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ABSTRACT

In this paper we propose a new method for the creation of normal
maps for recovering the detail on simplified meshes and a set of ob-
jective techniques to metrically evaluate the quality of different re-
covering techniques. The proposed techniques, that automatically
produces a normal-map texture for a simple 3D model that “imi-
tates” the high frequency detail originally present in a second, much
higher resolution one, is based on the computation of per-texel vis-
ibility and self-occlusion information. This information is used to
define a point-to-point correspondence between simplified and hi-
res meshes. Moreover, we introduce a number of criteria for mea-
suring the quality (visual or otherwise) of a given mapping method,
and provide efficient algorithms to implement them. Lastly, we ap-
ply them to rate different mapping methods, including the widely
used ones and the new one proposed here.

CR Categories: I.3.7 [ Three-Dimensional Graphics and Real-
ism]: Color, shading, shadowing, and texture—;

Keywords: simplification, texture mapping, detail recovery, nor-
mal mapping, texture for geometry

1 INTRODUCTION

A common solution to efficiently represent small scale geometric
details on a surface is to use bump maps or normal maps. For years
the use of bump maps has been a common practice in high quality,
non-interactive renderings. Low-cost consumer graphics hardware
that is able to efficiently perform the hardware accelerated render-
ing of surface with normal and texture maps (e.g. [Kilgard 2000])
has recently become common; therefore the use of this technique is
becoming more and more common among interactive and realtime
3D applications like games [Blasco 2002], or in the visualization of
complex object like the one obtained by range scanning [Bernardini
et al. 2001].

There are two main techniques to produce normal maps:artis-
tic andautomatic. The first one is the classical artistic approach
where a talented professional illustrator paints, by hand, the small
scale reliefs of a surface in gray scale tones. Usually this bump map
is then automatically converted in a normal map for efficient ren-
dering. In the latter approach, theautomaticway, we suppose that
there exists, in some form, a digitalhigh resolutionrepresentation
of the object and some automatic tool that is able to convey as much
information as possible from this model onto the surface of a low
resolution model.

The first one, theartistic approach, is very well suited if we con-
sider painting as a part of the modelling process, or if the small
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Figure 1: The concept of detail recovery: a low resolution meshML
is sampled and for each pointpi we search thecorrespondingpoint
F (pi) on the high res meshMH ; using a texture, the detail found
in F (pi) is mapped ontopi .

scale features represent mainly a kind of information that is more
qualitative than precise and exact. For example this approach works
well for drawing the scales of a monster or to add a scar on the face
of a character.

The second one, theautomaticapproach, also known asdetail
recovery[Cohen et al. 1998; Krishnamurthy and Levoy 1996], has
been introduced recently and is becoming more and more common
for two reason:a) it allows to efficiently represent with just a small
number of polygons objects that seems quite complex (Fig 7/8),b)
high resolution version of the same object are often available for
various reasons; e.g. in games high res models are used for the cre-
ation of prerendered introductive cutscene animations. In visualiza-
tion scenarios often we can have data at a resolution much higher
than we are able to interactively visualize, consider for example the
interactive display of high resolution 3D scanning of Cultural Her-
itage objects.

Detail Recovery The typical detail recovery phase (see Fig. 1)
uses, as input, the following data:

• a complex high resolution 3D meshMH (e.g. the result of
a 3D scan or of a modeler), provided with some implicit or
explicit detail functionD returning for each 3D point over
MH the “detail”, in some form, to be recovered;

• a much simpler, low resolution meshML (e.g. automatically
obtained by simplification or created by hand by a talented
low-poly modeler) with a good texture parameterization of its
surface.

The functionD(p) that defines the “detail” ofMH , depends on
the application: it can return the normal direction ofp on MH , or
a shading performed according to that normal in a fixed lighting
conditions, or a color defined inMH either per vertex or via textures,
or even other things as a value for the accessibility ofp in MH ,
or a self-shadowing bit ofp for MH , or even a parametric color
value defined by the position ofp (e.g. for simulation of the wood
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appearance), or a combination of some of the above elements. It
does not matter, as long asD is defined for any pointp∈ MH and
returns values which can be stored in textures (the parameterp can
be identified, for example, by a face pointer and two barycentric
coordinates relative to that face).

