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It follows from known results in the literature that least and greatest fixed-points of monotone polynomials on Heyting algebras—that

is, the algebraic models of the Intuitionistic Propositional Calculus—always exist, even when these algebras are not complete as

lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the µ-calculus based on

intuitionistic logic is trivial, every µ-formula being equivalent to a fixed-point free formula. In the first part of this paper we give

an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent

to a given µ-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more

complex, in particular every monotone formula converges to its least fixed-point by Kleene’s iteration in a finite number of steps,

but there is no uniform upper bound on the number of iterations. The axiomatization yields a decision procedure for the µ-calculus

based on propositional intuitionistic logic. The second part of the paper deals with closure ordinals of monotone polynomials on

Heyting algebras and of intuitionistic monotone formulas; these are the least numbers of iterations needed for a polynomial/formula

to converge to its least fixed-point. Mirroring the elimination procedure, we show how to compute upper bounds for closure ordinals

of arbitrary intuitionistic formulas. For some classes of formulas we provide tighter upper bounds that, in some cases, we prove exact.
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1 INTRODUCTION

The original motivation for developing the research that we present in this paper was the investigation of µ-calculi

based on Intuitionistic Logic. A µ-calculus [Arnold and Niwiński 2001] is a prototypical kind of computational logic,

obtained from a base logic or a base algebraic system, by adding distinct forms of iteration, least fixed-points and

greatest fixed-points, so to increase expressivity. We ended up studying fixed-points within Intuitionistic Logic mostly

by observing structural similarities between the propositional modal µ-calculus and the Intuitionistic Propositional

Calculus (IPC). Bisimulation quantifiers (also known as uniform interpolants) within the propositional modal µ-calculus

were studied in [D’Agostino and Hollenberg 2000]; in this work a formula built by using these kind of quantifiers was

employed to prove that PDL (Propositional Dynamic Logic, see [Harel et al. 2000]) lacks the uniform interpolation

property. In [Pitts 1992] the author discovered that IPC also has bisimulation quantifiers; together with the deduction
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property, uniform interpolants give a rather strong structure to the category of (finitely presented) Heyting algebras

(the algebraic models of the IPC); this structure was axiomatized and studied in [Ghilardi and Zawadowski 1997, 2011].

Quantified formulas analogous to the one of [D’Agostino and Hollenberg 2000] make sense in every category with

this structure and they indeed define the extremal fixed-points of monotone formulas. This made us conjecture that

a µ-calculus based on Intuitionistic Logic is trivial, meaning that every µ-formula is equivalent to a fixed-point free

formula. The conjecture actually holds because of a deep result in Intuitionistic Logic. It was proved in [Ruitenburg

1984] that, for each formula ϕ (x ) of the IPC, there exists a number n ≥ 0 such that ϕn (x )—the formula obtained from ϕ

by iterating n times substitution of ϕ for the variable x—and ϕn+2 (x ) are provably equivalent in Intuitionistic Logic. An

immediate corollary of this result is that a syntactically monotone formula ϕ (x ) converges both to its least fixed-point

and to its greatest fixed-point in at most n steps. We write µx .ϕ (x ) = ϕ
n (⊥) and νx .ϕ (x ) = ϕ

n (⊤) to express this fact,

using a modern notation based on µ-calculi. These two identities can be used to argue that every formula of a µ-calculus

based on Intuitionistic Logic is equivalent to a fixed-point free formula.

Ruitenburg’s work leaves open how to compute or estimate the least number n such that ϕn (x ) = ϕn+2 (x )—we shall

call such a number the Ruitenburg’s number of ϕ and denote it by ρ (ϕ). As our motivations stem from fixed-point

theory and µ-calculi, we remark that being able to compute or bound Ruitenburg’s number ρ (ϕ) might yield an over-

approximation of the least integer k such that µx .ϕ (x ) = ϕ
k (⊥)—we call such a number k closure ordinal of ϕ. For

example, when considering the dual analogous problem, and so the greatest fixed-point of ϕ, we shall see that the least

number k such that of ϕ is νx .ϕ (x ) = ϕ
k (⊤) is 1 at most, while ρ (ϕ) can be arbitrarily large. Least fixed-points over

