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Abstract— Many techniques have been developed to cancel
the ventricular interference in atrial electrograms (AEG) during
atrial fibrillation. In particular, average beat subtraction (ABS)
and interpolation are among those mostly adopted. However,
ABS usually leaves high power residues and discontinuity at the
borders, whereas interpolation totally substitutes the residual
activity with a forecasting that might fail at the center of
the cancellation segment. In this study, we proposed a new
algorithm to refine the ventricular estimate provided by ABS, in
such a way that the residual activity should likely be distributed
as the local atrial activity. Briefly, the local atrial activity is first
modeled with an autoregressive (AR) process, then the estimate
is refined by maximizing the log likelihood of the atrial residual
activity according to the fitted AR model. We tested the new
algorithm on both synthetic and real AEGs, and compared the
performance with other four algorithms (two variants of ABS,
interpolation and zero substitution). On synthetic data, our
algorithm outperformed all the others in terms of average root
mean square error (0.043 vs 0.046 for interpolation; p < 0.05).
On real data, our methodology outperformed two variants of
ABS (p < 0.05) and performed similarly to interpolation when
considering the high power residues left (both < 5%), and the
log likelihood with the fitted AR model.

I. INTRODUCTION

During ablation routines for the treatment of atrial fib-
rillation (AF), atrial electrograms (AEG) are measured on
the atrial surface to determine the loci responsible for the
fibrillation. Depending on the position of the catheter and
type of measurement (i.e., unipolar or bipolar), the ventricu-
lar activity might be overlapped to the signal of interest, i.e.,
atrial one.

Many algorithms have been developed in the last decades
to reduce the interference caused by the ventricles (both
on AEG and standard electrocardiogram, ECG). Such algo-
rithms can be categorized into the following five groups: i)
average beat subtraction (ABS) and its variants [1], [2]; ii)
interpolation [2]; iii) adaptive filtering [3], [4]; iv) model-
based filtering [5]; and v) multi-lead filtering [4]. (An exten-
sive review may be found in [2].)

Considering the first two groups, ABS estimates a template
as average of several ventricular activities and subtract it
to the AEG. Several are its variants, including power cor-
rection algorithms [6], noise-dependent weights or residual-
constrained template [1].

Interpolation substitutes the entire ventricular segment
with a prediction obtained from a model of the nearby atrial
activity. Common methods in this context are sinusoidal
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and autoregressive interpolations in which the residue is
substituted with a prediction that minimizes the mean square
error or prediction error, respectively.

All methodologies present pros and cons. ABS is simple to
implement but might leave high power residue and disconti-
nuity at the borders of the ventricular segment. Interpolation
forces the frequency content of the residue to be similar to
the nearby atrial activity. However, its forecasting might fail
due to models poorly fitted [2] (especially at high heart rate
when the duration of the nearby atrial activity, before the
next ventricular artifact, is limited in time).

In this proof-of-concept, we developed and tested a new
algorithm, i.e., r-ABS, by combining ABS and interpolation
in an unified framework. The new algorithm has been tested
on both synthetic and real AEGs, while its performance
compared with two variants of ABS, an autoregressive in-
terpolation method, and zero substitution.

II. METHODS

A. The model

The common signal-plus-noise model is used to model the
endocavitary recording, as follows

zk = ak + vk,

where k is the sample index, vk is the ventricular activity to
remove (hence, the noise) and ak is the activity that includes
both far and near atrial field effects.

The activity ak is modeled as a zero-mean stationary
stochastic Gaussian process with autocovariance function
ρ(l), with l being the lag. Under the stationary and nor-
mality assumptions, the sequence of N stochastic variables
a = [a1, a2, · · · , aN ]ᵀ is distributed as a multivariate
Gaussian variable

a ∼ N (0,Σ),

where Σ is the Toeplitz covariance matrix, built from the
values of ρ(l).

B. The signal

Let us have one AEG in which the ventricular activity is
clearly overlapped. In addition, let us assume that the time-
positions of the ventricular complexes are known and that
for each of the ventricular complex a window of N AEG
samples is located such that the R-peak, as identified on
the ECG, is approximately at the center. Let us also set
apart the Q samples before the beginning of the window
bracketing a ventricular complex (in which the ventricu-
lar activity is likely not present). Then, the two windows
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Fig. 1: Example of AEG that underwent to three different ventricular cancellation algorithms. The original AEG is shown in
panel (a). Red arrow-tip markers point to ventricular activities (determined by mean of the surface ECG). Red thick signals
show the ABS template (a) and residual activities of ABS (b), interpolation (c) and r-ABS (d). The dashed box encloses the
portion of AEG used for fitting the AR model.

can be stored in the vector zQ = [z1, z2, · · · , zQ]ᵀ and
zN = [z1, z2, · · · , zN ]ᵀ, along with the augmented signal
zA = [zᵀQ, z

ᵀ
N ]ᵀ. Let us also call these two segments as Q

and N window, respectively.