The detail recovery phase constructs a textureT for ML as fol-
lows:

for each facef of ML,
for each texelt of the texture space assigned tof ,

let p∈ ML be the 3D point corresponding tot,
choose a suitable 3D pointF (p), in MH
storeD(F (p)) in t

Note that we explicitly need a point-to-point mapping functionF
that gives, for each point of the low res meshML, a corresponding
point of the high resolution meshMH .

The meshML, enriched with the ad-hoc textureT, is much more
manageable and convenient in terms of rendering time and size with
respect to the original meshMH , but still appears quite similar to it.
The quality of the final result of this detail recovery process de-
pends, at least, on three factors, some of which represent a compro-
mise of cost/benefit:• the quality and the severity of thesimplifi-
cation: the smaller theML model the larger will be the difference
from the original oneMH ; • the quality of the textureparametriza-
tion and the size of the texture used to store the recovered details
simplification;• the nature of themappingF , i.e. how we choose
for each point ofML the corresponding point ofMH .

The first two items have been subject of very intensive research
and will not be discussed here further.

This paper focuses instead on the point-to-point mappingF .

Paper Organization: First, we will present three different
classes of approaches to define and perform the mappingF (Sec-
tion 3). Two of them are already known, and one is a novel contribu-
tion of this paper. For these approaches, we also discuss some im-
plementation issues, optimizations, and some problems to be solved
in order to get a robust and efficient implementation.

In order to have a comparative analysis, we introduce in Section
4 a new set of measures and tools designed to rate the performance
of a given mappingF used over a given model pairMH , ML.

Then we show in Section 5 comparative performance results of
the various technique described, both visually and reporting the re-
sults of the above-described tools.

Novel contributions: The novel contributions of this paper are:
first, the definition of an alternative way to perform the mappingF
that uses the notion of average visibility direction, including some
variants and details about how it can be efficiently implemented;
second, the definition of the new set of automatic measures and
tools to rate a performance of an given application of any mapping
F ; lastly, the application of the latter to the former, and a compari-
son with other know mappingsF , that shows that our solution for
F is indeed a valid one.

2 RELATED WORK

A simplified model with a good texture parameterization on it is re-
quired to perform detail recovery. Much work has been done in the
field of (semi-)automatic u-v mapping generation; an overview of
the major contributions in this field can be found in [Desbrun et al.
2002]. We will just assume that a complete u-v mapping is given
for the meshML, seamlessly or not, providing per-wedge texture
coordinate for each triangle in it, and therefore assigning some tex-
ture space for each face. Similarly, mesh simplification [Garland
1999] can be used to automatically obtainML from MH instead of

hand modeling it. We will not make any assumption of how we
have obtainedML but we will rely only on the fact thatML andMH
are sufficiently similar and they share the same coordinate system.

Detail Recovery To our knowledge the first paper explicitly
proposing this approach was [Krishnamurthy and Levoy 1996]
where bump maps are applied to a nurbs model in order to catch the
appearance of a high resolution scanned model. The first approach
that was able to manage detail recovery for triangular meshes was
presented by [Cohen et al. 1998]. In this paper the simplified model
ML must be obtained fromMH by using a constrained simplifica-
tion algorithm that explicitly construct the mapping functionF
during the simplification process itself. As a drawback, this ap-
proach forces the adoption of a particular simplification algorithm,
preventing a vast majority of cases where users want to use a dif-
ferent simplification or to model the simplified mesh directly (the
standard way of creating the low-poly models used in gaming envi-
ronments). The first general approach in which the detail recovery
is explicitly de-coupled from the simplification strategy was pro-
posed in by [Cignoni et al. 1998a]. This is more widely applicable;
moreover the functionF , used only in the detail recovery phase,
can be chosen freely.

In [Cignoni et al. 1998a] the use of both a proximity and ray-
casting along normal strategies are discussed and the first one
is proposed (see Sec. 3.1) for robustness reasons explained in
[Cignoni et al. 1999]. A hybrid approach based on a ray-casting
along normal strategy (see Sec. 3.2) coupled with nearest point
selection in case of ray-miss (see Sec. 3.2) has been proposed in
[Sander et al. 2000].

Given the wide diffusion of consumer graphics hardware able
to perform normal map shading, some hardware producers are en-
dorsing diffusing this kind of techniques in technical conferences
[Maughan 2003] in order to encourage a better exploitation of hard-
ware capabilities. The approaches presented there fall in the cate-
gory of normal based ones (see Sec. 3.2 later).