Intuitionistic Logic have also been considered in [Mardaev 1993]. In op. cit. the author gave an independent proof that

least fixed-points of monotone intuitionistic formulas are definable. His proof relies on semantics methods and on the

coding of Intuitionistic Logic into Grzegorczyk’s Logic; the proof was further refined in [Mardaev 1994] to encompass

the standard coding of Intuitionistic Logic into its modal companion, the logic S4.
The results presented in this paper are also part of a line of research that we are currently exploring, and that lead

us to studying fixed-points within Intuitionistic Logic. We aim at identifying, under a unified perspective, reasons

that make alternation-depth hierarchies of µ-calculi degenerate or trivial. A µ-calculus is obtained by adding formal

least and greatest fixed-points to an underlying logical-algebraic system, so it generates formula-terms with nested

extremal fixed-points. The alternation-depth hierarchy [Arnold and Niwiński 2001, §2.6] of a µ-calculus measures the

complexity of a formula-term, as a function of the nesting of the different types of fixed-points and with respect to a

fixed class of models. It is well known that fixed-points that are unguarded can be eliminated in the propositional modal

µ-calculus [Kozen 1983]. This fact can be rephrased by saying that the alternation-depth hierarchy of the µ-calculus

over distributive lattices is trivial (every µ-term is equivalent to a fixed-point free term). To closely understand and to

refine this result was one of the goals of [Frittella and Santocanale 2014]. In that paper the authors were able to exhibit

equational classes of lattices Dn—with D0 the class of distributive lattices—where the extremal fixed-points can be

uniformly computed by iterating a formula-term n + 1 times from the bottom/top of the lattice; moreover, they showed

that these uniform upper bounds are optimal. For those classes of lattices, the degeneracy of the alternation-depth

hierarchy originates in the structure of the lattices in the class. The next and most natural algebraic setting extending

distributive lattices and where to study fixed-points, was given by Heyting algebras and Intuitionistic Logic.

This paper is divided in two parts. In the first part, we firstly show how to eliminate greatest fixed-points. Namely

we argue that, for every intuitionistic formula ϕ (x ) with the specified variable x positive in ϕ (x ), νx .ϕ (x ) = ϕ (⊤).

Greatest fixed-points of intuitionistic formulas are reached from the top of the lattice after one iteration, exactly as
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in the case of distributive lattices. At a second stage we present the elimination procedure of least fixed-points; the

procedure yields, for every formula ϕ (x ) as above, a (fixed-point free) intuitionistic formulaψ such that µx .ϕ (x ) = ψ .

The two elimination procedures can be cast into a procedure that yields a fixed-point free formula equivalent to an

arbitrary formula of the IPCµ , the µ-calculus based on Intuitionistic Logic. Since IPC is decidable, the procedure also

provides a decision procedure for the IPCµ . Even if elimination of greatest fixed-points turns out to be somewhat

trivial, it plays an important role for eliminating least fixed-points. Natural properties of fixed-points lead to identify

two orthogonal syntactic fragments of the IPC: we call the formulas belonging to these fragments weakly negative

and strongly positive, respectively. Least fixed-point elimination is split between two kind of eliminations, one for each

fragment. For weakly negative formulas, elimination of least fixed-points is a consequence of greatest fixed-point

elimination. Least fixed-point elimination for strongly positive formulas relies on these formulas being inflating (i.e.,

semantically they give rise to inflating monotone functions) and other ingredients.

The second part of the paper studies closure ordinals of intuitionistic positive formulas. The closure ordinal of

ϕ (x )—which, we recall, is the least integers n for which we can write µx .ϕ (x ) = ϕ
n (⊥)—yields a representation of

the least fixed-point µx .ϕ (x ) alternative to the one presented in the first part. Such representation can be exploited

notationally, as in µ-calculi with explicit approximations [Dam and Gurov 2002], computationally, because of its reduced

space requirements, at least if variable sharing is used, and also axiomatically. We firstly present general results for

producing upper bounds of closure ordinals of monotone functions and then we add results that are specific for Heyting

algebras and Intuitionistic Logic. Whenever it is possible, we also argue that those bounds are tight. By combining

these results and, at the same time, by paralleling the least fixed-point elimination procedure, upper bounds of closure

ordinals of formula-terms ϕ (x ) can be computed. It turns out that these bounds are not tight. We focus therefore on

closure ordinals of strongly positive formula-terms that, in view of tightness of bounds, are the most problematic. We

produce specific (and better) bounds for these formulas; in this case our proof yields bounds on Ruitenburg’s numbers

and so also new insights on his theorem. We finish the second part of the paper by presenting a syntactic fragment

(formulas in the fragment are disjunctions of what we call almost-topologies) and prove a surprising fact: closure ordinals

of formulas in this fragment have 3 as a uniform upper bound.

