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We use nonstandard methods, based on iterated hyperextensions, to develop applications to Ramsey theory of the
theory of monads of ultrafilters. This is performed by studying in detail arbitrary tensor products of ultrafilters,
as well as by characterising their combinatorial properties by means of their monads. This extends to arbitrary
sets and properties methods previously used to study partition regular Diophantine equations on N. Several
applications are described by means of multiple examples.
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1 Introduction

It is well known that ultrafilters and nonstandard analysis are closely related: on the one hand, models of
nonstandard analysis are characterised, up to isomorphisms, as limit ultrapowers (cf. [9, § 6.4]); on the other hand,
the correspondence between elements of a nonstandard extension ∗ X and ultrafilters on X was first observed (in
the more general case of filters) by Luxemburg in [31], who introduced the concept of monad of a filter. This
correspondence was then used by Puritz, Cherlin and Hirschfeld in [10, 34, 35] to produce new results about the
Rudin-Keisler ordering and to characterise several classes of ultrafilters, including P-points and selective ones.
Similar ideas were also pursued by Ng and Render in [33] and by Blass in [6].

In [26], we proved a combinatorial characterisation of monads of ultrafilters in βN which made it possible to
develop several applications in the study of the partition regularity of Diophantine equations1 by means of some
rather simple algebraic manipulations of hypernatural numbers. The partition regularity of Diophantine equations
is a particular instance of the kind of problems that are studied in Ramsey theory, where one wants to understand
which monochromatic structures can be found in some piece of arbitrary finite partitions of a given object.

The basic idea behind our nonstandard approach to Ramsey theory is that every set in a ultrafilter U ∈ βN

satisfies a prescribed property ϕ if and only if the monad of U satisfies an appropriate nonstandard version of ϕ.
This idea has been developed in [12, 14, 15, 27–30], and belongs to the family of applications of nonstandard
analysis in Ramsey theory, an approach that started with Hirschfeld in [20] and has subsequently been carried on
by many authors. As Jin pointed out, nonstandard methods in Ramsey theory are very useful because they can be
used to reduce the complexity of the mathematical objects that one needs in a proof, therefore offering a much
better intuition, which allows to obtain much simpler (and shorter) proofs.

In [13], Di Nasso surveyed the nonstandard characterisation of ultrafilters on N, proving also several equivalent
characterisations of the elements of the monads of tensor products of ultrafilters. This paper can be seen as an
extension of such a study, since our main aim is to characterise monads of ultrafilters and tensor products of
ultrafilters on arbitrary sets, so to extend the nonstandard methods used for Diophantine equations to more general
classes of problems in Ramsey theory. This requires to better understand arbitrary tensor products of ultrafilters,
which are a basic important tool to develop such applications (e.g., in [4] tensor products of ultrafilters in Sn , for a
semigroup S, are used to obtain polynomial extensions of the Milliken-Taylor theorem). Moreover, it is helpful to
characterise the Ramsey-theoretical properties of monads in terms of their combinatorial and algebraic structure
for general properties, extending what we already did for Diophantine equations; such an approach could lead to
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1 Cf. Theorem 5.2 for a definition of this notion.
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unexpected applications in other related fields. It turns out that a good nonstandard framework to perform this
study is given by iterated nonstandard extensions.

In § 2, we recall the basic definitions and properties of iterated hyperextensions, providing the nonstandard
framework that is used to develop the rest of the paper. In § 3, we recall the definition of the monad of an
ultrafilter. We also recall some basic properties of these monads, presenting some of their peculiar properties in
iterated hyperextensions. In § 4, we consider arbitrary tensor products of ultrafilters, we provide several equivalent
characterisations of the elements in their monads and we extend the characterisations to tensor products of arbitrary
(finite) length. Finally, in § 5, we present several combinatorial properties of monads of arbitrary ultrafilters.
Throughout the paper, several examples are also included to illustrate the use of such a theory in applications, as
well as our main ideas.

This paper is self-contained: we only assume the reader to know the basics of ultrafilters and nonstandard
analysis, in particular the notions of superstructure, transfer, ultrafilter, enlarging and saturation properties. In
any case, a comprehensive reference about ultrafilters and their applications, especially in Ramsey theory, is the
monograph [18]. As for nonstandard analysis, many short but rigorous presentations can be found in the literature.
We suggest [2], where eight different approaches to nonstandard methods are presented, as well as the introductory
book [17], which covers all the nonstandard tools that we need in this paper, except the iterated extensions that
we shall discuss in § 2.

2 Iterated hyperextensions

In this paper, we shall adopt the so-called “external” approach to nonstandard analysis, based on superstructure
models of nonstandard methods (cf. also [2, § 3]):

Definition 2.1 A superstructure model of nonstandard methods is a triple 〈V(X), V(Y ), ∗〉, where

(1) X is an infinite set, and Y = ∗ X ;
(2) N ∈ V(X) ∩ V(Y ), and N is properly included in ∗N;
(3) V(X), V(Y ) are the superstructures on X, Y respectively;
(4) ∗ : V(X) → V(Y ) is a star map, viz. it satisfies the transfer principle.

We say that 〈V(X), V(Y ), ∗〉 is a single superstructure model of nonstandard methods when X = Y .

From now on, we shall use only single superstructure models of nonstandard methods. This is not restrictive:
as proven in [1], every superstructure model is isomorphic to a single superstructure one.

The existence of saturated single superstructure models of nonstandard methods can be proven in different
ways: we refer to [3], where single superstructure models are constructed by means of the so-called Alpha Theory,
and to the nonstandard set theory ∗ZFC introduced by Di Nasso in [11], where the enlarging map ∗ is defined
for every set of the universe. Similar ideas have been studied, in the context of iterated ultrapowers, by Kunen,
Hrbáček, Lessmann, and O’Donovan in [21,22,25]. A clear presentation of iterated ultrapowers can also be found
in [9, § 6.5].

The main peculiarity of single superstructure models of nonstandard methods is that they allow to iterate the
∗-map. This allows to simplify certain proofs: e.g., in [12] the structure ∗∗N, obtained by iterating twice the star
map applied to N, is used to give a rather short proof of Ramsey Theorem.

Iterated hyperextensions have already been studied in previous publications (e.g., [12, 13, 26–30]). In this
Section, we shall recall only the main definitions and properties that will be used in the rest of the paper.

Definition 2.2 We define by induction the family 〈Hn | n ∈ N〉 of functions Hn : V(X) → V(X) by setting
H0 = id and, for every n ≥ 0, Hn+1 = ∗ ◦ Hn .

Let Y be a set in V(X). Notice that H1(∗Y ) := ∗∗Y is a nonstandard extension of both Y and ∗Y . Intuitively,
this extension resembles the extension from Y to ∗Y . E.g., if Y = N, the fact that ∗N is an end extension of N, viz.
that

∀η ∈ ∗N\N ∀n ∈ N(η > n),
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can be transferred to

∀η ∈ ∗∗N\∗N ∀n ∈ ∗N(η > n),

which is the formula expressing that ∗∗N is an end extension of ∗N.
However, not all the basic properties of the extension from Y to ∗Y holds also for the extension ∗∗Y of ∗Y : e.g.,

the fact that ∗ A = A for every finite subset of N (as usual, we identify every number n ∈ N with ∗n) does not hold
true for ∗N. Just observe that if α ∈ ∗N\N, then, by transfer, ∗α ∈ ∗∗N\∗N, hence ∗{α} = {∗α} �= {α}.

In any case, we have the following result, which is a trivial consequence of the composition properties of
elementary embeddings:

Theorem 2.3 For every positive natural number n, 〈V(X), V(X), Hn〉 is a single superstructure model of
nonstandard methods.

In certain cases, as we shall show in § 4, it is helpful to consider the following extension of X :
Let 〈V(X), V(X), ∗〉 be a superstructure model of nonstandard methods. We call the sequence 〈Hn(X) | n < ω〉

an ω-hyperextension of X , and write • X = ⋃
n∈N Hn(X) for the union of all hyperextensions Hn(X). Since

〈Hn(X) | n < ω〉 is an elementary chain of extensions, we have that • X is a nonstandard extension of X .

Proposition 2.4 Let n ∈ N and let κ be a cardinal number. Then the implications (1) ⇒ (2) ⇒ (3) hold,
where

(1) 〈V(X), V(X), ∗〉 has the κ-enlarging property;
(2) 〈V(X), V(X), Hn〉 has the κ-enlarging property;
(3) 〈V(X), V(X), •〉 has the κ-enlarging property.

P r o o f . (1) ⇒ (2): By contradiction: let n = min{m ∈ N | 〈V(X), V(X), Hm〉 does not have the κ-enlarging
property}. Let {Ai }i<κ be a family with the finite intersection property such that

⋂
i<κ Hn(Ai ) = ∅. Let us consider

the family {Hn−1(Ai )}i<κ . By transfer, this family has the finite intersection property, hence by our hypothesis we
have that

⋂
i<κ

∗ Hn−1(Ai ) �= ∅, which is absurd as ∗ Hn−1(Ai ) = Hn(Ai ).
(2) ⇒ (3): This is trivial, as Hi (A) ⊆ • A for every set A in X . �
However, let us notice that the previous result does not hold, in general, if we substitute enlarging with

saturation. In fact, •N has cofinality ℵ0 (which is in contradiction with κ-saturation properties for κ > ℵ0, as the
cofinality is always at least as great as the cardinal saturation), since a countable right unbounded sequence in •N
can be constructed by choosing, for every natural number n, an hypernatural number αn in Hn+1(N)\Hn(N).

3 Monads

In the following, we shall use the symbol � to denote generic nonstandard extensions (which could be ∗, Hn , or •),
reserving to ∗ and • the meanings given in § 2. We hope that this will increase the readability of the paper.2

Monads of filters were first introduced by Luxemburg in [31]. In the past few years, monads of ultrafilters on
N have been used to prove many results in combinatorial number theory, especially in the context of the partition
regularity of equations (cf., e.g., [12–15, 26–30]). However, it seems that to extend the range of applications of
these methods, a deeper study of monads in a wider generality is needed. Our aim in this section is to start such a
study. We shall adopt the framework of iterated nonstandard hyperextensions, since they provide a simpler setting
for the study of monads, as we are going to show.

Let Y be a set in V(X) and let 〈V(X), V(X), ∗〉 be a single superstructure model of nonstandard methods.
Let U be an ultrafilter on Y . For every n ∈ N we let μn(U) := ⋂

A∈U Hn(A) (with the agreement that μ(U) :=
μ1(U)) and μ∞(U) := ⋂

A∈U
• A. Finally, when we consider a generic extension 〈V(X), V(X), �〉 we shall write

μ�(U) := ⋂
A∈U

� A. Elements of μ�(U) will be called generators of U .
In general, monads can be empty if the extensions are not sufficiently enlarged. However, we have the following

result:

2 At least, we hope that this will not decrease the readability of the paper.
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Theorem 3.1 Let Y be a set in V(X). Then for every α ∈ �Y the set U
(Y,�)
α := {A ⊆ Y | α ∈ � A} is a ultrafilter

on Y . Moreover, if the extension � : Y → �Y has the |℘(Y )|+-enlarging property, then μ�(U) �= ∅ for every
U ∈ βY .

P r o o f . That U
(Y,�)
α is a ultrafilter is straightforward. The second claim follows as every ultrafilter U on Y

is a family with the finite intersection property and cardinality |℘(Y )|, and the |℘(Y )|+-enlarging property hence
entails that μ�(U) �= ∅. �

When � = Hn we shall write U
(Y,n)
α . Moreover, when n = 1 and there is no danger of confusion regarding Y

(e.g., because it has already been specified that U
(Y,n)
α ∈ βY ), we shall simply write Uα .

Monads can be used to identify every ultrafilter with the trace of a principal one on a higher level: in fact, if
α ∈ �Y , then α ∈ μ(U) if and only if U = trY (P(α)), where P(α) := {A ⊆ �Y | α ∈ A} is the principal ultrafilter
generated by α on �Y and, for every ultrafilter V on �Y , we set trY (V) := {A ⊆ Y | � A ∈ V}.

For α, β ∈ �Y we shall write α ∼(Y,�) β if U
(Y,�)
α = U

(Y,�)
β . When � = Hn we shall just write ∼(Y,n) , simplified

to ∼Y when n = 1.
A remark is in order: in previous papers, the equivalence relation ∼(Y,�) was denoted by ∼U or ∼

u
(cf., e.g.,

[12, 13]). However, here we decided to use the much heavier notation ∼(Y,�) to highlight that this equivalence
relation depends both on the set on which we are constructing the ultrafilters and, in general, on the extension
that we choose. However, as we already said, we shall use much simpler notations whenever there is no danger of
confusion, e.g., when � = ∗.

To better explain what we mean, let α �= β ∈ ∗N be such that α ∼(N,1) β. Then (as we shall prove in
Proposition 3.4) ∗α ∼(N,2)

∗β. However, ∗α �(∗N,1)
∗β! In fact, the ultrafilter generated by ∗α on ∗N is

{A ⊆ ∗N | ∗α ∈ ∗ A} = {A ⊆ ∗N | α ∈ A} = P(α), and analogously the ultrafilter generated by ∗β on ∗N is P(β),
and P(α) �= P(β) since α �= β.

