/. 

Bam files were processed with the pipeline described previously and RPKM (Read Per 

Kilobases of Million Mapped Reads) data were normalized with the function 

normalize.quantiles() from R package processCore 

(https://github.com/bmbolstad/preprocessCore). 

 

3.18  CHIP SEQUENCING 

LGR5 expressing HFSCs from anagen synchronized Ctrl mice were purified as described in 

“Hair follicle purification” and sorted for GFP expression. Intestinal cells were purified as 

described in “Crypts purification” and sorted for GFP expression in order to isolate only 

LGR5 stem cells. A total of 2.5 millions of sorted cells were used for each Chromatin 

Immuno-Precipitation (ChIP) and were crosslinked with 1% FA for 10’ at RT followed by 

5’ incubation with Glycine 0.125 M. Cells were then pelleted and resuspended in IP buffer 

( NaCl 100 mM, Tris-HCl pH8.6 100 mM, EDTA pH8.0 5 mM, NaN3 0.2%, SDS 0.3% 

Triton X-100 1,7%). 

Cells were lysed 20’ in ice, and then sonicated to brake DNA by Branson sonicator with 

10% of amplitude for 30’ for 4 times with 1-minute rest to preserve sample’s integrity.  

Sonicated cells were then pelleted, and the supernatant is used for immunoprecipitation. The 

correct amount of Antibody (listed in Table 1) was added to the lysate, and the IPs were 

performed over-night. The day after, the immunocomplexes were recovered with protein A-

https://hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicreRnaSeq/
https://github.com/bmbolstad/preprocessCore
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conjugated magnetic beads (Dynabeads,Life Technoligies) at 4°C for 3 hours rocking, and 

then washed 5 times with washing buffer containing 150 mM salt, and once with 500 mM 

salt (NaCl 150 or 500 mM, Tris-HCl pH 8.0 20 mM, EDTA pH 8.0 2 mM, SDS 0,1%, Triton 

X-100 1%). Samples were decrosslinked overnight in NaHCO3 0.1 M and SDS 1% at 65°C 

shacking. Decrosslinked DNA was purified with PCR purification Kit from Qiagen and 

sequenced with Illumina HiSeq2000.   

ChIP performed in crypts was carried out on 500/1000 g of total chromatin, following the 

same protocol as previously reported, but Protein A sepharose beads were used instead of 

the magnetic ones.  

 

3.19. CHIP SEQUENCING ANALYSES 

The ChIP sequencing analyses were performed by a bioinformatic of the lab. Sequenced 

reads were aligned to mouse reference genome mm9 using Bowtie v1.2.2 (Langmead, 

Trapnell et al. 2009) with default parameters and not allowing multimapping (-m1). PCR 

duplicates were removed using Picard tool (http://broadinstitute.github.io/picard/), and 

peaks were called using MACS2 v2.1.1 (Zhang, Liu et al. 2008) with parameters –g-mm –

nomodel –p 1e10 –B. 

Genomic peaks annotation was performed using R package ChIPpeakAnno v3.15 (Zhu, 

Gazin et al. 2010), considering the promoter region major or equal to 2.5kb around TSS 

(Transcription start site). Overlaps of ChIP-seq targets were performed as following: Genes 

with peaks in their promoter regions (+/- 2.5kb around TSS) were considered as targets. 

Then, the overlap between target gene lists were performed using the R package 

VennDiagram v1.6.20 (Chen and Boutros 2011). For heatmap representation of ChIP-seq 

signals, bigwig files, subtracted by input signal, were generated using function bamCompare 

from deepTools 2.0 (Ramirez, Ryan et al. 2016) with parameters –ratio subtract –bs 30 –

http://broadinstitute.github.io/picard/
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extendReads200. To normalize for differences in sample library size, a scaling factor for 

each sample was calculated as (1/total mapped reads) x 1 milion, and applied during bigwig 

file generation with the parameter –scaleFactors from bamCompare.  

RING1B ChIP-seq targets were clustered in four groups according to their RPKM 

expression in Ctrl mice using the dplyr function ntile(). Tracks for H3K27me3 from ISC and 

HFSCs were obtained from (Chiacchiera, Rossi et al. 2016, Chiacchiera, Rossi et al. 2016)  

and (Lien, Guo et al. 2011) respectively, and processed with the pipeline described 

previously. 

  

3.20  ANTIBODIES 

Table 1 Primary antibody list 

Name  FACS IF PLA ChIP WB 

H2AK119 
D27C4, Cell 

Signaling 

1:600 

1h30’ RT 

1:100 o/n 

4°C 
\\ 10g \\ 

RING1B Home made \\ 
1:100 o/n 

4°C 
1:100 10g \\ 

PCGF4 Home made \\ \\ 1:100 10g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 

DEDAF/RYBP 
AB3637, 

Millipore 
\\ \\ 1:100 10g \\ 

CBX8 Home made \\ \\ \\ 10g \\ 

H3K4Me3 
39159, Active 

Motif 
\\ \\ \\ 5g \\ 

PCGF1 Home Made \\ \\ \\ 5g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 

PCGF2 Home Made \\ \\ \\ 5g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 
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PCGF3 Home Made \\ \\ \\ 5g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 

PCGF5 Home Made \\ \\ \\ 5g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 

PCGF6 Home Made \\ \\ \\ 5g 

1:1000; 5% milk 

in TBS\T; Rabbit; 

o/n 4°C 

Vinculin 
V9131-.2ML, 

Sigma Aldrich 
\\ \\ \\ \\ 

1:20000; 5% milk 

in TBS\T; Mouse; 

o/n 4°C 

 

Table 2 Secondary antibody list 

Name  FACS IF PLA WB 

Alexa 647 

705-605-147 Alexa 

Fluor 647 

AffiniPure, Jackson 

ImmunoResearch 

1:400 30’ RT \\ \\ \\ 

CY3 

715-165-147 Cy3 

AffiniPure, Jackson 

ImmunoResearch 

\\ 1:400 1h RT \\ \\ 

Rabbit PLUS 

probe 

Duolink, Sigma-

Aldrich 
\\ \\ 5x \\ 

Mouse MINUS 

probe 

Duolink, Sigma-

Aldrich 
\\ \\ 5x 

\\ 

 

Anti Rabbit 

Agilent 

Technologies Italia 

S.p.a 

\\ \\ \\ 
1:5000 

Milk 5% TBS\T 

Anti Mouse 

Agilent 

Technologies Italia 

S.p.a 

\\ \\ \\ 
1:5000 

Milk 5% TBS\T 

 

3.21  PRIMERS 

Primers were designed with Primer3 Plus or Primer Blast with the following parameters: 

Amplicon length 100-150 bp; Primer size: 18-23; Primer Tm: 57°C -63°C; designed on two 

different exons, in order to avoid genomic recognition.  
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Table 3 List of qPCR primers 

Primer name Sequence 

PCGF1 Fw GGCTGAGTTCTGGCAAAGAC 

PCGF1 Rv GGAGCTGTACATGCTGTGGA 

PCGF2 Fw AATCACGGAGCTGAACCCTC 

PCGF2 Rv AGCGTACGATGCAGGTTTTG 

PCGF3 Fw TCCAGAGGAGAAGCCAAAGA 

PCGF3 Rv ACTGTGGTTGCGTCAATGAG 

PCGF4 Fw TGTCCAGGTTCACAAAACCA 

PCGF4 Rv CGGGTGAGCTGCATAAAAAT 

PCGF5 Fw CTGATCAAGCCCACGACAGT 

PCGF5 Rv TGAACTTGGTTGCCACACCT 

PCGF6 Fw TCCACCAGACTCAGCCTCTT 

PCGF6 Rv GGCTTGGGGACTTCTAGACC 

TBP Fw TGGAGATCACAACAGCCAAA 

TBP Rv CTTCTTCCGTTTTCCAGGTG 

Rplp0 Fw TTCATTGTGGGAGCAGAC 

Rplp0 Rv CAGCAGTTTCTCCAGAGC 
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4. RESULTS 

 

4.1  HAIR FOLLICLE REGENERATION REQUIRES PRC1-

DEPENDENT H2AK119UB1. 

PRC1 is a well-established regulator of lineage identity in embryonic stem cells (Morey and 

Helin 2010) and recently we described a fundamental role in adult Intestinal Stem Cells 

maintenance (ISC) (Chiacchiera, Rossi et al. 2016). However, nothing is known about PRC1 

functions in other adult tissue homeostasis. Indeed, our goal was to unveil whether PRC1 

role and function is conserved among different adult stem cells or not. We took advantage 

of the mouse models LGR5-GFP-ires-CreERT2/Rosa26Lox-stop-Lox LacZ (hereof 

Ring1a/b ctrl after tamoxifen administration) and LGR5-GFP-ires-CreERT2/Ring1a-/-

/Ring1bfl/fl/Rosa26Lox-stop-LoxLacZ (hereof Ring1a/b dKO after tamoxifen 

administration) that was previously generated in our laboratory. This mouse model expresses 

both GFP and Cre-recombinase under the control of the LGR5 promoter, enabling the 

visualization and the excision of LoxP sites only in stem cells expressing LGR5 marker. Our 

mouse model was further crossed with the LacZ reporter gene whose expression is enabled 

only in cells where the Cre-recombinase enzyme is nuclear and active, tracing in this case 

LGR5 stem cells their progeny. Furthermore, our LGR5-GFP-ires-CreERT2/Ring1a-/-

/Ring1bfl/fl/Rosa26Lox-stop-LoxLacZ mice are straight Knock-Out (KO) for Ring1a gene 

and possess homozygous-floxable alleles for the Ring1b gene allowing for the complete loss 

of PRC1 functionality through the inactivation of the two catalytic subunits of the complex 

(Fig 3.1, Materials and Method).  

Due to the reported redundancy of Ring1a and Ring1b (del Mar Lorente, Marcos-Gutierrez 

et al. 2000; de Napoles, Mermoud et al. 2004; Roman-Trufero, Mendez-Gomez et al. 2009), 

we directly investigated the dKO mice. Moreover, during development and through adult 
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life, until tamoxifen injection, our mouse model, LGR5-GFP-ires-CreERT2/Ring1a-/-

/Ring1bfl/fl/Rosa26Lox-stop-LoxLacZ do not show any severe impairment in hair follicle 

morphogenesis and regeneration, as demonstrated by their ability to maintain the fur, 

suggesting that the deletion of Ring1a catalytic subunit does not affect the hair cycle. 

 

The LGR5 transgene is expressed in Hair Follicle (HF) in a long-lived stem cell 

subpopulation that is actively cycling during hair regeneration. In the non-proliferative stage 

of the hair cycle, LGR5 stem cells are located at the base of the HFs in the secondary hair 

germ and in the lower part of the bulge region. During regeneration, LGR5-HFSCs expand 

downward generating a single cell layer called Outer Root Sheat (ORS) and giving rise to 

Transient Amplifying matrix-cells (TAC) (Jaks, Barker et al. 2008) that will further 

differentiate in all hair structures. We use the described genetic model to acutely abrogate 

Figure 4.1 H2AK119 ubiquitin loss upon PRC1 activity abrogation 

A) Immunofluorescence analyses of hair follicle in Ring1a/b ctrl and dKO 

condition, showing the loss of H2AK119Ub1 modification in PRC1 

depleted mice. Green: GFP expressed by LGR5-HFSCs; Red: 

H2AK119Ub1; Blue: DAPI 

B) Quantification of the percentage of GFP-H2AK119Ub1 double positive 

cells on total GFP cells in HFs of both ctrl and dKO mice.  

P value was calculated with a two-side t test. Box plot graphs were generated with 

Prism software. 
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PRC1 activity in 8-12 weeks old, sex-matched mice in LGR5-HFSC. We treated the mice 

with 4 daily IP injection of Tamoxifen, to induce Cre-recombinase nuclear localization and 

function, and we were able to obtain a great loss of PRC1 activity, as demonstrated by the 

loss of the H2AK119Ub1 histone mark in GFP+ cells of telogen HFs (Fig 4.1A, B), proving 

that our system works.  

Mice fur is maintained during the entire lifespan by HF regeneration. This process is 

regulated in a synchronous way during the first 10 to 11 weeks of age, however, after a long 

telogen (resting) phase the hair follicle start to gradually lose their synchrony without 

affecting their regenerating capabilities (Paus, Muller-Rover et al. 1999, Muller-Rover, 

Handjiski et al. 2001, Jaks, Barker et al. 2008). In order to investigate the role of PRC1 in 

adult LGR5-HFSCs in the process of HF regeneration we forced re-synchronization by 

means of follicle plucking. HF removing starts a signaling cascade that rapidly and 

synchronously induces cells to start cycling and to proliferate, thus entering the anagen phase 

Figure 4.2 PRC1 depletion severely affect hair follicle regeneraion 

A) Schematic representation of PRC1 depletion and anagen induction protocol. Mice 

back-skins were recovered at 12 days post wax. TAM: Tamoxifen  

B) Image showing mice back-skin at day 0 (post wax) and at the end of the 

experimental work, showing hair follicle regeneration impairment in dKO 

compared to ctrl mice. 

C) In vivo lineage tracing of LGR5-HFSCs progeny. Tissues were stained with X-

Gal. Wholemount images were taken before paraffin embedding and the obtained 

section were counterstained with neutral red.  
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(Muller-Rover, Handjiski et al. 2001). In order to abrogate PRC1 activity in the very first 

phases of HF regeneration, to explore its function in telogen to anagen transition, we 

administered Tamoxifen via IP injection in adult mice 1 day before waxing the back skin 

(Fig 4.2A) and we recovered it after 12 days from hair removal.  

 

Ctrl mice completely regenerate the hairs (Fig 4.2B, top panels), while in the absence of 

PRC1 activity, dKO mice presented severe defects in hair follicle regeneration (Fig 4.2B, 

bottom panel) showing a delayed hair follicle cycle.  

With the aim to better characterize this delayed hair growth phenotype we performed the 

same experiment following in this case the HFSCs progeny (lacZ positive staining) in 

presence or absence of PRC1 complexes. Our mouse model expresses the Rosa26-Lox-

STOP-Lox LacZ construct in all cells of the body, however LacZ production is inhibited by 

a STOP codon upstream to the gene, so that its expression is restrained only in cells where 

Cre-recombinase efficiently floxed the LoxP sites of the transgene. In our model, only LGR5 

expressing cells produce the enzyme, therefore leading to the expression of lacZ gene in 

stem cells and all their derived progeny. Indeed, chemical retrieval of beta-galactosidase 

allows the visualization of cell populations derived from floxed stem cells. Lineage tracing 

analyses further confirm our result and 12 days after waxing we obtained a marked reduction 

of the number of beta-galactosidase expressing HFs in Ring1a/b dKO animals, suggesting 

that the remaining hair growth is derived from wild-type HFs (Fig 4.2C). 

 

4.2 PRC1 LOSS AFFECTS HAIR FOLLICLE CYCLE AND ANAGEN 

ONSET  

With this first experiment, we showed that PRC1 loss is able to severely affect hair follicle 

regeneration process and anagen progression. To further characterize PRC1 activity in adult 
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HFs maintenance, we took advantage of different hair follicle cycles taking place during 

mouse life. Murine fur undergoes two synchronous proliferative boosts in the first 7 weeks 

of life, the morphogenesis and the first hair cycle. After these two proliferative events, HFs 

encounter a long resting phase, called the “long telogen” phase, that can last up to 4 weeks 

(Muller-Rover, Handjiski et al. 2001, Jaks, Barker et al. 2008). At the end of this long 

quiescent phase hair follicle start to regenerate in an asynchronous way. With the aim to 

elucidate whether PRC1 activity is necessary for entering into or to progress through the 

anagen phase we induced Cre-mediated recombination, with 4 consecutive tamoxifen IP 

injection, during long telogen phase at P49 (post-delivery day 49) in order to reach PRC1 

depletion when all HFs are in their resting phase. After two weeks from tamoxifen delivery 

we induce anagen in order to synchronize HFs entering in proliferative phase of the cycle 

and we recovered the mice back-skin at either 8 days and 12 days post-waxing to perform 

histological analyses and lineage tracing staining to follow stem cell progeny fate (Fig 4.3). 