Comparing the present work to our previous results on degeneracies of alternation-depth hierarchies, reasons for

degeneracies appear now to have a very different nature. Several are the ingredients contributing to the existence

of a finite closure ordinal of every intuitionistic formula, thus to the degeneracy of the alternation-depth hierarchy

of the µ-calculus based on Intuitionistic Logic. Probably the most important among them is strongness of monotone

polynomials on Heyting algebras. The naming comes from category theory: a monotone polynomial f : H −−→ H (with

H a Heyting algebra) is strong if it has a strength; in turn, this is equivalent to say that, as a functor, it is enriched

over the closed category H [Kelly 1982; Kock 1972]. Yet strongness is just a possible naming for a general logical

phenomenon, the capability of an equational theory to partly encode quasi-equations. On the proof-theoretic side,

this phenomenon is known as the deduction theorem; on the algebraic side it translates to equationally definable

principal congruences [Blok et al. 1984]. In modal logic the deduction theorem is equivalent to having a master modality

[Kracht 2006, Theorem 64]; as a matter of fact, having a master modality appears to be a common pattern in several

works on alternation-depth hierarchies modal µ-calculi [Alberucci and Facchini 2009a; Bertrand and Schnoebelen 2013;

D’Agostino and Lenzi 2010; Mardaev 1994, 2007]. Other ingredients are the following. For some polynomials, existence

and finiteness of the closure ordinal is a consequence of being inflating (or expanding) and, on the syntactic level, to a

restriction to the use of conjunction that determines a notion of disjunctive formula. A key ingredient of the algorithm

Manuscript submitted to ACM



4 Ghilardi, Gouveia, and Santocanale

we present is creation of least fixed-points via the Rolling equation (cf. Lemma 1), a fact already used in [D’Agostino

and Lenzi 2010]. For Intuitionistic Logic and Heyting algebras, where formula-terms can be semantically antitone (i.e.

contravariant), existing greatest fixed-points create least fixed-points. Overall the most striking difference with the case

of distributive lattices and generalizations of distributive lattices [Frittella and Santocanale 2014] is the absence of a

finite uniform upper bound on the closure ordinals, the rate of convergence to the least fixed-point crucially depends

on the size and shape of the formula.

The considerations that we shall develop rely on well-known equivalences of fixed-point expressions [Arnold and

Niwiński 2001; Bloom and Ésik 1993]. This distinguishes our approach from previous works [Mardaev 1993; Ruitenburg

1984]. Using these equivalences we can move the focus from existence and definability of fixed-points in Intuitionistic

Logic towards the explicit construction of them. On the way, let us remark that the simple characterization of greatest

fixed-points in Intuitionistic Logic νx .ϕ (x ) = ϕ (⊤), that yet plays an important role in the elimination procedure of least

fixed-points, appears to be orthogonal to Ruitenburg’s work, while greatest fixed-points are not considered in Mardaev’s

work. For the modal µ-calculus, a similar algorithmic approach to fixed-point elimination appears in [Lehtinen and

Quickert 2015].

The paper is organized as follows. The goal of the first part, Sections 2 to 6, is to present the fixed-point elimination

procedure for the Intuitionistic Propositional Calculus. We recall in Section 2 some elementary facts from fixed-point

theory. In Section 3 we present the Intuitionistic Propositional Calculus and introduce its fixed-point extension, the

Intuitionistic Propositional µ-Calculus. In Section 4 we pinpoint strongness, a property of monotone functions on

Heyting algebras that will be pervasive in all the paper. We prove some elementary facts about strong functions and

their least fixed-points and give a simple axiomatization of their greatest fixed-points. In Section 5 we digress on

bisimulation quantifiers and argue that the existence of extremal fixed-points can be inferred from these quantifiers.

Section 6 presents the elimination procedure.

The second and last part of the paper starts with Section 7 and deals with estimating closure ordinals of formula-terms

of the IPC. We begin by presenting some general results, that apply to arbitrary monotone functions on posets with a

least element. In the second half of Section 7 we present some results specific to Heyting algebras; the results from this

Section are sufficient to estimate an upper bound of the closure ordinal of any formula-term, yet these upper bounds

are not tight. Therefore we estimate in Section 8 closure ordinals of conjunctions of disjunctive formulas (defined in

Section 6) which, in view of tightness of upper bounds, appear to be the most difficult. Our work actually yields upper

bounds of Ruitenburg’s numbers of these formulas and a closed expression for the formula ϕρ (ϕ ) (when ϕ is such a

disjunction and where ρ (ϕ) is the Ruitenburg’s number of ϕ). In Section 9 we exemplify how the search for bounds

of closure ordinals leads to some non-trivial discovery: we present an infinite family of formula-terms that—while

being more and more complex—uniformly converge to their least fixed-point in 3 steps. We add concluding remarks in

Section 10.
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2 ELEMENTARY FIXED-POINT THEORY

Let P andQ be posets. A function f : P −−→ Q ismonotone if x ≤ y implies f (x ) ≤ f (y), for each x ,y ∈ P . If f : P −−→ P

is a monotone endofunction, then x ∈ P is a prefixed-point of f if f (x ) ≤ x ; we denote by Pref the set of prefixed points

of f . Whenever Pref has a least element, we denote it by µ . f . Therefore, µ . f denotes the least prefixed-point of f ,

whenever it exists. If µ . f exists, then it is a fixed-point of f , necessarily the least one. The notions of least prefixed-point

and of least fixed-point coincide on complete lattices or when the least fixed-point is computed by iterating from the

bottom of a lattice; for our purposes they are interchangeable, so we shall abuse of language and refer to µ . f as the

least fixed-point of f . Dually (and abusing again of language), the greatest fixed-point of f shall be denoted by ν . f .