When we work in ω-hyperextensions, it is useful to study the relationships between sets of generators of the
same ultrafilter in different extensions. To do this, we introduce the following concepts: Let 〈V(X), V(X), ∗〉 be
a single superstructure model of nonstandard methods and let Y be a set in V(X). We say that Y is coherent if
Y ⊆ ∗Y . We say that Y is completely coherent if A is coherent for every A ⊆ Y . Notice that if Y is coherent, then
Hn(Y ) ⊆ Hm(Y ) for every n ≤ m.

Example 3.2 The set N is completely coherent, as we identify every n ∈ N with ∗n. However, if α ∈ ∗N\N,
then {α} is not coherent, since ∗{α} = {∗α}. Finally, N ∪ {α} is coherent but not completely coherent.

Theorem 3.3 Let 〈V(X), V(X), ∗〉 be a single superstructure model of nonstandard methods and let Y be a
set in V(X). The following are equivalent:

(1) Y is completely coherent;
(2) for all y ∈ Y , y = ∗y.

P r o o f . For “(1)⇒(2)”, let y ∈ Y . As Y is completely coherent, we have that {y} ⊆ ∗{y} = {∗y}, hence
y = ∗y. For “(2)⇒(1)”, let A ⊆ Y . Then A ⊆ ∗ A since, for every a ∈ A, we have that a = ∗a ∈ ∗ A. �

Proposition 3.4 Let Y be a set in V(X). For every ultrafilter U on Y and every n ∈ N, we have that
∗(μn(U)) ⊆ μn+1(U). Moreover, if Y is completely coherent, then the following properties hold:

(1) μn(U) ⊆ μn+1(U);
(2) μ∞(U) = ⋃

n∈N μn(U);
(3) α ∈ μ∞(U) ⇔ ∗α ∈ μ∞(U).

P r o o f . For every A ∈ U μn(U) ⊆ Hn(A). Hence, by transfer, ∗(μn(U)) ⊆ ∗ Hn(A) = Hn+1(A), and so
∗(μn(U)) ⊆ ⋂

A∈U Hn+1(A) = μn+1(U). Let us now assume that Y is completely coherent.
For (1), just notice that, for every A ⊆ Y , since A is coherent we have that Hn(A) ⊆ Hn+1(A) for every n ∈ N.
We shall now prove (2) and start with μ∞(U) ⊇ ⋃

n∈N μn(U): α ∈ ⋃
n∈N μn(U) if and only if there exists

n ∈ N such that α ∈ μn(U) = ⋂
A∈U Hn(A). As Hn(A) ⊆ • A for every A ∈ U , in particular we have that α ∈⋂

A∈U
• A = μ∞(U).
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For the inclusion μ∞(U) ⊆ ⋃
n∈N μn(U), let α ∈ ⋂

A∈U
• A. Let A ∈ U ; then there exists n ∈ N such that α ∈

Hn(A). In particular, α ∈ Hn(Y ). We claim that, for every other set B ∈ U , α ∈ • B if and only if α ∈ Hn(B). In fact,
assume towards a contradiction that there exists B ∈ U such that α ∈ • B\Hn(B). In particular, we find m > n such
that α ∈ Hm(B). As α /∈ Hn(B), however, we have that α ∈ Hn(Bc) ⊆ Hm(Bc) since Y is completely coherent.
Therefore α ∈ Hm(B) ∩ Hm(Bc) = ∅, which is absurd. Thus this shows that α ∈ ⋂

B∈U Hn(B) = μn(U).
Finally, for (3), we observe that α ∈ μ∞(U) if and only if there is an n ∈ N such that α ∈ μn(U). This is

equivalent to the existence of an n ∈ N such that ∗α ∈ μn+1(U) which is equivalent to ∗α ∈ μ∞(U). �

In particular, when Y ∈ V(X) is completely coherent, for every α ∈ Hn(Y ) one has that U
(Y,n)
α = U

(Y,n+1)
α ,

hence in such cases the notation Uα ∈ βY can be used without danger of confusion.
It is well-known that functions f : Y1 → Y2 can be lifted to f : βY1 → βY2 by defining f (U) := {A ⊆ Y2 |

f −1(A) ∈ U} for every U ∈ βY1. As one might expect, the monad of f (U) can be expressed in terms of the monad
of U , as shown in the following Theorem, that generalised similar results proven by Di Nasso in [13, Propositions
11.2.4, 11.2.10, & Theorem 11.2.7] in the context of N, whose proof can be easily adapted to the present case:

Theorem 3.5 Let A, B ∈ V(X) be sets, let f : A → B and let U ∈ β A. Then the following facts hold:

(1) If A = B and α, � f (α) ∈ μ(U), then α = � f (α);
(2) μ( f (U)) = � f (μ(U)).

4 Arbitrary tensor products and pairs

The notion of tensor product of ultrafilters is fundamental to study both several basic properties of ultrafilters (like
the Rudin-Keisler order, the algebraical properties of βN and the topological properties of ultrapowers), as well
as to develop many applications (e.g., to the theory of finite embeddabilities). At the best of our knowledge, most
results in the literature cover the case of tensor products U1 ⊗ U2 of ultrafilters on the same set S; in this Section,
our goal is to extend these results in two directions. The first is to consider tensor products U1 ⊗ U2 of ultrafilters
on different sets, viz. where U1 ∈ βS1,U2 ∈ βS2. The second is to consider arbitrary finite tensor products of
ultrafilters U1 ⊗ · · · ⊗ Uk .

4.1 Tensor products

A key notion in ultrafilters theory is that of tensor product of ultrafilters:

Definition 4.1 Let S1, S2 be sets in V(X) and let U1 ∈ βS1, U2 ∈ βS2. The tensor product of U1 and U2 is
the ultrafilter on S1 × S2 defined by U1 ⊗ U2 := {A ⊆ S1 × S2 | {s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U2} ∈ U1}.
Moreover, we set βS1 ⊗ βS2 = {U1 ⊗ U2 | U1 ∈ βS1,U2 ∈ βS2}.

Tensor products are closely related with the notion of double limits along ultrafilters and Rudin-Keisler order
(cf. [18, § 11.1] for the case S1 = S2 = S, S discrete space). However, we shall not adopt this topological point
of view here. For us, tensor products are important because of the role they play in many applications, especially
in combinatorial number theory.

Example 4.2 Let (S, ·) be a semigroup. Let f : S2 → S be f (a, b) = a · b. Then f (U ,V) = f (U ⊗ V) =
U � V for every U ,V ∈ βS, where � denotes the extension to βS of the operation · (cf., e.g., [18, § 4.1]),
explicitly, U � V := {A | {s ∈ S | {t ∈ S | s · t ∈ A} ∈ V} ∈ U}.

Example 4.3 Let F = NN and let H : N × F → N be the function H(n, f ) = f (n). Then H(U ,V) =
U ⊗F V := {A ⊆ N | {n ∈ N | { f ∈ F | f (n) ∈ A} ∈ V} ∈ U}.3

The first trivial observation about tensor products is the following:

Lemma 4.4 If S1 or S2 is finite, then β(S1 ⊗ S2) = βS1 ⊗ βS2.

3 These kind of ultrafilters are important when studying combinatorial properties of N by means of the so-called F-finite embeddabilities;
cf. [30].
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P r o o f . Let us prove the case with S1 finite, as the other case is similar. Let S1 = {a1, . . . , an}. Let U ∈
β(S1 ⊗ S2). For i = 1, . . . , n let Ai = {(ai , s2) | s2 ∈ S2}. As S1 × S2 = ⋃

i≤n Ai , there exists a unique i ≤ n such
that Ai ∈ U . Let4 Uai ∈ βS1 be the principal ultrafilter on ai and letU2 := {A ⊆ S2 | {(ai , s) | s ∈ A} ∈ U} ∈ βS2.
Then, by construction, we have that for every A ⊆ S1 × S2

A ∈ Uai ⊗ U2 ⇔ {s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U2} ∈ Uai

⇔ {s2 ∈ S2 | (ai , s2) ∈ A} ∈ U2

⇔ A ∈ U ,

hence U = Uai ⊗ U2 ∈ βS1 ⊗ βS2. �

To develop a deeper study of tensor products, our goal in this section is to give several characterisations of
monads of tensor products of ultrafilters. The first question that we want to answer is: what is the relationship
between μ�(U) × μ�(V) and μ�(U ⊗ V)? Let us start with a definition:

Definition 4.5 LetU1 ∈ βS1,U2 ∈ βS2. We denote byF(U1 × U2) the filter on S1 × S2 given byF(U1 × U2) =
{B ∈ S1 × S2 | ∃A1 ∈ U1, A2 ∈ U2(A1 × A2 ⊆ B)}.

In general,F(U1 × U2) is just a filter and not an ultrafilter; its relationship with μ�(U1), μ�(U2) and μ�(U1 ⊗ U2)
is clarified in the following proposition.

Proposition 4.6 Let U1 ∈ βS1 and U2 ∈ βS2. Then μ�(U1) × μ�(U2) = ⋃
W∈U(U1×U2) μ�(W) ⊇ μ�(U1 ⊗ U2),

where U(U1 × U2) = {W ∈ β(S1 × S2) | W ⊇ F(U1 × U2)}.
P r o o f . First of all, let us notice that U1 ⊗ U2 ∈ U(U1 × U2), as clearly for all A ∈ U1 and B ∈ U2, we have

A × B ∈ U1 ⊗ U2. Therefore we are left to prove that μ�(U1) × μ�(U2) = ⋃
W∈U(U1×U2) μ�(W).

“⊆”: Let α ∈ μ�(U1), β ∈ μ�(U2). Let W = U
(S1×S2,�)
(α,β) . Then W ∈ U(U1 × U2) as, for every A ∈ U1, B ∈ U2

(α, β) ∈ � A × � B = �(A × B).
“⊇”: Let W ∈ U(U1 × U2). Let (α, β) ∈ μ�(W). For every A ∈ U1, B ∈ U2 A × B ∈ W , hence (α, β) ∈⋂

A∈U1,B∈U2

�(A × B) = μ�(U1) × μ�(U2). �

Corollary 4.7 For all α ∈ �S1, β ∈ �S2, U
(S1×S2,�)
(α,β) ⊇ F(U(S1,�)

γ × U
(S2,�)
δ ) ⇔ α ∼(S1,�) γ, β ∼(S2,�) δ.

In particular, as a consequence of Proposition 4.6 we have that the map ⊗ : βS1 × βS2 → β(S1 × S2) is
injective but not surjective, in general. Moreover, as it is known, this entails that μ�(U1 ⊗ U2) = μ�(U1) × μ�(U2)
if and only if F(U1 × U2) = U1 ⊗ U2 (cf. also [5, Chapter 1]),

To characterise when such a situation happens, let us recall the following definitions:

Definition 4.8 Let U ∈ βS and let κ be a cardinal number. The norm of U is the cardinal ‖U‖ = minA∈U |A|.
Moreover, U is κ+-complete if for every family {Ai | i ∈ I } ⊆ U with cardinality |I | < κ+ we have

⋂
i∈I Ai ∈ U .

The problem of characterising ultrafilters U1,U2 such that U1 ⊗ U2 = F(U1 × U2) was already considered,
and solved, by Blass in [5, § 3]. We recall (and reprove for completeness) his characterisation in the following
theorem:

Theorem 4.9 Let U1 ∈ βS1,U2 ∈ βS2. The following facts are equivalent:

(1) U1 ⊗ U2 = F(U1 × U2);
(2) for all A ∈ U1 and all {Bi | i ∈ A} ⊆ U2 there is a C ∈ U1 such that

⋂
c∈C∩A Bc ∈ U2.

P r o o f . “(1) ⇒ (2)”: Let A ∈ U1 and let {Bi | i ∈ A} ⊆ U2. Define S := ⋃
i∈A{i} × Bi ⊆ S1 × S2. As

A ∈ U1, by definition of tensor product we have that S ∈ U1 ⊗ U2. But then, as U1 ⊗ U2 = F(U1 × U2), there
exist D1 ∈ U1, D2 ∈ U2 such that D1 × D2 ⊆ S. Hence for every c ∈ C := A ∩ D1 we have that D2 ⊆ Bc, so, in
particular, D2 ⊆ ⋂

c∈C Bc, hence
⋂

c∈C Bc ∈ U2.

4 As S1 is finite, it is completely coherent, hence we are allowed to use the simplified notations here.
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“(2) ⇒ (1)”: Let S ∈ U1 ⊗ U2. By definition, A := {s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ S} ∈ U2} ∈ U1. For every
i ∈ A let Bi = {s2 ∈ S2 | (i, s2) ∈ S} ∈ U2. Then {Bi | i ∈ A} ⊆ U2, hence by hypothesis there exists C ∈ U1 so
that B := ⋂

c∈C∩A Bc ∈ U2. But then by construction (C ∩ A) × B ⊆ S, and so S ∈ F(U1 × U2). �
Example 4.10 Let S1 = S2 = N. Let U1,U2 ∈ βN. Then the following are equivalent:5

(1) U1 ⊗ U2 = F(U1 × U2);
(2) there is an i ∈ {0, 1} such that Ui is principal.

In fact, the direction “(2) ⇒ (1)” is straightforward. On the other hand, let us assume (1), and assume that
U1 and U2 are not principal. Let A be any set in U1 and, for every a ∈ A, let Ba = {n ∈ N | n > a} ∈ U2. By
Theorem 4.9 there exists C ∈ U1 such that

⋂
a∈A∩C Ba ∈ U2. And this cannot be, as A ∩ C is infinite (since U1 is

not principal) and hence
⋂

a∈A∩C Ba = ∅.