8 days after waxing, we observed a substantial delay in hair growth of Ring1a/b dKO mice 

compared to ctrl (Fig 4.4A). It is reported that, during HFs regeneration, C57bl/6 mice back-

skin full of proliferative follicles becomes darker, due to the strict coupling of hair cycle 

progression and follicular melanogenesis (Slominski, Paus et al. 1991, Muller-Rover, 

Figure 4.3 Hair follicle cycles in mouse 

Schematic representation of the experiment. The temporal bar shows HFs 

morphogenesis, first telogen and first anagen, which are synchronized. At day P49 

(post-delivery) all follicles are in long telogen phase and PRC1activity were abrogated 

with 4 intraperitoneal injection of Tamoxifen (TAM). After 2 weeks anagen were 

induced by waxing mice back-skin and samples were recovered at both 8- and 12-days 

post wax and processed for IHC and Lineage tracing analyses.  
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Handjiski et al. 2001) (Fig 4.4A). While ctrl mice back-skin presented a grey black color 

(Fig 4.4A left image), at this time point, Ring1a/b dKO still remains pink, suggesting that 

follicles are at earlier anagen phases compared to PRC1 proficient mice. 

This delayed phenotype is further confirmed by histological analyses showing an altered 

morphology of hair follicle in Ring1a/b dKO mice (Fig 4.4B).  

Detailed observation of histological section reveals that Ring1a/b dKO mice shows shorter 

HFs (Fig 4.4B, top panel and Fig 4.5A), with a morphology that, according to the Müller-

Röver et al., classification (Muller-Rover, Handjiski et al. 2001) seems to be blocked in the 

early anagen phases (I and IIIA) compared to ctrl HFs. Moreover, at 8 days post waxing the 

total number of beta-galactosidase positive HFs are strongly reduced in Ring1a/b dKOs (Fig 

Figure 4.4 PRC1 is required for anagen onset and progression  

A) Picture showing defective HF regrowth in Ring1a/b dKO mice compared to 

ctrl mice after 8 days from anagen induction.  

B) Top panel: Hematoxylin/Eosin Y staining of paraffin embedded tissue from 

ctrl and dKO mice showing the drastic changes in HF morphology upon PRC1 

depletion. 

Bottom panel: back-skin from Ring1a/b ctrl and dKO mice were stained with 

X-gal prior paraffin embedding. Slices were counterstained with neutral red. 

Pictures shows the loss of LacZ staining in dKO mice compared to ctrl mice. 

Mice were treated as described in Figure 4.3 and back-skin was recovered at 8d post wax. 

Scale bars 250 m.  
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4.4B, bottom panel and Fig 4.5B). Since LacZ is expressed in stem cell progeny, this staining 

defect suggested an impairment of LGR5-HFSCs proliferation. 

Several different layers constitute the skin. Under the epidermal tissue, the presence of 

hypodermal fat guarantees thermal isolation, functions as an energy reservoir and plays a 

role in mechanical protection and skin wound healing (Rosen and Spiegelman 2014). In the 

process of HFs regeneration it is well established that the hypodermal adipocyte layer 

fluctuates in thickness according to the different stages of hair cycle (Muller-Rover, 

Handjiski et al. 2001, Festa, Fretz et al. 2011, Foster, Nicu et al. 2018), and in particular this 

specialized tissue increases during anagen phase and reduces throughout catagen to reach a 

resting phase until a new hair cycle begins. Looking at histological sections, it is evident that 

Ring1a/b dKOs display a clear imbalance between hypodermis fat (Fig 4.5C) and dermis 

thickness (Fig 4.5D) despite the skin having a similar width among ctrl and dKOs conditions 

(Fig 4.5E), reinforcing the evidence that PRC1 loss severely affects HF regeneration.     

Figure 4.5 Measurement of HFs length and tissue morphology 8 days post wax  

A) Quantification of hair follicle length after 8 days from anagen induction. 

Measurements were taken with ImageJ software from the bulb base to the 

surface-exposure of follicular channel. 

B) Quantification of beta-gal positive follicles in Ring1a/b ctrl and dKO mice after 

8 days from anagen induction.  

C) Quantification of hypodermal fat. Measurements were taken with ImageJ 

software from the lowest part of the dermis to the panniculus carnosus. 

D) Quantification of dermal height in Ring1a/b ctrl and dKO mice. Measurement 

were calculated with ImageJ software from the upper part of the subcutis to the 

lowest part of epidermis.  

E) Total sections heights were measured from the lowest part of the subcutis to the 

upper part of the dermal compartment.  

All p-values were calculated with two side t test. N.s., not significant. Box plot graphs 

were generated with Prism software. 



 92 

This phenotype was confirmed and more evident 12 days after waxing when Ring1a/b ctrl 

mice fully regenerate the fur, while dKO mice failed to correctly progress through HF 

proliferative phase, resulting in a severe hair regeneration delay (Fig 4.6A). 

Hematoxylin/eosin staining highlights drastic morphological HFs defects that ultimately 

results in defective regeneration (Fig 4.6B top). According to Müller-Röver et al. 

classification (Muller-Rover, Handjiski et al. 2001), Ring1a/b ctrl mice showed all features 

of full anagen follicles (anagen phase VI) (Fig 4.6B), while Ring1a/b dKO still resembled 

primary stages of anagen follicles and they seems to be slowly proceeding to anagen phases 

II and III (Fig 4.6B).  

Lineage tracing experiments on mouse back-skin 12 days after anagen induction revealed a 

marked reduction in Ring1a/b dKO of LGR5-HFSCs derived progeny, as demonstrated by 

the severe loss of beta-galactosidase staining compared to Ring1a/b ctrl mice (Fig 4.6B, 

bottom panel and Fig 4.7A). Consistently with 8 days post waxing, hair follicles showed 

Figure 4.6 PRC1 is required for anagen onset and progression  

A) Picture showing defective HF regrowth in Ring1a/b dKO mice compared to ctrl 

mice after 12 days from anagen induction.  

B) Top panel: Hematoxylin/Eosin Y staining of paraffin embedded tissue from ctrl 

and dKO mice showing the drastic changes in HF morphology upon PRC1 

depletion. 

Bottom panel: back-skin from Ring1a/b ctrl and dKO mice were stained with X-

gal prior paraffin embedding. Slices were counterstained with neutral red. Pictures 

shows the loss of LacZ staining in dKO mice compared to ctrl mice.    

Mice were treated as described in Figure 4.3 and back-skin were recovered at 12d post wax. 

Scale bars 250 m.  
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reduced follicle length (Fig 4.7B) as well as for the imbalance among hypodermis and dermis 

Figure 4.7 Measurement of HFs length and tissue morphology 12 days post wax  

A) Quantification of beta-gal positive follicles in Ring1a/b ctrl and dKO mice after 12 

days from anagen induction. 

B) Quantification of hair follicle length after 12 days from anagen induction. 

Measurements were taken with ImageJ software from the bulb base to the surface-

exposure of follicular channel. 

C) Quantification of hypodermal fat. Measurements were taken with ImageJ software 

from the lowest part of the dermis to the panniculus carnosus. 

D) Quantification of dermal height in Ring1a/b ctrl and dKO mice. Measurement were 

calculated with ImageJ software from the upper part of the subcutis to the lowest part 

of epidermis.  

E) Total section heights were measured from the lowest part of the subcutis to the upper 

part of the dermal compartment.      

All p-values were calculated with two side t test. N.s., not significant. Box plot graphs were 

generated with Prism software. 

 

Figure 4.8 PRC1 dKO impairs HFs progression during anagen 

A) Quantification of hair follicle length after 8 and 12 days from anagen induction. 

Measurements were taken with ImageJ software from the bulb base to the surface-

exposure of follicular channel. Red line indicates the increase in hair follicle length in 

Ring1a/b ctrl and dKO mice. 

B) Quantification of total section height in Ring1a/b ctrl and dKO condition showing no 

differences in skin thickness. 

C) Quantification of hypodermal fat. Measurements were taken with ImageJ software 

from the lowest part of the dermis to the panniculus carnosus. Red line indicates the 

increase in hair follicle length in Ring1a/b ctrl and dKO mice. 

D) Quantification of HF number per mm in Ring1a/b ctrl and dKO mice showing that 

PRC1 depleted mice display a reduced number of follicles.  

All p-values were calculated with two side t test. N.s., not significant. Box plot graph were 

extrapolated with Prism software. 
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(Fig 4.7C-D). 

 Comparing 8 and 12 days, it is clear that the differences of follicle length (Fig 4.8A) and 

dermis-hypodermis thickness unbalance are further increased (Fig 4.8B-C) during time, with 

a similar reduction in the number of HFs (Fig 4.8D). Taken together these data suggest that, 

rather than impair anagen entry, PRC1 activity loss severely affects the regenerative 

potential of LGR5-HFSCs and anagen progression.    

 

4.3  CONSERVED PRC1-REPRESSED TRANSCRIPTIONAL 

PROGRAMS ARE REQUIRED TO MAINTAIN HFSCs AND ISCs.    

These newly obtained data suggests that PRC1 loss in HFSCs induces similar phenotypic 

outcomes that was previously generated and observed by our lab in Intestinal Stem Cells 

(ISCs) (Chiacchiera, Rossi et al. 2016). With the aims to better define whether PRC1 loss of 

activity leads to an analogous phenotype through similar or different processes, we decided 

to deeper investigate the molecular effects of Ring1a/b dKO in two stem cells population 

that shares different common features despite arising from different embryonic layers (de 

Santa Barbara, van den Brink et al. 2003, Liu, Zhang et al. 2013). Even though ISC 

continuously regenerate the tissue while LGR5-HFSCs encounter cycles of proliferation and 

resting, both stem cell population are characterized by LGR5 receptor and rapidly divides to 

regenerate the tissue during their own proliferative phase, providing a perfect tool to study 

PRC1 mechanism in different context.  

To investigate the transcriptional changes induced by PRC1 loss of function in anagen-

activated LGR5 expressing stem cells, we collected both Ring1a/b ctrl and dKO mice back-

skins 8 days after hair plucking (Fig 4.9A). HFs were isolated from the tissue, reduced to 

single cells and 3000 LGR5-HFSCs per sample were isolated by Fluorescence Activated 

Cell Sorting (FACS), thanks to LGR5-GFP expression. The remaining sample was stained 
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for H2AK119Ub1 PRC1 mark and analyzed by FACS, demonstrating that tamoxifen 

treatment results in >70% loss of PRC1 activity in LGR5 expressing cells (Fig 4.9B).  

 Sorted cells were processed with SMART-seq2 (Switching Mechanism at the 5’ end of the 

RNA Transcript) protocol to perform RNA sequencing. This protocol published by Picelli 

et al in 2014 (Picelli, Faridani et al. 2014) allows us to perform RNA-sequencing starting 

from low material amount, performing the Retro-transcription step directly in lysed cells, 

minimizing the steps critical for material waste. The library was obtained with transposase 

5 that simultaneously cuts the amplified cDNA and adds two DNA primers for sequencing 

Figure 4.9 PRC1 loss induce a massive gene upregulation 

A) Schematic view of the experimental procedure to induce anagen and perform 

PRC1 ablation in HFSCs. Mice back skins were recovered after 8 days from 

anagen induction. 

B) Quantification of GFP-H2AK119Ub1 positive cells in Ring1a/b ctrl and dKO 

HFs. Single cell suspension was stained with H2AK119Ub1 antibody and 

analyzed by FACS.  

C) Correlation plot of RPKM values of detected genes from two independent 

biological replicates of Ring1a/b ctrl samples. 

D) Correlation plot of RPKM values of detected genes from two independent 

biological replicates of Ring1a/b dKO samples. 

E) Volcano plot showing deregulated genes in Ring1a/b dKO vs ctrl cells. (tresholds: 

p-value < 0.05, absolute log2(fold change)>1). 
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index addition. In order to minimize the biological variance among different mice, we 

purified and processed 2 independent biological replicates for Ring1a/b ctrl and dKO mice 

and both the replicates correlated well (Fig 4.9C and D).   

Consistently with the general role of PRC1 complex as transcriptional repressor, RNA-seq 

analyses revealed a >5-fold bias in genes up-regulation (1066 up-regulated genes versus only 

187 down-regulated genes) also in HFSCs compartment (Fig 4.9E). To elucidate which 

category of transcript was mostly affected by PRC1 loss, we first analyzed the Differentially 

Expressed Genes (DEG) with David Tool (Huang da, Sherman et al. 2009) to obtain the list 

of deregulated processes and pathways in our samples.  

Gene ontology analyses (GO) on upregulated genes revealed that they are associated with 

general developmental processes (Fig 4.10A) such as multicellular organism development 

and embryonic limb morphogenesis that are linked to PRC1 classical function during 

Figure 4.10 PRC1 loss induces upregulation of developmental genes and 

downregulation of lineage-related ones 

A) GO-term analyses of upregulated genes in Ring1a/b dKO HFSCs compared to ctrl. 

Top: Bar plot shows the genes-related pathways affected upon PRC1 depletion. 

Bottom: representative genomic view of RNA-seq tracks for one upregulated gene. 

B) GO-term analyses of downregulated genes in Ring1a/b dKO HFSCs compared to ctrl. 

Top: Bar plot shows the genes-related pathways affected upon PRC1 depletion. 

Bottom: representative genomic view of RNA-seq tracks for one upregulated gene. 
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development, such as IGF2 (Fig 4.10A bottom panel) and some HOX clusters genes. In 

contrast, down-regulated genes were specifically enriched for hair follicle morphogenesis 

and hair follicles related processes (Fig 4.10B). Among these down-regulated mRNAs we 

found the Sonic Hedgehog gene (SHH) (Fig 4.10B bottom panel) that is a well know 

regulator of HF anagen promotion and progression (St-Jacques, Dassule et al. 1998, Hsu, Li 

et al. 2014). SHH is upregulated in LGR5 and LGR5-derived matrix cells and is necessary 

to progress through anagen (Greco, Chen et al. 2009, Zhang, Tomann et al. 2009, Rompolas, 

Figure 4.11 PRC1 loss induces deregulation of non-lineage specific homeobox TFs 

A) GO-term analyses of upregulated genes in Ring1a/b dKO compared to ctrl. Bar plot 

shows the class of genes affected upon PRC1 depletion.   

B) Box plot showing the expression of downregulated (top panel) and upregulated genes 

(bottom panel), in Ring1a/b dKO compared to ctrl, among different tissues, organs and 

cell lines, showing that downregulated genes are specific for HFSCs while upregulated 

genes are already expressed in several different cell types.  
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Mesa et al. 2013) Its downregulation is in line with our block in the early phases of anagen, 

where matrix cells are emerging from LGR5-HFSCs, providing a possible explanation for 

the proliferative arrest of Ring1a/b dKOs HFs.  

Functional annotation analyses further revealed that DNA binding TFs, in particular 

homeotic and development-related transcription factors, were enriched in Ring1a/b dKO up-

regulated genes (Fig 4.11A) suggesting a massive deregulation of different TFs involved in 

developmental processes. To investigate whether these deregulated transcripts belong to 

specific tissues or were expressed in various compartments we decided to compare 

transcriptional data obtained from several different tissues (ENCODE) with up- or down- 

regulated genes in our LGR5-HFSCs. Ring1a/b dKO down-regulated genes (Fig 4.11B, top 

panel) are primarily expressed (Dark green box) in HFSCs compared to other tissues (White 

boxes), further confirming that down-regulated genes were essential to maintain HFSC 

identity.  

In contrast, upregulated genes, that were lowly expressed in HFCS ctrl cells (Dark green 

box), were already expressed in many tissue types, highlighting that loss of PRC1 activity 

results in massive upregulation of non-lineage-specific genes.     

In agreement with our previous finding obtained in ISCs (Chiacchiera, Rossi et al. 2016), 

these data strongly support a central role of PRC1 in maintaining lineage identity in stem 

cells of adult tissues.  

However, whether this involves common or specific mechanism still remains an open 

question.  

To elucidate this mechanism, we searched for common classes of genes that could be 

potentially involved in the regulation and the maintenance of lineage identity in ISCs and 

HFSCs upon PRC1 inactivation.    
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We compared RNA-seq profiles in adult LGR5 stem cells from intestine and anagen HFs 

and we found that none of the downregulated genes were in common between the two 

populations, in accordance with the role of these genes in maintaining the distinct identity 

Figure 4.13 PRC1 dKO upregulates development-related TFs 

A) Genomic snapshots of ZIC1, ZIC4 and ZIC5 showing RING1B binding and the gene 

transcription upon PRC1 depletion. 

B) Genomic snapshots of SOX7, HOXA10 and HOXB13 showing RING1B binding and the 

gene transcription upon PRC1 depletion. 