Let us mention some well known identities from fixed-point theory, see for example [Bloom and Ésik 1993] or

[Arnold and Niwiński 2001]. Notice however that the statements that we present below also assert and emphasize the
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6 Ghilardi, Gouveia, and Santocanale

existence of some least fixed-point—we do not assume completeness of the posets. Full proofs of these statements can

be found in [Santocanale 2002].

Lemma 1. Let P ,Q be posets, f : P −−→ Q and д : Q −−→ P be monotone functions. If µ .(д ◦ f ) exists, then µ .( f ◦ д)

exists as well and is equal to f (µ .(д ◦ f )).

As we do not work in complete lattices (so we are not ensured that least fixed-points exist) we express the above

statement via the equality

µ .( f ◦ д) := f (µ .(д ◦ f )) , (Roll)

where the colon emphasizes existence: if the least fixed-point in the expression on the right exists, then this expression

is the least fixed-point of f ◦ д. Analogous notations will be used later. We endow the product of two posets P and Q

with the coordinatewise ordering. Therefore a function f : P ×Q −−→ R is monotone if, as a function of two variables,

it is monotone in each variable. To deal with least fixed-points of functions of many variables, we use the standard

notation: for example, if f : P ×P −−→ P is the monotone function f (x ,y), then, for a fixed p ∈ P , µx . f (x ,p) denotes the

least fixed-point of f (x ,p). Let us recall that the correspondence p 7→ µx . f (x ,p)—noted µx . f (x ,y)—is again monotone.

Lemma 2. If P is a poset and f : P × P −−→ P is a monotone mapping, then

µx . f (x ,x ) := µx .µy . f (x ,y) . (Diag)

Again, the expression above shall be read by saying that if µy . f (x ,y) exists, for each x ∈ P , and if µx .µy . f (x ,y)

exists, then µx . f (x ,x ) exists as well and is given by the expression on the right.

Recall that a function f from A to a product B × C is uniquely determined by two functions д : A −−→ B and

h : A −−→ C via composing with projections; we therefore write f = ⟨д,h⟩ and use a similar notation for products with

more factors.

Lemma 3. If P and Q are posets and ⟨f ,д⟩ : P × Q −−→ P × Q is a monotone function (so f : P × Q −−→ P and

д : P ×Q −−→ Q), then µ .⟨f ,д⟩ := ⟨µ1, µ2⟩, where

µ1 = µx . f (x , µy .д(x ,y)) and µ2 = µy .д(µ1,y) . (Bekic)

3 THE INTUITIONISTIC PROPOSITIONAL µ-CALCULUS

Formulas of the Intuitionistic Propositional Calculus (IPC) are generated according to the following grammar:

ϕ ⇒ x | ⊤ | ϕ ∧ ϕ | ⊥ | ϕ ∨ ϕ | ϕ → ϕ , (1)

where x ranges over a countable set X of propositional variables. The set of these formulas shall be denoted FIPC. The

consequence relation of the IPC, relating a set of formulas to a formula, is described by means of the intuitionistic

sequent calculus, Gentzen’s system LJ [Gentzen 1935], see also [Negri and von Plato 2001]. Therefore we shall write

Γ LJ δ if the sequent Γ ⊢ δ is derivable in the system LJ.

It is well known that the IPC is sound and complete w.r.t. the class of its algebraic models, the Heyting algebras that

we introduce next.
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Definition 1. A Heyting algebra H is a bounded lattice (so H has a least element ⊥ and a greatest element ⊤) equipped

with a binary operation→ such that the following equations hold in H :

x ∧ (x → y) = x ∧ y , x ∧ (y → x ) = x ,

x → x = ⊤ , x → (y ∧ z) = (x → y) ∧ (x → z) . (2)