We want to generalise the previous example and solve the following two problems:

(1) For which U1 ∈ βS1 do we have that U1 ⊗ U2 = F(U1 × U2) for all U2 ∈ βS2?
(2) For which U2 ∈ βS2 do we have that U1 ⊗ U2 = F(U1 × U2) for all U1 ∈ βS1?

Although it is not evident from Theorem 4.9, the property U1 ⊗ U2 = F(U1 × U2) is symmetic in U1,U2, in
the sense that U1 ⊗ U2 = F(U1 × U2) if and only if U2 ⊗ U1 = F(U2 × U1) (this basic observation was pointed
out to us by Blass, cf. also [5, Corollary 9, § 3]). Therefore problems (1) and (2) are equivalent: a solution of the
first entails directly a solution of the second. And the second problem is rather simple to solve:

Theorem 4.11 Let U2 ∈ βS2 and let κ = |S1|. The following are equivalent:

(1) U1 ⊗ U2 = F(U1 × U2) for all U1 ∈ βS1;
(2) U2 is κ+-complete.

P r o o f . “(1) ⇒ (2)”: Without loss of generality, we can assume that S1 = κ . Towards a contradiction,
let us suppose that U2 is not κ+-complete. Let λ := min{μ | ∃F ⊆ U(|F | = μ ∧ ⋂

B∈F B /∈ U2)}. As U2 is not
κ+-complete, λ ≤ κ . Let {Bi | i < λ} ⊆ U2 be such that

⋂
i<λ Bi /∈ U2. For every i < λ we set Di = ⋂

j≤i B j . By
the definition of λ we have that every Di ∈ U2, as it is an intersection of fewer than λ elements of U2, and clearly
Di ⊇ D j for every i ≤ j . Now let U1 ∈ βλ ⊆ βκ be an ultrafilter that extends the filter of co-initial sets on λ, so
that every set C ∈ U1 is cofinal in λ. By hypothesis, U1 ⊗ U2 = F(U1 × U2). If we set A = λ, by Theorem 4.9 we
deduce that there is a C ∈ U1 such that

⋂
c∈C Dc ∈ U2. But C is cofinal in λ and {Di }i<λ is a decreasing sequence,

so
⋂

c∈C Dc = ⋂
i<λ Di = ⋂

i<λ Bi /∈ U2, which is absurd.
“(2) ⇒ (1)”: Let A ∈ U1 and let {Bi | i ∈ A} ⊆ U2. Then, as |A| ≤ κ , by κ+-completeness

⋂
i∈A Bi ∈ U2,

hence the condition of Theorem 4.9 is fulfilled by setting C = A. �
Let us call a ultrafilter U2 ∈ βS2 a factorising ultrafilter if U1 ⊗ U2 = F(U1 × U2) for all U1 ∈ βS1. If λ = |S2|,

from the previous theorem we deduce that

(i) if λ ≤ κ , then the only factorising ultrafilters are the principal ones;
(ii) if λ > κ , then nonprincipal factorising ultrafilter U2 ∈ βS2 might or might not exist: e.g., if λ = κ+, then

such a nonprincipal factorising ultrafilter exists if and only if κ+ is measurable (the existence of such
ultrafilters is consistent with ZF but not with ZFC).

4.2 Tensor pairs

As discussed above, tensor products are very important to develop several applications of ultraproducts theory.
Therefore, if one wants to follow a nonstandard perspective, it becomes fundamental to characterise tensor products
in terms of their monads. To do so, we introduce the following definition:

5 This is a well-known fact: cf., e.g., [13, Remark 11.5.5].

www.mlq-journal.org C© 2019 The Authors. Mathematical Logic Quarterly Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



8 L. Luperi Baglini: Nonstandard characterisations of tensor products and monads in the theory of ultrafilters

Definition 4.12 Let (α, β) ∈ �(S1 × S2). We say that (α, β) is a �-tensor pair if U
(S1×S2,�)
(α,β) = U

(S1,�)
α ⊗ U

(S2,�)
β .

Following the usual convention for the case � = ∗, we call ∗-tensor pairs just tensor pairs.
As, in general, βS1 ⊗ βS2 � β(S1 × S2), not all pairs (α, β) ∈ �(S1 × S2) are �-tensor pairs. When S1 = S2 =

N, � = ∗ many properties of tensor pairs have been proven (in the context of non-iterated hyperextensions) by Di
Nasso in [13] (cf. also [26]). We plan to show that most of these characterisations can be extended (sometimes in
an even more general form) to arbitrary tensor pairs, with some simplifications given by the possibility of iterating
the star map.

The main advantage when working in iterated hyperextensions is that they allow to write down easily generators
of tensor products:

Theorem 4.13 Let n, m ∈ N, let S1, S2 ∈ V(X) be sets with S1 completely coherent, let U ∈ βS1, V ∈ βS2

and let α ∈ μn(U), β ∈ μm(V). Then (α, Hn(β)) ∈ μn+m(U ⊗ V).

P r o o f . Let A ⊆ S1 × S2. Then

A ∈ U(S1,n)
α ⊗ U

(S2,m)
β ⇔ {s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U

(S2,m)
β } ∈ U(S1,n)

α .

Now, by definition, {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U
(S2,m)
β if and only if β ∈ Hm({s2 ∈ S2 | (s1, s2) ∈ A}) = {s2 ∈

Hm(S2) | (s1, s2) ∈ Hm(A)}, as Hm(s1) = s1 for every s1 ∈ S1, since S1 is completely coherent. Then {s1 ∈ S1 |
{s2 ∈ S2 | (s1, s2) ∈ A} ∈ U

(S2,m)
β } ∈ U

(S1,n)
α if and only if {s1 ∈ S1 | (s1, β) ∈ Hm(A)} ∈ U

(S1,n)
α if and only if

(α, Hn(β)) ∈ Hn+m(A). �
Corollary 4.14 Let (S, ·) ∈ V(X) be a semigroup. Assume that S is completely coherent. Let U ,V ∈ βS, let

α ∈ μn(U), β ∈ μm(V). Then α · Hn(β) ∈ μn+m(U � V).

P r o o f . U � V = f (U ⊗ V), where f : S2 → S is the function that maps every pair (a, b) ∈ S2 in a · b.
Hence we can conclude by applying Theorem 3.5.(2) as, by Theorem 4.13, (α, Hn(β)) ∈ μn+m(U ⊗ V). �

In Theorem 3.1, we showed that •Y/∼Y
∼= βY , provided that the extension • is sufficiently enlarged. Theo-

rem 4.13 allows to refine this result when Y = S is a semigroup, provided that • is sufficiently enlarged and S
is completely coherent: if we let �̃ : •S2 → •S be the map such that, α �̃ β = α · Hh(α)(β) for every α, β ∈ •S,
where h(α) = min{n ∈ N | α ∈ Hn(S)}, we get that (βS, �̃) and (•S,�)/∼Y are isomorphic as semigroups.6

To simplify the notation, from now on we shall assume that (α, β) ∈ ∗(S1 × S2), as the characterisation for
the general cases where α ∈ Hn(S1), β ∈ Hm(S2) can be analogously deduced from Theorem 4.13. Therefore we
shall simply talk about tensor pairs (although in Theorem 4.15 we shall still use the heavier notations to avoid as
much as possible the danger of confusion).

In the case of non-iterated hyperextensions, tensor pairs have been studied mostly for the product N × N, in
order to characterise certain properties of ultraproducts. In this case, a characterisation was given by Puritz in
[35], where he proved that (α, β) is a tensor pair if and only if α < er(β), where er(β) = {∗ f (β) | f : N →
N, ∗ f (β) ∈ ∗N\N}.

In ∗∗N, it is very simple to see that Puritz’s characterisation is not symmetric, in the sense that the condition
β > er(α) does not entail that (α, β) is a tensor pair. In fact, let α be a prime number in ∗N\N and let β = (∗α)α .
Then β > er(α), as (∗∗ f )(α) = (∗ f )(α) ∈ ∗N for every f ∈ NN, whilst β ∈ ∗∗N\∗N. However, if f is the
function such that, if n = pa1

1 · · · · · pah
h ∈ N is the factorisation of n as product of distinct prime numbers, then

f (n) = max j=1,...,h a j , we have that (∗∗ f )(β) = α, hence by Puritz’s characterisation (α, β) is not a tensor pair.
The main problem in extending Puritz’s characterisation to arbitrary sets is that it uses the order relation

on N, whilst arbitrary products of sets might not be ordered. In [13], several equivalent characterisation of
Puritz’s condition for tensor pairs in N × N were given by Di Nasso. In the following theorem, we adapt these
characterisations to arbitrary tensor pairs on S1 × S2, and we also introduce two new characterisations in terms
of preservations of tensor pairs via standard functions that will be useful to find several characterisations in our
examples. Although the characterisations are given for � = ∗, the general formulation can be easily obtained by
minor modifications in the proofs.

6 This result could be improved to a topological isomorphism by introducing the star topology on •S, but we shall not consider this
topological approach here.
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Theorem 4.15 Let S1, S2 ∈ V(X) be sets, with S1 completely coherent, and let (α1, α2) ∈ ∗(S1 × S2). The
following are equivalent:

(1) (α1, α2) is a tensor pair;

(2) U
(S1×S2,1)
(α1,α2)

= U
(S1×S2,2)
(α1,∗α2)

;

(3) U
(S1×S2,1)
(α1,α2)

⊆ U
(S1×S2,2)
(α1,∗α2)

;

(4) U
(S1×S2,2)
(α1,∗α2)

⊆ U
(S1×S2,1)
(α1,α2)

;

(5) for all F : S1 → ℘(S2), if α2 ∈ ∗F(α1), then ∗F(α1) ∈ ∗U(S2,1)
α2 ;

(6) for all F : S1 → ℘(S2), if ∗F(α1) ∈ ∗U(S2,1)
α2 , then α2 ∈ ∗F(α1);

(7) for all sets S3, S4 with S3 completely coherent and all functions f : S1 → S3, g : S2 → S4

(∗ f (α1), ∗g(α2)) is a tensor pair;
(8) there exist sets S3, S4 with S3 completely coherent, bijections f : S1 → S3, g : S2 → S4 such that

(∗ f (α1), ∗g(α2)) is a tensor pair;
(9) for all A ⊆ S1 × S2, if (s1, α2) ∈ ∗ A for all s1 ∈ S1, then (α1, α2) ∈ ∗ A;

(10) for all A ⊆ S1 × S2, if (α1, α2) ∈ ∗ A, then there exists s1 ∈ S1 such that (s1, α2) ∈ ∗ A.

P r o o f . “(1) ⇔ (2)”: This is an immediate consequence of Theorem 4.13.
“(2) ⇔ (3) ⇔ (4)”: These equivalences are trivial, as inclusion between ultrafilters on the same set means equal-

ity.
“(1) ⇒ (5)”: Let F : S1 → ℘(S2) be given. Let A = {(s1, s2) | s2 ∈ F(s1)}. Assume that α2 ∈ ∗F(α1). In

particular, this means that (α1, α2) ∈ ∗ A. By the hypothesis, it follows that A ∈ U
(S1,1)
α1 ⊗ U

(S2,1)
α2 , viz. {s1 ∈ S1 |

{s2 ∈ S2 | (s1, s2) ∈ A} ∈ U
(S2,1)
α2 } ∈ U

(S1,1)
α1 , which means that

α1 ∈ ∗{s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U(S2,1)
α2

}
= {σ1 ∈ ∗S1 | {σ2 ∈ ∗S2 | (σ1, σ2) ∈ ∗ A} ∈ ∗U(S2,1)

α2
}.

In particular, then {σ2 ∈ ∗S2 | (α1, σ2) ∈ ∗ A} ∈ ∗U(S2,1)
α2 , and we conclude as {σ2 ∈ ∗S2 | (α1, σ2) ∈ ∗ A} = ∗F(α1).

“(5) ⇒ (1)”: Let A ∈ U
(S1×S2,1)
(α1,α2)

, i.e., (α1, α2) ∈ ∗ A. Let F : S1 → ℘(S2) be given by F(s1) := {s2 ∈ S2 |
(s1, s2) ∈ A} for all s1 ∈ S1. Then α2 ∈ ∗F(α1) as (α1, α2) ∈ ∗ A. By the hypothesis, ∗F(α1) ∈ ∗U(S2,1)

α2 . But
∗F(α1) = {σ2 ∈ ∗S2 | (α1, σ2) ∈ ∗ A}, therefore α1 ∈ ∗{s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈ U

(S2,1)
α2 }, which means

that A ∈ U
(S1,1)
α1 ⊗ U

(S2,1)
α2 .