Figure 4.12 Common upregulated genes are development related genes 

A) Venn-diagram showing the overlap of downregulated genes, upon PRC1 loss 

of activity, among LGR5-HFSCs and ISCs.  

B) Venn-diagram showing the overlap of upregulated genes, upon PRC1 loss of 

activity, among LGR5-HFSCs and ISCs. 

C) GO-term analyses of common upregulated genes (255genes) between LGR5-

HFSCs and ISCs showing their role in development and differentiation.  
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of the two different stem cell populations (Fig 4.12A). On the contrary, we found that among 

the up-regulated genes (Fig 4.12B), approximately one-fourth (255 genes) are common 

between ISCs and HFSCs.  We performed a GO-term analyses of this common set of genes 

and they result to be for the vast majority homeobox containing TFs related to the regulation 

of developmental processes (Fig 4.12C). Among these genes we found several ZIC (zinc 

finger protein of cerebellum) TFs, such as Zic1, Zic4 and Zic5 (Fig 4.13A), as well as Sox7, 

Hoxa10 and Hoxb13 (Fig 4.13B), that are known regulators of development in several 

different tissues (Grinberg and Millen 2005, Mallo and Alonso 2013). These data suggest 

that PRC1 is able to repress and to prevent the activation of common non-lineage specific 

homeobox-containing TFs in different stem cells populations.  

 

4.4 PRC1 GUARANTEES STEM CELL IDENTITY MAINTENANCE 

BY REPRESSING A SUBSET OF CANONICAL PRC1 TARGETS.  

Two major classes of PRC1 have been recently described (Gao, Zhang et al. 2012), based 

on their biochemical composition. PRC1 complexes core contains RING1A or RING1B and 

one out of six mammalian Polycomb Group Ring Finger Protein (PCGF) (Gao, Zhang et al. 

Figure 4.14 different PRC1 subunits are expressed in LGR5-HFSCs 

A) Heatmap showing expression levels of PRC1 canonical and non-canonical 

subunits of two independent biological replicates of HFSCs from Ring1a/b ctrl 

mice. 

B) Immunofluorescence analysis of RING1B in a pure population of sorted 

Ring1a/b ctrl and dKO HFSCs. 

Scale bars 5um.  
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2012). Canonical PRC1 complexes contains CBX proteins, which are responsible for PRC1 

tethering on the chromatin, recognizing the H3K27me3 histone mark, deposited by PRC2, 

thus resulting in a PRC1 recruitment on its targets that is PRC2-dependent. Of note only 

PCGF2/Mel18 and PCGF4/Bmi1 are found to take part in PRC1 canonical complexes. On 

the other hand, all PCGFs can be part of non-canonical PRC1 complexes, that do not contain 

the CBX subunit and are recruited to chromatin independently from PRC2. These complexes 

are characterized by the presence of either RING1 and YY1 Binding Protein (RYBP) or YY1 

Associated Factor 2 (YAF2). Different components both of canonical and non-canonical 

PRC1 complexes are expressed in HFSCs (Fig 4.14A), suggesting the presence of all the 

existing subcomplexes. 

To investigate the ability of RING1B to form both canonical and non-canonical 

subcomplexes in LGR5-HFSCs, we decided to perform the Proximity Ligation Assay (PLA) 

in sorted anagen induced-HFSCs, from Ring1a/b ctrl and dKO mice (Fig 4.14B). PLA is a 

powerful technique that enable the visualization of proteins interactions directly in situ, 

exploiting the use of secondary antibodies conjugated with DNA probes that can be 

amplified, with Fluorescent labelled nucleotides, only if they are in proximity (less than 

40nm) to each other. We used this technique to evaluate the ability of RING1B to interact 

with RYBP (non-canonical PRC1, Fig 4.15 A, B) and Bmi1 (canonical PRC1, Fig 4.15 C, 

D) in our stem cells 

PLA-foci formation indicates that, in LGR5 expressing HFSCs, both canonical and non-

canonical complexes are formed and the deletion of both PRC1 catalytic subunits results in 

the disruption of PLA foci. Indeed, the phenotype observed upon Ring1a/b depletion could 

be ascribed to an impaired activity of both canonical and non-canonical complexes. 
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To identify the common mechanisms through which PRC1 regulates cell fate determination 

in different stem cell population we performed chromatin immunoprecipitation followed by 

sequencing analysis (ChIP-seq) for RING1B in HFSCs.  

We collected FACS-sorted activated LGR5-HFSCs after 8 days from anagen induction from 

Ring1a/b crtl mice (Fig 4.16A, B). A total amount of 2.5M cells were fixed in 1% 

Formaldehyde, resuspended in the IP buffer (refer to material and methods), sonicated to 

fragment the genomic DNA and used for a single immunoprecipitation. 

RING1B ChIP-seq analyses identified nearly 3900 RING1B peaks that were mainly 

associated to promoter regions (Fig 4.16C), resembling the chromatin association 

distribution of RING1B in ISCs (Fig 4.16D) and in accordance with other cellular system 

(Scelfo, Fernandez-Perez et al. 2019).  

Figure 4.15 Both canonical and non-canonical PRC1 are present in LGR5-

HFSCs 

A) PLA between RING1B and RYBP on Ring1a/b ctrl and dKO sorted LGR5-HFSCs 

B) Quantification of RING1B-RYBP dots per cell in Ring1a/b ctrl and dKO HFSCs 

C) PLA between RING1B and RYBP on Ring1a/b ctrl and dKO sorted LGR5-HFSCs 

D) Quantification of RING1B-RYBP dots per cell in Ring1a/b ctrl and dKO HFSCs 

Scale bars 5 m. All p-values were calculated with two side t test. N.s., not significant. Box 

plot graphs were generated with Prism software. 
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Between the two stem cells population RING1B is able to bind different sets of genes (Fig 

4.16E), as demonstrated by the overlapping peaks-related genes, however the common ones 

are related to development and differentiation (Fig 4.16F), highlighting that the classical role 

of PRC1 is maintained in different adult stem cells.   

Since PRC1 can form both canonical and non-canonical complexes, that are functionally 

distinct and can localize differently along the genome (Gao, Zhang et al. 2012) we decided 

to map the genomic localization of RING1B, in both stem cells population, comparing them 

with H3K27me3 deposition in order to define the PRC1 repressed domains (Lien, Guo et al. 

2011, Chiacchiera, Rossi et al. 2016). We took advantage of published data of H3K27me3 

Figure 4.16 PRC1 preferentially binds promoters in different stem cell population 

A) Schematic view of the experimental workflow for LGR5-HFSCs collection. 

B) FACS analyses of GFP expression in anagen hair follicle of C57BL/6 and Lgr5-GFP 

CreERT2 mice.  

C) Pie chart showing the percentage of RING1B peaks on Promoters, Distal intergenic 

regions, Gene body and Downstream gene regions in anagen LGR5-HFSCs.  (Total 

peaks = 3917) 

D) Pie chart showing the percentage of RING1B peaks on Promoters, Distal intergenic 

regions, Gene body and Downstream gene regions in ISCs. (Total peaks = 1293) 

E) Venn diagram showing overlapping HFSCs ChIP-seq Peaks respect to ISCs.   

F) GO analyses on genes related to the common ChIP peaks in HFSCs and ISCs. 
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ChIP-seq performed in anagen HFSCs (Lien, Guo et al. 2011) and our previous obtained 

data in ISC (Chiacchiera, Rossi et al. 2016). We found that the extent of overlap with 

canonical Polycomb-repressed domains was restricted to only 20% of RING1B peaks in 

HFSCs (Fig 4.17A left) and 10% in ISCs (Fig 4.17A right), thus suggesting that a large 

fraction of RING1B activity does not require prior PRC2 mark deposition.  

H3K27me3 repressive mark can be present within the same histone decorated with 

H3K4me3 transcriptional activatory modification. In ESCs, these two histone modifications 

together are enriched at promoters of development-related genes, defining the “bivalent” or 

“poised” status (Bernstein, Mikkelsen et al. 2006). These concomitant modifications are 

resolved when ESCs are triggered to differentiate by the acquisition of totally active 

(H3K4me3 only) or repressed (H3K27me3 only) state. Stem cells give rise to all cell 

populations in the tissue and should be able to efficiently switch on and off gene transcription 

in response to different stimuli. For this reason, we investigated the status of H3K4me3 of 

PRC1 repressed domain, and we found that, while only 30% of H3K27me3 sites in LGR5-

HFSCs are poised (Fig 4.17B left), this proportion reaches the 80% of RING1B-H3K27me3 

sites in ISCs (Fig 4.17B right). We also observed a large fraction of RING1B-bound sites 

Figure 4.17 PRC1 preferentially binds active genes promoters in different stem cell 

population 

A) Quantification of LGR5-HFSCs and ISCs RING1B promoter peaks that contains the 

H3K27me3 histone modification.  

B) Quantification of LGR5-HFSCs and ISCs RING1B-H3K27me3 promoters peaks that are 

decorated by H3K4me3 modification. 

C) Quantification of LGR5-HFSCs and ISCs RING1B promoter peaks that contains only 

H3K4me3 histone modification. 
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which are devoid of H3K27me3 but decorated with H3K4me3, suggesting in this context, 

an involvement of PRC1 in active transcription (Scelfo, Fernandez-Perez et al. 2019).  

Among all PRC1 subcomplexes, non-canonical subcomplexes are described to binds 

actively transcribed genes while canonical PRC1 is more linked to repression (Scelfo, Piunti 

et al. 2015, Zhao, Huang et al. 2017, Scelfo, Fernandez-Perez et al. 2019). As we know that 

PRC1 in LGR5-HFSCs is able to form both canonical and non-canonical complexes, to 

discern which PRC1 subtype binds promoters with the two different histone marks, we 

performed ChIP against the discriminating subunits CBX8 and RYBP respectively. 

We observed that in HFSCs, nearly 70% of RYBP peaks colocalize with RING1B (Fig 

4.18A). However only a small fraction of co-occupied peaks (11%) also harbor 

H2AK119Ub1 (Fig 4.18B). We also observed that those regions that are occupied by both 

RING1B and H2AK119Ub1, are also characterized by the presence of H3K27me3 PRC2-

deposited histone mark (Fig 4.18C) and by the presence of CBX8 subunits, specifying these 

sites as targets of canonical PRC1 complexes.    

Figure 4.18 H2AK119Ub1 is preferentially deposited at canonical PRC1 sites 

A) Quantification of LGR5-HFSCs RYBP peaks overlap with RING1B. (Total RYBP 

peaks = 811) 

B) Quantification of LGR5-HFSCs RYBP-RING1B promoters peaks that are decorated 

with H2AK119Ub1  

C) Quantification of LGR5-HFSCs RING1B- H2AK119Ub1 promoters peaks that 

harbor the H3K27me3 PRC2 mark. 

D) Quantification of LGR5-HFSCs CBX8 peaks that contains RING1B and the 2 

modification H3K27me3 and H2AK119Ub1. 
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These data suggest that both canonical and non-canonical PRC1 activities could possibly 

contribute to maintenance of stem cell identity by acting on both repressed and active genes.  

To discern the complexes involvement in this crucial regulation, we decided to analyze 

ChIP-seq data relating gene expression differences in Ring1a/b ctrl and dKO mice. 

We ranked all RING1B target promoters based on their expression in wild type stem cells 

from both HF and intestine. This analysis identified 4 clusters of genes each containing a 

quartile of gene expression. This divides all promoters in four groups: repressed, medium 

low, medium high and high expressed genes; that we used to determine transcriptional 

changes upon PRC1 loss of function in both HFSCs and ISCs (Fig 4.19A and Fig 4.20A). 

Repressed genes in Ring1a/b ctrl samples defined cluster 1 genes and were transcriptionally 

activated upon Ring1a/b dKO in both HFSCs and ISCs (Fig 4.19A and Fig 4.20A). Clusters 

2 and 3 comprised genes with intermediate expression, that in turn does not shows significant 

changes or slightly decreased their expression in PRC1 depleted stem cells counterpart (Fig 

4.19A and Fig 4.20A). The last group (Cluster 4) is composed of highly expressed genes that 

were slightly downregulated upon PRC1 depletion (Fig 4.19A and Fig 4.20A). Heatmaps of 

normalized ChIP signal around TSS (Fig 4.19B and Fig 4.20B), divided according to the 

previous identified expression clusters, shows that Cluster 1 transcripts belongs to gene that 

are fully silenced through canonical PRC1 complexes, as demonstrated by the concomitant 

presence of H2AK119Ub1, H3K27me3 and the relatively low presence of H3K4me3 active 

marks (Fig 4.19A and Fig 4.20A). Furthermore, the CBX8 canonical PRC1 subunit is 

localized only in this first gene cluster, thus providing additional evidence of canonical 

PRC1-mediated repression (Fig 4.19B).    

H3K4me3 signal is enriched in all the other 3 clusters and colocalized with a sharper 

RING1B signal, proving that PRC1 is able to localize at active transcription sites on 

chromatin (Fig 4.19B and Fig 4.20B).  This cluster also showed an intense signal of RYBP 

subunit, thus specifying for PRC1 non-canonical subcomplexes localization.  
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Figure 4.19 Genomic distribution of PRC1 binding in HFSCs 

A) Quartile-based gene expression clustering performed using Ring1a/b ctrl RNA-seq data, 

showing expression variations between Ring1a/b dKO and ctrl HFSCs. 

B) Heatmap representing normalized RING1B, H3K27me3, H3K4me3, H2AK119Ub1, CBX8 

and RYBP ChIP-seq intensities of +/- 8Kb from TSS of RING1B target genes in HFSCs. 

C) GO analyses of genes belonging to HFSCs cluster 1 

D) Venn- diagram showing the overlap between up-regulated genes in Ring1a/b dKO mice with 

total RING1B/H3K27me3-enriched regions. 

E) GO analyses of genes belonging to HFSCs clusters 2,3 and 4 
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Accordingly to transcriptomic data and their related ontology analyses, we found that genes 

involved in development and differentiation were over-represented only in cluster 1 (Fig 

4.19C and Fig 4.20C), which is characterized by the presence of canonical PRC1 and PRC2 

Figure 4.20 Genomic distribution of PRC1 binding in ISCs. 

A) Quartile-based gene expression clustering performed using Ring1a/b ctrl RNA-seq data, 

showing expression variations between Ring1a/b dKO and ctrl ISCs. 

B) Heatmap representing normalized RING1B, H3K27me3, H3K4me3 and H2AK119Ub1 

ChIP-seq intensities of +/- 8Kb from TSS of RING1B target genes in ISCs. 

C) GO analyses of genes belonging to ISCs cluster 1 

D) Venn- diagram showing the overlap between up-regulated genes in Ring1a/b dKO mice 

with total RING1B/H3K27me3-enriched regions. 

E) GO analyses of genes belonging to ISCs clusters 2,3 and 4 
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marks and the respective components. While the remaining 3 clusters showed enrichment in 

more general processes such as transcription, translation and cell cycle regulation (Fig 4.19E 

and Fig 4.20E). 

These data support a prominent role of canonical PRC1 activities compared to non-canonical 

ones in the maintenance of stem cell identity in both HFSCs and ISCs. However, it is 

important to stress that only a subset of RING1B /H3K27me3 double positive targets are 

derepressed upon PRC1 loss in stem cells from HFs and intestine (Fig 4.19D and Fig 4.20D). 

This suggests that H3K27me3 is largely sufficient to prevent TF accessibility and the 

consequently activation of canonical Polycomb targets and that only a small proportion of 

PRC1-PRC2 target genes contributes to the observed phenotypes, underlying the complex 

crosstalk and interdependency of the two complexes.  

 

4.5  LOSS OF PRC1 ACTIVATES AN EPIDERMAL-SPECIFIC 

PROGRAM IN HFSCs         

To elucidate the direct mechanism by which PRC1 prevents differentiation of stem cells, 

maintaining their identity, we analyzed the RING1B targets that became derepressed upon 

Ring1a/b dKO. HFs derives from a single layer of embryonic epidermis, that under the 

correct stimuli is able to differentiate into a new tissue that is then maintained throughout 

life by CD34-HFSCs and LGR5-HFSCs that are necessary to regenerate all hair structures 

(Jaks, Barker et al. 2008, Saxena, Mok et al. 2019). To understand the role of PRC1 in the 

suppression of interfollicular epidermis related genes and the maintenance of HF lineage, 

we decided to look at genes that were implicated in skin specification in PRC1 depleted 

HFSCs. Among these genes we found Achaete-Scute family BHLH Transcription Factor 2 
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(ASCL2) (Fig 4.12) that was previously shown to be sufficient and required for epidermal 

differentiation (Moriyama, Durham et al. 2008).  