We can define on any Heyting algebra a partial order by saying that x ≤ y holds when x ∨ y = y. We identify

formulas of the IPC with terms of the theory of Heyting algebras, constructed therefore from variables and using the

signature ⟨⊤,∧,⊥,∨,→⟩; we shall therefore refer to objects generate by the grammar (1) as formula-terms.1 Let ϕ be

such a formula-term, let H be a Heyting algebra and let v : X −−→ H be a valuation of the propositional variables in H ;

we write JϕKv for the result of evaluating the formula in H , starting from the variables (the definition of J·Kv is given as

usual by induction). The soundness and completeness theorem of the IPC over Heyting algebras, see e.g. [Bezhanishvili

and de Jongh 2006], can then be stated as follows:

Theorem. If Γ is a finite set of formula-terms and ϕ is a formula-term, then Γ LJ ϕ holds if and only if
∧
γ ∈ΓJγ Kv ≤

JϕKv holds, in every Heyting algebra H and for every valuation of the propositional variables v : X −−→ H .

Given this theorem, we shall often abuse of notation and write ≤ in place of LJ , and the symbol =
IPC

(or even the

equality symbol =) to denote provable equivalence of formulas. That is to say, we identify formula-terms with elements

of the Lindenbaum–Tarski algebra of the IPC. Recall that this algebra is also the free Heyting algebra over the set X

of propositional variables; therefore we shall denote it by FH[X]. More generally, for a set of generators Y , the free

Heyting algebra on this set shall be denoted by FH[Y ].

We aim at studying extremal fixed-points on Heyting algebras and so we formalize next the Intuitionistic Propositional

µ-Calculus (IPCµ ).
An occurrence of a variable x is positive in a formula-term ϕ if, in the syntax tree of ϕ, the path from the root to the

leaf labeled by this variable occurrence contains an even number of nodes such that: (i) they are labeled by a subformula

ψ1 → ψ2 and (ii) their immediate successor on the path is the left son labeled by the subformulaψ1. If on this path the

number of those nodes is odd, then we say that this occurrence of x is negative in ϕ. For example, in the formula-term

((x → y) → (x ∨ z)) → w the first occurrence of x is positive but the second occurrence is negative. A variable x is

positive in a formula ϕ if each occurrence of x is positive in ϕ. A variable x is negative in a formula ϕ if each occurrence

of x is negative in ϕ. We enrich the grammar (1) with the following two productions:

ϕ ⇒ µx .ϕ , ϕ ⇒ νx .ϕ ,

subject to the restriction that x is positive in ϕ; we obtain in this way a grammar for formulas of the IPCµ . The set of
formulas generated by this grammar shall be denoted by FIPCµ . Notice that the symbols µ and ν syntactically behaves

as binders (similar to quantifiers), so the notions of free and bound variable in a formula-term is defined as usual.

We present next the semantics of the IPCµ over Heyting algebras. An equivalent formulation of the IPCµ , via a
sequent calculus, appears in [Clairambault 2013, §2].

For a formula ϕ of the IPCµ , let Xϕ denote the set of variables having a free occurrence in ϕ. Let H be a Heyting

algebra (that we do not suppose complete); we define next a partial evaluation function sending ϕ ∈ IPCµ and

v : Xϕ −−→ H to JϕKv . We only cover the cases of formulas µx .ϕ and νx .ϕ, since the other cases are the usual ones.

1
In view of the verbosity of the naming formula-terms we shall often use formula or term as a synonym of formula-term.
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8 Ghilardi, Gouveia, and Santocanale

Thus let ϕ be a formula of the IPCµ , let x be positive in ϕ, and suppose that JϕKu is defined, for each u : Xϕ −−→ H .
2
If

v : Xϕ \ { x } −−→ H is a valuation of all the free variables of ϕ but x , then (v,h/x ) : Xϕ −−→ H is the valuation such

that (v,h/x ) (x ) = h and (v,h/x ) (y) = v (y) for y , x . Since x is positive in ϕ, then the function

JϕKv : H −−→ H , h 7→ JϕK(v,h/x )

is monotone; therefore, if the extremal fixed-points of this function exist,
3
then we define

Jµx .ϕKv =def µ .JϕKv , Jνx .ϕKv =def ν .JϕKv .

Clearly, when H is a complete Heyting algebra, then extremal fixed-points of monotone functions exists, so the

correspondence (ϕ,v ) 7→ JϕKv is total. We argue next that this correspondence is always total.

We say that two formulas ϕ andψ of the IPCµ are equivalent over Heyting algebras if, for each Heyting algebra H

and each v : Xϕ ∪ Xψ −−→ H , JϕKv is defined if and only if Jψ Kv is defined, and JϕKv = Jψ Kv whenever they are both

defined. We write ϕ =
IPCµ

ψ when two formulas ϕ andψ of the IPCµ are equivalent over Heyting algebras.

Let us say that a formula ϕ of IPCµ is fixed-point free if it does not contain either of the symbols µ,ν (that is, if it is a

formula of the IPC).