“(1) ⇔ (6)” can be proven similarly to the equivalence “(1) ⇔ (5)”.
“(5) ⇒ (7)”: We prove this by contradiction: assume that there exist sets S3, S4, with S3 completely coherent,

and functions f : S1 → S3, g : S2 → S4 such that (∗ f (α1), ∗g(α2)) is not a tensor pair. By hypothesis, there ex-

ists G : S3 → ℘(S4) such that ∗g(α2) ∈ ∗G(∗ f (α1)) but ∗G(∗ f (α1)) /∈ ∗U(S4,1)
∗g(α2)

. Let F : S1 → ℘(S2) be defined

by F(s1) := g−1(G( f (s1))) for all s1 ∈ S1. As ∗g(α2) ∈ ∗G(∗ f (α1)), we have that α2 ∈ ∗F(α1). Then, by

hypothesis ∗F(α1) ∈ ∗U(S2,1)
α2 , viz. α1 ∈ ∗{s1 ∈ S1 | F(s1) ∈ U

(S2,1)
α2 } = ∗{s1 ∈ S1 | g−1(G( f (s1))) ∈ U

(S2,1)
α2 } =

∗{s1 ∈ S1 | G( f (s1)) ∈ U
(S4,1)
∗g(α2)

} = {σ1 ∈ ∗S1 | ∗G(∗ f (σ1)) ∈ ∗U(S4,1)
∗g(α2)

}, therefore ∗G(∗ f (α1)) ∈ ∗U(S4,1)
∗g(α2)

, which
is absurd.

“(7) ⇒ (8)”: Just set S1 = S3, S2 = S4, f = idS1 , g = idS2 .
“(8) ⇒ (5)”: We prove this by contradiction: assume that there exists F : S1 → ℘(S2) such that α2 ∈ ∗F(α1)

but ∗F(α1) /∈ ∗U(S2,1)
α2 . Let G : S3 → ℘(S4) be defined as follows: G(s3) = g(F( f −1(s3))). Notice that this

definition makes sense as f is bijective, hence invertible. Then the bijectivity of f implies that ∗G(∗ f (α1)) =
∗g(∗F(∗ f −1(∗ f (α1)))) = ∗g(∗F(α1)), hence ∗g(α2) ∈ ∗G(∗ f (α1)) as α2 ∈ ∗F(α1). By our hypothesis, it fol-

lows that ∗G(∗ f (α1)) ∈ ∗U(S4,1)
∗g(α2)

, viz. ∗ f (α1) ∈ {σ3 ∈ ∗S3 | ∗G(σ3) ∈ ∗U(S4,1)
∗g(α2)

} = ∗{s3 ∈ S3 | G(s3) ∈ U
(S4,1)
∗g(α2)

} =
∗{s3 ∈ S3 | G(s3) ∈ g(U(S2,1)

α2 )} = ∗{s3 ∈ S3 | g(F( f −1(s3))) ∈ g(U(S2,1)
α2 )} = ∗{s3 ∈ S3 | F( f −1(s3)) ∈ U

(S2,1)
α2 },

as g is bijective. Hence ∗F(α1) ∈ ∗U(S2,1)
α2 , which is absurd.

“(9) ⇔ (10)” is trivial.
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“(1) ⇒ (9)”: Let A ⊆ S1 × S2. If (s1, α2) ∈ ∗ A for every s1 ∈ S1, then {s1 ∈ S1 | {s2 ∈ S2 | (s1, s2) ∈ A} ∈
U

(S2,1)
α2 } = S1 ∈ U

(S1,1)
α1 , hence (α1, α2) ∈ ∗ A by hypothesis.

“(9) ⇒ (1)”: Let A ⊆ S1 × S2, with A ∈ U
(S1×S2,1)
(α1,α2)

. For all s1 ∈ S1 let As1 := {s2 ∈ S2 | (s1, s2) ∈ A}, and let
F : S1 → ℘(S2) be defined as follows for every s1 ∈ S1:

F(s1) =
{

As1 , if As1 ∈ U
(S2,1)
α2 ;

Ac
s1
, otherwise.

By construction, for all s1 ∈ S1, we have that F(s1) ∈ U
(S2,1)
α2 . In particular, if X F = {(s1, s2) | s2 ∈ F(s1)} then

for all s1 ∈ S1, we have that (s1, α2) ∈ ∗ X F . By our hypothesis, it follows that (α1, α2) ∈ ∗ X F , i.e., α2 ∈ ∗F(α1).
Therefore there are two cases:

Case 1: ∗F(α1) = {σ2 ∈ ∗S2 | (α1, σ2) ∈ ∗ A}. In this case, ∗F(α1) ∈ ∗U(S2,1)
α2 , hence α1 ∈ ∗{s1 ∈ S1 | {s2 ∈

S2 | (s1, s2) ∈ A} ∈ U
(S2,1)
α2 }, and so A ∈ U

(S1,1)
α1 ⊗ U

(S2,1)
α2 .

Case 2: ∗F(α1) = {σ2 ∈ ∗S2 | (α1, σ2) ∈ ∗ Ac}. But then (α1, α2) /∈ ∗ A, which is absurd. In particular, this

shows that the only case that can happen is Case 1, therefore U
(S1×S2,1)
(α1,α2)

= U
(S1,1)
α1 ⊗ U

(S2,1)
α2 . �

To prove that Theorem 4.15 entails Puritz result and allows for a simple characterisation of tensor pairs in
many cases,7 let us introduce the following definition:

Definition 4.16 Let S1, S2 be given sets. Let Y ⊆ β(S1 × S2). We say that (α, β) ∈ ∗(S1 × S2) is a Y -tensor
pair if it is a tensor pair and U(α,β) ∈ Y .

The basic observation is the following: if (α, β) is a Y -tensor pair then (α, β) ∈ ∗ A for every A ∈ ⋂
U∈Y U

(i.e., (α, β) generates the filter
⋂

U∈Y U).

Example 4.17 If S1 = S2 = N and Y = {U ⊗ V | U ,V ∈ βN\N}, then Y -tensor pairs are tensor pairs with
both entries infinite and, as � = {(n, m) | n < m} ∈ W for every W ∈ Y , this shows that (α, β) ∈ ∗� for every
Y -tensor pair (α, β). But then, by applying Theorem 4.15.(7) with S3 = S4 = N, we deduce that for every f, g :
N → N with ∗ f (α1), ∗g(α2) infinite we have (∗ f (α1), ∗g(α2)) ∈ ∗�, viz. f (α1) < er(α2) for all f : N → N,
which is one implication in Puritz’s characterisation.

Example 4.18 Let S1 = S2 = Z. Let α, β ∈ ∗Z\Z. Let A1 = {z ∈ Z | z ≥ 0, z ≡ 0 mod 2}, A2 = {z ∈ Z |
z > 0, z ≡ 1 mod 2}, A3 = {z ∈ Z | z < 0, z ≡ 0 mod 2}, and A4 = {z ∈ Z | z < 0, z ≡ 1 mod 2}. Let i, j
be such that α ∈ ∗ Ai , β ∈ ∗ A j and let f, g : Z → N be bijections such that f coincides with the absolute value
on Ai and g coincides with the absolute value on A j . Then from conditions (7) and (8) in Theorem 4.15 we
deduce that (α, β) is a tensor pair if and only if (|α|, |β|) is a tensor pair, viz. (α, β) is a tensor pair if and only
if |α| < ∗h(|β|) for all h : N → N such that ∗h(|β|) /∈ N, and it is hence straightforward to see that (α, β) is a
tensor pair if and only if |α| < |∗h(β)| for all h : Z → Z such that ∗h(β) /∈ Z.

Example 4.19 Let S1 = S2 = Q. In βQ there are three kinds of ultrafilters:

(i) principal ones, viz. ultrafilters U ∈ βQ such that μ(U) = {q} for some q ∈ Q;
(ii) quasi-principal, viz. ultrafilters U ∈ βQ such that μ(U) consists of finite nonstandard elements, in

which case it is very simple to show that there exists q ∈ Q such that μ(U) ⊂ mon(q) = {ξ ∈ ∗Q |
ξ − q is infinitesimal};

(iii) infinite ultrafilters, viz. ultrafilters U ∈ βQ such that μ(U) consists of infinite elements.

Now let (α, β) ∈ ∗(Q × Q). When is it that (α, β) is a tensor pair? As always, this is the case if {α, β} ∩ Q �= ∅.
If {α, β} ∩ Q = ∅, we distinguish three cases:

(1) both α and β are infinite;
(2) both α and β are finite;
(3) one is infinite, one is finite.

7 To the best of our knowledge, the characterisations given in Examples 4.18, 4.19, 4.20 are new.
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Notice that, as (ε, ∗ε) is a tensor pair for every infinitesimal ε ∈ ∗Q, Puritz’s characterisation does not hold
(directly) in our present case (as ∗ε < ε for every positive infinitesimal ε).

As, by Theorem 4.15.(7), we know that (α, β) is a tensor type if and only if (−α, β) and (α,−β) are, we
reduce to consider the case α > 0, β > 0. Moreover, let us observe that we can reduce to case (1). In fact, if η is
any finite element in ∗Q>0\Q, let fη : Q\{st(η)} → Q>0 be the function such that for all q ∈ Q\ st(η), we have
that fη(q) = 1

q−st(η) . Then fη(η) is infinite and, as this function is bijective, by points (7) and (8) of Theorem 4.15
we get that

(i) if α is finite then (α, β) is a tensor pair if and only if ( fα(α), β) is a tensor pair;
(ii) if β is finite then (α, β) is a tensor pair if and only if (α, fβ(β)) is a tensor pair.

So we are left to study case (1). As a simple necessary criterion, from Theorem 4.15.(7) we get that if (α, β)
is a tensor pair then also the pair of hypernatural parts (�α�, �β�) is a tensor pair. This fact can be refined: as
�Q = {(q1, q2) ∈ Q2 | q2 > q1} ∈ Uα ⊗ Uβ whenever α, β are positive and infinite, we get from Theorem 4.15.(7)
that it must be α < erQ>0(β), where erQ>0(β) = {∗ f (β) | f : Q>0 → Q>0,

∗ f (β) is infinite}. Let us show that
the converse holds as well. Let α < erQ>0(β). We prove this by contradiction: assume that (α, β) is not a tensor
pair. Then by Theorem 4.15.(9) there exists A ⊆ Q2 such that (q, β) ∈ ∗ A for every q ∈ Q but (α, β) /∈ ∗ A. Let
f : Q>0 → Q>0 be defined by f (q) := min{n ∈ N | ∃s ∈ Q>0 (s < n + 1 ∧ (s, q) /∈ A)} for all q ∈ Q>0. As
(q, β) ∈ ∗ A for every q ∈ Q we have that ∗ f (β) is infinite. And, as (α, β) /∈ ∗ A, we have that ∗ f (β) ≤ α, which
is absurd.

Example 4.20 A similar proof can be used to show that, for every infinite α, β ∈ ∗R>0, (α, β) is a tensor pair
if and only if α < erR>0(β), where erR>0(β) = {∗ f (β) | f : R>0 → R>0,

∗ f (β) is infinite}, and following ideas
similar to those of Example 4.19 this can be used to characterise tensor pairs in R2. This can be used also to
characterise certain ultrafilters in βC: as C ∼= R2, e.g., we have that ultrafilters in βC of the form U ⊕ iV , with
U ,V ∈ βR, are generated by hypercomplex numbers of the form α + iβ where (α, β) is a tensor pair in R2.

Moreover, as F := NN is in bijection with R, from Theorem 4.15.(7) we get a characterisation of tensor pairs
in F2 and, since N can be embedded in F just mapping any natural number n to the constant function with value n,
this gives a characterisation of tensor pairs in N × F and F × N. This characterisation is quite implicit; however,
Theorem 4.15 can be used to give explicit necessary and sufficient conditions even in this case: in fact, for α ∈ ∗N
and ϕ ∈ ∗F we have the following.

“Necessary”: if (α, ϕ) is a tensor pair, then (∗ f (α), ∗ J (ϕ)) is a tensor pair for every f ∈ F , J : F → N. In
particular, by letting for every n ∈ N Jn be the evaluation in N, we get that if (α, ϕ) is a tensor pair, then (α, ϕ(n))
is a tensor pair in ∗N2 for every n ∈ N.

“Sufficient”: (α, ∗ϕ) is a tensor pair. In particular, if we let V := U
(N,1)
α ⊗F U

(F,1)
ϕ ∈ βN be the ultrafilter

such that for all A ⊆ N, we have A ∈ V if and only if {n ∈ N | { f ∈ F | f (n) ∈ A} ∈ Uϕ} ∈ Uα , we get that
(∗ϕ)(α) ∈ μ2(V).

4.3 Tensor k-tuples

If we consider products of k sets, the natural generalisation of tensor pairs are tensor k-tuples.

Definition 4.21 Let S1, . . . , Sk be sets and, for every i ≤ k, let Ui ∈ βSi . The tensor product U1 ⊗ · · · ⊗ Uk

is the unique ultrafilter on S1 × · · · × Sk such that, for every A ⊆ S1 × · · · × Sk we have that A ∈ U1 ⊗ · · · ⊗ Uk

if and only if {s1 ∈ S1 | {s2 ∈ S2 | . . . {sk ∈ Sk | (s1, . . . , sk) ∈ A} ∈ Uk} . . . } ∈ U1. We say that (α1, . . . , αk) ∈
∗(S1 × · · · × Sk) is a tensor k-tuple if U

(S1×···×Sk ,1)
(α1,...,αk)

= U
(S1,1)
α1 ⊗ · · · ⊗ U

(Sk ,1)
αk .

