
A Logic of E�cient and Optimal Designs

Giuseppe Primiero

Department of Philosophy

University of Milan

Abstract

Logics of design have been formulated until recently to o�er system-

atic treatments of the way systems express the relation between resources,

processes and their outputs. We present a logic of systems design which

explicitly formalizes this relation as a decidable checking problem on re-

source access and de�ne computable e�ciency and optimality properties.

1 Introduction

The problem of rationalising system design dates back to the 1960s, with at-
tempts falling largely in the category of problem-solving processes and logics.
The formulation of designs as logical processes is meant to o�er systematic
treatments of the way systems express the relation between processes and their
outputs. During the successive decades, many methodological approaches to
design have been formulated and the need for a generalization of the di�erent
domains led to the need for a logic of design.

Going back to Peirce's work on abduction, March (1976) presents a logic of
production including inductive and deductive processes. In order to better qual-
ify the types of knowledge and inference found in design, Fawcett (1987) quali�es
the laws relating design and relevant information, with deduction being used to
infer such information from a given design and design rules: logic programming
is then explored to perform such tasks automatically. In Zeng and Cheng (1991)
the logic of design is characterised as a general scheme to represent the reason-
ing form generating a given design, and identifying the separation between the
formal, the scienti�c and the engineering aspects of the process. The logical
formulation o�ered in this context amounts to the identi�cation of a recursive
process mimicking the designer's presumption that a certain design exists sat-
isfying the intended system: such recursive process starts from the intended
result to infer some base case and a possibly partial rule of inference. In Galle
(1997), extensions to standard predicate logic are proposed for a logical study
of patterns of inference in design reasoning. A modal logic of design is formally
de�ned by reduction to a quanti�cational fragment over di�erent perspectives
on a given design universe.

1

A recent attempt to introduce a novel logic of design is made in Floridi
(2017) as a conceptual logic of information. The latter formulates the de�nition
of the blueprint of an intended system. Here, again, we �nd the tension between
logic and information and the need to systematise it. In particular, this model
relies on the system requiring a blueprint and its implementation, according to
the following steps:1

� origin: the system is supposed to do something new;

� focus: the system is constructed to satisfy some well-de�ned requirements;

� design: the system is developed according to a blueprint;

� build : the system is implemented;

� occupy : the system is functional and used.

Focus and design consist in formulating functional and non-functional require-
ments, i.e. what is usually called requirements elicitation:2 functional require-
ments describe what the system is supposed to do, non-functional ones describe
how to do it, and under which conditions is the system supposed to do it. Hence,
focus and design describe the purpose for which the system is designed, the re-
sources (information) needed for the system to be considered functional, and
the level of abstraction at which these are taken. In Floridi (2017), the rela-
tion between the two phases is presented as the implementation of requirements
by a given system. A major distinction of this approach from previous logical
descriptions of design consists in arguing that the logical relation of satisfaction

S (tR1, . . . , Rnu

where S is the system of interest and each Ri is one of the intended requirements
of the system to be designed, is too strong as it expresses a relation of necessita-
tion. Instead, the intended meaning for designs would be that a given system is
a su�cient solution to implement all the desired functional and non-functional
requirements:

tR1, . . . , Rnu) S

The proposal in Floridi (2017) explores the initial steps towards a more
appropriate conceptual, albeit not yet formal, characterization. A crucial lim-
itation of this approach consists precisely in its informal, conceptual nature.
There is no precise quali�cation of what the blueprint of a system is; the ele-
ments constituting the system are not speci�ed; and the requirements are left to
their intuitive meaning. The ability to provide a formal and algorithmic account
of the underlying notion of design and of its properties resides in completing

1See http://howdesignworks.aia.org/fivephases.asp.
2See Pohl (2010); Zowghi and Coulin (2005). For an extensive analysis considering several

theoretical aspects of interest to our work, see Sifakis (2013).

2

this formal translation. This is one main aim of the present work: we do not
propose a di�erent conceptual logic of design, rather a formal account of design
developed from within a computational setting. A second crucial aim is to iden-
tify useful properties for designs so de�ned, and to o�er algorithmic procedures
for their de�nition.

A �rst task for a formal logic of design is to clarify the domain over which
any forcing relation ((in either direction) ranges: we take this relation to be
one between sets of sentences expressing properties of systems (functionalities,
requirements and so on as appropriate). Models of evaluations correspond to
instances of the ontological counterparts, i.e. the real systems. Correspond-
ingly, a semantic forcing relation (, or its syntactic derivability counterpart
$, expresses correctness of a given system formulated in a language. First, we
will provide the linguistic interpretation of the design of a system as a tuple
that contains its basic elements: we will distinguish the static resources that
the system uses from the dynamic processes using those resources;3 the tuple
is completed by the declarative description of the system's intended function or
output. If process and required resources are to be de�ned correct with respect
to the intended output, then the relation between these terms is one which can
be reduced back to one of necessitation:

rResources´ Processs (Output

where the output should be understood as the intended one. This formulation
has two advantages. First, it identi�es the three terms needed to de�ne the
informal notion of blueprint:

De�nition 1 (Blueprint of a Design (informal)). The blueprint of a system is
given by the combination of process, resources and output required to instantiate
that system.

Second, it allows to distinguish logically equivalent but distinct pairs of
process and resources for the same output. This means that the distinction
between a system necessary for the intended output and one only su�cient for
it can be expressed in terms of properties of the rResource ´ Processs pair.4

We formally express such properties of designs.
To clarify this issue further, let us start by reconsidering the problem of

output correctness. From a meta-theoretical viewpoint, one can ask whether it
is possible to establish the correctness of a given logical relation with respect
to the intended output.5 For the logic of design, this corresponds to asking

3This distinction is especially common in computer science, as the distinction between code
and data. As it will be further explained below, the present treatment of a logic of design is
especially �t for computational artefacts, but is not constrained to software systems.

4In general, the notion of process must be intended as an algorithmic formulation of an
instruction set (i.e. �nite, well-de�ned at each step) and this has been traditionally seen
instantiated either in the form of a proof, or as a program.

5This can be called the Output Correctness Problem, and it re�ects the best �t for the
notion of logical validity in a computational setting, see Primiero (2015). The correctness
problem as it is formulated in Computer Science since the 60s replies to the question whether,

3

whether the relation between rResources´Processs and Output is decidable:6

De�nition 2 (Design Checking Problem). Given a set of resources, a process
and an intended output, can one establish whether there exists a logical relation
among them such that they constitute a valid blueprint?

In other words, is it formally possible to establish whether a certain triple
tResources, Process,Outputu instantiate a valid blueprint for a system? This
is notoriously a decidable problem: it consists in checking whether the output
obtained by the execution of a given process with a certain set of resources is the
intended one. This, in turn, requires to have not only a complete formulation
of the required resources, but also a fully functional description of the process
and of the output. Provided that in realistic situations there is usually an
intended output and a given set of available resources, the problem can be
more realistically o�ered as one of constructing the process which can actually
complete the intended blueprint:7

De�nition 3 (Design Reconstruction Problem). Given some set of resources
and an intended output, is it possible to identify a process such that it completes
an intended valid blueprint?

This is, in general, an undecidable problem as there is no e�ective procedure
that can guarantee the existence of such a process. Moreover, the existence
of the sought procedure can be formulated under a normalization constraint:
all processes satisfying a given output, if found, should be eventually proven
logically equivalent.