C. The refined estimate

We propose to refine the ventricular activity estimate t̂
(N dimensional vector) provided by the ABS to obtain its
improved version v̂. The refinement is based on the fact that
the residual activity â = z − v̂ should follow a specific
multivariate Gaussian distribution.

First, we model the refinement of the vector t̂ by using a
linear combination of basis functions

v̂ = t̂ + Φᵀc, (1)

where Φ is a B × N matrix containing B basis functions
and c is the vector of coefficients to be estimated.

Let us now define the augmented activity aA as

aA =

[
aQ
aN

]
,

in which aN is the activity to be estimated. Such augmented
vector follows a multivariate Gaussian distribution with co-
variance matrix ΣA

aA ∼ N
(
0,

[
ΣQQ ΣQN

ΣNQ ΣNN

])
.

In order to estimate the coefficient vector ĉ, it is possible
to maximize the log conditional likelihood of the residual
activity, as follows

ĉ = argmaxc logL(c; zN |zQ),

where aQ = zQ, since no ventricular activity is supposed to
be overlapped on the Q window.

If the atrial activity a = z− t̂−Φᵀc follows a multivariate
Gaussian distribution with mean vector µ∗ and covariance
matrix Σ∗, the maximum likelihood estimate for c can be
obtained by solving the following optimization problem

ĉ = argmaxc logL(c; z) = argmaxc log [P (z; c)]

= argmaxc

[
(z− t̂− Φᵀc− µ∗)ᵀΣ−1

∗ (z− t̂− Φᵀc− µ∗)
]

= argmaxcJ(c).
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Fig. 2: Boxplots of the performance for the five algorithms. Panel (a) reports the root MSE between the residual activity
and the true one on the synthetic data. Panel (b) shows the log likelihood computed on the real signal.

The derivative of J(c) with respect to cᵀ is

dJ(c)

dcᵀ
= −2ΦΣ−1

∗ (z− t̂− µ∗) + 2(ΦΣ−1
∗ Φᵀ)c,

which, once set to 0, leads to

(ΦΣ−1
∗ Φᵀ)ĉ = ΦΣ−1

∗ (z− t̂− µ∗). (2)

It is worth noting that the conditional probability of a
multivariate Gaussian variable is another multivariate Gaus-
sian variable. In particular, the conditional probability of the
activity aN conditioned by aQ is

aN |aQ ∼ N
(

ΣNQΣ−1
QQaQ,ΣNN − ΣNQΣ−1

QQΣQN

)
.

Therefore, the estimate of the coefficient vector ĉ can be
obtained using eq. (2), by setting µ∗ = ΣNQΣ−1

QQaQ and
Σ∗ = ΣNN − ΣNQΣ−1

QQΣQN .

D. Selection of the basis functions

In general, there is no standard rule on how to choose
certain basis functions over others, and, in most of the cases,
only empirical considerations guide the selection for the
problem at hand. In our problem, considering that most of the
ventricular energy will likely be located at the center of the
N window by construction (at sample ≈ N/2), a reasonable
requirements for the basis function might be to assume the
same value at the boundaries of the window. A common
set of basis functions, displaying this characteristic, is the
set of the sinusoidal functions, along with their harmonics,
with fundamental frequency ω = 2π/N . With this choice,
which we performed, the coefficients c correspond to the
Discrete Fourier Transform of the refinement in eq. (1). We
employed the harmonics of order 0 · · · (B − 1)/2 where B
was an odd number by construction, that is, i) a constant
term; ii) (B − 1)/2 sines; and iii) (B − 1)/2 cosines.

E. Dataset

The algorithm was validated on two datasets. The first
one comprised 10 synthetic AEGs, built along the line of
what described in [1]. Briefly, the far-field atrial activity was

modeled using an autoregressive model, whereas the near-far
atrial activity and ventricular activity were generated using
an electric dipole moving along a straight line, with respect
to the electrodes. The average ratio between ventricular and
near-field atrial peaks was set to 4, while the average ratio
between the near-field atrial peak and standard deviation of
the far-field activity was 2. Each synthetic AEG signal con-
tained the interference of 120 beats, generated independently
between each other.

The second dataset was composed by a single real signal
taken from the Intracardiac Atrial Fibrillation Database [7].
In particular, we used the first 2 minutes of the first signal
in the dataset (iaf1 afw; CS12, sampling rate: 1000 Hz). The
location of 145 beats was provided with the AEG. Figure 1a
shows a portion of the signal.