It is easy to prove that U1 ⊗ · · · ⊗ Uk is an ultrafilter and that the operation ⊗ is associative (modulo the usual
identification of products (S1 × S2) × S3 = S1 × (S2 × S3) = S1 × S2 × S3), cf., e.g., [4, Appendix]. This allows
to characterise tensor k-tuples in terms of pairs:

Theorem 4.22 Let k ≥ 1, let S1, . . . , Sk, Sk+1 be given sets and let (α1, . . . , αk+1) ∈ ∗(S1 × · · · × Sk+1). The
following facts are equivalent:
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(1) (α1, . . . , αk+1) is a tensor (k + 1)-tuple;
(2) ((α1, . . . , αk), αk+1) is a tensor pair and (α1, . . . , αk) is a tensor k-tuple;
(3) (αk, αk+1) is a tensor pair and (α1, . . . , αk) is a tensor k-tuple;
(4) for all i ≤ k, (αi , αi+1) is a tensor pair.

P r o o f . As there is no danger of confusion, we shall use the simplified notations U(α1,...,αk+1) instead of

U
(S1×···×Sk+1,1)
(α1,...,αk+1)

, and similarly for Uαi for i ≤ k + 1.
“(1) ⇒ (2)”: By hypothesis, U(α1,...,αk+1) = Uα1 ⊗ · · · ⊗ Uαk+1 . By the associativity of tensor products, Uα1 ⊗

· · · ⊗ Uαk+1 = (Uα1 ⊗ · · · ⊗ Uαk ) ⊗ Uαk+1 . Let V = Uα1 ⊗ · · · ⊗ Uαk . Then ((α1, . . . , αk), αk+1) ∈ μ(V ⊗ U), viz.
((α1, . . . , αk), αk+1) is a tensor pair, and (α1, . . . , αk) ∈ μ(Uα1 ⊗ · · · ⊗ Uαk ), viz. (α1, . . . , αk) is a tensor k-tuple.

“(2) ⇒ (1)”: U(α1,...,αk ,αk+1) = U(α1,...,αk) ⊗ Uαk+1 as ((α1, . . . , αk), αk+1) is a tensor pair, and U(α1,...,αk) =
Uα1 ⊗ · · · ⊗ Uαk as (α1, . . . , αk) is a tensor k-tuple.

“(2) ⇒ (3)”: We prove this by contradiction: assume that (αk, αk+1) is not a tensor pair. Let A ⊆ Sk ×
Sk+1 be such that for all sk ∈ Sk , we have (sk, αk+1) ∈ ∗ A but (αk, αk+1) /∈ ∗ A. Let B = {(s1, . . . , sk+1) ∈ S1 ×
· · · × Sk+1 | (sk, sk+1) ∈ A}. By construction, ((s1, . . . , sk), αk+1) ∈ ∗ B for all (s1, . . . , sk) ∈ S1 × · · · × Sk . As
((α1, . . . , αk), αk+1) is a tensor pair, this entails that ((α1, . . . , αk), αk+1) ∈ ∗ B, hence (αk, αk+1) ∈ ∗ A, which
is absurd.

“(3) ⇒ (2)”: We prove this by contradiction: assume that ((α1, . . . , αk), αk+1) is not a ten-
sor pair. Let T = S1 × · · · × Sk and let A ⊆ T × Sk+1 be such that for all t ∈ T , we have
that (t, αk+1) ∈ ∗ A, but ((α1, . . . , αk), αk+1) /∈ ∗ A. Define B = {(sk, sk+1) ∈ Sk × Sk+1 | ∀(s1, . . . , sk−1) ∈
S1 × · · · × Sk−1((s1, . . . , sk), sk+1) ∈ A}. By construction, (sk, αk+1) ∈ ∗ B for all sk ∈ Sk , hence, as
(αk, αk+1) is a tensor pair, we have that (αk, αk+1) ∈ ∗ B = {(ηk, ηk+1) ∈ ∗(Sk × Sk+1) | ∀(σ1, . . . , σk−1) ∈
∗(S1 × · · · × Sk−1)((σ1, . . . , σk−1, ηk), ηk+1) ∈ ∗ A}, hence ((α1, . . . , αk), αk+1) ∈ ∗ A, which is absurd.

“(3) ⇒ (4)”: By induction on k. If k = 1 there is nothing to prove. Now let us assume the claim to hold for
k ≥ 1 and let us prove it for k + 1. By inductive hypothesis, as (3) ⇔ (1), (α1, . . . , αk) is a tensor k-tuple if and
only if for all i ≤ k − 1, (αi , αi+1) is a tensor pair, so the claim is proven.

“(4) ⇒ (3)” is immediate by induction. �
Example 4.23 If Si = N for every i = 1, . . . , k, we get the following equivalence: if for all i ≤ k + 1

αi ∈ ∗N\N, then (α1, . . . , αk+1) is a tensor (k + 1)-tuple if and only if αi < er(αi+1) for every i ≤ k.

Notice that, as a trivial corollary of Theorem 4.22, we obtain that the relation of “being a tensor pair” is
transitive:

Corollary 4.24 For every (α1, α2, α3) ∈ ∗(S1 × S2 × S3), if (α1, α2) and (α2, α3) are tensor pairs, then
(α1, α3) is a tensor pair.

P r o o f . As (α1, α2) and (α2, α3) are tensor pairs, from Theorem 4.22 we deduce that ((α1, α2), α3) is a
tensor pair. Let us now assume that (α1, α3) is not a tensor pair. Let A ⊆ S1 × S3 be such that (s1, α3) ∈ ∗ A
for every s1 ∈ S1 but (α1, α3) /∈ ∗ A. Let B ⊆ S1 × S2 × S3 be defined as follows: (s1, s2, s3) ∈ B if and only if
(s1, s3) ∈ A. Then (s1, s2, α3) ∈ ∗ B for every (s1, s2) ∈ S1 × S2, and so (as ((α1, α2), α3) is a tensor pair) we have
that ((α1, α2), α3) ∈ ∗ B, therefore (α1, α3) ∈ ∗ A, which is absurd. �

Using this fact, it is possible to add the following equivalent characterisation to Theorem 4.22:

Theorem 4.25 Let k ≥ 1, let S1, . . . , Sk, Sk+1 be given sets and let (α1, . . . , αk+1) ∈ ∗(S1 × · · · × Sk+1). The
following facts are equivalent:

(1) (α1, . . . , αk+1) is a tensor (k + 1)-tuple;
(2) for all F = {i1 < · · · < i�} ⊆ {1, . . . , k + 1}, (αi1 , . . . , αi�) is a tensor �-tuple.

P r o o f . The implication (2) ⇒ (1) is trivial (just set F = {1, . . . , k + 1}).
To prove the other implication, by the transitivity of the relation of being a tensor pair we have (using the

characterisation (4) of Theorem 4.22) that for every j ≤ � − 1 (α j , α j+1) is a tensor pair, so all pairs (αi j , αi j+1)
are tensor pairs. Hence from the equivalence (1) ⇔ (4) in Theorem 4.22 we deduce that (αi1 , . . . , αi�) is a tensor
�-tuple. �
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Finally, by iterating inductively the proof of Theorem 4.13, we obtain the following result:

Theorem 4.26 Let S1, . . . , Sk+1 ∈ V(X) be sets, with S1, . . . , Sk completely coherent. For every i ≤ k + 1 let
Ui ∈ βSi and let αi ∈ μ(Ui ). Then (α1,

∗α2, . . . , Hk(αk+1)) ∈ μk+1(U1 ⊗ · · · ⊗ Uk+1).

As a straightforward corollary we get the following characterisation of tensor k-tuples in iterated hyperexten-
sions:

Corollary 4.27 Let S1, . . . , Sk+1 ∈ V(X) be sets, with S1, . . . , Sk completely coherent. For every i ≤ k + 1
let αi ∈ ∗Si . The following facts are equivalent:

(1) (α1, . . . , αk+1) is a tensor pair;
(2) (α1, . . . , αk+1) ∼(S1×···×Sk+1,k+1) (α1,

∗α2, . . . , Hk(αk+1)).

5 Combinatorial properties of monads

In recent years, several open problems in Ramsey theory regarding the partition regularity (and the partial
partition regularity) of formulas have been solved (cf., e.g., [14,16,23,32]). Moreover, in many cases nonstandard
approaches based on the algebraical properties of the monads of ultrafilters have been used to extend several known
results in new directions (cf., e.g., [8,12–15,27,30]). In this section our goal is to give a unified formulation of all
these nonstandard approaches (which will be obtained in Theorem 5.4), as well as to extend these methods to new
directions: the study of partial partition regularity and the partition regularity of formulas with internal parameters.

5.1 Partition regularity of existential formulas

In all this section we let Y ∈ V(X) be a set, and we shall work with the extension ∗ (except in some examples).
The formulation of the results in the general case of an extension � can be obtained analogously. We shall be
concerned with the notion of “partition regularity”:8

Definition 5.1 A family F ⊆ ℘(Y ) is partition regular if for every k ∈ N, for every partition Y = A1 ∪ · · · ∪ Ak

there exists i ≤ k such that Ai ∈ F.

The relationship between partition regular families and ultrafilters is a well known fact in combinatorial number
theory;9 in [26], this characterisation was expressed by means of properties of monads in the case of families of
witnesses of the partition regularity of Diophantine equations, a field rich in very interesting open problems.

Theorem 5.2 Let P(x1, . . . , xn) ∈ Z[x1, . . . , xn]. The following facts are equivalent:

(1) the equation P(x1, . . . , xn) = 0 is partition regular on N, viz. the family FP = {A ⊆ N | ∃a1, . . . , an ∈
A P(a1, . . . , an) = 0} is partition regular;

(2) there exists an ultrafilter U ∈ βN and generators α1, . . . , αn ∈ μ∞(U) such that P(α1, . . . , αn) = 0.

This characterisation has been subsequently used in a series of paper [12–15, 27, 29] to study the partition
regularity of several classes of nonlinear polynomials. In this section we want to show how this characterisation
can be extended to study the partition regularity of several families of subsets of arbitrary sets.10

Let us start with some preliminaries. In all this section, when we talk about “formulas” we mean first order
formulas with bounded quantifiers11 in the language of the superstructure V(X) (cf. [17, Chapter 13]), and when

8 In this paper, we call “partition regularity” what is sometimes called “weak partition regularity”. We shall not consider the notion of
“strong partition regularity”, except briefly in Example 5.25. Cf. also [18] for a discussion of the two notions.

9 A family of subsets of Y is partition regular if and only if it contains an ultrafilter on Y . These notions are also closely related to
co-ideals; for a thorough treatment of co-ideals in Ramsey Theory, we refer to [37].

10 Some results of this section already appeared, in a much weaker form, in [26].
11 We adopt a slight abuse of language here: the kind of formulas we work with are those introduced in Definition 5.3, which contain

some unbounded quantifiers. However, the notion we are interested in is that of a set A ⊆ Y witnessing these formulas, and when we adopt
this notion there are no more unbounded quantifiers to be handled, as every unbounded quantifier Qi xi (Qi ∈ {∀, ∃}) is substituted with
Qi xi ∈ A. For this reason, we believe that this slight abuse of language should not create too much confusion.

www.mlq-journal.org C© 2019 The Authors. Mathematical Logic Quarterly Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



14 L. Luperi Baglini: Nonstandard characterisations of tensor products and monads in the theory of ultrafilters

we write a formula as ϕ(x1, . . . , xn) we mean that x1, . . . , xn are all and only variables appearing in ϕ. We say
that a formula ϕ(x1, . . . , xn) is totally open if all its variables are free.

Definition 5.3 Let ϕ(x1, . . . , xn, y1, . . . , ym) be a totally open formula, let S1, . . . , Sm ∈ V(X) be sets and,
for i = 1, . . . , m, let Qi ∈ {∃,∀}. The existential closure of ϕ(x1, . . . , xn, y1, . . . , ym) with constraints {Qi yi ∈
Si | i ≤ m} is the formula E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)):

∃x1 . . . ∃xn Q1 y1 ∈ S1 . . . Qm ym ∈ Sm ϕ(x1, . . . , xn, y1, . . . , ym).

When m = 0 we shall use the notation E(ϕ(x1, . . . , xn)), and E(ϕ(x1, . . . , xn)) will be called the existential
closure of ϕ(x1, . . . , xn). Similarly, the universal closure of ϕ(x1, . . . , xn, y1, . . . , ym) with constraints {Qi yi ∈
Si | i ≤ m} is the formula U−→

Qy∈−→
S
(ϕ(x1, . . . , xn, y1, . . . , ym)):

∀x1 . . . ∀xn Q1 y1 ∈ S1 . . . Qm ym ∈ Sm ϕ(x1, . . . , xn, y1, . . . , ym).

When m = 0 we shall use the notation U(ϕ(x1, . . . , xn)), and U(ϕ(x1, . . . , xn)) will be called the universal closure
of ϕ(x1, . . . , xn). Given a totally open formula ϕ(x1, . . . , xn, y1, . . . , ym), a set of constraints {Qi yi ∈ Si | i ≤ m}
and a set A ⊆ Y , E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) is said to be modeled by A, denoted by

A |= E−→
Qy∈−→

S
(ϕ(x1, . . . , xn, y1, . . . , ym)),

if the formula

∃x1 ∈ A . . . ∃xn ∈ A Q1 y1 ∈ S1 . . . Qm ym ∈ Sm ϕ(x1, . . . , xn, y1, . . . , ym)

holds true. Similarly, we say that A models U−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym)), denoted by

A |= U−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym)),

if the formula

∀x1 ∈ A . . . ∀xn ∈ A Q1 y1 ∈ S1 . . . Qm ym ∈ Sm ϕ(x1, . . . , xn)

holds true.
The formula E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) or the formula U−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) is said to

be partition regular on Y if for every k ∈ N, for every partition Y = A1 ∪ · · · ∪ Ak there exists i ≤ k such that
Ai |= E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) (or Ai |= U−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym))).