As far as the Design Checking Problem is concerned, two further assumptions
should be clari�ed:

1. the process of requirements elicitation is considered completed and satis-
�ed; and

2. the process of requirements satisfaction is considered solved, in the sense
that the process present in the blueprint of interest is considered correct
with respect to the intended output.

Given these assumptions, the present work considers a further weakening of
the Design Checking Problem. The peculiarity of system design is that, even
in the decidable context considered, issues of resource accessibility and limited
executability should be taken into account. Hence, one typically considers dif-
ferent versions of the rResources´Processs pair that approximates (hopefully
better and better) the required output. This is, in concrete and formalizable
terms, the distinction between a system which is su�cient for an intended set

given a program, is it possible to check that it does what it is supposed to do, i.e. it satis�es
its intended output.

6The Design Correctness Problem is a counterpart to the Type Checking Problem, see
Pierce (2002).

7The Design Reconstruction Problem is a counterpart to the Type Reconstruction Problem,
see Pierce (2002). For the normalization constraint mentioned below, see Nederpelt (1994).

4

of requirements, and one which is necessary. To formulate with some precision
the idea of better approximations of the requirements, one might proceed in
di�erent ways by maximizing di�erent parameters. On the one hand, e.g. in
the presence of scarce available data or memory, the designer might want to
develop the process which minimizes the resources in use for the satisfaction of
the requirements. On the other hand, e.g. in the presence of safety critical sys-
tems which rely essentially on redundancy, the designer might wish to maximize
the use of resources available, while making sure the system still satis�es its in-
tended output. These are two distinct, non-exclusive ways in which a process
can be quali�ed as satisfying the same intended output in di�erent contexts,
under di�erent priorities and for di�erent applications. If the intention of the
logic of design is then to express su�cient conditions for the satisfaction of a
set of requirements, the designer should be able to distinguish between:

1. the minimal design which satis�es all and only the intended requirements,

2. and a maximal one which satis�es any number of additional requirements
as long as it preserves the intended ones.

We call the former an e�cient design, the latter an optimal design. This distinc-
tion is especially relevant in the context of software systems, where it is closely
related to the problem of malfunctioning: a misfunctioning software system is
one which has non-intended side e�ects, hence technically satisfying an optimal
design; a disfunctioning software system is one which does not or cannot satisfy
some of the intended requirements, hence amounting to a non-e�cient design.8

Accordingly, one might reformulate the Design Checking Problem in view
of the two properties mentioned above: e�ciency and optimality. E�ciency
re�ects the idea of a blueprint in which the process correctly satis�es the output
with a minimal use of resources compared to other processes with the same
output. The Design Checking Problem under e�ciency constraints asks for
the formulation of a design in which the process uses a minimal subset of the
available resources su�cient for the satisfaction of the intended output. This
interpretation in turn implies our ability to identify the minimal set of resources
for output satisfaction:

De�nition 4 (E�cient Design Checking Problem). Given resources Γ, process
t and output α satisfying a given blueprint, is it possible to establish the minimal
set Γ1 Ď Γ required for t using Γ1 to satisfy α?

Optimality re�ects the idea of a design in which the process still correctly
satis�es the same output with a maximal extension of the currently used re-
sources.9 The optimization problem describes the selection of a process optimal
among all the su�ciently similar versions for the given blueprint, including those
that use more resources than required, but always preserve the intended func-
tionalities (albeit maybe along with other ones). Optimality is here intended as
corresponding to maximization of functionalities:

8See Floridi et al. (2015).
9In the present context, resources for a design are always constrained to �nite sets.

5

De�nition 5 (Optimal Design Checking Problem). Given resources Γ, process
t and output α, is it possible to establish a maximally consistent set Γ1 Ě Γ such
that t using Γ1 still satis�es α?

Provided our formal translation of the blueprint of a system as the set com-
posed by the output, the available resources and the process which using the
latter should lead to the former, a natural way to approach the two problems
of e�ciency and optimality is to analyse them in terms of access operations on
the resources. This is useful to identify some meta-theoretical problems of the
informational logic of design, to investigate its formal dynamics and eventually
to o�er some observations on its impact on the issues of malfunctioning. To
obtain this aim, we will consider the satis�ability of a formal relation between
locations where the resources required to satisfy a blueprint are held.10

The rest of this paper is organised as follows. In Section 2, we introduce
a language to express the construction of simple and complex designs through
the control of resources access and operations on their locations. In Section 3,
we provide results on the e�ciency and optimality of both simple and complex
designs. In Section 4, we illustrate through the de�nition of algorithms how
these properties can be computed. We conclude with an overview of current
and future problems in the formal approach to the logic of design.

2 Access on Resources

The aim of the present section is to o�er a language for design construction
based on accessing resources at locations. We understand the blueprint of a
system as the set composed by resources needed, executable process and output
for the system under construction. Under this understanding, a blueprint is not
a fully operational description of the intended system, as it does not allow to
read where resources are accessible, nor in which order they should be accessed,
for process execution. Because of such limitation, a blueprint does not su�ce
for distinguishing among instances of the same system that di�er for resource
usage and functionalities implementation. On the other hand, we understand
the design of a system as the operationalization between the elements of the
blueprint, i.e. the actual access rules to resources which allow a given process to
satisfy the intended output. In this sense, an e�cient design corresponds to the

10This strategy is similar to (and partly inspired by) ludics and the geometry of cognition,
see in particular Girard (2001, 2003). In the following, our terminology also follows partly
that of ludics. Despite the acknowledgment of this inspiration, the motivation behind our
task is very di�erent and it is not constrained to some speci�c logical calculus. Another
relevant in�uence for our work is represented by access control models, extensively used for
example in security policies, and resources calculi, see e.g. Fernández and Siafakas (2014).
The common route of these two research areas lies notoriously in the substructural nature of
linear logic. The use of designs as objects of Ludics corresponding to the skeleton of proofs
where formulas are not manipulated, but rather their location do, is extended in terms of
interactions called disputes in Faggian and Hyland (2002). In our approach, we look at some
basic combinatorial operations on designs, required to obtain more complex structures for the
satisfaction of requirements. We are interested in a computational approach to e�ciency and
optimality properties for any given design.

6

least resourceful implementation of a given blueprint; an optimal design corre-
sponds to a maximally resourceful implementation of a blueprint still preserving
intended functionalities.

We start by o�ering the syntax of our language.

De�nition 6 (Syntax).

T :“ tt, u, . . . , zu
L :“ tA,B, . . . , Nu
O :“ tα, . . . , τ |Ku
R :“ ΓA, ¨|ΓA, pu :τqA

In this language we consider: a �nite set T of process terms; a �nite set
of locations L where resources are available; output O denote the semantics of
terms, i.e. their functional description: for a term t, we declare such description
α by the formula t :α, which means that t will be a (possibly complex) term with
output of type α; we abstract here from the internal semantics of the term t,
which could be de�ned in view of any desired semantics by logical connectives;
for completeness we include the contradictory output with the symbol K, as this
would be used to describe output α Ñ K, but we do not investigate this case
explicitly here. The formula pt : αqA further speci�es the location A at which
term t is considered to produce output α. Resources R are expressed by �nite
sets of formulas ΓA, each of them of the form pt : αqA, required to correctly
obtain a term satisfying the intended output.11

De�nition 7 (Resource Access Operation). A formula ΓA $ pt : αqB has the
following informal reading: under resources Γ issued at location A, process t
satis�es output α at location B.