Measuring Accuracy and Visibility Computation The
idea of taking objective measurements for quality assessment for
simplification algorithms for 3D meshes has been presented in
[Cignoni et al. 1998b; Cignoni et al. 1998c] where the Hausdorff
distance has been chosen to measure the difference between the
original and the simplified meshes. More recently [Lindstrom and
Turk 2000] a image-space measure has been proposed to measure
the difference amongML andMH by comparing the rendered im-
ages of the two meshes from a small set of fixed viewpoints. This
measure can drive the simplification process in order to obtain sim-
plified models that are visually very similar. This approach has been
extended in [Zhang and Turk 2002] by introducing the concept of
visibility of a surface point as a scalar quantity measuring its ac-
cessibility from outside. This quantity can be used to weight the
simplification process so that less visible parts are discarded early.
Note that while these approach use visibility as a scalar quantity
(the extent to which a given region is on average visible),in our
case we are more interested in average visibility as a vector quan-
tity (from which direction a given region is on average seen) and,
to a smaller extent, visibility variance (the variance of that vector
average).

3 POINT-TO-POINT CORRESPONDENCE
STRATEGIES

Given a 3D pointp∈ ML, we want to find the positionp′ = F (p),
with p′ ∈ MH , so that we can fill texelt ′ corresponding top with
D(p′). Which point shall we pick? In the following three subsec-
tions, we will discuss three different (categories of) strategies:
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1. proximity based: pick thep′ ∈ MH closest top according to
Euclidean distance;

2. ray-casting along normal: pick asp′ the closest intersection
betweenMH and the ray starting fromp and going along the
normal directionn(p) of p in ML;

3. visibility based: pick asp′ the closest intersection between
MH and the ray starting fromp and going along the average
visibility directionv(p), in ML, of p;

In a further subsection, we will also present and discuss an hy-
brid of the latter two.

3.1 Proximity based
Choosing the closest point has been used in [Cignoni et al. 1998c].
Proximity based approaches have the advantage of being very ro-
bust (they do not even require a normal to be defined overML).
Moreover,F tend to be continuous, more than in other cases. A
caveat is that whenMH presents two close surfaces, it can happen
to pick a point of the wrong one. In practical cases, this can be
partially helped, discarding any candidate pointsp′ ∈ MH with a
negativen(p) ·n(p′) dot product.

Implementation Issues Closest point research can be taxing.
In our prototype (as in [Cignoni et al. 1998c]), all the faces ofMH
are first spread into cells of a regular grid [Akman et al. 1989]: a
pointer to that face is replicated in all the touched cells. To find the
closest point ofp, first we compute the distance fromp to each face
present in the cell to whichp belongs, than we check neighbors
cells at increasing distance only until the closest non-checked cell
is further than the minimal distance found up to that point (usually
less than 6 cells need to be checked). To minimize the number of
triangle-to-point distance computations, we adopt an incremental
marking scheme on faces, so that the same face is not checked twice
in the same search.

3.2 Ray-casting along normal direction
Following the ray along the normal direction is another common ap-
proach (e.g. [Maughan 2003; Sander et al. 2000]). The rationale is
that in meshML point p will be well visible when seen orthogonally
to the view direction, and therefore during the texture construction
we should optimize for that case.

In order to avoid unneeded discontinuities in functionF at the
edges ofML, the normal fieldn(p) has to be continuous overp∈
ML; thereforen(p) is found interpolating the normal vectors stored
at vertices (a-la Phong shading), rather than using the normal of the
face includingp.

Managing ray misses Using ray-casting,F is not guaranteed
to be defined over allML: ray casting (differently from closest point
search) can “miss”MH altogether. In some application, this does
not represent a problem when occurs in proximity of borders of
ML: whenF (p) fails, the texelt corresponding top is filled with a
blank (e.g. black or a transparentα = 0 color value).

UnfortunatelyF can also fail far from any border (actually, even
if ML andMH are closed, see Figure 2). A similar case is when
the ray hitsMH , but very far fromp, even tough a much closer
point exists inMH . More specifically, if the distance betweenp and
F (p) exceeds an used defined upper limitdistmax, the ray cast is to
be considered a miss as well.

Note that those cases can happen even ifMH andML are close in
proximity of p, especially ifp lies near convex edges ofML.

Figure 2: IfF is implemented as a raycast, it can missMH .

When one of the cases above is detected for a pointp, a good
strategy is to switch to a proximity based approach for just that
point (as proposed in [Sander et al. 2000]). This, however, can oc-
casionally produce unneeded discontinuities when switching from
a method to the other one. Another approach is to leave the affected
texels blank and fill them in a second pass expanding values from
neighbors texels.