 

We decided to investigate whether an epidermal specific program is initiated upon PRC1 

loss of activity and we performed a Gene Set Enrichment Analyses (GSEA) a bioinformatic 

a priori analyses that is able to determine whether a gene set list or database is enriched or 

not in the ranked gene list used as query. In our analyses we decided to compare signatures 

Figure 4.22 PRC1 activity depletion activates an epidermal program differentiation  

Gene set enrichment analyses (GSEA) performed on Ring1a/b dKO HFSCs using 

signature specific for 14 major skin and HF cell population s (Rezza, Wang et al. 2016)   

 Figure 4.21 Ascl2 is repressed by PRC1 in HFSCs 

A) Genomic snapshots of Ascl2 gene, showing RING1B binding. 

B) Genomic snapshots of Ascl2 gene showing gene transcription upon PRC1 depletion. 
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from different cells belonging to distinct skin compartments (Rezza, Wang et al. 2016) with 

Ring1a/b dKO vs ctrl transcriptional outcome in HFSCs.  

This analysis pointed out that, together with stem cell signature (Fig 4.22 left panel, HFSC), 

genes related to epidermis (Fig 4.22 right panel, EPI) were enriched in our sample. Among 

this signature we confirm that some genes such as, Krtdap, Calm5, Itgam and Gdpd2, 

together with Ascl2, were activated and highly upregulated in depleted HFSCs compared to 

ctrl ones (Fig 4.23A and B).  

 

Given the fact that Polycomb group proteins are epigenetics modifiers, and not TFs, that 

could actively start target genes transcription, removal of PRC1 suppression could be 

insufficient to activate gene transcription. To better characterize the mechanism of epidermal 

differentiation we decided to scan Ascl2 promoter with LASAGNA-search 2.0 in order to 

find TFs that could be responsible for its activation.   

Interestingly we found in the promoter of Ascl2, several binding motifs that are recognized 

by ZIC TFs family (Fig 4.24). Of note, we previously demonstrated that upon PRC1 loss of 

activity, several ZIC TFs, that are also directly bound by PRC1, are transcriptionally 

 Figure 4.23 PRC1 depletion upregulates different Epidermal related genes 

A) Heatmap representing epidermal-specific genes differentially regulated in Ring1a/b 

dKO LGR5-HFSCs (Log2 fold change). 

B) Genomic snapshots of RNA-seq for Calm5 and Itgam gene showing gene transcription 

upon PRC1 depletion. 
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upregulated (Fig 4.13A), possibly establishing a positive feedback loop for Ascl2 activation 

and driving an epidermal differentiation program.  

 

 

These results support a model in which PRC1 directly suppresses an epidermal-specific 

transcriptional program via suppression of master regulators of lineage specification thus 

contributing to preserve HF identity. 

 

 

 

 

Figure 4.24 ZIC TFs binds Ascl2 promoter 

Genomic snapshot of Ascl2 gene showing the binding sequences for ZIC family member in its 

promoter region.  
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4.6  PCGFs PROTEINS LOCALIZE DIFFERENTLY IN 

INTESTINAL CRYPTS. 

Loss of both PRC1 catalytic subunits, Ring1a and Ring1b, leads to a severe phenotype in 

intestinal and hair follicle tissues. However, Polycomb Repressive Complex 1 is composed 

by several different subcomplexes defined by a Polycomb Group Ring Finger protein 

(PCGF1-6) (Gao, Zhang et al. 2012, Scelfo, Piunti et al. 2015). Their mutual incorporation 

in the complex gives rise to at least 5 biochemically different PRC1 subcomplexes that could 

govern different cellular processes.  

In recent years, PCGFs proteins became a central focus in the field of Polycomb research, 

however their characterization has been performed mostly in-vitro, in mESC, and during 

murine embryonic development. Remarkably, a deep characterization of PCGFs proteins 

Figure 4.25 Schematic representation of PCGFs construct for conditional KOs 

The figure shows the murine constructs for different PCGFs conditional KOs. These strains 

have been crossed with LGR5-CreERT2-Rosa26-LSL-LacZ to induce the KO specifically in 

stem cells, and with AhCre that allows for deletion in the intestinal epithelium.  

The figure presents all the translated and non-translated exons for each PCGF gene and the 

ones that are delete upon Cre-mediated cleavage. 
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biochemical and molecular functions in adult tissue homeostasis and adult stem cell 

maintenance is still lacking.  

With the aim to better characterize PCGFs functions in adult tissue and to address their 

contribution in the phenotype driven by PRC1 loss of activity, we obtained all the genetic 

models for conditional deletion of specific PCGFs in mouse (Fig 4.25). Due to the presence 

of redundant complexes, we breed PCGF1 and PCGF6 alone, while PCGF2/4 and PCGF3/5 

together to create the double KO.  

To carry out this phenotypical and molecular analysis of PCGFs function in vivo, we first 

moved back to intestinal epithelium, a field where the laboratory has more expertise, to 

complement the analyses previously performed in Ring1a/b dKO. However, in order to 

understand if the different molecular outcome of PRC1 loss in HFs arise from different 

PCGFs functions in another stem cell compartment, the analyses will be further expanded in 

the hair follicle stem cell compartment.    

 

We first assessed PCGFs expression within the intestinal tissue. Since commercial 

antibodies were not all available, we took advantage of antibodies risen against murine 

PCGFs, produced in our laboratory, which were tested for the major molecular analyses such 

as Western Blot, Chromatin Immuno-Precipitation and Immuno-Precipitation used in our 

laboratory (Scelfo, Fernandez-Perez et al. 2019).  

Small intestines were harvested from Wild-type (WT or ctrl) mice and processed to isolate 

intestinal crypts and the villi.  

 

Proteins and RNA were extracted and the different levels of PCGFs were compared among 

undifferentiated and differentiated cells. PCGF1 and PCGF5 proteins seems to be more 

expressed in the differentiated compartment of intestinal epithelium, while the remaining 

four PCGFs are more expressed in the staminal compartment of the crypt, suggesting a role 
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for these PcG proteins in cell differentiation programs. Importantly, also PCGF1 and PCGF5 

are also expressed in the undifferentiated compartment, although their expression seems to 

increase in the villi, suggesting a role also in the maintenance of differentiated tissue (Fig 

4.26A, B). 

 

Within PRC1, PCGFs proteins dictate the ancillary proteins that will be recruited to assemble 

the final complex. This different composition leads to diverse chromatin localization of the 

subcomplexes, as previously demonstrated in mESCs and cell lines (Gao, Zhang et al. 2012, 

Scelfo, Piunti et al. 2015, Fursova, Blackledge et al. 2019, Scelfo, Fernandez-Perez et al. 

2019). 

In order to discover specific set of genes bound by the complexes, we map the different 

PRC1 sub-complexes binding sites along chromatin in the adult intestinal epithelium, we 

performed ChIP-seq experiments against all PCGFs protein from intestinal crypts 

compartment. With the exception of ChIP for PCGF1, purified crypts were fixed with 1% 

FA and sonicated to disrupt genomic DNA prior immuno-precipitation. Since the 

conventional crosslinking method with FA, which has a crosslinking radius of only ~2A and 

Figure 4.26 PCGFs expression in crypts and villi 

A) Schematic picture of the intestinal differentiated (villi) and undifferentiated (crypts) 

and relative protein abundance of different PCGFs.  

B) Relative mRNA expression of different PCGFs in Crypts (Green) and Villi (Red)  



 116 

does not always conserve protein-DNA interaction, was not successful for the PCGF1 ChIP, 

we tried a different cross-linking protocol. This complex was recovered in purified crypts 

subjected to a double crosslinking protocol with dissucinimidyl glutarate (DSG) molecule, 

that has a radius of 7.7A and acts by crosslinking the primary amine of proteins, followed 

by protein-DNA fixing with FA.  

 

   

We found that, as expected, canonical PRC1 complexes, containing PCGF2/Mel18 and 

PCGF4/Bmi1, localized on classical target genes, such as HOXD cluster and ZIC genes (Fig 

4.27). Particularly, HOXD cluster seems devoid of any other PCGFs, that in turn binds 

discrete genes, demonstrating that PCGF proteins targets different genes, possibly regulating 

their transcription and governing different processes during intestinal tissue homeostasis. 

Of note, PCGF2/Mel18 and PCGF4/Bmi1 among all PCGFs displays the widest peaks length 

(Fig 4.28A), spanning from hundreds of bp in length to 5000 bases, settling to a median of 

1kb. On the other hand, non-canonical PCGFs showed narrower peaks, that are around 

Figure 4.27 PCGFs localization in intestinal crypts 

Genomic snapshots of ChIP-sequencing tracks for all the different PCGFs proteins in 

intestinal crypts and their relative RT-qPCR analyses of selected genes, showing the 

percentage of enrichment on the input.  
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500bp (Fig 4.28B), except for PCGF3 that shows even sharper peaks, probably due to it 

binding to specific target sequences.    

 

Unfortunately, PCGF5 immunoprecipitation was not efficient in intestinal crypts. Probably 

this is due to the low abundance of this protein expression that is consistent with the few 

peaks that we have detected along the genome, and localized on promoters (33 out of 56). 

Thus, we did not include PCGF5 in our genomic analyses.   

In order to dissect the possible complementarity among the different PCGFs, we analyzed 

ChIP seq by performing a heatmap analysis of PCGF peaks (Fig 4.29). We found that overall 

the different PCGFs localize differently on the genome, and only a partial overlap exists, in 

particular among PCGF2/Mel18 and PCGF4/Bmi1 containing PRC1, consistently with their 

ability to form similar complexes. Surprisingly, we found a good overlap of PCGF2/4 targets 

with PCGF1-containing complexes.  

A partial overlap of PCGF6 and PCGF3 also exist, but it is still restricted to few genes, due 

to low peaks number in the PCGF3 ChIP-seq. Remarkably, we ran a motifs enrichment 

analyses on promoters bound by PCGFs proteins and we found that, consistently with 

Figure 4.28 PCGFs genomic peaks shows differences in their length 

Box plot representing the width of the different PCGFs peaks on their genomic targets. 

(Total Peaks: PCGF1= 2114; PCGF2= 1064; PCGF3= 64; PCGF4= 1303; PCGF5= 

56; PCGF6= 1900)     
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mESCs literature, PCGF6 is found on E-box binding motif, that is also bound by c-Myc 

oncogene, and T-box sequences, that in turn is recognize by MGA, which is part of the 

Figure 4.29 Different PCGFs shows partial overlaps on gene promoters 

Heatmap showing the quantification of ChIP seq signals over PCGFs bound promoters (+/- 4kb 

from TSS) showing the grade of overlaps among PCGF1, PCGF2 PCGF3, PCGF4 and PCGF6.  
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PRC1.6 complex. Moreover, PCGF3 motif enrichment discovery shows that, also in 

intestinal crypts it is able to bind another BHLH motif, similar to c-Myc E-box, that is 

recognized and bound by the newly described USF1 partner discovered by our laboratory 

(Scelfo, Fernandez-Perez et al. 2019).   

 

To define the classes of genes possibly regulated by PCGFs proteins, we performed a GO 

term analyses on genes-related peaks for every PCGFs (Fig 4.30). We found that PCGF2 

and PCGF4 largely overlap, governing genes involved in development and cell fate 

commitment. 

Remarkably, also PCGF1 seems to bind genes related to development and differentiation, 

supporting the hypothesis that PCGF1 co-governs developmental genes together with 
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Figure 4.30 GO-Term analyses of PCGFs gene target reveals functional overlap among 

PCGF1, PCGF2 and PCGF4 

Gene ontology analyses of PCGFs bound genes, showing their involvement in different cellular 

processes. PCGFs promoter peaks number are displayed in brackets. 
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PCGF2/Mel18 and PCGF4/Bmi1, opening the possibility that PCGF1 is involved in 

canonical-gene regulation. On the other hands, PCGF3 and PCGF6 seems to regulate 

different cellular functions related to transport, and cell cycle/metabolism respectively.     

  

In HFSCs, and accordingly to the recent literature (Morey, Aloia et al. 2013, Zhao, Huang 

et al. 2017, Cohen, Zhao et al. 2018, Fursova, Blackledge et al. 2019, Scelfo, Fernandez-

Perez et al. 2019), we showed that PRC1 localize on active genes. To elucidate PCGFs 

functions and role in transcriptional regulation, we decided to investigate which PRC1 sub-

complex localized on active or repressed genes. To do so, we compared PCGFs ChIP seq 

performed in intestinal crypts to RNA-seq obtained from ISCs of LGR5 ctrl mice.   

PCGF3 and PCGF6 localize on actively transcribed genes, suggesting a role in active 

transcription regulation also in intestinal epithelium. This is true also for PCGF1 targets 

genes which are enriched for medium-active genes. Strikingly, while PCGF2, consistently 

Figure 4.31 PCGFs proteins binds both expressed and repressed genes 

Box plot representing PCGFs targets genes, retrieved by ChIP-seq analyses and their relative 

expression in ISCs, showing that single and combinations of PCGFs binds both active and 

repressed genes.   
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with reported literature is found on transcriptionally repressed gene, PCGF4 seems to 

localize on active genes. Importantly, peaks containing PCGF2 and PCGF4 or PCGF1/2/4 

are on totally silenced genes, suggesting that PCGF2 is the main effector in gene silencing 

in intestinal crypts (Fig 4.31).    

 

However, to better characterize the epigenetic changes induced by specific PCGFs loss, and 

to elucidate to which extent PCGFs are able to compensate for each other, we are now 

breeding our conditional PCGFs KOs mice with AhCre transgenic mice, in order to perform 

ChIP sequencing analyses on PcG proteins and histone modifications among all PCGFs KO 

mice. These mouse models allow the deletion of PCGFs exons in all intestinal populations, 

with the only exception being Paneth cells. Moreover, these mice will be used for 

phenotypical analyses and transcriptomic analyses at single cell level, as well as in bulk.  

 

 

4.7  PRC1-NULL PHENOTYPE IN ISCs IS A SUM OF DIFFERENT 

SUB-COMPLEXES ACTIVITY. 

Intestinal tissue homeostasis and heterogeneity of intestinal cell populations arise from ISCs. 

Due to the fundamental role of PRC1 in adult stem cell identity maintenance we were 

interested in defining if a single PRC1 subcomplex or, alternatively, which combinations of 

complexes, were responsible for the loss of PRC1 activity phenotype.  

To investigate PCGFs function in governing ISCs self-renewal and identity maintenance, we 

bred all the previously described mouse models (Fig 4.25) with the LGR5-GFP-ires-

CreERT2 /Rosa26Lox-stop-Lox LacZ mouse strain (hereof LGR5 ctrl or LGR5 PCGFx KO 

after tamoxifen treatment), to obtain PCGFs excision only in LGR5 expressing stem cells. 
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The obtained strains, give us the possibility to carry out lineage tracing analysis and 

molecular analyses specifically in stem cells, allowing the definition of the phenotypic and 

transcriptomic changes arising from specific PCGF loss in the stem population. 

 

To this purpose, we began with the generation and analyses of LGR5-PCGF1, LGR5-

PCGF2/4, LGR5-PCGF3/5 and LGR5-PCGF6 conditional KO mice, focusing first on their 

ability to affect or impair stem cell self-renewal by performing a lineage tracing analysis. 

Importantly, in intestinal tissue, differently from hair follicle, the expression of LGR5-GFP-

ires-CreERT2 /Rosa26Lox-stop-Lox LacZ construct is not homogeneous. Within the crypts 

base, different ISCs that randomly inactivate the transgene, always compete with other stem 

cells, resulting in crypt clonality (Gehart and Clevers 2019). Indeed, this leads to crypts that 

express GFP and CreERT2, that are capable to elicit recombination between LoxP sites of 

PCGF and Rosa26Lox-stop-Lox LacZ transgenes, and crypts that do not express the enzyme. 

Therefore, LacZ staining does not occur homogeneously in the tissue.  