Proposition 4. Every formula ϕ of the IPCµ is equivalent over Heyting algebras to a fixed-point free formula χ . In

particular JϕKv is defined, for each formula-term ϕ of the IPCµ , each Heyting algebra H , and each v : Xϕ −−→ H ,

Proof. Clearly, the first statement of the Proposition holds if we can show that it holds whenever ϕ = µx .ψ or

ϕ = νx .ψ , whereψ is a fixed-point free formula. For a natural number n ≥ 0, letψn (x ) denote the formula obtained by

substituting x forψ n times. Ruitenburg [Ruitenburg 1984] proves that, for each intuitionistic propositional formula

ψ , there exists a number n ≥ 0 such that the formulas ψn (x ) =
IPC

ψn+2 (x ). If x is positive in ψ , then instantiating x

with ⊥, leads to the equivalence ψn+1 (⊥) =
IPC

ψn (⊥). Yet this relation enforces ψn (⊥) to be the least fixed-point of

ψ , namely Jµx .ψ Kv = Jψn (⊥)Kv for each H and v : Xψ −−→ H . That is, we have µx .ψ =IPCµ
ψn (⊥); similarly, we get

νx .ψ =IPCµ
ψn (⊤). □

According to the Proposition (and to Ruitenburg’s result [Ruitenburg 1984]) the expansion of the IPC with extremal

fixed-points does not increase its expressive power. This does not exclude the use of IPCµ as a convenient formalism,

but raises the problem of (efficiently) computing, for each ϕ ∈ FIPCµ , a formulaψ ∈ FIPC such that ϕ =
IPCµ

ψ .

For a formula µx .ϕ with ϕ fixed-point free, this can be achieved by computing the Ruitenburg’s numbers ρ (ϕ). An

attentive reading of Ruitenburg’s paper shows that ρ (ϕ) ≤ 2n + 2 where n is the size of the formula. Yet, ρ (ϕ) might not

be an optimal as an upper bound to n such that µx .ϕ =IPCµ
ϕn (⊥) or νx .ϕ =IPCµ

ϕn (⊤).

4 STRONG MONOTONE FUNCTIONS AND FIXED-POINTS

If H is a Heyting algebra and f : H −−→ H is any function, then f is said to be compatible if

x ∧ f (y) = x ∧ f (x ∧ y) , for any x ,y ∈ H . (3)

2
If, for some u : Xϕ −−→ H , JϕKu is not defined, then Jµx .ϕKv , Jνx .ϕKv are not defined.

3
If any of the extremal fixed-points does not exist, then we leave the corresponding expressions undefined.
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Remark 5. We are mainly interested in monotone functions. If f as above is also monotone, then f is compatible if and

only if it is strong, meaning that it satisfies

x ∧ f (y) ≤ f (x ∧ y) , for any x ,y ∈ H . (4)

The interplay between fixed-points and strong monotone functions has already been emphasized, mainly in the context

of categorical proof-theory and semantics of functional programming languages with inductive data types [Clairambault

2013; Cockett and Spencer 1995]. It is well known from categorical literature [Kock 1972] that condition (4) is equivalent

to any of the following two conditions:

f (x → y) ≤ x → f (y) , for any x ,y ∈ H , (5)

x → y ≤ f (x ) → f (y) , for any x ,y ∈ H . (6)

Recall that if v : Xϕ \ { x } −−→ H is a valuation of all the free variables of ϕ but x , then (v,h/x ) : Xϕ −−→ H is the

valuation such that (v,h/x ) (x ) = h and (v,h/x ) (y) = v (y) for y , x .

Definition 2. Let H be a Heyting algebra. We say that a function f : H −−→ H is a polynomial if there exist a formula

ϕ ∈ FIPC, a variable x , and a valuation v : Xϕ \ { x } −−→ H such that, for each h ∈ H , we have f (h) = JϕK(v,h/x ) .

Equivalently, a polynomial on H can be identified with an element of the polynomial Heyting algebra H [x], where

the last is defined as the coproduct (in the category of Heyting algebras) of H with the free Heyting algebra on one

generator. In Section 5 we shall study further such polynomial algebras and exploit their properties.

In the next proposition, the analogous statement for Boolean algebras is credited to Peirce, in view of the iteration

rule for existential graphs of type Alpha [Dau 2006].

Proposition 6. Every polynomial f on a Heyting algebra is compatible. In particular, if f is monotone, then it is strong.