Ray orientation Given a pointp, p′ = F (p) can be both below
or above the face ofML wherep is (unless some assumptions are
done on the simplification algorithm used to obtainML). Therefore,
rather than a single ray, we would need to cast two rays, both start-
ing from p and going towardn(p) and−n(p) respectively. If both
rays hit a valid face ofMH , precedence should be given to the one
going outward, to reflect the proper occlusion order.

Implementation Issues Again, sorting pointers to the faces of
the input meshMH into cells greatly improves performance. Sim-
ilarly to many other ray-casting approaches, we also need a grid
traversal algorithm [Amanatides and Woo 1987] that identifies all
the cell touched by the ray. In this way, it is also easy to stop
the search as soon as threshold distancedistmax has been traversed
along the ray without hitting any valid face.

3.3 Visibility based
Using average visibility direction onML represents a novel contri-
bution of this paper. The strategy looks promising: the expectance
is that the average visibility directionv(p) at pointp is a good pre-
dictor to the specific viewing direction from whichp will be seen at
rendering time, reducing the visual difference between the render-
ing of the texturedML and the originalMH .

Many considerations that are valid for the raycasting along nor-
mal approach, and in particular the problem of the misses, the ray
orientation, and the implementation issues (sec. 3.2), are valid also
for this approach.

In addition, new issues arise, concerning the definition of the vis-
ibility direction. In fact, we need an estimationv(p) of the average
visibility direction at a pointp of the surface. That estimate can be
computedper face, per vertexor per texel.

The averaged visibility direction is recovered in a way similar to
[Zhang and Turk 2002]. We are looking for the average visibility
direction

v(p) = Avgp visible fromdi
(di) (1)

We perform a series of probe renderings ofML as seen from
a numbern of directionsd1..dn well distributed over the normal
sphere (a good value forn is around 29, see [Zhang and Turk 2002]
for a more detailed analysis). The rendering are performed using
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orthogonal projections (so that the viewing direction is kept con-
stant for all pixels in the image), while the z-buffer takes naturally
in account any self occlusion.

At each rendering, we get the video buffer and we record for
each element whether and to which extent that element was visible
from that direction, finding the average of all such directions.

Per face A intuitive strategy is to assign to each face ofML an
average visibility direction. To do this, we color each face with
an unique color identifier, constant over the face. For each non-
background pixel found in the rendering done under directiondi ,
we adddi to the (initially zeroed) average visibility directions of
the face corresponding to that color. Note that since this is done
for each pixel, the contribution of a probe view directiondi to the
averaged visibility direction of a particular face is proportional to
the extent to which that face is visible from that direction.

As for the normal direction case, we need the directionsv to be
continuous overML. Therefore the visibility directions computed
at faces are not used directly, but first averaged at vertices, and then
interpolated again for each internal point (the per vertex is angle-
weighted).

This strategy implies an averaging and a spreading of the com-
puted visibility directions: since this seemed excessive, especially
for meshesML with small (order of hundreds) of faces, we devel-
oped the two following additional strategies.

Per vertex Visibility directions can also be computed per vertex
of ML. This, however, cannot be done by directly recording, for
each vertex, the directions for which that vertex is visible: since
vertices inML are supposed to be sparse, many times they are not
visible even if the adjacent faces are. A better algorithm consists in
performing two renderings for each view direction: the first to iden-
tify the face (as before), the other to identify the position of the seen
pixel inside that face. For the second rendering, we use the same
color scheme for all faces: each wedge is color-coded differently
(using pure colors), so that it is easy to reconstruct form the inter-
polated color the barycentric coordinates of the point relative to the
belonging face. Each barycentric coordinate is used to weight the
term di to the visibility direction computed for the respective ver-
tices, so that a given pixel of a probe rendering affects close vertices
more than distant ones.

In this way the direction fieldv will still be continuous (for each
point p∈ ML it is interpolated from values defined at vertices), but
the artificial averaging and spreading of computed visibility vectors
is sensibly reduced.

Per texel For an even finer grade estimation of the averaged vis-
ibility direction overML, we can also compute it relatively to each
texel. In this case, the probe renderings are performed displaying
ML with the same texture coordinate as the final texture to be con-
structed, but color-coding differently each texel (this is possible in
a single pass, since we have around 220..224 different texels, for a
typical 1024..4096 squared texture, and, including theα channel ,
232 different color values).