We investigate the E�cient and Optimal Design Checking Problems by con-
sidering the derivability of a formula of the form ΓA $ pt :αqB . For the present
purposes, the quali�cation of the derivability relation $ is irrelevant, and it can
be characterized according to the context of application. Instead, we �rst want
to de�ne the blueprint which such a formula satis�es:

De�nition 8 (Blueprint). A blueprint is a triple B :“ tΓ, t, αu composed by a
set of resources, a process and an intended output.

A blueprint is an abstract object and it comes unquali�ed with respect to
locations. We are interested in checking its satis�ability, by considering the
relation between locations where the resources required to satisfy an access
operation are held. Note, therefore, that a blueprint does not guarantee a

11As brie�y mentioned above, while the su�cientisation relation from Floridi (2017) only
identi�es a System and the Requirements it is supposed to satisfy, our resource access operation
is meant to separate the speci�cation as intended output (Floridi's Requirements) from a pair
process and resources (Floridi's System). In doing so, we can distinguish between a process
t that uses a minimal set of resources in Γ to satisfy output α, and one that uses a maximal
set of resources in Γ still satisfying output α.

7

working design, as it can include non-accessible resources, or even a non well-
formed pair process-output.

In the formulation of designs, we de�ne notions and rules appropriate for
regulating accesses between locations at which resources are valid either de-
pendently or independently of other previously accessed resources. In turn,
e�ciency and optimality refer respectively to su�ciency (minimality condition)
and precision (maximality condition) of the resource set. In order to make our
process more realistic, we want to constrain the accessibility from resource to
resource (and hence from location to location) in view of a validity condition
expressed by an authorization protocol. For example, the protocol regulating
access to the resource set might require that one can access location B only
after access to location A has been granted. This might be due to the logical or
conceptual or legal priority of one requirement over another, each requirement
identi�ed by the appropriate location where it can be accessed. To express a
policy of valid accesses between locations we refer to a partial order over loca-
tions L. Imposing such a policy over a (sub)set of locations gives us the notion
of network:

De�nition 9 (Networks). A network N :“ tA ď . . . ď Nu is a �nite subset of
locations N Ď L equipped with an authorization policy „:“ tă,“,ąu.

Each location can now be identi�ed by the paths and the related authorization
policy through which it can be accessed within a network. To this aim, we
introduce the notion of Address Pattern.

De�nition 10 (Address Pattern). An address pattern is a pair A :“ tP, ru
composed by a �nite subset of a Network P Ď N called path and a dominance
relation r “ tpn,mq,„u with a policy „ over integers pn,mq P Z, each assigned
to a location in P.

Given a blueprint B :“ tΓ, t, αu, a valid Address Pattern A for B is con-
structed from the paths P across set of locations connecting ΓA and pt : αqB

according to the related order on integers from the policy „. While the no-
tion of Address Pattern and the use of integers assigned to locations might be
considered redundant in view of the previously de�ned notion of Network, it rep-
resents a way to denote the policy existing between any two locations directly,
i.e. without referring back to their positioning in the order of the network. In
this way, any two locations can be assessed from the design they occur in, even
when they originate from di�erent networks with some common location.

2.1 Simple Designs

Consider, as an initial example, the simple resource access operation for blueprint
B :“ tΓ, t, αu:

ΓA $ pt :αqB (1)

We extract the address pattern to construct a protocol-based access authoriza-

8

tion. Our network is pA,Bq, i.e. the locations relevant to the access of a process
t for the output α. Moreover, we need to refer to their dominance relation „,
given by the relative positioning of those addresses in the authorization policy,
say pA ă Bq, to refer to the fact that process t for output α located at B can
only be accessed after access to resources Γ at A has been granted. As these are
the only two locations in the network, we simply assign them positive integers
r “ p1, 2q. The address pattern can now be used as an access rule for the related
blueprint:

pA,Bq, p1 ă 2q
$ tΓ, t, αu (2)

Here B :“ tΓ, t, αu is described as obtained by the Address Pattern ppA,Bq, p1 ă

2qq. In other words, the Address Pattern makes B a valid blueprint in that it
provides all the required instructions to access the process t and the resources
Γ to satisfy the output α.

An abstract design is now intended as a proof that removes any reference
to resources, in order to focus on access policy. The access policy abstracts
away from the Resource Access Operation, but it allows its reconstruction. The
content of the blueprint can be subsumed as external to the calculus as in
the present case, or it can be added in the form of a side-notation: this will
be essential in the real-case scenario where multiple resources are available at
the same location and therefore a given Address Pattern is valid for several
blueprints, but we will abstract from this speci�c aspect in the following and
assume the simple case where we always have the blueprint available.

De�nition 11 (Abstract Design Formula). A formula A $ tP, ru has the fol-
lowing informal reading: from location A, the path P with access policy expressed
by a dominance relation r across its locations is accessible.

Note that a path accessed by a location, or from which a location is accessed,
can be a singleton. Similarly, in the above de�nition of Abstract Design Formula,
the location A can be replaced by a full path P 1. Assume, as in the above
example, that resources Γ are available at location A in position 1 of the policy
and process term t is available at location B in position 2 of the policy, then we
rewrite the access operation as follows:

A $ B, p1 ă 2q (3)

In this case, from location A the path which extends to location B is accessible
according to the dominance relation 1 ă 2. The process of deriving the path A
to B is called a simple design:

De�nition 12 (Simple Design). A simple design is a construction of a direct
address pattern for a blueprint.

Both well-foundedness and �niteness of the design are given by the de�nition
of path and the order policy. When needed, we will refer to a sub-design has
a part of the design, i.e. as a subset of its Address Pattern. A simple design

9

as de�ned above can be obtained in terms of rules to construct sequences of
access patterns for blueprints. Such rules are constrained in the following by
three basic steps:

1. the start of a path of locations;

2. the access of a location within a given path;

3. the extension of a completed path of locations by a new location.

These are re�ected by the following formal rules:12

De�nition 13 (Authorizations Rules for Simple Designs). Each access autho-
rization for the design of a blueprint is obtained by one of the following rules:

Root: an axiomatic declaration of location access authorization

Root
$ A

Dominance: given a non-empty path P, a location A P P and a domi-
nance relation pn „ mq for some n,m P Z, where n,m are associated to
elements of the path, an inference of a dominance relation can be formu-
lated:

tP, ru $ A
Dominance

$ A, tP, ru

Access: given a dominance relation r for a path P and the set tP, pn „
mqu for each n,m P Z associated with elements in the path, simply denoted
tP, ru, an inference of the full dominance relation for some A P P can be
formulated:

$ A, tP, ru
Access

A, r $ P

The Root rule allows direct access to a location as the starting point of a
given path. Unless a location is a Root, every path comes decorated with a
dominance relation in the form pn „ mq. The Dominance rule declares that
given the accessibility of a location A from a path P according to a dominance
relation r, A is accessible in P. The right-hand side of an abstract design formula

12The rules in the following have a basic correspondence with operations common to Ludics,
see Girard (2003), in particular: Root corresponds to Daimon; Dominance corresponds to the
positive rule; Access corresponds to the negative rule. The Rule for Shared Access in the
next section is a form of Cut. The crucial di�erence here is the addition of the accessibility
operation for resources based on the Address Pattern. The rules for combining designs in
Section 2.3 are inspired by Access Control Systems and not present in the standard tradition
from Ludics.