 

To verify whether PCGFs KOs are able to affect stem cell maintenance and tissue 

regeneration during homeostasis, mice were treated with four daily IP injection of tamoxifen 

and the intestine were harvested 30 days after the first injection, time point that showed a 

complete loss of traced cells derived from LGR5-PRC1 depleted stem cells (Chiacchiera, 

Rossi et al. 2016) . In fact, in our previous report, the ablation of all PRC1  subcomplexes, 

through the depletion of both catalytic subunits Ring1a and Ring1b, results in the loss of 

progeny derived from PRC1 defective ISCs, due to stem cell self-renewal impairment, as 

highlighted by the loss of LacZ staining in the tissue (Fig 4.32 top panel left). On the 

contrary, KOs for PCGF1, PCGF6, PCGF3, PCGF5 and the double KO for PCGF3/5 

redundant subunits do not affect stem cell ability to maintain the tissue (Fig 4.32), as 
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demonstrated by the presence of LacZ staining, thus proving that the depletion of a single 

PRC1 subcomplex is not sufficient to phenocopy the loss of the entire Polycomb complex.  

 

To define the role of PRC1 canonical subcomplexes we plan to perform the same lineage 

tracing experiment. However, preliminary data obtained by lineage tracing at 7 days post 

injection, suggest that also PRC1.2 and PRC1.4 concomitant ablation is not sufficient to 

phenocopy Ring1a/b dKO. In fact, while PRC1 loss of activity at 8 days display intestinal 

units that are only stained at the crypt base (Fig 4.33 left), while LGR5-PCGF2/4 KO derived 

progeny are found also in villi (Fig 4.33 right). This is due to the fact that impaired stem 

cells, are counter selected from the high competition at the crypt base, and the arising 

progeny, migrates in the villi is finally lost in lumen. LGR5-PCGF2/4 KO, are continuously 

generating progeny without being counter-selected, indicating that these mutations do not 

Figure 4.32 Lineage tracing analyses of non-canonical LGR5-PCGFs KO at 30 dpi  

Lineage tracing analyses of non-canonical PRC1 subcomplexes KOs, showing that the depletion 

of these subcomplexes do not affect stem cell capability to maintain the tissue.  
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confer disadvantages in terms of self-renewal and proliferation. However, longer time point 

are needed to better define the phenotype. 

 

These results together suggest that single PRC1 subcomplex depletion is not sufficient to 

phenocopy the drastic phenotype observed in PRC1 deficient mice, indicating that more than 

one complex is involved in the maintenance of cellular identity and stem cell self-renewal. 

 

 

4.8  TRANSCRIPTOMIC ANALYSES OF ISCs REVEALS THAT 

PRC1 SUBCOMPLEXES GOVERN SPECIFIC CELLULAR 

PROCESSES 

To elucidate the molecular functions of the different PCGFs proteins in ISCs, we decided to 

evaluate the transcriptional changes arising from PCGF1, PCGF2/PCGF4, PCGF3/PCGF5 

and PCGF6 depletion. To do this, we induced Cre-mediated excision of the transgenes in 

LGR5-ISCs by four daily intraperitoneal injection of Tamoxifen and we harvested the 

intestinal tissue after 7 days from the first injection (Fig 4.34A) and processed the crypts to 

single cells prior to sorting. 3000 to 5000 of sorted GFP-positive ISC from LGR5 ctrl mice, 

Figure 4.33 Lineage tracing analyses of canonical LGR5-PCGFs KO at 7 dpi 

Lineage tracing analyses of canonical PRC1 subcomplexes KOs, showing that the depletion 

of these subcomplexes do not affect stem cell capability to maintain the tissue.  
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2 biological replicates for LGR5-PCGF1 KO, LGR5-PCGF6 KO and LGR5-PCGF2/4, and 

2 technical replicates for PCGF3/5 KO were processed with Smart-Seq2 protocol and the 

floxing efficiency for every PCGF was evaluated on the pre-amplified cDNA (Fig 4.34B-

E).  

 

Figure 4.34 LGR5-PCGFs KO validation 

A) Schematic representation of the experiment workflow. 

B-E) RT-qPCR analyses of different PCGFs KO in pre-amplified cDNA obtained from 3-to-5 

thousand sorted ISCs subjected to SMART-seq2 protocol. Bar plots represent mRNA relative 

expression plus Standard Deviation. 
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Sequencing analyses revealed that overall LGR5-PCGF2/4 KO, consistent with their known 

important role as transcriptional regulators, leads to the upregulation of more than 2000 

genes and the downregulation of 1700 genes (Fig 4.35). Similarly, loss of PCGF1 in LGR5 

stem cell causes the downregulation of 617 gene and almost an equal number of genes 

upregulated (437) (Fig 4.35). Conversely, consistent with the activatory roles reported for 

PCGF3/5 and PCGF6 PRC1 containing complexes (Morey, Aloia et al. 2013, Zhao, Huang 

et al. 2017, Cohen, Zhao et al. 2018, Fursova, Blackledge et al. 2019, Scelfo, Fernandez-

Perez et al. 2019), their loss leads to a massive amount of genes downregulation, compared 

Figure 4.35 Volcano plots of different PCGFs KO showing the up and downregulated 

genes  

Volcano plot analyses of PCGF1, PCGF2/4, PCGF3/5 and PCGF6 KO ISCs showing the 

different expressed genes of KOs compared to LGR5 ctrl ISCs. (tresholds: p-value < 0.05, 

absolute log2(fold change)>1). 
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to gene activation with respectively 931 vs 499 and 993 and 386 genes deregulated (Fig 

4.35). 

To define which pathways are altered upon different PCGFs KO in ISCs, we interrogated 

GO analyses for up and downregulated genes (Fig 4.36). Genes that decrease their 

expression upon PCGFs depletion are involved in different metabolic, transcriptional, cell 

cycle-related and viral response processes, that are only partially overlapping among 

different sub complexes, suggesting that their loss impairs specific cellular functions. 

Figure 4.36 GO term analyses of deregulated genes in ISCs upon different PCGFs KO  

Gene ontology analyses of ISCs PCGFs KOs deregulated genes, showing their involvement in 

different cellular processes. 
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On the other hand, ISCs abrogated for canonical PRC1 complexes activity shows up 

regulation of genes related to development and differentiation, further proving their classical 

PRC1 functions, biological processes that are partially shared with LGR5-PCGF1KO altered 

transcriptome. Moreover, PCGF1 loss also induces alteration in transport and microbial 

related processes. Differently from PCGF1 and PCGF2/4 KO, PCGF3 and PCGF6 do not 

share any biological process, in accordance with their ability to binds different targets.   

 

 

4.9 FUTURE PERSPECTIVE AND ON-GOING 

CHARACTERIZATION 

To date, we show that in vivo PRC1 complexes maintenance is necessary to regulates stem 

cell identity in different stem cells, and that this function is accomplished by the sum of 

different PRC1 subcomplexes activities, that remains to be defined, that acts together on 

different cellular processes. We showed that in the intestinal epithelium, PRC1-

subcomplexes govern several different pathways and functions that are only partially shared 

among different PCGFs. This has to be proved also in HF-stem cell compartment, in order 

to dissect whether PRC1 subcomplexes features are similar or different in the two tissues.  

To complement the phenotypic analyses of ISCs, we are investigating also the effect of 

PCGFs deletion in the whole intestinal epithelium, through the controlled induction of Cre-

recombinase under CYP1A1 promoter, that is activated upon lipophilic xenobiotic 

administration. Preliminary analyses of single KO in epithelial tissue of intestine, showed 

that, consistent with their specific gene regulation, no major effects are evident when PCGFs 

are ablated in homeostatic conditions (Fig 4.37), further highlighting their interdependency. 

 

Polycomb proteins are important cell identity regulators, and their alteration in cancer is well 

documented. Among the different PCGFs, Mel18 and Bmi1, despite their great overlapping 

features, are known as tumor suppressor and oncogene respectively (Zhang, Sheng et al. 
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2010). However, nothing is known about the other PCGFs proteins constituting the non-

canonical complexes in both pathological and homeostatic condition.     

Of note, PRC1.1 subcomplex seems to be related to canonical-PRC1 regulation, that together 

with the lack of phenotypic outcome of LGR5-PCGF2/4 KO leads to the hypothesis that 

PCGF1 is able to co-regulate canonical PRC1 genes. To validate this theory, we are now 

breeding PCGF1 and PCGF2/4 mouse models to ablate the three complexes together in 

LGR5 expressing stem cells and intestinal epithelium, in order to study the phenotypical 

addiction of PRC1.1 loss in PRC1.2 and PRC1.4 KO. These three PcG proteins are reported 

in literature as transcriptional repressors, and we showed that, when they colocalized, target 

gene transcription is completely absent. On the other hand, PCGF3/5 and PCGF6 containing 

PRC1 are reported as activatory-Polycomb complexes, and we show that they share the 

ability to bind BHLH motifs on different genes. To deeply investigate the activatory 

Figure 4.37 Single deletion of PRC1 subcomplexes does not affect intestinal 

homeostasis 

Hematoxylin and Eosin staining of duodenum from AhCre-PCGF1, AhCre-PCGF6 and AhCre-

PCGF3/5 KOs and their floxing efficiency, showing that single PRC1 subcomplexes ablation 

does not affect intestinal homeostasis. Tissues were collected after 15days from first beta-

napthoflavon intraperitoneal injection. Graph represent the relative expression plus Standard 

Deviation of PCGFs transcripts in the respective ctrl and KOs mouse. 



 130 

properties of PRC1 complex we are creating mice strains where PRC1.3/5 and PRC1.6 are 

concomitantly ablated from LGR5 expressing stem cells and whole intestinal epithelium.  

These conditional KOs for repressive and activatory PRC1 subcomplexes will be used to 

perform both phenotypical and molecular analyses in order to dissect the functions in 

homeostasis and their contribution to PRC1-loss-of-activity phenotype.  

 

As the last part of our characterization we aim to address the ability of the different PCGFs-

containing subcomplexes in tissue regeneration upon damage, and in oncogenic 

transformation.  

To address PCGFs role in regeneration we are planning to perform phenotypic and molecular 

analyses of PCGFs conditional KOs upon different damage induction, such as inflammation 

and irradiation.  

On the other hand, to address the oncogenic potential of PRC1 we will focus on PCGF6-

containing PRC1 subcomplex, due to its interaction with MGA and MAX proteins, which 

are involved in the c-Myc pathway. Of note, c-Myc overexpression is not sufficient to induce 

tumorigenesis in intestinal epithelium, but it has the ability to expand the staminal 

compartment during its upregulation (Finch, Soucek et al. 2009). We hypothesize that 

PCGF6 is able to restrain c-Myc transforming capability in intestinal epithelium, preventing 

c-myc binding on important genes necessary for transformation. To validate this model, we 

are breeding AhCre-PCGF6 conditional KO mouse model with Rosa26-LSL-MYCERT2 

that allow Myc translocation in the nucleus upon tamoxifen delivery, in this way we can 

couple PCGF6 KO with active nuclear c-myc function. We first analyzed the oncogenic 

potential of PCGF6 alone in a protocol of colon cancer induction, that exploits a carcinogen 

(Azoxymethane) and sequent cycles of colon inflammation with DSS molecule, allowing us 

to obtain colon adenomas in 60 days (Fig 4.38A). Preliminary results shows that PCGF6 KO 

is maintained during the whole protocol (Fig 4.38B), suggesting that depleted crypts are not 

counter selected and it does not have a major effect in tissue maintenance, as demonstrated 
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by the similar weight curve between AhCre ctrl and PCGF6 KO mice (Fig 4.38C) and from 

colon cancer adenomas histological sections that were similar in number and dimension 

along the colon (Fig 4.38D). However, deeper investigation of histological sections and 

Figure 4.38 PCGF6 KO does not affect adenomas onset and progression 

A) schematic view of AOM-DSS protocol used for AhCre WT and PCGF6 mice.  

B) Western blot analyses (up) and mRNA RT-qPCR (bottom) of intestinal crypts to validate 

PCGF6 KO at the end of the protocol. 

C) Weight curve showing the percentage of weight loss during the DSS cycles. 

D) Hematoxylin and Eosin staining of AhCre ctrl and AhCre-PCGF6 KO mice at the end of 

the AOM-DSS protocol, showing adenoma formation in the two conditions. 
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molecular studies are required, as well as is necessary to increase the number of experimental 

animals, and to carefully monitor the number and the volume of the tumors arising in the 

two conditions  Moreover, we aim to compare the effect of Myc overexpression in the 

presence or absence of PRC1.6, to validate our hypothesis, thus further analyses will be 

performed with the Myc inducible mice strains.  
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5. DISCUSSION 

 

5.1 PROJECT OVERVIEW 

Polycomb Groups of Proteins are epigenetic factors involved in development and 

differentiation. PcG proteins assemble to form two main complexes named PRC1 and PRC2 

which roles are widely studied in ESCs and other cultured cell lines since 40 years (Aloia, 

Di Stefano et al. 2013, Aranda, Mas et al. 2015, Scelfo, Piunti et al. 2015, Poynter and 

Kadoch 2016). However, a deep characterization of Polycomb complexes function in vivo 

has begun just few years ago, and a comprehensive view of their roles is still missing. The 

first studies demonstrated that Polycomb complexes were linked to embryonic development 

and their alteration leads to several different phenotypic defects spanning from homeotic 

transformation to pre-implantation death.  

Instead, the role of the PcG proteins roles in adult tissue homeostasis is still not known. 

Importantly tumors are strictly related to adult cells dedifferentiation and loss of identity 

(Friedmann-Morvinski and Verma 2014, Roy and Hebrok 2015). Adult tissues are 

maintained throughout life from adult stem cell pools that drive organs regeneration, and, in 

the past 5 years, it starts to be clear that Polycomb proteins are important regulator of stem 

cell identity and differentiation also in adult context. We recently reported that PRC1 and 

PRC2 play crucial roles in supporting intestinal homeostasis governing two different 

functions, by sustaining stem cell identity and self-renewal, and surveilling the balance 

among enterocytes and secretory cells by regulating lineage-differentiation genes 

respectively (Chiacchiera, Rossi et al. 2016, Chiacchiera, Rossi et al. 2016, Chiacchiera and 

Pasini 2017). 
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 Particularly, PRC1 is critical to maintain ISC and the loss of both RING1A and RING1B 

catalytic subunits leads to stem cells exhaustion driven by a massive upregulation of different 

non-lineage-specific transcription factors.  

Additionally, PRC1 is composed of several subunits, that generate different subcomplexes 

which are able to govern different aspects of stem cell maintenance, and these complexes 

are not studied in adult tissue homeostasis. Indeed, their contribution to PRC1-loss-of-

activity phenotype is still obscure. The discovery of their biological function in both 

homeostatic and pathological condition could also be important to develop novel therapeutic 

approaches. In fact, deregulation of all complexes could be dangerous for the whole 

organism, while targeting specific subcomplexes could be more specific and effective to 

overwhelm tumor growth without influencing healthy tissue. To this end we want to deeply 

investigate PRC1 subcomplexes in different compartments, in order to have a 

comprehensive view of their regulation and functions. Nevertheless, from new emerging 

literature, mostly related to cancer, is clear that the same proteins can behave differently 

depending from the context. Without going too far from Polycomb proteins, PRC2 complex 

is found to be mutated in opposite manners depending on the tumoral context (Scelfo, Piunti 

et al. 2015), highlighting that it is necessary to study proteins in a context dependent manner.  

 

In order to overcome the reported functional and biochemical redundancy, we exploited the 

use of a mouse model in which both catalytic subunits of PRC1 complexes could be 

abrogated (del Mar Lorente, Marcos-Gutierrez et al. 2000; de Napoles, Mermoud et al. 2004; 

Roman-Trufero, Mendez-Gomez et al. 2009). Until tamoxifen delivery our mouse model 

LGR5-GFP-ires-CreERT2/Ring1a-/-/Ring1bfl/fl/Rosa26Lox-stop-LoxLacZ only harbor the 

homozygous excision of Ring1a gene. In these conditions we do not notice any severe 

impairment in hair follicle morphogenesis and regeneration, as demonstrated by their ability 

to maintain the fur, during development and first anagen, however, we cannot formally 
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exclude that at least part of the phenotype observed during hair regeneration could be due to 

Ring1a depletion in the surrounding environment. 

 

5.2  PRC1 IS NECESSARY TO MAINTAIN ANAGEN 

PROGRESSION   

Using the LGR5-GFP-ires-CreERT2/Ring1a-/-/Ring1bfl/fl/Rosa26Lox-stop-Lox LacZ mouse 

strain we had the unique opportunity to deeply investigate PRC1s role in hair follicles and 

intestinal adult tissue contexts, which share common features, such as the rapid division of 

LGR5 stem cell population. These compartments arise from distinct embryonic layers (de 

Santa Barbara, van den Brink et al. 2003, Liu, Zhang et al. 2013), ectoderm and endoderm 

respectively, allowing us to analyze whether this fundamental complex plays the same role 

exploiting the same mechanism or the context influence PRC1 function. Our data revealed 

that PRC1 is able to repress a common set of genes in ISC and HFSCs, suggesting that its 

role is fundamental throughout different tissues despite the different embryonic origins. 