At each texel we sum together all the directionsdi under which
that texel was spotted in the corresponding probe rendering.

Still, this generates three problems. First, some texels will not
be visible from any point of view. Second, the resulting visibility
directions will be far more noise plagued, as we are distributing
the same number of samples (each non-empty pixel is a visibility
sample) over a much wider set of buckets (the texels). Third, in cor-
respondence of mesh edges (especially convex ones) discontinuities
of visibility direction arise.

To solve all three problems, we apply, in a second pass, a
smoothing filter to the resulting visibility direction field in texture

space. The filter is actually appliedbeforeaveraging: during vis-
ibility computation for each texel we record both the (not normal-
ized) total vector sumv of all visible directionsv and their number
k. The smoothing filter consist simply in summing in each texel
both v andk of neighbors texels. This way, void texel are filled,
and averaged visibility directions computed from many samples are
weighted more than the ones computed from a few ones.

A unresolved problem is that, for the filter to work, the texture
must be seamless, or, else, a smart scheme of texel neighborhood
must be adopted that takes in account the texture coordinate scheme
(to assign to border texels “neighbors” that are such only in object
space, rather than in texture space).

3.4 Hybrid using variance
Comparing results coming from the application of the last two
strategies (raycasting along normal or along visibility direction),
it emerged that in some locations the former performed better, in
other ones the latter. Therefore an hybrid approach could be intro-
duced: since they are both ray-casting based approach, to hybridize
them it is just a matter of using, as a ray direction for pointp, an
interpolation of normalized vectorsn(p) andv(p).

To find the interpolation weight we use the standard deviation
σ(p) of the set of directions from whichp is visible. In fact, if
the variance of visibilityσ(p) is low, it means that pointp on ML,
whenever it is visible, it is such from a predictable point of view;
in this case it makes perfect sense to use that direction for texture
reconstruction purposes. On the contrary, high varianceσ(p)2 sig-
nals that pointp will be seen from many different directions, there-
fore the average visibility directionv(p) will be, on one hand, less
significant, and on the other, its use will improve the rendering of
ML at pointp only in a few cases, making more appealing to resort
to the normal directions.

Implementation issues The computation of the standard de-
viation of the set of visibility can be performed almost for free. In
fact,σ(p)2 can be defined as follows:

σ(p)2 = Avgp visible fromdi
(d2

i )−Avgp visible fromdi
(di)2 (2)

The first average equals to 1 (asdi are normalized), and the sec-
ond element is justv(i)2. Therefore:

σ(p) =
√

1−v(p)2 (3)

4 MEASURING TOOLS

In the previous section we listed several different approaches to per-
form the mappingF from points inML to the ones inMH . Which
method is to be preferred?

One natural way to answer the question is to visually compare
the results. We show a comparison in the Results section. How-
ever it helps to rate the results also with some measurable and less
subjective way. For this reason we developed a small set of auto-
matic measuring tools aimed at that purpose, which we present in
this section.

Namely, three tools measure the result of a given application of
F under three different consideration:

• “object space” distance, a view depended measure of the dis-
crepancy between the texturedML andMH ;

• “image space” distance, a view depended measure of discrep-
ancy between renderings ofML and MH , or equivalently a
measure of the self coherence of the texturedML (this mea-
sure can be either normalized or not, see below);
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Figure 3: A 2D example of the Image space (above) and Object
space (below) distance measure along a specific view ray.

• the uniformity of the resulting sampling.

For all the three notions of quality we are able not only to find
an overall quality value for a model with a texture resulting from a
particular choice ofF , but also to plot a distribution of that value
over the surface ofML (see Figure 6).

4.1 View dependent object space dis-
tance

This measurement (and the next one) is a view dependent one: the
total quality estimation will be a sum of contributions relative to the
conditions recorded from different point of views. Therefore we
choose a number (around 512) of well distributed point of views
aroundML to be used for measurement purposes.

Consider a textured rendering ofML (see Figure 3). Along each
viewing rayr i , the rendering will show (either the background or)
a point pL of ML; thanks to the texture, that point will present the
feature originally present in pointpH = F (pL) of MH . If MH was
rendered instead ofML under the same viewing condition, the same
ray r i would hit in general a different pointp′H .