10

is also called the Dominance side. The Access rule states that given a location
A accessible in P according to dominance r, A is an access point to P according
to r; this conclusion brings the dominance relation on the left-hand side of the
turnstile. The left-hand side of an abstract design formula is also called the
Access side. Note that the conclusion of the Access rule reduces to the premise
of the Dominance rule with A ” P, i.e. the latter rule works as elimination for
the former rule. An example of the conclusion of the Access rule presenting a
path P as a single location is o�ered in the the following extension of equation
3:

Root
$ A A, p1 ă 2q $ B

Dominance
$ pA,Bq, p1 ă 2q

Access
A, p1 ă 2q $ B

(4)

2.2 Shared Access

Once basic operations for the construction of a simple design have been o�ered,
a further rule is required for the extension of a path by legal sharing of resources
among locations on possibly di�erent paths. This re�ects the idea that a de-
sign can borrow a path from a distinct design, as long as the relevant access
authorizations are respected. A most interesting aspect, e.g. in the context of
security applications, is the behaviour of a resource access operation in view
of a transitive share of resources between locations. In the following, we will
denote with supprq the greatest element in the order r, and with infprq its least
element. Then a construction based on the coincidence of location and order is
obtained by an application of the following rule:13:

De�nition 14 (Shared Design). The access authorization for a blueprint shar-
ing resources from two distinct designs is obtained by the following rule:

Share: given a valid design obtained by an Access rule, and a valid design
obtained by a Dominance Rule, with a shared address B, a valid shared
design is constructed as follows:

tP, ru $ B $ B, tP 1, r1u
Share, with r2 Ď tinfprq ď suppr1qu

tP, r2u $ P 1

Note that the �rst premise of this rule can be seen as the conclusion of an
Access Rule with P ” A on the left-hand side of the turnstile, and B ” P on
the right-hand side. The present rule is more general, as the Access side in the
�rst premise does not need to be constrained to a single location, but it can be
generalised to a path; at the same time, it respects the coincidence of a location
on the Dominance side of the �rst and the second premises.

13Formally, this has the general form of a cut rule in a proof system.

11

Example. Consider a Resource Access Operation for a given blueprint
such that a functionality ψ is executable at location C provided a resource φ
is accessible at B. Also, resource φ has an access policy which requires a set
of resources Γ to be available at location A for it to be executed. Then a full
Resource Access Operation valid for ψ is implemented by the following tree:

pA,Bq, p1 ă 2q
Γ $ φ

pB,Cq, p2 ă 3q
φ $ ψ

pA,B,Cq, p1, 2 ă 3q
Γ;φ $ ψ

(5)

The set of Access Operations above can be interpreted by designs as follows:

$ pA,Bq, p1 ă 2q
Access

A, p1 ă 2q $ B

B, p2 ă 3q $ C
Dominance

$ pB,Cq, p2 ă 3q
Share

pA,Bq, p1 ă 3q $ C

(6)

with A $ B and B $ C being the operations involved by a shared access.
The informal reading of the above derivation is as follows: given an access from
location A to location B at positions 1, 2 of the policy, and accessibility of
location C from location B at positions 2, 3 of the policy, one builds an access
from location A to B,C at positions 1, 2 and �nally an access from location A,B
to C at positions 1, 3 of the policy. In this shared access, from location A one has
access to resource at location B with A ă B; a similar relation holds between
locations B ă C; sharing access to resources implies downward authorization
for location A with respect to resources available from location C.

De�nition 15 (Shared resource access). A shared resource access is a coinci-
dence of a location and a dominance value n P r in some Access and Dominance
operations.

Intuitively, a shared access should be equivalent to a direct access (normal-
ization) if the operation is performed according to the dominance relation: the
previous shared access would be invalid when $ pB,Cq, p2 ą 1q (although in
this speci�c case C might be accessible directly from A at 1). Hence, reducing
computational steps of resource access has to happen under ordered resources:
given access from location A to resource at location B, and an access from lo-
cation B to resources at location C, it is possible to use A to access C if and
only if allowed by the access policy re�ected in the dominance relation between
locations A,B,C. A normalization theorem across designs has to account for
this requirement.14 While in our interpretation the �nite nature of locations
lists makes it impossible to have diverging normalisations by an in�nite series of
conversions,15 we are faced with a di�erent kind of problem: undesired shares
are those where the network has an access policy that should not allow transi-
tive accesses across designs. To avoid these, we formulate below a normalisation
theorem with an explicit reference to policy, re�ected in the proof.

14Notoriously, in the standard construction of the normalization proof in ludics, conversion
actually induces a connected design by allowing weakenings.

15This possibility requires the additional formulation of Faith in the original Girard (2001).

12

Theorem 1 (Normalisation on Dominance for Simple Designs). Any design
D1 containing a shared access where a location occurs twice, once in the access
side (as premise of the Dominance rule) and once in the dominance side (as
conclusion of the Access Rule), can be replaced by a design D2 that contains
no such repetition and ends with the �nal authorized location on the dominance
side i� the policy associated with the design re�ects the dominance relation of
the location.

Proof. The inductive cases are generated by the last application of a rule in the
design D1:

� the last step in the design D1 is the result of Root : D1 normalises to a
design D2 with an empty root.

� the last step in the design D1 is the combined result of Dominance from
a sub-design D1.1 and Access in a sub-design D1.2. Then a Share rule
is applied to some path P such that in D1.2, a location A P P is in the
right-hand side and in D1.1 the same location A P P is in the left-hand
side (both by construction of the corresponding rules):

� if the dominance r in D1.1 is not contained in the set tpP, rqu of the
design D1.2, then normalization fails;

� else, for each pn „ mq P P, consider the sub-design D1.1.x termi-
nating in pP, pn „ mqq $ A and the sub-design D1.2.y induced by
$ A, tpP, rqu; replacing D1.1 with D1.1.x and D1.2 with D1.2.y, if
pn „ mq re�ects the policy order wrt A P P, then the design is con-
nected and thus in normal form. This last case for D1 is shown by
the tree in example 6.

The requirement related to the dominance relation `re�ecting the policy
order' is explicitly left vague, because such policy might be di�erent from context
to context and depending on applications: the generally valid assumption is that
the share should be valid for P, pm ă nq $ A and $ pA,P 1q, pn ă oq. If one
wants to model access according to a di�erent order relation, this can be changed
by design and according to speci�c requirements for distinct access modes (e.g.
upwards in the dominance relation, with a cyclic order and so on).

De�nition 16 (Orthogonal access). Two designs D1, D2 are orthogonal when
normalisation on dominance is obtained. The resulting design is of the form
given by a declaration of shared access.

The existence of designs with shared access and their normalised versions
with only simple designs induce a notion of equivalence class de�ned over them:

De�nition 17 (Behaviour). The behaviour B is the equivalence class of designs
tD1, . . . , Dnu for a blueprint B closed under shares.

13

The behaviour of a blueprint contains all the possible paths for the resources
required to correctly implement B. Normalisation is the reduction function to
the shortest of such paths.