Proof. Recall that the replacement Lemma holds in the IPC: z ↔ w LJ ϕ (z) ↔ ϕ (w ). Substituting y for z and x ∧y

forw , and considering that x LJ y ↔ (x ∧y), we derive that x LJ ϕ (y) ↔ ϕ (x ∧y). The latter relation is equivalent to

the conjunction of x ∧ ϕ (y) LJ x ∧ ϕ (x ∧y) and x ∧ ϕ (x ∧y) LJ x ∧ ϕ (y). These two relations immediately imply that

equation (3) holds when f is a polynomial. □

On the way let us include the following Lemma.

Lemma 7. If f : H −−→ H is a strong monotone function and a ∈ H , then

a → f (a → x ) = a → f (x ) . (7)

Proof. Using (5), we deduce

a → f (a → x ) ≤ a → (a → f (x )) = a → f (x ) .

The converse relation follows from x ≤ a → x and a → f (x ) being monotone in x . □

Proposition 8. If f is a strong monotone function on H and a ∈ H , then

µ .(a → f ) := a → µ . f , µ .(a ∧ f ) := a ∧ µ . f . (8)
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Proof. Firstly, we argue that the equation on the left holds. To this end, let us set f a (x ) =def a → f (x ). From

f ≤ f a we have Pref a ⊆ Pref . Thus, if p ∈ Pref a , then µ . f = f (µ . f ) ≤ f (p) and a → µ . f ≤ a → f (p) = f a (p) ≤ p.

That is, a → µ . f is below any element of Pref a . To obtain the proposition, we need to argue that a → µ . f belongs to

Pref a . This follows from equation (7): f a (a → µ . f ) = a → f (a → µ . f ) = a → f (µ . f ) = a → µ . f .

Let us come now to the equation on the right, for which we set fa (x ) =def a ∧ f (x ). Suppose a ∧ f (p) ≤ p, so

f (p) ≤ a → p. Then f (a → p) ≤ a → f (p) ≤ a → p, using (5), whence µ . f ≤ a → p and a ∧ µ . f ≤ p. Thus

we are left to argue that a ∧ µ . f is a prefixed-point of fa . Yet, this is true for an arbitrary prefixed-point p of f :

a ∧ f (a ∧ p) ≤ a ∧ f (p) ≤ a ∧ p. □

Corollary 9. For each n ≥ 1 and each collection fi , i = 1, . . . ,n of monotone polynomials, we have the following

distribution law:

µx .
∧

i=1, ...,n
fi (x ) :=

∧
i=1, ...,n

µx . fi (x ) . (9)

Proof. For n = 1 there is nothing to prove. We suppose therefore that the statement holds for every collection of

size n ≥ 1, and prove it holds for a collection of size n + 1. We have

µx .( fn+1 (x ) ∧
∧

i=1, ...,n
fi (x )) := µx .µy .( fn+1 (y) ∧

∧
i=1, ...,n

fi (x )), by (Diag),

:= µx .((µy . fn+1 (y)) ∧
∧

i=1, ...,n
fi (x )), by (8),

:= (µy . fn+1 (y)) ∧ µx .(
∧

i=1, ...,n
fi (x )), again by (8),

:= (µy . fn+1 (y)) ∧
∧

i=1, ...,n
µx . fi (x ), by the IH. □

The elimination of greatest fixed-points is easy for strong monotone functions. We are thankful to a referee of

[Ghilardi et al. 2016] for pointing out the following fact, which greatly simplified our original argument:

Proposition 10. If f : L −−→ L is any strong monotone function on a bounded lattice L, then f 2 (⊤) = f (⊤). Thus

f (⊤) is the greatest fixed-point of f .

Proof. Indeed, we have f (⊤) = f (⊤) ∧ f (⊤) ≤ f ( f (⊤) ∧ ⊤) = f 2 (⊤). □

5 BISIMULATION QUANTIFIERS AND FIXED-POINTS

The connection between extremal fixed-points and bisimulation quantifiers, firstly emphasized in [D’Agostino and

Hollenberg 2000], was a main motivation to develop this research. Although in the end the elimination procedure does

not rely on it, we nevertheless want to have a closer look at this connection. It was discovered in [Pitts 1992] that IPC
has the uniform interpolation property. As it is clear from the title of that work, this property amounts to an internal

existential and universal quantification. This result was further refined in [Ghilardi and Zawadowski 1997] to show that

any morphism between finitely presented Heyting algebras has a left and a right adjoint.