The visual difference along a given ray (that is, at a given pixel
of the rendered image) will be therefore the difference between the
renderings of details associated inMH to the two different points
pH and p′H , that isD(pH) andD(p′H). For sake of generality, we
want to decouple our measure ofF from any particularD associ-
ated toMH ; therefore we just use the Euclidean distance between
pH andp′H (which for values smaller than topological features size
of the mesh is a good approximation of the geodesic distance); that
quantity, squared and integrated over all rays and the sampled view
directions, gives a measure of how goodF is. Note that the mea-
sure is view dependent, because such is the correlation betweenpL
andp′H .

In the cases when rayr i missesMH or ML, then of course the
problem is not in the texture but in the geometry alone, and there-
fore that ray is to be ignored.

Implementation This measurement algorithm needs to test over
a great quantity of rays (in our prototype, order of 108 rays). Luck-

Figure 4: A color coding of the per-texel average visibility direction
(on the left, vector pointing left, right and down are colored red,
blue and green respectively) and the visibility variance (on the right,
mapped from dark blue — lower, to dark green — highest). The
original dataset visible in Figure 7.

ily the implementation will take advantage of graphical accelera-
tion.

To implement the measurement tool, we first of all need to build
a probe texture forML, in the standard way, using theF we want to
test. As forD , as we have seen we don’t want to use any particular
detail function but rather, for generality sake, a simple mapping
from R3 to color space (using as boundaries the bounding box of
ML andMH ), so thatD differentiate every point ofMH .

Then, it will be enough to compare, for each view direction we
want to test, pixel per pixel, a rendering ofML texture with the
probe texture, to a rendering ofMH , colored per vertex, assigning
to each vertexvi the colorD(vi). Naturally both renderings will be
done using the same point of view. In both renderings care must be
taken to disable lighting, anti-aliasing, mipmapping and anything
that would affect the rendered colors. Also, for non-closed mod-
els, back oriented faces must be displayed with background color,
so that they will be present as occlusors but otherwise ignored by
the algorithm. Then, for each pair of non-background pixels at the
same position in the two rendering, we just applyD−1 to both and
find the Euclidean distance between the two results. The View De-
pendent Object Space distance is found by averaging this distance
over all pixels of all renderings.

Since the color space, with 8 bit per components, has not enough
resolution and would introduce quantization noise in the measure-
ment, we resorted to two consecutive renderings instead of one, and
two probe textures, so that we can store the 3D position in 64 bits
instead of 32.

To avoid an interference when testing aF that uses visibility
direction (see Sec. 3.3), the set of random viewing directions we
use to testF is a different one to the one used in the definition of
F to find the average visibility direction.

Since each pixel of the rendering contributes to the total error,
this method automatically gives more weight to the parts ofML that
are more visible, whether they are so because of (lack of) occluders
or because of orthogonality with the view direction.

4.2 View dependent image space dis-
tance

The meshML is just an approximation ofMH ; moreover, it does not
represent a strictly self-coherent 3D mesh. In fact during the render-
ings, a pointpi on its surface is displaced on the screen according
to its real position, but is colored (and, in case of bumpmapping,
shaded) according to how it would be if it was in another, different

5



To appear in the IEEE VISUALIZATION conference proceedings - 2003

Figure 5: Top-left: the sample distributionT over ML (each junc-
tion is a point onML represented by a texel — for clarity, we used
a small 256× 256 texture). Then, clockwise: the distribution of
F (T), with F chosen as proximity based, and normal based and
hybrid. Note how irregular the proximity based case is.

positionF (pi). The discrepancy of the two (in image space) de-
pends much on the choice ofF and can be measured. Note that
this is a measure of the texturedML alone, not strictly a comparison
with MH . The meshMH affects the results only because the image
of F is bounded to lie inMH .

More precisely, we can take a large set of test viewing rays, and,
for each rayr i that hitsML in pL we measure how far the point
F (pL) is from the rayr i (see Fig. 3).

Note that this isnot the same as measuring the average distance
betweenpL andF (pL): the vector(pL −F (pL)) can be long in
module but have its effects partially cancelled by its parallelism
with the view direction.

Implementation The implementation is a variant of the one
done for the object space measurement, and uses the same probe
textures. This time, we render onlyML, with the probe tex-
tures as before, seen under orthogonal projections. For each not-
background pixelc with valuecrgb at window position(cx,cy), we
recover the positionp′ = F (p) by p′ = D−1(crgb); to find the ray-
to-point distance, (since the projection is orthogonal) we compute
the distance between(cx,cy) and the window position ofp′ pro-
jected under the current view transformation.