F. Estimation of ΣA

The covariance matrix ΣA was estimated using the co-
efficients of an autoregressive model fitted on the atrial
activity between two consecutive ventricular complexes. In
particular, for the k-th ventricular activity, we fitted the
model on the atrial signal between the k − 1 and k beats.
First, the covariance function was estimated using the Yule-
Walker equations and then the ΣA matrix, of dimension
(Q + N) × (Q + N), was composed.

G. Estimation of Hyper-parameters

The algorithm required two parameters to be estimated:
the number of basis functions B and number of samples
Q in the Q-window. To do so, we used a grid search
approach in which, for each combination of B and Q, the
mean square error (MSE) between the residual activity after
cancellation and the true activity was computed. In order
to avoid overfitting when evaluating the performance, we
considered only the first 5 signals of the syntethic dataset.
The values of B and Q that minimized the average MSE
across these 600 beats were 11 and 2, respectively.



H. Evaluation of the Performance

The algorithm was tested on both syntethic and real
AEGs. In the first case, root MSE was used as indicator
of performance and was determined only on the second half
of the synthetic dataset (the 5 signals not used to set the
hyper-parameters).

On real data, we evaluated the performance using two
metrics. The first one computed the percentage of high power
residues remaining in the signal after cancellation (similarly
to [1]). In practice, we counted how many residual segments
had a mean power higher than a certain threshold. Such
threshold was estimated as the 95th percentile of the mean
power distribution of windows of (only) atrial activities of
length 120 ms (which is the same length of the N -window
we employed). With the second metric, we evaluated the log
likelihood of the residual activity with respect to the fitted
AR model. We first computed the prediction error between
the residual activity and the 1−step prediction, based on the
AR model. Then, considering that the prediction error must
be distributed as a white Gaussian noise, we computed its log
likelihood with a diagonal covariance matrix, having all the
entries equal to the variance provided by the model fitting
procedure.

We compared r-ABS with other four methods: i) ABS; ii)
ABS with adjustment of the power (p-ABS; i.e., the template
t̂ is multiplied by (ẑᵀN ẑN )/(̂tᵀt̂)) [6]; iii) interpolation based
on autoregressive models [2]; and iv) substitution with zero
(the ventricular activity was set to 0).

III. RESULTS

Figure 2a reports the root MSE between the estimated
atrial activity and the true one on the second half of the
synthetic dataset (test-set), for each of the five considered
methodologies. Both versions of ABS performed the least
(even though p-ABS was 0.8% lower than ABS in terms of
root MSE; Wilcoxon sign rank test; p < 0.05). On the other
hand, r-ABS outperformed all the others, having a root MSE
statistically significantly lower from that of the interpolation
method (p < 0.05), that ranked second. Zero substitution
ranked third.

Even on real data, r-ABS and interpolation resulted with
the highest log likelihood, even though r-ABS ranked second
in this case (p < 0.05). In addition, ABS and p-ABS did not
show any statistically significant difference (p > 0.05), while
the zero substitution performed the least (p < 0.05). More-
over, excluding zero substitution, r-ABS and interpolation
resulted with the lowest percentage of high power residues
(2.8% and 4.1%), while ABS and p-ABS performed the least
(8.3% and 4.8%).

IV. CONCLUSIONS

In this study, we proposed a new algorithm, i.e., r-ABS,
for ventricular activity cancellation in AEG during AF. The
methodology combines two common techniques, ABS and

interpolation, in an unified framework. Such framework was
able to refine and improve the ventricular activity estimate,
under the stationary assumption of the atrial activity in very
short time windows.

With respect to ABS-based algorithms, in which common
problems [1], [2] are lack of continuity at the boundaries
of the N -window and high power residues (figure 1b), our
algorithm modulated the template t̂ to match the stochastic
process’ properties (figure 1d).

On the other hand, interpolation-based algorithms using
autoregressive models tend to predict poorly the expected
value of the stochastic process for long temporal horizons
(figure 1c). This effect results in a flat signal around the
peak of the ventricular activity (especially for low model
orders), while preserving the frequency content of the process
at the borders of the N -window. Although the residual power
lies in the range of what expected from atrial activity and
the frequency content is preserved at the borders, the recon-
structed atrial activity lacks details exactly in the part of the
N -window which much needed of refinement. This did not
happen with r-ABS, as the algorithm was able to preserve the
frequency content by considering the autoregressive model’s
ΣA, while still exploiting the ABS estimate.

A limitation of r-ABS is that the covariance matrix ΣA

needs to be estimated. Even though this can be easily
obtained from the samples nearby the ventricular activity,
the stationary assumption might break, leading to a poor
estimate. Also, to fit properly the autoregressive model, near-
field atrial activity must be limited. A second limitation is
that, while it is often reasonable to assume aQ = zQ, Q-
windows might still contain ventricular activity. In this case
a larger N -windows should be considered. Finally, inverting
directly the matrix ΣN or computing its determinant might
be numerically challenging, and specific available numerical
strategies should be adopted.
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