Our main result in this section is the following theorem, which generalises Theorem 5.2 to arbitrary existential
formulas and sets with constraints:12

Theorem 5.4 Let ϕ(x1, . . . , xn, y1, . . . , ym) be a totally open formula and, for i = 1, . . . , m, let Si ∈ V(X)
and Qi ∈ {∃,∀}. Let Y ∈ V(X), and assume that the hyperextension ∗ is |℘(Y )|+-enlarging. The following are
equivalent:

(1) E−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym)) is partition regular on Y ;
(2) there are α1 ∼Y · · · ∼Y αn ∈ ∗Y such that the sentence

Q1 y1 ∈ ∗S1, . . . , Qm ym ∈ ∗Sm
∗ϕ(α1, . . . , αn, y1, . . . , ym)

holds true;
(3) there exists a ultrafilter U ∈ βY such that for every set A ∈ U we have that

A |= E−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym)).

P r o o f . “(1) ⇒ (2)”. Let Par(Y ) be the set of all possible finite partitions of Y . Given partitions
P1(Y ) = A1,1 ∪ . . . ∪ A1,k1 , . . ., Pm(Y ) = Am,1 ∪ . . . ∪ Am,km , we let P(P1, . . . , Pm) be the partition generated

12 We have included in this theorem also the known characterisation of partition regular families in terms of ultrafilters, providing a new
rather simple nonstandard proof that uses monads. Notice that the analogous formulation of this Theorem for Hn, • can be easily obtained
following an analogous proof.
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by P1, . . . , Pm , viz. the partition Y = ⋃
(i1,...,im)∈K

⋂
1≤�≤m A�,i� , where K = [1, k1] × . . . × [1, km ]. Now, for ev-

ery partition P(Y ) = A1 ∪ . . . ∪ Am let IP(Y ) be the set of all partitions refining P(Y ), viz. IP(Y ) = { f : Y →
[1, k] | k ∈ N,∀i ≤ k ∃! j ≤ m( f −1(i) ⊆ A j )}.13 The family {IP(Y )}P∈Par(Y ) has the finite intersection property,
since IP1(Y ) ∩ . . . ∩ IPm(Y ) ⊇ IP(P1...,Pm) . By enlarging, there exists a hyperfinite partition ∗Y = A1 ∪ . . . ∪ Aλ

that refines all finite partitions of Y . As E−→
Qy∈−→

S
(ϕ(x1, . . . , xn, y1, . . . , ym)) is partition regular on Y , by trans-

fer ∗E−→
Qy∈−→

S
(ϕ(x1, . . . , xn, y1, . . . , ym)) is partition regular on ∗Y , hence there exists i ≤ λ, α1, . . . , αn ∈ Ai ,

such that Q1β1 ∈ ∗S1, . . . , Qmβm ∈ ∗Sm
∗ϕ(α1, . . . , αn, β1, . . . , βm) holds true. To conclude the proof, we show

that α1 ∼Y . . . ∼Y αn . In fact, as A1 ∪ . . . ∪ Aλ refines all finite partitions on Y , for every i ≤ λ it is straight-
forward to show that the set Ui = {A ⊆ Y | Ai ⊆ ∗ A} is an ultrafilter, and so Ai ⊆ ⋂

A∈Ui

∗ A = μ(Ui ), hence
α1, . . . , αn ∈ μ(Ui ) are all ∼Y -equivalent.

“(2) ⇒ (3)”: Let U be the ultrafilter generated by α1, . . . , αn . Let A ∈ U . By hypothesis, μ(U) |=
∗E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) and, since the formula E−→

Qy∈−→
S (ϕ(x1, . . . , xn, y1, . . . , ym)) is existential in

−→x = (x1, . . . , xn) and μ(U) ⊆ ∗ A, this entails that ∗ A |= ∗E−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym)), so we can con-
clude by transfer.

“(3) ⇒ (1)”: This is straightforward from the definitions, as for every finite partition Y = A1 ∪ · · · ∪ Ak there
exists i ≤ k such that Ai ∈ U . �

The characterisation of partition regular Diophantine equations is a particular case of the previous the-
orem, where we let m = 0, Y = N and, given a polynomial P(x1, . . . , xn), ϕ(x1, . . . , xn) is the formula
P(x1, . . . , xn)= 0.

Definition 5.5 If ϕ is a partition regular formula, we call an ultrafilter U a ϕ-ultrafilter and say that U witnesses
ϕ (in symbols: U |= ϕ) if for all A ∈ U , we have that A |= ϕ.

In particular, the proof of Theorem 5.4 shows that, for any ultrafilter U ∈ βY ,

U |= E−→
Qy∈−→

S (ϕ(x1, . . . , xn, y1, . . . , ym))

if and only if there are α1, . . . , αn ∈ μ(U) such that

Q1β1 ∈ ∗S1, . . . , Qmβm ∈ ∗Sm
∗ϕ(α1, . . . , αn, β1, . . . , βm)

holds true.

Example 5.6 (This example appears, in the weaker form m = 0, also in [30, Theorem 4.2].) Let
S be a semigroup, and let ϕ(x1, . . . , xn, y1, . . . , ym) be an homogeneous totally open formula with con-
straints Q1r1 ∈ R1, . . . , Qmrm ∈ Rm , in the sense that for all s1, . . . , sn, t ∈ S if Q1r1 ∈ R1 . . . Qmrm ∈
Rm ϕ(s1, . . . , sn, r1, . . . , rm) holds true, then Q1r1 ∈ R1 . . . Qmrm ∈ Rm ϕ(t · s1, . . . , t · sn, r1, . . . , rm) and
Q1r1 ∈ R1 . . . Qmrm ∈ Rm ϕ(s1 · t, . . . , sn · t, r1, . . . , rm) hold true. Let us also assume that

(1) S is completely coherent;
(2) for all α1, . . . , αn ∈ ∗S, if Q1r1 ∈ ∗ R1 . . . Qmrm ∈ ∗ Rm

∗ϕ(α1, . . . , αn, r1, . . . , rm) holds true, then also
Q1r1 ∈ ∗∗ R1 . . . Qmrm ∈ ∗∗ Rm

∗∗ϕ(α1, . . . , αn, r1, . . . , rm) holds true.14

Then Iϕ = {U ∈ βS | U |= E−→
Qy∈−→

R (ϕ(x1, . . . , xn, y1, . . . , ym))} is a closed bilateral ideal in βS. Closure
is trivial; now let U ∈ Iϕ and V ∈ βS. Let α1 ∼S · · · ∼S αn ∈ μ(U) be such that Q1 y1 ∈ ∗ R1 . . . Qm ym ∈
∗ Rm

∗ϕ(α1, . . . , αn, y1, . . . , ym) holds, and let β ∈ μ(V). Then we have:

(i) U � V ∈ Iϕ as, by Corollary 4.14, αi · ∗β ∈ μ2(U � V) for every i ≤ n, and Q1 y1 ∈ ∗∗ R1 . . . Qm ym ∈
∗∗ Rm

∗∗ϕ(α1 · ∗β, . . . , αn · ∗β, y1, . . . , ym) holds as ϕ is homogeneous, α1, . . . , αn ∈ ∗∗S as S is completely
coherent and Q1 y1 ∈ ∗∗ R1 . . . Qm ym ∈ ∗∗ Rm

∗∗ϕ(α1, . . . , αn, y1, . . . , ym) holds by our assumption (2);

13 As usual, we are identifying partitions and functions with finite image.
14 This is the case, e.g., if S = N and ϕ is the formula stating that a certain given polynomial P(x1, . . . , xn) = 0.
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(ii) similarly, V � U ∈ Iϕ as, by Corollary 4.14, β · ∗αi ∈ μ2(V � U) for every i ≤ n, and Q1 y1 ∈
∗∗ R1 . . . Qm ym ∈ ∗∗ Rm

∗∗ϕ(β · ∗α1, . . . , β · ∗αn, y1, . . . , ym) holds as

Q1 y1 ∈ ∗∗ R1 . . . Qm ym ∈ ∗∗ Rm
∗∗ϕ(∗α1, . . . ,

∗αn, y1, . . . , ym)

holds by transfer, ϕ is homogeneous and β ∈ ∗∗S since S is completely coherent.15

Example 5.7 In [23], Khalfalah and Szemer’edi proved that, for every polynomial P(y) such that 2 | P(y)
for some y ∈ Z, the formula ∃x1, x2, ∃y ∈ Z x1 + x2 = P(y) is partition regular16 on Z. By Theorem 5.4, there
exist α1 ∼(Z,1) α2 and β ∈ ∗Z such that α1 + α2 = P(β). Similarly, in [16], Frantzikinakis and Host proved the
partition regularity of the formulas ∃x1, x2∃y1 ∈ Z 16x2

1 + 9x2
2 = y2

1 and ∃x1, x2∃y1 ∈ Z x2
1 − x1x2 + x2

2 = y2
1 .

Once again, by Theorem 5.4, there exist α1 ∼(Z,1) α2 and β ∈ ∗Z such that 16α2
1 + 9α2

2 = β2
1 and there exists

η1 ∼(Z,1) η2 and μ1 ∈ ∗Z such that η2
1 − η1η2 + η2

2 = μ2
1. Notice that both these formulas are homogeneous,

hence by Example 5.6 we get that the sets of ultrafilters witnessing them are closed bilateral ideals in (βN,�)
(hence, in particular, any ultrafilter in the minimal closed bilateral ideal K (βN,�) witnesses both of them).

Example 5.8 In [32], Moreira solved a long standing open problem, proving the partition regularity on N of
the formula17 ∃x1, x2, x3∃y ∈ N (x1 + y = x2) ∧ (x1 · y = x3). By Theorem 5.4, this entails the existence of an
ultrafilter U ∈ βN and α1, α2, α3 ∈ μ(U), β ∈ ∗N such that α1 + β = α2 and α1 · β = α3.

In most cases, however, one is interested in full partition regularity, viz. in the case of Definition 5.3 where
m = 0.

Example 5.9 A very well-known fact in combinatorial number theory is that every additively idempotent
ultrafilter in βN is a Schur ultrafilter, viz. it witnesses the partition regularity on N of the formula ∃x, y, z x + y = z
(cf. [36] for the original combinatorial proof of this result, and [18] for the ultrafilters version). This fact can be seen
directly also as a consequence of Theorem 5.4. In fact, let U be idempotent and let α ∈ μ(U). Then ∗α ∈ μ2(U)
and α + ∗α ∈ μ2(U ⊕ U) = μ2(U) by Corollary 4.14, hence letting α1 = α, α2 = ∗α and α3 = α + ∗α we get
the thesis, as α1 ∼(N,2) α2 ∼(N,2) α3. This allows us to conclude, as the inclusion μ(U) ⊆ μ2(U) follows from
Proposition 3.4.(1).

The characterisation of partition regularity by means of ultrafilters allows to use a iterative process to produce
new partition regular formulas. The following is a generalisation of [14, Lemma 2.1], where this result was framed
and proven restricting to the context of partition regular equations:

Theorem 5.10 Let ϕ(x, y1, . . . , yn) be a totally open formula, let S1, . . . , Sm ∈ V(X) be sets and, for
i = 1, . . . , m, let Qi ∈ {∃,∀}. Assume that

∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn ϕ(x, y1, . . . , yn)

is a partition regular formula, and that U ∈ βY is one of its witnesses. Then for every set A ∈ U the set
IA(ϕ) := {a ∈ A | Q1 y1 ∈ S1 . . . Qn yn ∈ Snϕ(a, y1, . . . , yn) holds true} ∈ U . Moreover, let ψ(x, z1 . . . , zm) be
another totally open formula, let R1, . . . , Rm ∈ V(X) be sets and, for i = 1, . . . , m, let Q̃i ∈ {∃,∀}. Assume that
U witnesses also the partition regularity of ∃x Q̃1z1 ∈ R1 . . . Q̃m zm ∈ Rm ψ(x, z1, . . . , zm). Then U witnesses the
formula

∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn Q̃1z1 ∈ R1 Q̃m zm ∈ Rmϕ(x, y1, . . . , yn) ∧ ψ(x, z1, . . . , zm),

which is then partition regular.

P r o o f . Towards a contradiction, assume that there exists A ∈ U such that IA(ϕ) /∈ U . Then A\IA ∈ U , but
A\IA(ϕ) |= ¬(∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn ϕ(x, y1, . . . , yn)), hence U is not a witness of the partition regularity
of ∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn ϕ(x, y1, . . . , yn), which is absurd.