2.3 Combining Designs

A simple design for a blueprint is constructed according to the dominance re-
lation of locations. But a blueprint can also be obtained by the modular com-
bination of designs for distinct blueprints. Such modular combination typically
requires to cut across locations that might be not in the same order relation.
For this reason, we need to generalise simple designs.

De�nition 18 (Combined Design). A combined design D is a modular con-
struction of address patterns of distinct behaviours tB1, . . . ,Bnu.

In other words, we consider a design D1 P B1 and a design D2 P B2 to be
combined in a new design D “ tD1;D2u. We need to de�ne such composition
by new rules and this will also require a new principle for the normalisation of
shares of combined behaviours. The kinds of composition that most easily occur
in a combined design are induced by:

1. some look up rule on the accesses of another design;

2. the import of such an access, when its addresses are not available directly
to the current design;

3. and copying of the writing protocols of such access in the current path of
a given design.

In the following rules, with slight abuse of notation, we use B1,B2 to denote any
two designs D1 P B1, D2 P B2 respectively. Along with the already introduced
supremum and in�mum for the policy, we will use respectively suppPq and
infpPq for the least and last accessible addresses in a given path.

De�nition 19 (Authorization Rules for Combined Designs). Each access au-
thorization for the combined design D of distinct behaviours B1;B2 is obtained
by one of the following rules:

Reading: given behaviours B1,B2, the behaviour B1®B2 is an instance of
a Dominance rule obtained by taking the terminating location of a design
D1 P B1 and the initial location of a design D2 P B2 according to a valid
shared dominance relation:

tP, ru $ B1 tP 1, r1u $ B2
®

$ pB1,B2q, tP2, r2u

with r2 Ď tinfprq ď suppr1qu and with P2 Ď tP Y P 1u

14

Importing: given behaviours B1,B2, the behaviour B1 iOB2 is an instance
of an Access rule from the initial location of a design D1 P B1 dominating
the terminating location of a design D2 P B2:

$ B1, tP, ru $ B2, tP 1, r1u B1, tP, ru $ B2, tP 1, r1u
iO

B1, tP2, r2u $ B2

with r2 Ď tinfprq ď suppr1qu and with P2 Ď tP Y P 1u

Copying: given behaviours B1,B2, the behaviour B1©B2 is the result of
accessing B2 from a dominating B1

$ pB1,B2q, tP, ru B1, tP 1, r1u $ B2
©

B1 $ B2, tP2, r2u

with r2 Ď tinfprq ď suppr1qu and with P2 Ď tP Y P 1u

The third premise in iO is costly, as it requires to produce a novel path
between designs to be possible.

Examples. The following are applications of the Authorization rules, where
locations pA,Bq and pB,Cq must be intended as (posssibly sub-)design of dis-
tinct behaviours.

A, p1 ă 2q $ B B, p2 ă 3q $ C
®

$ ppA,Bq, pB,Cqq, p1 ă 3q
(7)

$ pA,Bq, p1 ă 2q $ pB,Cq, p2 ă 3q pA,Bq, p1 ă 2q $ pB,Cq, p2 ă 3q
iO

pA,Bq, p1 ă 3q $ pB,Cq
(8)

$ ppA,Bq, pB,Cqq, p1 ă 3q pA,Bq, p1 ă 3q $ pB,Cq
©

pA,Bq $ pB,Cq, p1 ă 3q
(9)

2.4 Shared Access for Combined Designs

A further rule is required for the extension of a path by a sharing of resources
among locations for a combined design. This rule generalizes shares to combined
designs.

De�nition 20 (Combined Shared Design). The access authorization for a
blueprint sharing resources from two distinct designs is obtained by the following
rule:

Combined Share: given a valid design B1©B2 and a valid design B2©B3,
a combined share of designs B1,B3 is constructed as follows:

15

B1 $ B2, pP, rq B2 $ B3, pP 1, r1q
CShareB1, pP2, r2q $ B3

with r2 Ď tinfprq ď suppr1qu and P 2 Ď tinfpPq Y suppP 1qu.

Note that the conclusion of CShare has the same logical form of the conclu-
sion of an instance of the Import rule iO, but: its premises relate distinct designs
through a shared one (possibly a single location), and the path in the conclusion
is constructed joining only the least and last elements of the originating paths.

Example. Consider behaviours: A “ pA,Cq, p1 ă 3q, obtained by a tree
with an instance of®as in Equation 7, an instance of iO as in Equation 8; and
constructing an instance of a©rule as in Equation 9.

®
$ ppA,Bq, pB,Cqq, p1 ă 3q

iO
pA,Bq, p1 ă 3q $ pB,Cq

©
pA,Bq $ pB,Cq, p1 ă 3q

Now consider the behaviour B “ pC,F q, p3 ă 4q obtained by a specular tree
as follows:

®
$ ppC,Dq, pE,F qq, p2 ă 3q

iO
pC,Dq, p2 ă 4q $ pE,F q

©
pC,Dq $ pE,F q, p2 ă 4q

Now the shared locations across designs allow to formulate a new access from
pA,Bq to pE,F q, making use of the existence of the designs pB,Cq, pC,Dq:

pA,Bq $ pB,Cq, p1 ă 3q pC,Dq $ pE,F q, p2 ă 4q
CShare

pA,Bq, p1 ă 4q $ pE,F q

De�nition 21 (Shared resource access for combined designs). A shared resource
access for combined designs is a coincidence of a location in Copying operations
for distinct design.

A complex behaviour is the equivalence class of composed designs under
CShares:

De�nition 22 (Complex Behaviour). A complex behaviour B is the equivalence
class of combined designs tD1, . . . ,Dnu for a complex blueprint B closed under
CShares.

The behaviour of a complex design contains all the possible paths for the
resources required to produce B, when the latter is the result of multiple designs
A;B. We can now present normalization on behaviours that possibly include
combined shares. Intuitively, a shared access should be equivalent to a direct
access (normalization). Undesired shares are those for which a common location
and position in the dominance cannot be identi�ed. For this reason we formulate
below a normalisation theorem with an explicit reference to both conditions.

16

Theorem 2 (Normalisation with Import for Combined Designs). A combined
share is a coincidence of a location within the appropriate dominance relation
in two combined design B1,B2 and B3,B4 for some such that the base of any
given design in the �rst path ends in B1©B2, the other path ends with B3©B4.

Proof. The shared location A in the path of the combined designs will occur on
the left-hand side of one design of behaviour B2 in the branch D1.2; and on the
right-hand side of another design of behaviour B3 in the branch D1.1:

� For the former, consider the sub-design D1.1.x terminating in pP, pn „
mqq $ A, i.e. by an instance of an Import rule: this does not necessarily
preserve the position of the location in the dominance r of the ©rule.

� For the latter, consider the sub-design D1.2.y induced by $ A, tpP,„qu,
i.e. where the location is obtained by a Reading rule; and the position of
the location in the dominance r of the ©rule is preserved.

Then, if the dominance constructed by the CShare rule coincides in the
preserved location of A with respect to the other behaviours, the design is
necessarily connected, by assumption for the location, and by construction for
the dominance relation, and thus in normal form.