However, in adult life the pools of transcription factors present in a specific cell type, is able 

to shape the molecular outcome of PRC1 loss. 

 

Differently from ISC, that continuously divide to regenerate the tissue, LGR5-HFSCs 

encounter cycles of proliferation and resting during their lives. In order to minimize the 

differences among different HFs related to the cell cycle stages we decided to induce anagen. 

Loss of PRC1 activity in this context leads to the same phenotypic effect previously observed 

in the intestinal compartment. We faced an impairment of proliferation that inhibits the 

correct formation of all the structures that will develop the hairs, ultimately affecting tissue 

regeneration.  
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PRC1 is a known epigenetic repressor of Ink4a-ARF genomic locus that encode for p16 and 

p19 mouse proteins that are able to block Cyclin D and MDM2 negative regulator of RB and 

p53, leading to cell cycle inhibition. However, despite the relief of the transcriptional 

repression of this locus, it has been demonstrated, both in adult stem cells, in our ISC work, 

and from a new HF-related paper carried out during morphogenesis, that PRC1-loss-of-

activity phenotype is independent from Ink4a-ARF locus activation, suggesting that also in 

our context the early anagen proliferative blocks is induced by other factors apart from p16-

p19 pathways (Chiacchiera, Rossi et al. 2016, Cohen, Zhao et al. 2018). 

Whether these alternative pathways, which leads to a phenotypic convergence in the absence 

of PRC1, are the same in different tissues was investigated at molecular levels by comparing 

ISCs and HFSCs data. 

Even though, we faced a great impairment of anagen progression, we could see some anagen 

features in a reduced number of follicles that partially express beta-galactosidase protein. It 

has been demonstrated that upon LGR5-HFSCs depletion, CD34-HFSCs, residing in the 

upper bulge region, start to express LGR5 stemness marker and the follicles are able to 

correctly proceed through anagen (Hoeck, Biehs et al. 2017). However, it is possible that 

this mechanism is not happening in our model. In fact, we are not losing LGR5 expression 

in quiescent follicles, but only the PRC1 associated histone mark, suggesting that, rather 

than disrupt LGR5-HFSCs population within the hair follicle, PRC1 ablation is able to 

induce a massive deregulation of the transcriptional landscape without affecting stem cell 

viability but only their self-renewal potential and identity. In this view, PRC1 depleted cells 

are still able to divide once, or just a few times, giving rise to LacZ positive progeny but, 

lacking essential self-renewal related genes and other hair follicle specific transcripts, these 

cells are not able to sustain the correct hair follicle cycle progression and regeneration. 

Analyzing RNA-seq data obtained from LGR5-HFSCs Ring1a/b ctrl and dKOs, we found 

that PRC1 depleted cells show reduced expression of the Shh gene. SHH pathway is 
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necessary to sustain several processes in HF, first of all anagen progression. Remarkably, it 

has been demonstrated that ablation of the Shh gene in K15 expressing cells, that specify for 

both bulge and HG-HFSCs, leads to the generation of Mx cells that are impaired in anagen 

progression and failed to proceed after Anagen phase II (Hsu, Li et al. 2014, Zhang, Tsai et 

al. 2016). Therefore, we hypothesize that PRC1 activity is necessary to sustain Shh active 

transcription and hair follicle cycle progression.  

  

5.3 PRC1 IS NECESSARY FOR TISSUE IDENTITY 

MAINTENANCE  

PRC1 loss induces the deregulation of several different genes, both directly and indirectly. 

We confirmed that, also in this tissue context, PRC1 activity is necessary to preserve the 

expression of genes necessary for cell identity maintenance. This is in accordance with 

Cohen and colleagues (Cohen, Zhao et al. 2018), that observed that PRC1 ablation in 

epidermal progenitors downregulates epidermal and hair follicle related genes.  

Upregulated genes upon PRC1 loss of activity in HFSCs mostly comprise homeotic and 

development-related transcription factors, and the same is true for the intestinal 

compartments. Overall, almost the 25% of the upregulated genes were common among the 

two stem cell populations and, more importantly, in both cases the deregulated transcripts 

were not specifically expressed in peculiar tissues, but they were widely expressed among 

an extensive panel of tissues and cell lines, highlighting the crucial role of PRC1 in defining 

lineage-specificity. The same results were obtained also in epidermal progenitors (Cohen, 

Zhao et al. 2018) where the Ring1a/b dKO shows the upregulation of various genes involved 

in development and differentiation. These results together underlie the common role in 

governing identity maintenance that is accomplished by PRC1 in different stem cells, 

temporally spanning from embryonic stem cells, through more differentiated progenitor 

stem cells, to adult stem cells.   
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PRC1 and its PCGFs subunits are mainly studied in mESCs and during embryonic 

development. Recently Cohen and colleagues investigated PCGFs role in hair follicle 

morphogenesis. Importantly, they did not identify any defects in hair follicle formation in 

PCGF1, PCGF3/5 and PCGF6 KO. On the other hand, consistently with PRC1 catalytic 

mutant, that leads to the upregulation of only few genes and to an increase of Merkel cells 

within the developing hair follicle and epidermis, PCGF2/4 KO leads to the same phenotype, 

without affecting hair follicle features. Importantly LGR5 stem cells arise after 

morphogenesis and they do not address any feature of adult stem cell maintenance.              

Remarkably, nothing is known about the specific contribution of different PRC1 sub-

complexes in adult homeostasis preservation. To fill this void, we crossed different PCGFs 

conditional KOs in order to investigate their specific involvement in different homeostatic 

processes, evaluating both their phenotypic and transcriptional outcome upon loss-of-

activity induction. We showed that, consistently with hair follicle morphogenesis, single 

PCGFs KOs in adult LGR5-ISC, are not sufficient to impair homeostasis. This is highlighted 

also by the different transcriptomic changes arising from PCGFs depletion, showing how 

single PRC1 subcomplexes are specifically involved in minor processes, that are not 

sufficient to induce stem cell self-renewal failure. However, based on transcriptomic and 

genomic data, we hypothesize that a combination of different PRC1 subcomplexes ablation 

could phenocopy the drastic Ring1a/b dKO previously described.  

Additionally, our and Dr. Klose laboratories precisely shown that different combinations of 

PCGFs KOs are necessary to phenocopy Ring1a/b loss and that a single PCGF loss is not 

sufficient to induce a significative transcriptional deregulation to induce phenotype changes 

in vitro (Fursova, Blackledge et al. 2019, Scelfo, Fernandez-Perez et al. 2019).  

 



 139 

5.4 PROFILING PRC1 BINDING IN STEM CELLS  

Carrying out this project we could also compare the binding profile of RING1B in different 

LGR5 stem cell population. In both hair follicle and intestinal stem cells population PRC1 

is mainly found at gene promoters. Comparing RING1B peaks among ISCs and HFSCs, we 

found that only a subset were common among the two population, meaning that RING1B 

binds to different genes in different adult stem cells. Remarkably, the shared peaks are 

related to genes involved in development and differentiation, further highlighting that PRC1 

role in cell fate determination and stem cell maintenance is common among different stem 

cells.  

By ChIP-seq experiments in HFSCs, we proved that PRC1 is able to bind both active 

H3K4me3-marked genes and repressed genes decorated with the H3K27me3 histone mark. 

Repressed genes were bound by Canonical PRC1 complexes, as demonstrated by the 

presence of CBX8 subunit, while active target genes display the presence of RYBP, defining 

the non canonical part of the complexes. Interestingly, we showed that canonical target genes 

are also marked by high levels of H2AK119Ub1 histone modification compared to non 

canonical sites that, instead, show only low levels of PRC1 mark, suggesting that non 

canonical complexes could exert their function independently from their ability to 

ubiquitinate histone H2A on K119. Importantly this histone modification distribution has 

been described also in murine ESCs, where PRC1-mediated ubiquitination and PRC2-

mediated methylation co-exist at gene promoters bound by CBX7 and RING1B, while 

RYBP/RING1B co-occupied genes are largely devoid of H2AK119Ub1 (Morey, Aloia et al. 

2013). We have also shown that this ability of PRC1 to binds both active and repressed genes 

is not a peculiar behavior of HFSCs and ESCs but is found also in ISCs. Moreover, this latter 

observation has also been confirmed by Cohen and colleagues (Cohen, Zhao et al. 2018) 

indeed expanding the evidence of PRC1 role on active genes also in epidermal progenitors.      
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In accordance with the recent emerging literature (Zhao, Huang et al. 2017, Cohen, Zhao et 

al. 2018, Fursova, Blackledge et al. 2019, Scelfo, Fernandez-Perez et al. 2019), we provide 

further evidences that PRC1 is able to bind active genes in vivo, and that this is achieved in 

the context of RYBP containing non-canonical complexes. However only few of those active 

PRC1 genes scored among the down-regulated transcripts upon PRC1 loss, both in HFCSs 

and ISCs, thereby suggesting a marginal role of non-canonical subcomplexes in maintaining 

the expression of those targets. Therefore, their specific role on active genes remains to be 

addressed.  

This latter observation suggests that stem cells loss of identity and self-renewal impairment, 

firstly shown in ISCs and now described for HFSCs, could be primarily ascribed to the 

repressive canonical activity of PRC1. We described that several Polycomb targets become 

derepressed upon PRC1 depletion, and those upregulated genes can be directly linked to the 

phenotypic convergence observed in the two stem cells populations, highlighting the general 

role of PRC1 in maintaining transcriptional repression of non-lineage specific genes. 

Additionally, we define that, in intestinal crypts, all non-canonical PRC1 subcomplexes can 

binds transcriptionally active genes and. Of note, PCGF4, that in the context of PRC1 has 

been always associated with gene repression, when localized on the chromatin alone is found 

on active genes. Remarkably, canonical subunit PCGF2 binds only repressed genes, and the 

concomitant genomic localization of PCGF2 and PCGF4, as well as PCGF1, PCGF2 and 

PCGF4 is found on transcriptionally silenced genes, leading to the hypothesis that PCGF2 

canonical subunits could be primarily involved in gene silencing. Moreover, it is possible 

that these differences in genomic localization could be part of the dissimilar behavior 

reported in literature for PCGF2/Mel18 and PCGF4/Bmi1 in tumors (Zhang, Sheng et al. 

2010).  
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5.5 PRC1 GENERAL ACTIVITY IS INFLUENCED BY TFs POOLS. 

Importantly, both in ISCs and HFSCs, not all PRC1 repressed targets are transcriptionally 

activated upon Ring1a/b dKO. This evidence points out that, despite the general role of 

PRC1 previously described is shared among different stem cells of different tissues and 

arising from different embryonic layers, PRC1 transcriptional outcome is influenced by the 

tissue context, resulting in a cell type dependent upregulation of different PRC1 target genes. 

Likely, this specificity is conferred by the TFs repertoire available in the given cells.  

Accordingly, while in ISCs we did not found any specifics TFs able to drive a differentiation 

program, in Ring1a/b dKO HFSCs we could appreciate the de-repression of ASCL2, that is 

known to be sufficient and required for epidermal differentiation (Moriyama, Durham et al. 

2008). Deeper analyses of transcriptomic data from PRC1 deficient HFSCs confirmed the 

activation of an epidermal-specific transcriptional program, that involves the upregulation 

of different epidermal genes, which could, at least in part, contribute to the loss-of-identity 

phenotype arising from Ring1a/b depletion in HFSCs. 

 

 

5.6 PRC1 AS A STEM CELL IDENTITY GUARDIAN AND 

CLINICAL IMPLICATION  

Our data sustain the existence of a general role of PRC1, in different populations of adult 

stem cell, in the preservation of cell identity. PRC1 loss deregulates different genes, which 

are only partially overlapping in different stem cell populations, that ultimately converge to 

the same phenotypic effect through different cell-type specific mechanisms.  

This observation is particularly important non only to elucidate PRC1, and more in general 

Polycomb proteins, roles in shaping adult tissues and homeostasis maintenance, but also to 

analyze these epigenetic factors in several pathological conditions, primarily in cancer, in 
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which Polycomb complexes are directly involved and play different roles. Several reports 

show how PcG are required for tumor development and progression, as well as for its 

prevention depending on the contexts (Richly, Aloia et al. 2011, Scelfo, Piunti et al. 2015) 

and some new molecules that act as Polycomb inhibitors have already entered clinical trials 

(Richly, Aloia et al. 2011, Pasini and Di Croce 2016). Taking into account the context 

dependency highlighted from our works in adult stem cells, it is possible that the efficacy 

and the consequences of PcG inhibition could be cell type specific, linked to the TF pools 

and the signaling pathways of the different cells, underlying the necessity to carefully 

analyze data in context and specific situations.    
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Loss of PRC1 activity in different stem cell 
compartments activates a common transcriptional 
program with cell type–dependent outcomes
Silvia Pivetti1, Daniel Fernandez-Perez1, Alessandro D’Ambrosio1, Caterina Maria Barbieri1, 
Daria Manganaro1, Alessandra Rossi1, Laura Barnabei1*, Marika Zanotti1, Andrea Scelfo1, 
Fulvio Chiacchiera1,2†‡, Diego Pasini1,3†‡

Polycomb repressive complexes are evolutionarily conserved complexes that maintain transcriptional repression 
during development and differentiation to establish and preserve cell identity. We recently described the 
fundamental role of PRC1 in preserving intestinal stem cell identity through the inhibition of non–lineage-specific 
transcription factors. To further elucidate the role of PRC1 in adult stem cell maintenance, we now investigated its 
role in LGR5+ hair follicle stem cells during regeneration. We show that PRC1 depletion severely affects hair 
regeneration and, different from intestinal stem cells, derepression of its targets induces the ectopic activation of 
an epidermal-specific program. Our data support a general role of PRC1 in preserving stem cell identity that 
is shared between different compartments. However, the final outcome of the ectopic activation of non–
lineage-specific transcription factors observed upon loss of PRC1 is largely context-dependent and likely related 
to the transcription factors repertoire and specific epigenetic landscape of different cellular compartments.

INTRODUCTION
Cellular identity is preserved by different layers of transcriptional 
control. Among the factors and molecular circuits involved in estab-
lishing and maintaining cell type–specific transcriptional profiles, 
epigenetic regulators play a pivotal role. Alterations in these mecha-
nisms are one of the leading causes of different pathologies, such as 
cancer (1, 2). Polycomb group (PcG) proteins are a class of evolu-
tionarily conserved molecules required to maintain transcriptional 
repression during development and differentiation (3). PcG proteins 
assemble into two major complexes named Polycomb repressive 
complex 2 (PRC2) and PRC1. PRC1 and PRC2 share the vast majority 
of their targets, characterized by CpG-rich regions at promoters, 
where they are recruited sequentially. The core of PRC2 is composed 
of the mutually exclusive catalytic subunits EZH1 and EZH2, which 
deposit the mono-, di-, and trimethylation on lysine 27 of histone 
H3 (H3K27me3), and of two structural proteins SUZ12 and EED, 
which are necessary for complex formation and stabilization (4, 5). 
PRC1 is responsible for the deposition of a single ubiquitin moiety on 
lysine 119 of histone H2A (H2AK119Ub1) through the catalytic sub-
units RING1A or RING1B. In addition, it has been described that 
PRC1 exists in several different forms characterized by the presence 
of different mutually exclusive Polycomb group ring finger (PCGF) pro-
teins (6). These different complexes have been defined as “canonical” 
or “noncanonical” depending on their ability to associate with chro-
mobox (CBX) proteins. While CBX-containing canonical PRC1 com-
plexes are tethered to chromatin by PRC2-dependent deposition of 
H3K27me3, the recruitment of noncanonical complexes remains 
independent of PRC2 activity.