4.2.1 Problems with Image Space distances

The Image Space distance is probably the more intuitive error mea-
sure, because it is a direct measure of pixel-by-pixel distance be-
tween a rendering of the real geometry and the one “simulated” by
the texture. Still, as it is, that measure proves trickier than it seems

Figure 6: Error distribution: each part ofML (bumpmapped with
the visibility based methods) is colored according to its contribution
to the Image Space Distance, from the lowest (red) to the highest
(blue).

(see Fig. 1): being Pixel-per-Pixel, it fails to penalize discontinu-
ities in the rendering; moreover, in practice it is basically influ-
enced solely by the average distance betweenp andF (p) (shorter
distances rating better) which is not by itself a valid criteria, as we
will show shortly (if it was, than the Proximity basedF would be
a very good choice, which is not, see Fig. 1).

To solve the latter problem, a good countermeasure is to normal-
ize the image space distance dividing it at each ray by the distance
betweenp andF (p).

To solve the former problem (failure to penalize discontinuities)
we can apply separately the next criteria.

4.3 Sampling Uniformity
The texture we are going to produce forML will represent, in a
sense, a sampling overMH . Therefore we can rateF analyzing this
sampling, for example by measuring how well distributed it turns
out to be (or rather, how closely the resulting sampling matches the
one implicitly specified by texture coordinates). IEEE Visualization

Let T ⊂ ML be set of 3D points that are represented by a texture
sample, we want to measure how well distributed isF (T) ⊂ MH .
The sampling uniformity ofT itself depends on the quality of the
u-v mapping ofML, which is outside our scopes. Therefore, we will
measure how much “worsened” is the resulting sampling ofF (T)
in respect toT.

More precisely we use, as a comparative measure, the average of
percentage increase/decrease of the the Euclidean distance of ele-
ments ofF (T) from their neighbors, in respect to the correspond-
ing ones inT (considering two elements ofF (T) to be neighbors
when the respective texels are adjacent). Of course we average ab-
solute percentages, meaning that we consider a 20% decrease the
sampling distance to be as bad as a 20% increase (being the num-
ber of samples equal).

5 RESULTS AND DISCUSSION

In order to test the different strategies ofF , we implemented and
applied them on mesh pairsMH ML. The results have been com-
pared with the tools introduced in Section 4, and also by simply
looking at the rendering of the resulting textured version ofML.

Test-bed In our case, meshesMH comes from automatic acqui-
sition: the “high-relief” dataset (250k faces), a laser scan of a high
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choice of Obj.Sp. Im.Sp. normalized Sampling
mappingF dist. dist. Im.Sp.dist. Unif.

High-relief: (250K faces→ 500 faces)
Prox. Based 0.265 0.83 8.27 19.6%

Normal Based 0.243 0.98 7.91 4.6%
Visibility Per Vertex 0.248 1.14 7.75 9.8%

Per Texel 0.248 1.19 7.69 10.2%
Hybrid Per Vertex 0.255 1.06 7.86 7.0%

Per Texel 0.256 1.10 7.71 6.8%

Michelangelo: 400K faces→ 2K faces
Prox. Based 1.41 0.78 10.46 24.0%

Normal Based 1.37 0.80 10.31 12.1%
Visibility Per Vertex 1.30 0.83 10.21 14.0%

Hybrid Per Vertex 1.32 0.81 10.25 12.9%

Table 1: A comparison of the various error measures (as described
in Sec. 4) obtained using a variety of possible mappingF (as de-
scribed in Sec. 3) over the high-relief and the Michelangelo dataset.
In each column, the position of the best performer is highlighted.
Per Texel strategies could not be tested over the second dataset be-
cause it lacked a seamless u-v mapping.

relief marble sculpture, and the a Michelangelo model (400k faces).
The original datasets were simplified to a thousands faces by an

automatic quadric error based simplification software to create the
low resolution meshesML. We also needed a texture parameteriza-
tion for ML: we used a trivial mapping of each triangle in a separate
squared isosceles triangle (including some borders to mask the dis-
continuities), or, when we needed a seamless texture (see Section
3.3, Per Texel) we used the an ad hoc seamless parameterization
for the high-relief model. In any case, in order to minimize the
impact of the quality of texture parameterization, we used high res-
olution 2048 squared textures. For the renderings aimed at a sub-
jective comparison we used, as detail functionD(p), the normal of
p in MH , thus obtaining a normal map to be rendered with standard
GPU hardware [Kilgard 2000].