3 Ordering Simple and Combined Designs

All designs of a given behaviour will have at least the same resources and lo-
cations (i.e. those essential to satisfy the intended speci�cation), but possibly
more by covering di�erent paths connecting such locations (hence inducing ad-
ditional functionalities). The most e�cient design in a behaviour will be the
most direct one to a resource access operation A $ B, assuming dominance is
respected: this can be shown to correspond to the path with the least number of
shares. The optimal design in a behaviour will be the one that includes the most
resources for which the intended blueprint is still satis�ed: this corresponds to
the selection paths with the largest number of imports.

3.1 E�cient and Optimal Simple Designs

Recall that a blueprint might have di�erent designs corresponding to it, with
longer and shorter paths and distinct dominance relations. We denote with
ApDiq an address pattern A of a design Di. The length of the address pattern
of a simple design, which we now denote by ApDiq, is directly proportional to
the number of instances of the Share rule, which we denote by |SharepDiq|. In
other words, a simple design normalised with respect to the Share rule has a
shorter address pattern than a non-normal one in the same behaviour. We can
therefore order any D1, D2 P B as follows:

Theorem 3. For all D1, D2 P B, ApD1q ă ApD2q i� |SharepD1q| ă |SharepD2q|.

Proof. In the two directions:

17

Ñ For any Di of B “ tΓ, t, αu, ApD1q “ pN , rq, where N “ tA, . . . , Nu P Γ
and r “ pn „ ¨ ¨ ¨ „ oq. If ApD1q ă ApD2q, then there is Γ1 Ď Γ such
that Γ1 P ApD1q and Γ P ApD2q. Because D1, D2 P B by assumption, Γ1

must satisfy at least as much as Γ but be necessarily shorter, this means
having a common path in N and hence there is at least one sequence
tA ă B ă Cu P Γ which can be reduced to tA ă Cu P Γ1 and Share is the
only rule which allows such reduction. Hence, |SharepD1q| ă |SharepD2q|.

Ð If |SharepD1q| ă |SharepD2q| then ApD1q Ě tA ă Cu and ApD2q Ě tA ă
B ă Cu for at least one pair tA,Cu P Γ and a blueprint B “ tΓ, t, αu. By
construction of A, then ApD1q ă ApD2q.

Lemma 1 (E�ciency on Simple Designs). For all D1, D2 P B for a blueprint
B :“ tΓ, t, αu, if D1 is the normalisation on dominance of D2, then ApD1q

contains the minimal set Γ1 Ď Γ valid for B.

The E�ciency Lemma follows directly from De�nition 9 and 10 and The-
orems 1 and 3. The E�ciency Lemma answers to the E�cient Design Check-
ing Problem, in the sense that given any two designs implementing the same
blueprint, the one involving the shortest path across resources is the most e�-
cient one.

Lemma 2 (Optimality on Simple Designs). For all D1, D2 P B for a blueprint
B :“ tΓ, t, αu, if D1 is the normalisation on dominance of D2, then given the set
Γ1 of resources in ApD1q, we denote with ∆ “ ΓzΓ1 the largest set of resources
non-essential for B. Then CnpΓ1q X∆ is the optimal set of resources for B.

In the above we denote with CnpΓ1q the deductive closure of Γ1, according
to some consequence relation of interest. The Optimality Lemma follows from
the �niteness of De�nition 6 and Lemma 1. The Optimality Lemma answers
to the Optimal Design Checking Problem in an indirect way: given our ability
to compute the most e�cient path through resources that satisfy a blueprint,
it computes all the resources non required by such path (provided our set of
total resources is �nite by de�nition); hence, one can add any available resource
consistent with the essential ones required by the blueprint, starting from the
empty set (the minimal subset of the most e�cient resource set) and up to a
maximally consistent set.

3.2 E�cient and Optimal Complex Designs

To compute the length of the address patterns of composed designs, we will
assume that their simple components have been normalised (hence they have
minimal address pattern lengths). The length of the address pattern of the
complex behaviour of normalised composed designs, which we now denote by
ApDq, is directly proportional to the number of instances of the CShare rule,
which we denote by |CSharepDq|. In other words, a behaviour normalised with

18

respect to CShare instances has a shorter address pattern than an equivalent
non-normal one. We can therefore order any D1,D2 P B as follows:

Theorem 4. For allD1,D2 P B, ApD1q ă ApD2q i� |CSharepD1q| ă |CSharepD2q|.

Proof. Let us assume D1 “ tD1, D2u, where D1 is of blueprint B1 and D2 is of
blueprint B2. Similarly, D2 “ tD3, D4u, where D3 is of blueprint B3 and D4 is
of blueprint B4. The complex design pD1;D2q is of blueprint pB1; B2q; and the
complex design pD3;D4q is of blueprint pB3; B4q; because pD1;D2q and pD3;D4q

are both in B by assumption, they satisfy the same outputs and have at least
equivalent resource sets, although with possibly di�erent address patterns.

Ñ ApD1q “ ApD1q`ApD2q and ApD2q “ ApD3q`ApD4q. As all simple designs
are assumed to be normalised, there is no Γ1 Ă Γ such that Γ P ApD1q and
B1 “ tΓ

1, t, αu and there is no ∆1 Ă ∆ such that ∆ P ApD2q and B2 “ t∆
1, t, αu.

If ApD1q ă ApD2q then ApD1q ă ApDiq`ApDjq for any Di, Dj of B2. Because
D1,D2 P B by assumption, Γ must satisfy at least as much requirements as
∆, but be necessarily shorter, i.e. they must share a common path in N and
hence there is at least one sequence tA ă B ă Cu P ∆ which can be reduced
to tA ă Cu P Γ and CShare is the only rule to which such reduction applies.
Hence, |CSharepD1q| ă |CSharepD2q|.

Ð If |CSharepD1q| ă |CSharepD2q| then DtA ă Cu Ď ApD1q and DtA ă B ă
Cu Ď ApD2q for at least one pair tA,Cu P Γ, where Γ P ApD1q and a triple
tA,B,Cu P ∆, where ∆ P ApD2q, with B “ tpΓ ” ∆q, t, αu. By construction of
A, then ApD1q ă ApD2q.

Lemma 3 (E�ciency on Complex Designs). For all D1,D2 P B for a complex
blueprint B :“ tΓ, t, αu, if D1 is the normalisation with Import of D2, then
ApD1q contains the smallest set Γ1 Ď Γ valid for B.

The Complex E�ciency Lemma follows directly from De�nition 9 and 10
and Theorems 2 and 4. This Lemma brings Lemma 1 to an higher level of
abstraction, allowing e�ciency for composed designs.

Lemma 4 (Optimality on Complex Designs). For all D1,D2 P B for a complex
blueprint B :“ tΓ, t, αu, if D1 is the normalisation with Import of D2, then given
the set Γ1 of resources in ApD1q, we denote with ∆ “ ΓzΓ1 the largest set of
resources non essential for B. Then CnpΓ1q X∆ is the optimal set of resources
for B.

The Optimality Lemma follows from the �niteness of De�nition 6 and Lemma
3. This Lemma brings Lemma 2 to an higher level of abstraction, allowing op-
timality for composed designs.

4 Computing E�ciency and Optimality

The Lemmas 1,2, 3 and 4 can now be shown to refer to computable processes
through algorithms in pseudo-code.