15 Notice that to prove this inclusion we never used our assumption (2) on ϕ.
16 However, as a consequence of [14, Theorem 3.10], if we drop the constraint y ∈ Z, the formula ∃x1, x2, y x1 + x2 = P(y) is not

partition regular on Z.
17 If we drop the constraint y ∈ N, the problem of the partition regularity of the formula ∃x1, x2, x3, x4 (x1 + x4 = x2) ∧ (x1 · x4 = x3)

is still open.
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As for the second claim, let A ∈ U . Then IA(ϕ) and IA(ψ) belong to U , hence IA(ϕ) ∩ IA(ψ) ∈ U , and

IA(ϕ) ∩ IA(ψ) |= ∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn Q̃1z1 ∈ R1 Q̃m zm ∈ Rm

ϕ(x, y1, . . . , yn) ∧ ψ(x, z1, . . . , zm).

Since this formula is existential, this entails that

A |= ∃x Q1 y1 ∈ S1 . . . Qn yn ∈ Sn Q̃1z1 ∈ R1 Q̃m zm ∈ Rmϕ(x, y1, . . . , yn) ∧ ψ(x, z1, . . . , zm),

hence our claim is proven. �
Example 5.11 Let X = N. For every n ∈ N let ϕn be the formula

ϕn(x1, . . . , xn, y1, . . . , yn) :=
∧
i≤n

(
∑
j≤i

x j = yi )

and let E(ϕn) be the existential closure of ϕn . Hence, for every A ∈ N we have that A |= E(ϕn) if and only if A
contains a subset {a1, . . . , an} of n elements such that all ordered sums a1 + a2, a1 + a2 + a3 and so on lie in A.
By Schur’s Theorem (cf. [36]) we know that E(ϕ2) is partition regular. Let U be a E(ϕ2) ultrafilter (which, from
now on, we shall call a Schur ultrafilter). We claim that for all n ∈ N, U |= E(ϕn). We prove this by induction
on n.

If n = 2, the claim coincides with our hypothesis.
Now let n > 2, let us suppose the claim true for n − 1, and let us prove it for n. By hypothesis and by inductive

hypothesis, we have that U is a Schur and a E(ϕn−1)-ultrafilter. In particular, U witnesses the formulas18

∃z(∃x1∃x2 x1 + x2 = z)

and

∃z(∃x3 . . . ∃xn∃y2 . . . ∃yn (z = y2) ∧
n∧

i=3

(z +
i∑

j=3

x j = yi )),

hence by Theorem 5.10, U witnesses the formula

∃z(∃x1∃x2 x1 + x2 = z) ∧ (∃x3 . . . ∃xn∃y2 . . . ∃yn (z = y2) ∧
n∧

i=3

(z +
i∑

j=3

x j = y j ))

therefore (by renaming the variables and by letting y1 = x1), U witnesses the partition regularity of the formula

∃x1 . . . ∃xn∃y1 . . . ∃yn

∧
i≤n

(
∑
j≤i

x j = y j ),

as desired.

5.2 Partition regularity of arbitrary formulas

Even if, in most cases, applications regard existential closures of totally open formulas, characterisations similar
to that of Theorem 5.4 hold also in other cases.

Corollary 5.12 Let ϕ(x1, . . . , xn, y1, . . . , ym) be a totally open formula and, for i = 1, . . . , m, let Si ∈ V(X)
and Qi ∈ {∃,∀}. Let Y ∈ V(X), U ∈ βY and assume that the hyperextension ∗ is |℘(Y )|+-enlarging. Then the
following conditions are equivalent:

(1) there is a set A in U that satisfies U−→
Qy∈−→

S
(ϕ(x1, . . . , xn, y1, . . . , ym));

(2) for every α1, . . . , αn in μ(U) the sentence Q1 y1 ∈ ∗S1, . . . , Qm ym ∈ ∗Sm
∗ϕ(α1, . . . , αn, y1, . . . , ym) holds

true.

18 We hope that the apparently strange naming of the variables makes the argument more transparent.
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P r o o f . This is just Theorem 5.4 applied to the existential closure of ¬ϕ. �
A useful consequence of Corollary 5.12 is that, in some cases, the existence of a generator with some property

implies that this property is shared by all other generators:

Corollary 5.13 Let ϕ(x, y1, . . . , yn) be a totally open formula and, for i = 1, . . . , m, let Si ∈ V(X) and
Qi ∈ {∃,∀}. Let Y ∈ V(X) and assume that the hyperextension ∗ is |℘(Y )|+-enlarging. Let U be an ultrafilter in
βY that witnesses E−→

Qy∈−→
S
(ϕ(x, y1, . . . , ym)). Then the formula

∀α ∈ μ(U) Q1 y1 ∈ ∗S1 . . . ∗ Qn yn ∈ ∗Sn
∗ϕ(α, y1, . . . , yn)

holds true.

P r o o f . By Theorem 5.10, we have that IY (ϕ) = {a ∈ Y | Q1 y1 ∈ S1 . . . Qn yn ∈ Sn ϕ(a, y1, . . . , yn) holds
true} ∈ U , viz. there is a set A in U such that ∀y ∈ A Q1 y1 ∈ S1 . . . Qn yn ∈ Sn ϕ(y, y1, . . . , yn) holds true. The
conclusion hence follows straightforwardly from Corollary 5.12. �

In all the following examples, we assume the extensions to be properly saturated.

Example 5.14 Let U |= ∃x, y1, y2 y1 + y2 = x . In particular, for every set A ∈ U we have that U witnesses
∃x ∃y1, y2 ∈ A (y1 + y2 = x). Hence from Corollary 5.13 we deduce that for all α ∈ μ(U) there are β1, β2 ∈ ∗ A
such that α = β1 + β2. By saturation, this entails that for all α ∈ μ(U) there are β1, β2 ∈ μ(U) such that α =
β1 + β2.

Example 5.15 Let Y = N. The formulas ϕ(d, x, y, z) : ∃x, y, z, d y − x = z − y = d and ψ(d, u, v) :
∃d, u, v u + v = d are both partition regular and homogeneous. Hence from Example 5.6 we deduce that every ul-
trafilter U ∈ K (βN,�) (the minimal closed bilateral ideal in the semigroup (βN,�)) witnesses both ϕ(d, x, y, z)
and ψ(d, u, v). Therefore, by Corollary 5.13 we get that for every set A ∈ U there exists an arithmetic progres-
sion in A of length 3 with a common difference in A that can be written as a sum of elements of A: in fact, let
α1, α2, α3, γ ∈ μ(U) be such that α2 − α1 = α3 − α2 = γ . Then, by Corollary 5.13 we can write γ = β1 + β2 for
some β1, β2 ∈ μ(U), therefore there are α1, α2, α3, β1, β2 ∈ μ(U) such that α2 − α1 = α3 − α2 = β1 + β2, and
we conclude by Theorem 5.4. Analogously, we can prove that every set A ∈ U contains elements x, y, z that are
increments in arithmetic progressions of length 3 and such that x + y = z. Moreover, if U � U = U ∈ K (βN,�),
thenU witnesses also the formula ϕ(d, u, v) : ∃d, u, v u · v = d, hence, again by Corollary 5.13, we get that every
set A ∈ U contains an arithmetic progression in A of length 3 with a common difference in A that can be written
as a product of elements of A.

Example 5.16 Selective ultrafilters admit several equivalent characterisations (cf., e.g., [7]). One of them says
that U is a selective ultrafilter on Y if and only if every function f : Y → Y is U-equivalent to either an injective
or a constant function, viz. there exists A ∈ U such that f |A is injective or constant. By Corollary 5.12, this is
equivalent to say that for every f : Y → Y the function ∗ f is injective or constant on μ(U).

Let us consider the case Y = N. In this case, it is simple to see that “injective” can be substituted with “strictly
increasing”. Let P(x) ∈ Z[x ]. Let {an | n ∈ N} be the sequence inductively defined as follows: a0 = 0 and, for
every n ≥ 0, an+1 = min{m ∈ N | m > |P( j)| ∀ j ≤ an}.

Let fP : N → N be the function such that for all m ∈ N, fP(m) = max{an | an ≤ m}. As f −1
P (m) is finite for

every m ∈ N, there exists A ∈ U such that fP |A is increasing. Hence we have that

∀P(x) ∈ Z[x ]∀α, β ∈ μ(U)(α < β) ⇒ (|P(α)| < β). (1)

As a consequence, we have that no selective ultrafilter is Schur: in fact, if U is a selective Schur ultrafilter, by
Theorem 5.4 there are α, β, γ ∈ μ(U) such that α + β = γ and, if α ≥ β, this means that α < γ ≤ 2α, which is
in contradiction with the characterisation (1).

Example 5.17 The result of Example 5.16 can be generalised. First of all, from characterisation (1) we deduce
immediately the following strengthening:

∀n ∈ N ∀P(x1, . . . , xn) ∈ Z[x1, . . . , xn]∀α1, . . . , αn, β ∈ μ(U)

(α1, . . . , αn < β) ⇒ (|P(α1, . . . , αn)| < β); (2)
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in fact, if P(x1, . . . , xn) = ∑k
i=1 ci x

e1,i

1 · · · · · xen,i
n , then

|P(x1, . . . , xn)| = |
k∑

i=1

ci x
e1,i

1 · · · · · x
en, j
n | ≤

k∑
i=1

|ci x
e1,i

1 · · · · · xen,i
n |,

hence, if α = max{αi | i ≤ n}, then |P(α1, . . . , αn)| ≤ ∑k
i=1 |ci |α

∑n
j=1 en, j , so we conclude by characterisation (1).

Now we use fact (2) to prove that for every polynomial P(x1, . . . , xn) ∈ Z[x1, . . . , xn] and for every selective
ultrafilter U , U is not a witness of the partition regularity of the formula

∃x1, . . . , xn (
∧

1≤i< j≤n

xi �= x j ) ∧ P(x1, . . . , xn) = 0. (3)

We proceed by induction.
If n = 1, the claim follows as for every infinite hypernatural number α, for every polynomial P(x) ∈ Z[x ], if

P �= 0, then P(α) �= 0: in fact, if P �= 0, then the equation P(x) = 0 has only a finite amount of solutions, hence
the claim is a trivial consequence of transfer.

Now let n > 1 and let us assume the claim to be true for n − 1. Assume, towards a contradiction, that there exists
a polynomial P(x1, . . . , xn) ∈ Z[x1, . . . , xn] and a selective ultrafilter U that witnesses the partition regularity
of the formula (3). Then, by Theorem 5.4 we can find mutually distinct elements α1, . . . , αn ∈ μ(U) such that
P(α1, . . . , αn) = 0. By rearranging the indexes, if necessary, we can assume that αn = max{αi | i ≤ n}.

Let P(x1, . . . , xn) = ∑k
i=1 ci x

e1,i

1 · · · · · xen,i
n , let J = {i ∈ [1, k] | en,i > 0}, let Q(x1, . . . , xn) = ∑

i∈J ci x
e1,i

1 ·
· · · · xen,i

n and R(x1, . . . , xn−1) = ∑
i /∈J ci x

e1,i

1 · · · · · xen−1,i

n−1 . As P(α1, . . . , αn) = 0, we have that |Q(α1, . . . , αn)| =
|R(α1, . . . , αn−1)|. From characterisation (2) we have that |R(α1, . . . , αn−1)| < αn . We consider two cases:

(i) If Q(α1, . . . , αn) �= 0, then |Q(α1, . . . , αn)| ≥ αn , as Q(x1, . . . , xn) ∈ Z[x1, . . . , xn], xn | Q(x1, . . . , xn)
and Q(α1, . . . , αn) �= 0, hence it cannot be |Q(α1, . . . , αn)| = |R(α1, . . . , αn−1)| and we have reached an
absurd;

(ii) If Q(α1, . . . , αn) = 0, then R(x1, . . . , xn−1) = 0, and we can conclude by using the inductive hypothesis.

5.3 Combinatorial properties with internal parameters

As shown in our examples, Theorem 5.4 can be used to prove several properties of monads. This result can be
strengthened, in saturated extensions, taking into account also internal parameters:

Theorem 5.18 Let Y ∈ V(X), and assume that the hyperextension ∗ is |℘(Y )|+-saturated. Let −→p :=
(p1, . . . , pk), where p1, . . . , pk are internal objects in V(X). Let S1, . . . , Sm be internal sets in V(X) and,
for every i = 1, . . . , m let Qi ∈ {∃,∀}. Let U ∈ βY and let ϕ(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk) be a totally open
formula. The following facts are equivalent:

(1) for all A ∈ U the formula ∃α1 . . . αn ∈ ∗ A Q1β1 ∈ S1 . . . Qmβm ∈ Sm
∗ϕ(−→α ,

−→
β ,

−→p ) holds true, where
−→α = (α1, . . . , αn) and

−→
β = (β1, . . . , βm);

(2) ∃α1 . . . αn ∈ μ(U) Q1β1 ∈ S1 . . . Qmβm ∈ Sm
∗ϕ(−→α ,

−→
β ,

−→p ) holds true, where −→α = (α1, . . . , αn) and−→
β = (β1, . . . , βm).