Results Figures 7 and 8 shows some rendering using different
choices of mappingF , while Table 1 list the numerical values re-
sulting from the tools as described in Sec. 4.

Discussion All in all, both measurements and subjective visual
comparisons show that the Proximity based methods perform on
average bad (except for the Images Space distance, for the reasons
explained in Section 4.2.1), especially for their effect on the sam-
pling uniformity. Still, they represent the more robust approach,
especially if no holes are acceptable in the texture (for example,
the black spots in the last three images of Figure 7 are “ray that
missed”). This, as mentioned, makes them the ideal fall-back strat-
egy, to apply locally when other ones fail (as was suggested in
[Sander et al. 2000]).

Normal Based and Visibility based strategies tend to perform
similarly, each prevailing in some circumstance and under some
criteria. They have an opposite visual effect: sometimes they give
a perception of “faked” geometry that looks respectively flatter, or
bumpier, than it should. Note that for most parts of most meshes
the two strategies do not differ too much (in absence of occlusions,
the average visibility direction of a face is also its normal).

It is easy to see the reason behind the equivalence of the per-
formances: both ray-casting approaches obviously give best results
when the face ofML rendered is seen from a view direction simi-
lar to the direction of the ray-cast, that is, the normal or the average
visibility direction (respectively). The normal based approach is ad-
vantaged by the maximized screen area that is covered by the face

Figure 7: The high-relief dataset: a visual comparison of the results
obtained with the different mapping techniques. Top: the original
MH (25K faces) and the simplified versionML (500 faces), shown
flat shaded, and bump-mapped with a bumpmap created using visi-
bility basedF function. Just below, a close up of the original and
simplified mesh. Then: comparative renderings of simplified mod-
els bumpmapped using proximity based, normal based, (third row)
visibility based per texel, and hybrid based mappingsF (last row).

7



To appear in the IEEE VISUALIZATION conference proceedings - 2003

Figure 8: Another example: a portion of the Michelangelo David;
above: original model, simplified model flat shaded. Below, the re-
detailed bumpmapped model obtained using the Normal approach,
and then the Visibility approach. Note that the ear is a complex 3D
structure, but from many directions is occluded by the hairs: the
visibility based approach takes advantage of this by optimizing the
bump-map for the remaining views.

in that case; the visibility based approach has instead the advantage
that the face is often occluded in the non optimal cases.

The Hybrid approach (using variance) performs somewhat in be-
tween the two, but never rates much worse than either, possibly
making it the best overall candidate. Also, it tends to produce ren-
derings more visually similar to the original model.

As a last note, the Visibility direction (whether used pure or in
conjunction with the normal) sometimes gives better results when
computed per texel than when computed per vertex. However, to
compute it per texel requires a seamless u-v mapping forML (or
at least a smarter texel neighborhood scheme capable of “jumping
over” texture boundaries). Both ways are better than the Visibility
computed per Face (and then averaged at vertices), whose results,
for conciseness, are not reported in the tables.

6 EXTENSIONS AND FUTURE WORK

The work we presented here can be extended in many directions.
In our work, the set of non occluded view direction for a given

point are just averaged together; instead, when the variance of that
set is high, a clustering could be attempted first: if the non-occluded
view directions are groupable in two or more separate clusters, it
makes sense to produce a different texel following the centroid of
each group, ultimately resulting in alternative textures for the same
triangle, similarly to the view dependent textures proposed in [De-
bevec et al. 1996]. In our case, the separability of the clusters would
guarantee that transitions directions are never actually seen, mak-
ing it possible to switch abruptly between alternative textures, thus
avoiding any ghosting-plagued texel-value interpolation.

As an easy improvement, the average viewing direction could
be a better predictor of rendering time view-direction if we weight
the contribution of each non-occluded view direction according to
its application-depended likelihood: for example, an human figure
will mostly be seen from horizonal view directions.

We also believe that variations of this work can be adapted to im-
prove results of similar problems, rather than just texture based de-
tail recovery: the tool that measures the sampling uniformity can be
also used to rate a given u-v mapping.Surface simplification, when
used in conjunction with detail recovery, can benefit from consider-
ations coming from the analysis of the error distributions returned
by the measuring tools presented here: for example, convex regions
tend to be error plagued more than line concave regions, suggesting
that simplification can be done to a larger extent in the former.
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