19

Figure 1 o�ers an algorithm to compute the E�cient Simple Design, given
as input a set of resources Γ and output α (line 1). It requires locations and
a subset Γ1 of the resources in the blueprint (lines 3-5). It then proceeds as
follows: construct the Network by returning in an order every location satisfying
a resource (lines 7-12); construct the Path and keep count of the Shares: start
from the empty path and the null counter (lines 14-17); going through each
location in the Network: add to the path the minimal element in the order
(lines 20-23); for every successive element in the Network, add it to the Path
preserving the order (lines 25-28); add every next location in the order that
satis�es the next required resource (lines 30-33); if there are two of the previous
cases sharing a location, cut across the location and add one to the counter
(lines 35-40); proceed until there are locations available in the Network and
stop when one reaches the resource satifying α, otherwise add a previously
unreached resource and return (lines 40-44). This last step is essential if the
current selection of resources has not turned out to be su�cient to satisfy α.
Now construct the ordered equivalence class of such Paths, by selecting �rst the
path with the lower counter (lines 46-53). Finally, return as output the minimal
element in such order.

Figure 2 o�ers an algorithm to compute the Optimal Simple Design, given as
input a set of resources Γ and output α (line 1). It requires locations and a su-
perset of the resources in the blueprint, i.e. all initially available resources (lines
3-5). It then proceeds as follows: construct the set of non-required resources by
selecting the set di�erence between the set of available resources and the set of
resources required for an e�cient design of the given blueprint (lines 7-9, hence
it calls the execution of the previous algorithm); construct a maximally consis-
tent union starting from the empty set and adding to it any element which is in
the set of non-required resources but consistent with admissible requirements of
the e�cient design, until there are available resources to explore. Note that the
possibility to obtain a maximally consistent union set is given by two properties:
�neteness and linearity. We start from an empty set, we proceed by adding to
the required resources step by step those non-needed resources that are linearly
accessible from the current ones, and proceed as long as new resources can be
added preserving consistency. The set might not be unique: two resources might
be available at the same next address, and each be consistent with the current
union set, but inclusion of both might make the set inconsistent. Terminate by
returning as output the result of such selection.

Figure 3 o�ers an algorithm to compute the E�cient Complex Design, given
as input a set of resources Γ and a combination of output α1;α2 (line 1). It
requires two e�cient simple design (lines 8-10). It then proceeds as follows: con-
struct the Network by returning in an order every location satisfying a resource
either in the �rst or in the second design (lines 12-18); construct the Path and
keep count of the CShares: start from the empty path and the null counter (line
21); going through each location in the Network (line 24): add to the path the
minimal element in the order; for every element in the Network (independently
from the order), add it to the Path (lines 25-28); add every next location in the
order that satis�es the next required resource (lines 30-33); if there are two of

20

1 PROCEDURE E�cient_SimpleDesign(Γ, α)
2
3 ´´ given available locations and resources
4 L :“ tA ă . . . ă Nu;
5 Γ1 Ă Γ :“ tui, . . . unu;
6
7 ´´ construct Network
8 N :“ tu
9 FOR each ui P Γ1

10 IF DA P L $ ui

11 THEN N :“ N Y tA,ău;
12 ENDIF
13 ENDFOR
14
15 ´´ construct Path with policy and keep count of Shares
16 i :“ 0; P :“ Pi; SET Counter:=0;
17 DO
18 Pi “ H;
19 FOR EACH tA,ău P N
20
21 (ROOT)
22 IF A is a minimal element of N with respect to ă
23 THEN Pi :“ Pi Y tAu;
24 ENDIF
25
26 (DOMINANCE)
27 IF A ă B P L with respect to ă
28 THEN Pi :“ Pi Y tA,Bu;
29 ENDIF
30
31 (ACCESS)
32 IF Dub P B such that Pi Y tAu $ ub

33 THEN Pi :“ Pi Y tA,Bu;
34 ENDIF
35
36 (SHARE)
37 IF Pi Y tA,Bu
38 AND Pi Y tB,Cu
39 THEN Counter(Pi):=Counter+1 AND Pi :“ Pi Y tA,Cu;
40 ENDIF
41
42 (BRANCHING)
43 IF Dub P B such that Pi Y tAu $ ub AND
44 Duc P C such that Pi Y tAu $ uc

45 THEN Pi :“ Pi Y tA,Bu AND Pj :“ Pi Y tA,Cu;
46 ENDIF
47
48 (TERMINATION)
49 IF Pi $ um :α
50 THEN HALT
51 ELSE Pi Y tun`1 P ΓzΓ1u AND
52 RETURN;
53 ENDIF
54 ENDFOR
55
56 ´´ construct ordered Behaviour
57 FOR
58 i ą 1 to maxpCounterpPqq;
59 DO B :“ tPiu

60 WHILE CounterpPjq ą CounterpPiq;
61 DO B :“ tPi ă Pju

62 WHILE P ‰ H;
63 ENDFOR
64
65 RETURN Pi P B such that is minimal with respect to <.
66
67 ENDPROCEDURE

Figure 1: Algorithm for E�cient Simple Design21

1 PROCEDURE Optimal_SimpleDesign(Γ, α)
2
3 ´´ given available locations and resources
4 L :“ tA ă . . . ă Nu;
5 Γ Ă Γ1 :“ tui, . . . unu;
6
7 ´´ construct the set of non´required resources
8 E�cient_SimpleDesign(Γ2, α);
9 ∆ :“ Γ1zΓ2;
10
11 ´´ construct maximal union E�cient_SimpleDesign
12 i :“ 0;
13 WHILE ∆Y Γ1 ‰ H
14 DO
15 Γ “ H;
16 FOR EACH ui P ∆X CnpΓ2q
17 ΓY tuiu;
18 ENDFOR
19 RETURN pΓ, αq.
20
21 ENDPROCEDURE

Figure 2: Algorithm for Optimal Simple Design

the previous cases sharing a location, cut across the location and add one to the
counter (lines 35-38); and proceed as previously for branching an termination;
proceed until there are locations available in the Network and stop when one
reaches the set of resources satifying α. Now construct the ordered equivalence
class of such Paths, by selecting �rst the path with the lower counter (lines
61-66). Finally, return as output the minimal element in such order (line 69).

Figure 4 o�ers an algorithm to compute the Optimal Complex Design, given
as input a set of resources Γ and a composed output α1;α2 (line 1). It requires
locations and a superset of the resources in the blueprints, i.e. all initially
available resources (lines 3-5). It then proceeds as follows: construct the set of
non-required resources by selecting the set di�erence between the set of avail-
able resources and the set of resources required for e�cient designs composed
for the given blueprints (lines 7-9, hence it calls the execution of the previous al-
gorithm); construct the maximal union starting from the empty set and adding
to it any element which is in the set of non-required resources but consistent
with admissible requirements of the composed design, until there are available
resources to explore in either set. Terminate by returning as output the result
of such selection.