P r o o f . “(1) ⇒ (2)”: For every A ∈ U let IA = {(α1, . . . , αm) ∈ ∗ Am | Q1β1 ∈ S1 . . . Qmβm ∈
Sm

∗ϕ(α1, . . . , αn, β1, . . . , βm, p1, . . . , pk) holds true}. The family {IA}A∈U has the finite intersection property
as IA1 ∩ IA2 = IA1∩A2 , and every set IA is internal by the internal definition principle. Hence, by saturation the
formula

∃α1 . . . αn ∈ μ(U) Q1β1 ∈ S1 . . . Qmβm ∈ Sm
∗ϕ(α1, . . . , αn, β1, . . . , βm, p1, . . . , pk)

holds true.
“(1) ⇒ (2)”: Just notice that μ(U) ⊆ ∗ A for every A ∈ U by definition. �

www.mlq-journal.org C© 2019 The Authors. Mathematical Logic Quarterly Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



20 L. Luperi Baglini: Nonstandard characterisations of tensor products and monads in the theory of ultrafilters

Corollary 5.19 Let Y ∈ V(X), and assume that the hyperextension ∗ is |℘(Y )|+-saturated. Let −→p :=
(p1, . . . , pk) where p1, . . . , pk are internal objects in V(X). Let S1, . . . , Sm be internal sets in V(X) and,
for every i = 1, . . . , m let Qi ∈ {∃,∀}. Let U ∈ βY and let ϕ(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk) be a totally open
formula. The following facts are equivalent:

(1) there is an A ∈ U such that ∀α1 . . . αn ∈ ∗ A Q1β1 ∈ S1 . . . Qmβm ∈ Sm
∗ϕ(−→α ,

−→
β ,

−→p ) holds true, where
−→α = (α1, . . . , αn) and

−→
β = (β1, . . . , βm);

(2) ∀α1 . . . αn ∈ μ(U) Q1β1 ∈ S1 . . . Qmβm ∈ Sm
∗ϕ(−→α ,

−→
β ,

−→p ) holds true, where −→α = (α1, . . . , αn) and−→
β = (β1, . . . , βm).

P r o o f . Just apply Theorem 5.18 to ¬ϕ(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk). �
Example 5.20 Let X = Q. Let U be a positive infinite ultrafilter in βQ (in the sense of Example 4.19).

We claim that μ(U) is right and left unbounded in the set Inf(∗Q) of positive infinite elements of ∗Q. Towards
a contradiction, assume that there are β1, β2 ∈ Inf(∗Q) such that β1 < α < β2 for every α ∈ μ(U). Then by
Corollary 5.19 we have that there exists A ∈ U such that β1 < α < β2 for every α ∈ ∗ A. However:

(i) β1 cannot exist, as A ⊆ ∗ A and q < β1 for every q ∈ A;
(ii) β2 cannot exist, as every set B ∈ U is right unbounded (and so is ∗ B by transfer).

Example 5.21 Let X = NN. Let U be an ultrafilter in β X and let α1, α2 ∈ ∗N. Then every generator ϕ of U
maps α1 into α2 if and only if there is a set B ∈ U such that every function in B maps α1 into α2. E.g., if α1 ∈ N

and α2 ∈ ∗N\N this means that no ultrafilter has this property, as if a function f ∈ B, then ∗ f (α1) ∈ N.

We conclude by considering another version of the partition regularity of properties where multiple ultrafilters
are considered at once.19 Such notions apply to partial partition regular properties in Ramsey theory, which
includes several fundamental results proven recently in the area (cf., e.g., [16, 32]).

Example 5.22 In [8, 26, 28] it has been introduced and studied the notion of finite embeddability between
subsets of N. In [30], this notion has been extended to arbitrary families of functions and semigroups. In particular,
if (S, ·) is a commutative20 semigroup, a set A ⊆ S is finitely embeddable in a set B ⊆ S (notation: A ≤fe B) if
and only if for every finite subset F ⊆ A there exists t ∈ S such that t · F ⊆ B, viz. if and only if

∀n ∈ N ∀a1, . . . , an ∈ A ∃b1, . . . , bn ∈ B ∃t ∈ S
∧
i≤n

(ai · t = bi ).

This notion has been extended to ultrafilters in [28]: a ultrafilterU ∈ βS is finitely embeddable inV ∈ βS (notation:
U ≤fe V) if and only if for every set B ∈ V there exists A ∈ U such that A ≤fe B, viz. if and only if

∀B ∈ V ∃A ∈ U ∀n ∈ N ∀a1, . . . , an ∈ A ∃b1, . . . , bn ∈ B ∃t ∈ S
∧
i≤n

(ai + t = bi ).

We want to give a nonstandard characterisation of monads that allows to study certain properties like that
expressed in Example 5.22. For the sake of simplicity, we give it for an alternation ∀/∃ of two ultrafilters;
similar characterisations for arbitrary finite amounts of ultrafilters and different alternations of quantifiers can be
analogously deduced.

Theorem 5.23 Let Y ∈ V(X). Let −→p := (p1, . . . , pk), where p1, . . . , pk are internal objects in V(X). Let
S1, . . . , Sh be internal sets in V(X). Let U ,V ∈ βY and let ϕ(x1, . . . , xn, y1, . . . , ym, t1, . . . , th, z1, . . . , zk) be a
totally open formula. Assume that the extension ∗Y is |Y |+-saturated. The following facts are equivalent:

(1) for all A ∈ U there is a B ∈ V such that

∀β1, . . . , βm ∈ ∗ B ∃α1, . . . , αn ∈ ∗ A ∃s1 ∈ S1 . . . ∃sh ∈ Sh
∗ϕ(−→α ,

−→
β ,

−→s ,
−→p ),

19 Similar ideas, but in a rather different context, appeared in [6].
20 In a very similar way, we can work with non-commutative semigroups; however, this means considering the different notions of right

and left finite embeddability, and we prefer to avoid such complications here.
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holds true, where −→α = (α1, . . . , αn),
−→
β = (β1, . . . , βm),−→s = (s1, . . . , sh);

(2) ∀β1 . . . βn ∈ μ(V) ∃α1 . . . αm ∈ μ(U) ∃s1 ∈ S1 . . . ∃sh ∈ Sh
∗ϕ(−→α ,

−→
β ,

−→s ,
−→p ) holds true, where −→α =

(α1, . . . , αn),
−→
β = (β1, . . . , βm),−→s = (s1, . . . , sh).

P r o o f . “(1) ⇒ (2)”: Let
−→
β ∈ μ(V)n . As μ(V) ⊆ ∗ B for every B ∈ V , we have that for every A ∈ U the

set IA := {−→α ∈ ∗ An | ∃s1 ∈ S1 . . . ∃sh ∈ Sh
∗ϕ(−→α ,

−→
β ,

−→s ,
−→p ) holds true} �= ∅. As IA is internal and {IA}A∈U

has the finite intersection property, by |℘(Y )|+-saturation we have that
⋂

A∈U IA �= ∅, and we conclude as⋂
A∈U IA ⊆ μ(U)n .
“(2) ⇒ (1)”: Let A ∈ U . By using ∗ A as a parameter, we see that the thesis is a straightforward consequence

of Corollary 5.19. �
Example 5.24 Let us consider the finite embeddability. Let (S, ·) be a commutative semigroup with identity

and let U ,V ∈ βS. As a consequence of Theorem 5.23, the following two properties are equivalent:21

(i) for all n ∈ N and all A ∈ V there is a B ∈ U such that ∀b1, . . . , bn ∈ B ∃s ∈ S s · b1, . . . , s · bn ∈ A;
(ii) for all n ∈ N and all β1, . . . , βn ∈ μ(U) there is a σ ∈ ∗S such that σ · β1, . . . , σ · βn ∈ μ(V).

Notice that if U is finitely embeddable in V , then the first property holds trivially. In particular, as V ∈ βS is
such that ∀U ∈ βS U ≤fe V if and only if V ∈ K (βS,�) (this result has been proven in [30, Theorem 4.13]), we
obtain the implication (1) ⇒ (2), where

(1) V ∈ K (βS,�);
(2) for all n ∈ N and all β1 ∼S · · · ∼S βn ∈ ∗S there is a σ ∈ ∗S such that σ · β1, . . . , σ · βn ∈ μ(V).

Finally, as V ∈ K (βS,�) if and only if every set A ∈ V is piecewise syndetic in (S, ·) (cf., e.g., [18, Corollary
4.41]), from Theorem 5.18 we obtain the following property22 of piecewise syndetic subsets of S: if A ⊆ S is
piecewise syndetic, then for all n ∈ N and all β1 ∼S · · · ∼S βn ∈ ∗S there is a σ ∈ ∗S such that σ · β1, . . . , σ · βn ∈
∗ A.

Example 5.25 Finite embeddabilities can be generalised to arbitrary families of functions F : Sn → S (cf.
[30]). In particular, let S = N and F ⊆ NN be the family of affinities F := { fa,b : N → N | ∀n ∈ N fa,b(n) =
an + b}. We say that a set A ⊆ N is F-finitely embeddable in B ⊆ N (notation: A ≤F B) if for every finite set
F ⊆ A there exists f ∈ F such that f (A) ⊆ B. Of course, this notion is related to that of AP-rich set (viz. of a set
that contains arbitrarily long arithmetic progressions): in fact, it is straightforward to see that B ⊆ N is AP-rich if
and only if A ≤F B for every A ⊆ N. F-finite embeddability can be extended to ultrafilters as follows: we say
that an ultrafilter U ∈ βN is F-finitely embeddable in V ∈ βN if for every set B ∈ V there exists A ∈ U such that
A ≤F B. An argument similar to that of Example 5.24 allows to show the implication (1) ⇒ (2), where

(1) U ≤F V;
(2) for all n ∈ N and all β1 . . . βn ∈ μ(U), there are σ, � ∈ ∗N such that σ · β1 + �, . . . , σ · βn + � ∈ μ(V).

In [30] we proved that V ∈ βN is such that ∀U ∈ βNU ≤F V if and only if every set A ∈ V is AP-rich. By
the implication discussed above, we know that such an ultrafilter V has the following property: for all n ∈ N

and all β1 ∼N · · · ∼N βn ∈ ∗N there are σ, � ∈ ∗N such that σ · β1 + �, . . . , σ · βn + � ∈ μ(V). In particular,
as the family of AP-rich sets is strongly partition regular23 (cf., e.g., [30, Theorem 6.3]), from Theorem 5.18

21 More precisely, for all n ∈ N the properties:

(i) ∀A ∈ V ∃B ∈ U ∀b1, . . . , bn ∈ B ∃s ∈ S s · b1, . . . , s · bn ∈ A;
(ii) ∀β1, . . . , βn ∈ μ(U) ∃σ ∈ ∗S such that σ · β1, . . . , σ · βn ∈ μ(V),

are equivalent; our claim is a trivial consequence of this fact.
22 Notice that this property resembles a well-known characterisation of thick subsets of S: a set A ⊆ S is thick if and only if for every

s1, . . . , sn ∈ S there exists t ∈ S such that t · s1, . . . t · sn ∈ A, i.e., (by transfer) if for every β1, . . . , βn ∈ ∗S there exists σ ∈ ∗S such that
σ · β1, . . . σ · βn ∈ ∗ A.

23 If S is a set, a family G ⊆ ℘(S) is strongly partition regular if and only if for every A ∈ G, for every finite partition A = A1 ∪ · · · ∪ An

there exists i ≤ n such that Ai ∈ G. In terms of ultrafilters, this property can be reformulated as follows: G is strongly partition regular if and
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we obtain the following characterisation of AP-rich sets: A ⊆ N is AP-rich if and only if for all n ∈ N and
all β1 ∼N · · · ∼N βn ∈ ∗N, there are σ, � ∈ ∗N such that σ · β1 + �, . . . , σ · βn + � ∈ ∗ A. In fact, if A is AP-
rich, then there exists U ∈ βN such that A ∈ U and every set B ∈ U is AP-rich, so for all n ∈ N and all
β1 ∼N · · · ∼N βn ∈ ∗N, there are σ, � ∈ ∗N such that σ · β1 + �, . . . , σ · βn + � ∈ μ(U) and we conclude as
μ(V) ⊆ ∗ A.

For the reverse implication, let A satisfy our hypothesis, and let β1 ∼N · · · ∼N βn form an arithmetic progression
of length24 n. Then σ · β1 + �, . . . , σ · βn + � is a length n arithmetic progression in ∗ A. As this property holds
∀n ∈ N, we deduce that A is AP-rich.

Example 5.26 Of course, similar ideas to that introduced in Theorem 5.23 can be used to study other properties
involving multiple ultrafilters and partition regularity. In [24], the authors proved that it is consistent with ZFC
that for every finite coloring of R there is an infinite set X ⊆ R such that X + X is monochromatic (whilst in
[19] it was proven that also the negation of this statement is consistent with ZFC). Of course, without loss of
generality we can assume that X is also monochromatic (not necessarily of the same colour of X + X ). In terms
of ultrafilters, this means that there are ultrafilters U ,V ∈ βR such that

for all A ∈ U there is a B ∈ V such that B + B ⊆ A. (4)

With arguments similar to those used in the proof of Theorem 5.23, it is simple to show that this property is
equivalent to the following nonstandard fact:

there is a � ∈ ∗V such that � + � ⊆ μ(U). (5)

Finally, by noticing that (4) can be rewritten as

for all A ∈ U and all B ∈ V there is a C ∈ ℘(B) ∩ V such that C + C ⊆ A,

we can strenghten (5) to obtain that it is consistent with ZFC to assume that there is � ∈ ∗V ∩ ℘(μ(V)) such that
� + � ⊆ μ(U).
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[22] K. Hrbáček, O. Lessmann, and R. O’Donovan, Analysis with Ultrasmall Numbers, Textbooks in Mathematics (CRC
Press, 2015).
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