The activity and biological function of PRC1 and PRC2 has been 
intensively investigated in the past 20 years during embryonic 
development and using embryonic stem cells (ESCs) (3, 5), while 
their role in adult stem cells and tissue homeostasis has only recently 
attracted attention (7–14). Adult tissues are constantly regenerated 
and maintained by a pool of stem cells, which are able to compen-
sate for cell loss and tissue damage while preserving stem cell pools 
(15). We recently uncovered the central role of PRC1 activity in pre-
serving intestinal stem cell (ISC) identity through the transcriptional 
repression of non–lineage-specific transcription factors (TFs), which 
are able to interfere with the transcriptional program stimulated by 
the Wnt pathway required for the maintenance of the ISC pool (9). 
With the aim to uncover whether this is a general PcG role in adult 
stem cells, we now investigated the consequences of PRC1 loss of 
activity in a stem cell compartment from a different tissue with a 
distinct developmental origin—hair follicle stem cells (HFSCs).

The skin is the largest organ of the body. It is the first barrier 
against external insults such as bacteria and virus infections, toxic 
agents, and ultraviolet radiation, preserving, at the same time, water 
and temperature homeostasis. In mammals, the epidermis comprises 
the interfollicular epidermis and the pilosebaceous unit composed 
of the hair follicle (HF) and the sebaceous gland. During morpho-
genesis, which begins after delivery, HFs grow downward in the 
dermal compartment of the skin from the hair bulge and its associ-
ated germ (16). Hair regeneration is fueled by two different stem cell 
pools located in the bulge and hair germ. The bulge contains both CD34+ 
and LGR5+ (Leucine Rich Repeat Containing G Protein-coupled-
receptor-5) stem cells, while the hair germ is exclusively colonized by 
LGR5+ stem cells (17, 18). Throughout life, HFs cycle between prolifera-
tion (anagen), destruction (catagen), and resting (telogen) phases (19). 
Anagen onset is activated when WNT proliferative signals overcome 
a bone morphogenetic protein threshold (20, 21), and LGR5+ HFSCs are 
essential during anagen to sustain HF growth (22). These cells first prolif-
erate to form multipotent progenitors that briefly divide and give rise to 
matrix cells that will generate all the inner layers of the differentiating 
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HF (23, 24). During anagen progression, LGR5+ stem cells expand 
downward to constitute the outer root sheet (ORS) that delimitates the 
follicle. During anagen phase, LGR5+ HFSCs appear to be functionally 
similar to LGR5+ ISCs, being actively proliferating stem cells supporting 
a renewing tissue. For these reasons, they represent a good system to 
uncover general, stem cell–specific PRC1 activities.

Here, we report that the activity of PRC1 is essential to sustain 
LGR5+ HFSC and general HF regeneration. We further characterized 
the direct molecular circuits triggered by PRC1 loss of function and 
found that, despite the fact that a large part of PRC1 activity is associated 
with active gene expression, the phenotypic outcome of its loss of func-
tion can be primarily ascribed to its canonical repressive functions. 
In this context, PRC1 is directly involved in suppressing an epidermal 
transcriptional program maintaining silencing of the master epidermal 
regulator Ascl2. Taking advantage of parallel data generated in ISCs, 
we further show that, despite the fact that PRC1 retains a general role 
in suppressing developmental programs across tissue and stem cell 
compartments, the molecular phenotypes triggered by PRC1 loss of 
function are strongly dependent on the cellular context, and there-
fore, by the repertoire of the expressed TFs in any given cell.

RESULTS
PRC1-dependent H2AK119Ub1 is required for HF regeneration
To uncover the general mechanisms by which PRC1 activity contrib-
utes to lineage identity in different adult stem cell populations, we 
took advantage of the LGR5-GFP-ires-CreERT2/Ring1a−/−/Ring1b f l/fl/
Rosa26lox-stop-lox LacZ compound model (hereof Ring1a/b ctrl or 
dKO upon tamoxifen treatment) that we have previously generated 
(fig. S1A) (9). The Lgr5 transgene is homogenously expressed in a 
population of actively cycling and long-lived HFSCs that, from the 
base of the hair bulb, gradually expand through the ORS, contributing 
to the regeneration of the follicle (18). We used this genetic model 
to acutely abrogate PRC1 activity in 8 to 12 weeks, sex-matched mice 
and showed that four daily tamoxifen injections are sufficient to 
abolish PRC1 activity in LGR5+ [green fluorescent protein–positive 
(GFP+)] HFSCs, as shown by the loss of H2AK119Ub1 in GFP+ cells of 
telogen HFs (Fig. 1, A and B).

HF regeneration in adult mice is a critical mechanism through 
which fur is maintained during the entire life span. HFs cycle syn-
chronously during the first 10 to 11 weeks of age and then gradually 
loose synchrony, despite maintaining the same regenerating capa-
bilities (fig. S1B) (18, 19, 25). To investigate the role of PRC1 in 
adult HFSCs during HF regeneration, we exploited the possibility 
to resynchronize HFs by means of follicles plucking. As soon as the 
hair is removed, follicles rapidly and synchronously enter into ana-
gen phase and start to cycle (25). To abrogate PRC1 activity from 
the first phases of HF regeneration, we administered tamoxifen 
in adult mice 1 day before waxing the back skin (Fig. 1C). After 
12 days from waxing, while the fur of Ring1a/b ctrl mice was com-
pletely regenerated (Fig. 1D, top), we severely delayed follicle 
regeneration in Ring1a/b dKO mice in the absence of PRC1 activity 
(Fig. 1D, bottom). We further confirmed this result by lineage-tracing 
analyses, taking advantage of a Rosa26lox-stop-lox LacZ allele to 
follow LACZ expression in the progeny of LGR5+ stem cells. 
Twelve days after waxing, we markedly reduced the number of 
-galactosidase (-Gal)–expressing HFs in Ring1a/b dKO animals, 
suggesting that the residual hair growth is derived from wild-type 
HFs (Fig. 1E).

PRC1 depletion affects the onset of anagen phase and  
the HF cycle
To elucidate whether PRC1 activity is required for entering into or 
to progress through the anagen phase, we activated Cre-mediated 
recombination at P49 to induce Ring1b loss of function during the 
long telogen period. After 2 weeks from tamoxifen exposure, we 
synchronized HFs by waxing and then collected the back skin after 
8 and 12 days (Fig. 2A and fig. S2A) to perform histological analyses 
and -Gal staining to trace PRC1-null progeny. After 8 days from 
waxing, we observed a substantial delay in hair growth in Ring1a/b 
dKO mice (fig. S2B). This was further confirmed by histological 
analysis showing shorter HFs, blocked in the early anagen phases 
(I and II) [fig. S2, C (top) and D] (25). At 8 days from waxing, the 
total number -Gal+ HFs was strongly reduced in Ring1a/b dKOs 
[fig. S2, C (bottom) and E]. It is well established that the hypodermal 
adipocyte layer fluctuates in thickness during the hair cycle (25, 26). This 
increases during anagen and reduces throughout catagen to reach a 
resting phase until a new hair cycle begins. Ring1a/b dKOs displayed 
a clear imbalance of hypodermis fat (fig. S2F) and dermis thickness 
(fig. S2G), despite the fact that the total skin showed a similar width 
(fig. S2H). This reinforces evidence that PRC1 loss severely affects 
HF regeneration. This phenotype was confirmed and enhanced after 
12 days from waxing (Fig. 2B). According to Müller-Röver et al. (25) 
classification, at this time point, while Ring1a/b ctrl mice showed all 
features of full anagen (anagen phase VI), Ring1a/b dKO follicles still 
resembled primary stages of the hair cycle (anagen phases II and III; 
Fig. 2C, top). Lineage tracing of LGR5+ stem cell progeny showed a 
marked reduction of cells derived from Ring1a/b dKO stem cells, as demon-
strated by the severe lack of -Gal staining compared to ctrl follicles 
[Fig. 2, C (bottom) and D]. Consistently, the differences in follicles 
length, hypodermis, and dermis thickness were further increased at 12 
versus 8 days after waxing, with a similar reduced number of HFs 
(Fig. 2, E to H, and fig. S2, I to L). Together, these data suggest that the 
loss of PRC1 activity does not fully prevent entry into the anagen phase 
but rather impairs the regenerative potential of LGR5+ stem cells.

Conserved PRC1-repressed transcriptional programs are 
required to preserve HFSCs and ISCs
Our results suggest that the loss of PRC1 induces similar phenotypic 
outcomes in HFSCs compared to our previous results with ISCs (9). 
Whether this involves common or cell type–specific pathways remains 
an important open question. To investigate the transcriptional changes 
induced by PRC1 loss of function in anagen-activated LGR5+ stem 
cells, we collected the skin of Ring1a/b dKO and ctrl adult mice 
8 days from waxing (Fig. 3A). HFs were isolated and reduced at single 
cells, and LGR5+ cells were isolated by fluorescence-activated cell 
sorting (FACS) to perform RNA sequencing (RNA-seq) analyses. FACS 
analysis on the same cells stained for H2AK119Ub1 demonstrated 
that tamoxifen treatment results in >70% loss of PRC1 activity in 
LGR5+ (GFP+) cells (Fig. 3B). RNA-seq analysis in these cell popu-
lations revealed a >5-fold bias in genes up-regulation (1066 up-
regulated versus 187 down-regulated genes) that is consistent with 
the general PRC1 role as transcriptional repressor also in the HF 
compartment (Fig. 3C). Gene ontology (GO) analysis on differentially 
expressed genes showed that up-regulated genes are primarily 
associated with general developmental processes (Fig. 3D). In con-
trast, down-regulated genes were specifically enriched by factors 
involved in HF morphogenesis, HFSC maintenance, and hair cycle 
progression (Fig. 3E), such as Sonic hedgehog (23, 27). Moreover, 
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functional annotation revealed that DNA binding TFs, and par-
ticularly homeotic TFs, were overrepresented among the genes up-
regulated in Ring1a/b dKO (fig. S3A). The additional comparison 
in respect to transcriptional data obtained from several tissues 
(ENCODE; fig. S3B, bottom) highlighted that the loss of PRC1 
activity results in the transcriptional activation of non–lineage-specific 
genes that are preferentially expressed in distinct tissue compartments. 
In contrast, down-regulated genes were primarily expressed in acti-
vated LGR5+ HFSCs (fig. S3B, top), further corroborating impaired 
activation of HFSC regenerative capabilities in the absence of PRC1 
activity. These data are in agreement with our previous finding in 
ISCs (9), further highlighting the conserved essential role of PRC1 in 
maintaining lineage identity within adult tissues. Whether this involves 

common or specific mechanisms remains an open question. Thus, we 
searched for common classes of genes that could be potentially involved 
with the loss of cell identity in ISCs versus HFSCs upon PRC1 in-
activation. We compared RNA-seq profiles in both stem cell com-
partments and found that none of the down-regulated genes were in 
common in accordance with the distinct identity of the two stem cell 
populations (fig. S3C). In contrast, we found approximately one-fourth 
of the up-regulated genes (255 genes, ≈25%) in common between ISC 
and HFSC (fig. S3D). This group of genes was enriched by mainly 
homeobox-containing TFs involved in regulating general developmental 
processes (fig. S3E). Several ZIC (Zinc finger protein of the cerebellum) 
TFs (Zic1, Zic4, and Zic5; fig. S3F), as well as Sox7, Hoxa10, and Hoxb13 
(fig. S3G), were present within this list. Together, these data suggest that 
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PRC1 plays a common general role in distinct stem cell compartments to 
prevent activation of non–lineage-specific, homeobox-containing TFs.

Transcriptional repression of a subset of canonical PRC1 
targets preserves stem cell identity
Recently, two major classes of PRC1 complexes have been de-
scribed (6) on the basis of their biochemical composition. Canonical 
PRC1, which contains CBX proteins, is recruited on their targets in 
a PRC2-dependent manner. Noncanonical PRC1 complexes do not 
contain the CBX-containing subunits and are recruited independently 
from PRC2. They are characterized by the presence of different PCGF 
subunits and share the subunits RYBP (RING1 and YY1 Binding Protein) 
or YAF2 (YY1 Associated Factor 2). Different components of canonical 

and noncanonical PRC1 complexes are expressed in HFSCs (fig. S4A). 
To investigate the ability of RING1B to enter both canonical and non-
canonical complexes in HFSCs, we performed proximity ligation assay 
(PLA). Wild-type and dKO LGR5+ HFSCs from waxed mice have 
been sorted (fig. S4, B and C) and used to investigate the ability of 
RING1B to interact with RYBP (Fig. 3, F and G) or BMI1 (Fig. 3, H and I). 
Our data indicate that in HFSCs, both canonical and noncanonical 
complexes assemble, suggesting that the phenotype observed in dKO 
HFSCs could be the result of the impaired activity of different 
complexes.

To identify the common mechanisms through which PRC1 regu-
lates cell fate determination in different stem cell populations, we 
performed chromatin immunoprecipitation sequencing (ChIP-seq) 
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analysis for RING1B in FACS-sorted activated LGR5+ stem cells 
purified 8 days from waxing (Fig. 4, A and B). This analysis identified 
nearly 3900 RING1B significant peaks that were mainly associated 
with promoter regions (Fig. 4C). This distribution closely resembles 
the RING1B chromatin association that we have found in ISCs 
(Fig. 4D). Since RING1A or RING1B can form distinct functional 
complexes that may localize differently along the genome (6), we 
first compared the genomic localization of RING1B in both HFSCs 
and ISCs in respect to the deposition of H3K27me3 to define 
Polycomb-repressed domains (9, 28). We restricted the extent of 
overlap with the canonical PcG-repressed domains only to 20% of 
RING1B sites in HFSCs (Fig. 4E) and to 10% in ISCs (Fig. 4F), 
suggesting that a large fraction of RING1B activity is exerted inde-
pendently of PRC2. In ESCs, H3K27me3 is enriched at promoters of 
developmental-related genes concomitantly with the deposition of 
the transcriptional activatory modification H3K4me3. This promoter 
status has been defined as “bivalent” or “poised” (29). Bivalency is 
resolved when ESCs are triggered to differentiate by the acquisition 
of a purely active (H3K4me3 only) or repressed (H3K27me3 only) 
state. We found that, while only 30% of H3K27me3 sites in HFSC 
are bivalent (coenriched with H3K4me3), this proportion expands 
in ISCs where it reaches 80% of all RING1B target promoters 
enriched for H3K27me3 (Fig. 4, G and H). We also observed a large 
fraction of RING1B-bound sites that lacks H3K27me3 but presents 
H3K4me3 deposition (Fig. 4, I and J). Accordingly, with the ability 
of RING1B to interact with subunits of both canonical and non-
canonical complexes, we observed that in HFSCs, nearly 70% of 
RYBP peaks colocalize with RING1B (Fig. 4K), but only a small 
percentage (11%) of the co-occupied regions harbor H2AK119Ub 
(Fig. 4L). Those regions characterized by the presence of RING1B 
and H2AK119Ub are also occupied by CBX8, a canonical PRC1 
subunit, and are decorated by PRC2-dependent H3K27me3 mark 
(Fig. 4, M and N). These data suggest that both canonical and non-
canonical PRC1 activities, which are not associated with H3K27me3 
and H2AK119Ub, could contribute in the maintenance of stem 
cell identity.

To address this issue, we ranked all RING1B target promoters 
based on their expression in wild-type cells, and we compared their 
expression in PRC1-defective HFSCs and ISCs (Fig. 4O and fig. S5A). 
This analysis identified four classes of genes. Repressed genes in 
wild-type cells defined cluster 1 and were enriched for transcrip-
tionally activated genes in Ring1a/b dKO HFSCs and ISCs. Genes 
with intermediate expression (clusters 2 and 3) showed no difference 
(Fig. 4O) or slightly decreased expression (fig. S5A) in Ring1a/b 
dKO cells. Highly expressed genes (cluster 4) were slightly down-
regulated in Ring1a/b dKO HFSC. The distribution of H3K27me3, 
H2AK119Ub, and H3K4me3 (Fig. 4P and fig. S5B) identified genes 
belonging to cluster 1 as fully silenced through canonical Polycomb 
activities, as demonstrated by the presence of CBX8 (Fig. 4P). These 
sites are devoid of H3K4me3, which is instead enriched at all the 
other clusters (Fig. 4P and fig. S5B) where colocalizes with RING1B 
and RYBP (Fig. 4P). Accordingly, genes involved in development and 
differentiation were only enriched in cluster 1 (Fig. 4Q and fig. S5, 
C, E, and F). Despite the fact that these data support a prominent 
role for canonical versus noncanonical activities in maintaining cell 
identity in HFSCs and ISCs, it is important to stress that only a subset 
of RING1B+/H3K27me3+/H2AK119Ub targets become derepressed 
upon the loss of PRC1 activity in HFSCs and ISCs (Fig. 4R and 
fig. S5D). This suggests, first, that H3K27me3 is largely sufficient to 

prevent TF accessibility and activation of PcG targets and, second, 
that only a small proportion of PcG target genes contribute to the 
observed phenotypes.