5 Conclusions

In this paper we have considered a logic of design formulated as resource access
control. In this formulation it is possible to clarify the associated decidability
properties: the problem of determining whether a set of resources and a process
satisfy a given blueprint is decidable; on the other hand, to establish whether for
a given set of requirements there exists a process that satis�es a given blueprint

22

1 PROCEDURE E�cient_ComplexDesign(Γ, α1;α2)
2
3 ´´ given available locations and resources
4 L :“ tA ă . . . ă Nu;
5 Γ11 Ă Γ :“ tui, . . . unu;
6 Γ12 Ă Γ :“ tui, . . . uou;
7
8 ´´ given two E�cient Simple designs
9 E�cient_SimpleDesign(Γ11, α1);
10 E�cient_SimpleDesign(Γ12, α2);
11
12 ´´ construct Complex Network
13 N :“ tu
14 FOR each ui P Γ11 _ Γ12
15 IF DA P L $ ui

16 THEN N :“ N Y tA,ău;
17 ENDIF
18 ENDFOR
19
20 ´´ construct Path and keep count of CShares
21 i :“ 0; P :“ Pi; SET Counter:=0;
22 DO
23 Pi “ H;
24 FOR EACH tA,B,ău P N
25 (READING)
26 IF Pi :“ Pi Y tA,Bu
27 AND Pj :“ Pi Y tB,Cu
28 THEN Pi :“ Pi Y Pj ;
29 ENDIF
30
31 (IMPORTING)
32 IF Pi :“ Pi Y tA,Bu
33 AND Pj :“ Pi Y tB,Cu
34 AND Pi :“ Pi Y Pj

35 THEN Pi :“ Pi Y tA,Cu;
36 ENDIF
37
38 (COPYING)
39 IF Pi :“ Pi Y tA,Cu
40 THEN Dub P B such that Pi Y tAu $ ub AND ub $ C;
41 ENDIF
42
43 (CSHARE)
44 IF Pi Y tA,Bu AND Pi Y tB,Cu
45 THEN Counter(Pi)=Counter+1 AND Pi :“ Pi Y tA,Cu;
46 ENDIF
47
48 (BRANCHING)
49 IF Dub P B such that Pi Y tAu $ ub

50 AND Duc P C such that Pi Y tAu $ uc

51 THEN Pi :“ Pi Y tA,Bu AND Pj :“ Pi Y tA,Cu;
52 ENDIF
53
54 (TERMINATION)
55 IF Pi $ um :α1;α2

56 THEN HALT
57 ELSE Pi Y tun`1 P ΓzΓ11 _ Γ12u AND
58 RETURN;
59 ENDIF
60 ENDFOR
61
62 ´´ construct ordered Complex Behaviour
63 FOR
64 i ą 1 to max(Counter(P));
65 DO B :“ tPiu

66 WHILE Counter(Pj)>Counter(Pi);
67 DO B :“ tPi ă Pju

68 WHILE P ‰ H;
69 ENDFOR
70
71 RETURN Pi P B such that is minimal with respect to <.
72
73 ENDPROCEDURE

Figure 3: Algorithm for E�cient Complex Design

23

1 PROCEDURE Optimal_ComplexDesign(Γ, α;α2)
2
3 ´´ given available locations and resources
4 L :“ tA ă . . . ă Nu;
5 Γ Ă Γ1 :“ tui, . . . unu;
6
7 ´´ construct the set of non´required resources
8 E�cient_SimpleDesign(Γ21, α1);
9 E�cient_SimpleDesign(Γ22, α2);
10 ∆ :“ ΓzΓ21,2;
11
12 ´´ construct maximal union E�cient_SimpleDesigns
13 i :“ 0;
14 WHILE ∆Y Γ1 ‰ H
15 DO
16 Γ “ H;
17 FOR EACH ui R ∆X CnppΓ21, α1q Y pΓ

2
2, α2qq

18 ΓY tuiu;
19 ENDFOR
20 RETURN pΓ, α1;α2q

21
22 ENDPROCEDURE

Figure 4: Algorithm for Optimal Complex Design

is an undecidable problem.
Limiting oneself to the decidable aspect of the meta-theory of the logic of

design, there are still important issues to be answered. In particular, resource
accessibility and correctness are essential ones to qualify good designs. Ques-
tions to be answered concern how e�ciently can a system satisfy a given set of
requirements, i.e. what is the minimal amount of resources required to satisfy
the requirements; and whether a given way of satisfying intended requirements
is compatible with additional, non essential ones. We have here considered
these two problems, by describing a language for designs and investigating ef-
�ciency (minimality) and optimality (maximality) as structural properties on
the associated derivability relation (which needs not to be intended as the only
derivability relation privileged by the logic of design). We have provided results
on their normal forms, lenghts and computability.

The problems that can be treated within this framework are various: deter-
mining that there exists neither a more e�cient nor a more optimal design for
the intended blueprint; determining that there exists no alternative algorithmic
process for the intended blueprint; determining that a design is e�cient with
respect to a given output; determining that the output of a design is as desired
and as intended by the given blueprint; determining the allowed variants of a
given blueprint in terms of its designs, and the design variants which are not
allowed with respect to the intended blueprint. Most of these problems refor-
mulate conceptual and formal questions from the literature of computational
logic within the logic of designs. Their formulation is left for future research.

A major philosophical import of this analysis is re�ected in the distinction
between disfunctioning systems (systems with a design that permanently or
temporarily does not satisfy some or all of the intended functionalities of their

24

blueprint) and misfunctioning systems (systems with a design that allows for
functionalities not intended by their blueprint, while possibly preserving the
intended one). A computational approach to these system design processes can
sensibly improve our abilities to establish, prevent and control malfunctioning.

Acknowledgments

The author wishes to thank three anonymous reviewers for extensive and helpful
comments on previous versions of this work.

References

Faggian, C. and Hyland, M. (2002). Designs, disputes and strategies. In Brad-
�eld, J. C., editor, Computer Science Logic, 16th International Workshop,
CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, UK,
September 22-25, 2002, Proceedings, volume 2471 of Lecture Notes in Com-
puter Science, pages 442�457. Springer.

Fawcett, W. (1987). A note on the logic of design. Design Studies, 8(2):82 � 87.

Fernández, M. and Siafakas, N. (2014). Labelled calculi of resources. J. Log.
Comput., 24(3):591�613.

Floridi, L. (2017). The logic of design as a conceptual logic of information.
Minds and Machines, 27(3):495�519.

Floridi, L., Fresco, N., and Primiero, G. (2015). On malfunctioning software.
Synthese, 192(4):1199�1220.

Galle, P. (1997). Towards a formal logic of design rationalization. Design Stud-
ies, 18(2):195 � 219.

Girard, J. (2001). Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301�506.

Girard, J. (2003). From foundations to ludics. Bulletin of Symbolic Logic,
9(2):131�168.

March, L. (1976). The logic of design and the question of value. Cambridge
University Press.

Nederpelt, R. (1994). Strong normalization in a typed lambda calculus with
lambda structured types. Studies in Logic and the Foundations of Mathemat-
ics, 133:389 � 468. Selected Papers on Automath.

Pierce, B. C. (2002). Types and programming languages. MIT Press.

Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer Publishing Company, Incorporated, 1st edition.

25

Primiero, G. (2015). Realist consequence, epistemic inference, computational
correctness. In The Road to Universal Logic, volume II, pages 573�588.
Springer.

Sifakis, J. (2013). Rigorous system design. Foundations and Trends in Electronic
Design Automation, 6(4):293�362.

Zeng, Y. and Cheng, G. (1991). On the logic of design. Design Studies, 12(3):137
� 141.

Zowghi, D. and Coulin, C. (2005). Requirements Elicitation: A Survey of Tech-
niques, Approaches, and Tools, pages 19�46. Springer Berlin Heidelberg,
Berlin, Heidelberg.

26