Loss of PRC1 activity activates epidermal-specific program
To uncover direct mechanisms associated with PRC1 loss of activity, 
we focused our attention on RING1B targets that became dere-
pressed in Ring1a/b dKO. This includes Ascl2 (Fig. 5A), which 
encodes for a TF previously shown to be sufficient and required to 
drive epidermal differentiation (30). To investigate whether a spe-
cific differentiation program is initiated upon PRC1 activity loss, we 
performed gene set enrichment analysis (GSEA) comparing signa-
tures from different cells belonging to distinct skin compartments 
(31) against Ring1a/b dKO versus ctrl transcriptional outcome in 
HFSCs. This analysis showed that, together with the stem cell signa-
ture, genes involved in epidermal-specific transcriptional program 
became enriched in Ring1a/b dKO mice (Fig. 5B). Among them, 
Satb1, Krtdap, Calm5, Itgam, and Gdpd2, together with Ascl2, were 
some of the known epidermal markers that are highly activated 
(Fig. 5, A, C, and D). We further scanned the Ascl2 promoter with 
LASAGNA-Search 2.0 (32) for putative TFs responsible for its acti-
vation and found several binding motifs that are recognized by the 
family of ZIC TFs (Fig. 5E). Note that different members of this TF 
family are also directly bound and derepressed in Ring1a/b dKO 
HFSCs (fig. S3F), establishing a positive feedback loop driving epi-
dermal identity. Together, these results support a model in which PRC1 
directly suppresses an epidermal-specific transcriptional program 
via suppression of master regulators of lineage specification, thus 
contributing to preserve HF identity.

DISCUSSION
The role of Polycomb complexes in maintaining adult stem cell iden-
tity has been investigated by several groups during the past 5 years. 
We recently reported that PRC1 and PRC2 play a crucial role in 
supporting intestinal homeostasis (8–10). Along the crypt-to-villus 
axis, the balance between secretory cells and enterocytes differentia-
tion, transit-amplifying cell proliferation and stem cell maintenance 
are preserved by Polycomb complexes. In particular, PRC1 is criti-
cally required for ISC maintenance, and the loss of RING1A/B sub-
units leads to stem cell exhaustion. Its activity is required to maintain 
repressed non–lineage-specific TFs, some of which are able to inter-
fere with the ISC-specific transcriptional programs. Stem cell loss 
observed in RING1A/B-deficient intestinal epithelium can therefore 
be ascribed not to the initiation of a defined transcriptional program 
but to the loss of stem cell–specific ones. To unveil general mecha-
nisms underlying PRC1-dependent adult stem cell maintenance, we 
extended its analysis in proliferating HFSCs. Similar to what we 
previously described for ISCs, the loss of RING1A/B in HFSCs 
markedly affects HF regeneration. This phenotypic convergence 
is mirrored at a transcriptional level by the up-regulation of non–
lineage-specific genes, enriched for DNA binding TFs. We provide 
evidence that PRC1 associates at H3K27Me3+ promoters of re-
pressed genes in the context of canonical complexes, characterized 
by the presence of CBX8 subunit and H2AK119Ub. At promoters 
of active genes, RING1B occupancy coincides with RYBP and low 
or undetectable H2AK119Ub levels, suggesting that noncanonical 
PRC1 complexes could play a role at these promoters that is largely 
independent from their ability to modify histone H2A. A similar 
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distribution has also been reported in murine ESCs, where H2AK119Ub1 
and PRC2 co-occupy genes bound by CBX7/RING1B and are largely 
excluded by those regions exclusively bound by RYBP/RING1B 
(33). Note that, similar to ESCs, PRC1 localized on both repressed 
(canonical PcG targets) and active genes in both ISCs and HFSCs. 
This latter observation is in line with another recent report demon-
strating a pivotal role of PRC1 during skin development (11). How-
ever, despite the fact that RYBP-containing PRC1 localizes to active 
promoters in both ISCs and HFSCs, very few of those active PRC1 
targets score among the down-regulated genes, suggesting a marginal 
role of noncanonical complexes in preserving the expression of these 
target genes. This further restricts the specific phenotypes firstly de-
scribed in ISCs and now documented in HFSCs to a more canonical 
PRC1 repressive activity. Our data demonstrate that several PcG 
direct targets became derepressed upon PRC1 loss of function and 
several of these targets can be directly linked to the observed pheno-
typic convergence. However, in HFSCs and ISCs, not all the PRC1 
bound targets became activated upon RING1A/B loss. This suggests 
that, despite the idea that a general PRC1 role in maintaining repres-

sion of non–lineage-specific genes is, to some extent, conserved in 
cells of different developmental origin and tissues (i.e., HFSC, ESCs, 
and ISC), the transcriptional program triggered by its loss of func-
tion remains cell type dependent. This is likely due to the repertoire 
of available TFs in any given cell. Accordingly, among the different 
derepressed genes in Ring1a/b dKO HFSC, we found ASCL2, a DNA 
binding TF sufficient and required for epidermal differentiation (30). 
Further analysis of the transcriptome of PRC1-deficient HFSCs con-
firmed the activation of an ectopic, epidermal-specific, transcriptional 
program that could likely contribute for the observed phenotype.

Together, our data ultimately support the existence of a general 
role played by PRC1 to maintain adult stem cell identity that con-
verge into a common phenotype with distinct cell type–specific 
mechanisms. This observation is of crucial importance not only to 
understand the role of Polycomb complexes in shaping adult tissues 
but also in different pathological settings, such as cancer, in which 
PcG is directly involved. The requirement of PcG during tumor de-
velopment and progression, where a high level of cell heterogeneity 
can be observed, has been extensively reported, and several PcG 
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inhibitors entered clinical trials (1, 34). In this context, the efficacy 
(i.e., the consequences) of PcG inhibition could be cell type specific, 
as we describe for adult stem cells, and possibly dependent on the 
integrity of the signaling pathways and on the TF repertoire of the 
different cells.

MATERIALS AND METHODS
Mouse models
Lgr5-specific conditional knockout mice were generated by crossing 
Ring1A−/− Ring1Bfl/fl (35), with LGR5-eGFP-IRES-CreERT2 mice (36). 
These mice were crossed with Rosa26lox-stop-lox LacZ transgenic 
mice for in vivo lineage tracing (37). Genotyping was confirmed by 
polymerase chain reaction (PCR) of tail skin DNA. Cre-dependent 
recombination was induced performing three intraperitoneal injec-
tions of tamoxifen (Sigma-Aldrich) at 75 mg/kg.

Mice were maintained accordingly to the guidelines set out in Com-
mission Recommendation 2007/526/EC, 18 June 2007, on guidelines 
for the accommodation and care of animals used for experimental and 
other scientific purposes. All experiments were performed in accor-
dance with the Italian Laws (D.L.vo 116/92 and following additions), 
which enforces EU Directive 86/609 (Council Directive 86/609/EEC of 
24 November 1986 on the approximation of laws, regulations, and 
administrative provisions of the member states regarding the protec-
tion of animals used for experimental and other scientific purposes).

HF purification
LGR5+ cells were purified from back skin of treated mice at different 
time points. Subcutaneous fat and the blood vessels were removed, and 
the skin was digested using collagenase (2.5 mg/ml) in Dulbecco’s 
modified Eagle’s medium (DMEM) for 45 min. HFs were scraped off 
and incubated for 10 min at 37°C with 2.5% trypsin in phosphate-
buffered saline (PBS) and deoxyribonuclease 1 (DNase1; 1600 U/ml). 
Fetal bovine serum was added to neutralize trypsin. Cells were washed 
with PBS and filtered with 70-m cell strainer.

Flow cytometry and FACS
Single-cell suspension were washed and resuspended in sorting me-
dium [DMEM; 1:100 penicillin and streptomicin (17-602F, Lonza), 
1:100 l-glutamine (17-605E, Lonza), Hepes, 2 mM EDTA, DNase1 
(800 U/ml), and 10 uM Y27632 (Selleck Chemicals)]. Single GFP+ 
cells were FACS-sorted using either FACSMelody or FACSJazz cell 
sorters (BD Biosciences). Living cells were discriminated by propidium 
iodide exclusion staining.

Immunofluorescence
Back skin was harvested at the described time points, fixed with 
4% paraformaldehyde (PFA) for 3 hours at 4°C, and cryopreserved in 
30% sucrose overnight, followed by O.C.T. embedding (Tissue-TEK 
4583). Embedded tissues were cut at 7 m in thickness. Sections were 
washed in tris-buffered saline–0.1% Tween 20 (TBS-T) and blocked with 
5% donkey serum at room temperature for 1 hour. Section were in-
cubated with anti-H2AK119Ub (D27C4, Cell Signaling Technology) 
overnight at 4°C, washed in TBS-T, incubated for 1 hour at room 
temperature with secondary antibody [715-165-147, Cy3 AffiniPure 
Donkey Anti-Rabbit IgG (H+L), Jackson ImmunoResearch] and 
4′,6-diamidino-2-phenylindole dihydrochloride (32670, Sigma-Aldrich), 
and mounted with Mowiol 4-88 (81381, Sigma-Aldrich). Images were 
taken with Leica Sp8 confocal microscope.

Proximity ligation assay
Anagen-induced sorted LGR5 HFSCs were spotted in Cell-Tak 
(Corning)–coated coverslip, and PLA was performed using Sigma-
Aldrich Duolink In Situ Orange Starter Kit Mouse/Rabbit follow-
ing the manufacturer’s instruction protocol. Anti-RING1B 
antibody (homemade), anti-RYBP (AB3637, Millipore), and anti-BMI1 
(homemade) primary antibodies were used.

Histology and lineage tracing
Freshly obtained back skin samples were collected at the indicated 
time point and were immediately prefixed for 30 min at room tem-
perature in PBS containing 0.2% gluteraldehyde, 0.02% NP-40, and 
2% PFA. Samples were washed three times for 10 min each with 
PBS and incubated for 30 min with the equilibration buffer (2 mM 
MgCl2, 0.02 NP-40, and 0.1% sodium deoxycholate in PBS). 
Samples were stained overnight at room temperature using 5 mM 
K3Fe(CN)6, 5 mM K4Fe(CN)6, and X-Gal (1 mg/ml) in equilibration 
buffer. Stained skin were washed abundantly with PBS at room 
temperature and then fixed overnight in 4% PFA in PBS before paraf-
fin embedding. Five-micrometer sections were obtained, rehydrated, 
and nuclei-counterstained with Nuclear Fast Red solution for 
10 min at room temperature. For histological analysis, freshly iso-
lated back skin samples were fixed in 4% formaldehyde overnight, 
paraffin-embedded, and stained with hematoxylin and eosin Y. 
Images were acquired using Olympus BX51 or Leica DM6 widefield 
microscope.

RNA sequencing
FACS-sorted cells were collected in 0.5-ml tubes and processed di-
rectly following Smart-seq2 protocol (38) with minor modifications. 
Briefly, 3000 cells per sample were collected directly and lysed in 2 l 
of lysis buffer [0.2% Triton X-100 and ribonuclease inhibitor (4 U/l)]. 
One microliter of 10 M oligo-dT30Vn and 1 l of 10 mM deoxy-
nucleotide triphosphate were added, and the samples were incu-
bated for 3 min at 72°C. Reverse transcriptase step was performed 
using SuperScript III reverse transcriptase enzyme (Invitrogen). 
Preamplification of the obtained complementary DNA (cDNA) was 
performed using KAPA Taq HotStart enzyme with High-Fidelity 
Buffer. Preamplified cDNA was purified using AMPure beads 
(Agencourt AMPure XP, Beckman Coulter), and the quality was 
checked using Bioanalyzer (Agilent). Two nanograms of cDNA was 
tagmented with 100 ng of homemade Tn5 enzyme and further 
amplified using KAPA HiFi HotStart Kit. Tagmented, amplified 
DNA was sequenced using Illumina HiSeq2000.

ChIP sequencing
LGR5+ HFSCs were purified as previously described from anagen-
synchronized HFs of Ring1a/b+/+ mice and were extracted following 
the protocol previously described. A total of 2.5 million cells 
were used for ChIP-seq as previously described (9). Sonicated 
chromatin was incubated with 10 g of rabbit anti-RING1B 
antibody (homemade), anti-H2AK119Ub1 (8240, Cell Signaling 
Technology), anti-RYBP (AB3637, Millipore), and anti-CBX8 (39) 
overnight, and the immunocomplexes recovered using protein A–
conjugated magnetic beads (Dynabeads, Life Technologies). Purified 
chromatin was decross-linked overnight in 0.1 M NaHCO3 and 
1% SDS. Decross-linked DNA was purified. ISC-specific H3K4me3 
ChIP-seq profile was obtained as previously described (9) using 5 g 
of anti-H3K4Me3 antibody (catalog no. 39159, Active Motif).

 on S
eptem

ber 12, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Pivetti et al., Sci. Adv. 2019; 5 : eaav1594     15 May 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 11

RNA-seq analysis
Reads were aligned to the mouse reference genome mm9 using TopHat 
v2.1.1 (40) with parameters --no-coverage-search and --library-type 
fr-unstranded. PCR duplicates were removed using Picard (http://
broadinstitute.github.io/picard/). Gene counts were calculated using 
HTSeq-count v0.8.0 (41) with parameters --stranded=no --mode=​
intersection-nonempty using RefSeq mm9 annotation downloaded from 
the University of California, Santa Cruz. Differential expression 
analyses were performed using the R package DESeq2 v1.20 (42) 
using default parameters. Genes with an absolute log2 fold change of 
1 and false discovery rate of <0.1 were considered as differentially 
expressed. Gene enrichment analysis on down- and up-regulated genes 
was performed using DAVID 6.8 (43). A preranked GSEA (44) was 
performed using gene lists (Signature Gene Lists) from multiple 
skin cell populations obtained from (31). The analysis was performed 
using default parameters (weighted as enrichment statistic) and ranking 
the input gene list using log2 fold-change data obtained from DESeq2.

To assess the expression of differentially expressed genes in Ring1A/
B−/− versus wild-type HFSC in other mouse tissues, we used public 
RNA-seq data (bam files) deposited by ENCODE at (http://hgdownload.
soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrRnaSeq/). 
Bam files were processed with the pipeline described previously, and 
RPKM (Read Per Kilobase of Milion Mapped Reads) data were normal-
ized with the function normalize.quantiles() from the R package 
preprocessCore (https://github.com/bmbolstad/preprocessCore).

ChIP-seq analysis
Reads were aligned to the mouse reference genome mm9 using 
Bowtie v1.2.2 (45) with default parameters and not allowing 
multimapping (-m1). PCR duplicates were removed using Picard 
(http://broadinstitute.github.io/picard/). Peaks were called using 
MACS2 v2.1.1 (46) with parameters -g mm --nomodel -p 1e-10 –B. 
Genomic peak annotation was performed using the R package 
ChIPpeakAnno v3.15 (47), considering the promoter region of ±2.5 kb 
around the TSS (Transcription Start Site). Overlaps of ChIP-seq targets 
were performed as following: Genes with peaks in their promoter re-
gions (±2.5 kb around TSS) were considered as targets. Then, the 
overlap between target gene lists was performed using the R package 
VennDiagram v1.6.20 (48).

For heatmap representation of ChIP-seq signal, bigwig files, 
with input signal subtracted, were generated using the function 
bamCompare from deepTools 2.0 (49) with parameters --ratio 
subtract –bs 30 --extendReads 200. To normalize for differences in 
sample library size, a scaling factor for each sample was calculated 
as (1/total mapped reads) × 1 million and applied during bigwig file 
generation with the parameter –scaleFactors from bamCompare.

Ring1b ChIP-seq targets were clustered in four groups ac-
cording to their RPKM expression using the dplyr function ntile(). 
Tracks for H3K27me3 from ISC and HFSC were obtained from (9) 
and (28), respectively, and processed with the pipeline described 
previously.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaav1594/DC1
Fig. S1. Mouse model of PRC1 activity abrogation.
Fig. S2. PRC1 loss severely affects anagen onset and progression.
Fig. S3. PRC1 loss has different transcriptional effects among tissues.
Fig. S4. Expression of core PRC1 subunits in HFSCs.
Fig. S5. Genomic distribution of PRC1 in ISCs resembles HFSCs.
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