We shall be interested in Heyting algebras H [x] of polynomials with coefficients in H , and in particular mappings

from H [x] to H , namely the left and right adjoints to the inclusion of H into H [x]. The algebra of polynomials H [x]

is formally defined as the coproduct (in the category of Heyting algebras) of H with the free Heyting algebra on

one generator. The universal property of the coproduct yields that for every h0 ∈ H there exists a unique morphism
Manuscript submitted to ACM
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J·Kh0/x : H [x] −−→ H such that JxKh0/x = h0 and JhKh0/x = h, for each h ∈ H . Thus, for f ∈ H [x] and h ∈ H , we can

define the result of evaluating f at h by f (h) =def Jf Kh/x . If H is finitely generated, then the correspondence sending

h to f (h) = Jf Kh/x is a polynomial on H , as defined in Definition 2; moreover, every polynomial in H arises from some

f ∈ H [x] in this way.

An algebra is said to be finitely presented if it is the quotient of a finitely generated free algebra by a finite number

of equations, see [Ghilardi and Zawadowski 1997]. In op. cit., it was proved that if H is finitely presented, then the

canonical inclusion ix : H −−→ H [x] has both adjoints ∃x ,∀x : H [x] −−→ H , with ∃x is left adjoint to ix and ∀x is right

adjoint to ix . This means that, for each f ∈ H [x] and h ∈ H , the following equivalences hold:

∃x . f ≤ h iff f ≤ ix (h) , h ≤ ∀x . f iff ix (h) ≤ f . (10)

From these relations the unit relation for ∃x and the counit relation for ∀x are easily derived:

f ≤ ix (∃x . f ) , ix (∀x . f ) ≤ f , for all f ∈ H [x] . (11)

We shall use in the rest of this section a standard informal notation: we write f (x ) for f ∈ H [x] and identify h ∈ H

with the constant polynomial ix (h) ∈ H [x]. Using these conventions, the inequalities in (11) are written respectively

as f (x ) ≤ ∃x . f (x ) and ∀x . f (x ) ≤ f (x ). We say that f ∈ H [x] is monotone if the evaluation function it gives rise is

monotone, that is, if Jf Kh0/x ≤ Jf Kh1/x whenever h0 ≤ h1.

Proposition 11. If f is a monotone polynomial on a finitely presented Heyting algebra, then

ν . f := ∃x .(x ∧ (x → f (x ))) . (12)

Proof. By the unit relation in (11) x ∧ (x → f (x )) ≤ ∃x .(x ∧ (x → f (x ))). Recall that evaluation at p ∈ H is a

Heyting algebra morphism, thus it is monotone. Therefore, if p ∈ H is a postfixed-point of f , then by evaluating the

previous inequality at p, we have

p = p ∧ (p → f (p)) ≤ ∃x .(x ∧ (x → f (x ))) ,

so that ∃x .(x ∧ (x → f (x ))) is greater than any postfixed-point of f . Let us show that ∃x .(x ∧ (x → f (x ))) is also a

postfixed-point. In view of (10) it will be enough to argue that x ∧ x → f (x ) ≤ f (∃x .(x ∧ x → f (x ))) in H [x]. We

compute as follows:

x ∧ (x → f (x )) ≤ f (x ) ∧ (x → f (x ))

≤ f (x ∧ (x → f (x ))), since f is strong, by (4),

≤ f (∃x .(x ∧ (x → f (x )))), since f is monotone. □

In a similar fashion, we can construct least fixed-points of monotone polynomials using this time universal bisimula-

tion quantifiers.

Proposition 12. If f is a monotone polynomial on a finitely presented Heyting algebra, then

µ . f := ∀x .(( f (x ) → x ) → x ) .

Proof. By the counit relation in (11) ∀x .(( f (x ) → x ) → x ) ≤ ( f (x ) → x ) → x . Evaluating this relation at p ∈ H

such that f (p) ≤ p, we obtain

∀x .(( f (x ) → x ) → x ) ≤ ( f (p) → p) → p = ⊤ → p = p ,

Manuscript submitted to ACM



12 Ghilardi, Gouveia, and Santocanale

so ∀x .(( f (x ) → x ) → x ) is smaller than any prefixed-point of f . We show next that ∀x .(( f (x ) → x ) → x ) is also a

prefixed-point of f for which it will be enough to argue that f (∀x .(( f (x ) → x ) → x ) ) ≤ ( f (x ) → x ) → x in H [x] or,

equivalently, that ( f (x ) → x ) ∧ f (∀x .(( f (x ) → x ) → x )) ≤ x . We compute as follows:

( f (x ) → x ) ∧ f (∀x .(( f (x ) → x ) → x ) ) = ( f (x ) → x ) ∧ f ( ( f (x ) → x ) ∧ ∀x .(( f (x ) → x ) → x ) ) ,

where we use that f is strong,

≤ ( f (x ) → x ) ∧ f (x ) ≤ x

where in the last inequality we have used that f is monotone and the inequality ( f (x ) → x )∧∀x .(( f (x ) → x ) → x ) ≤ x ,

equivalent to the counit relation for ( f (x ) → x ) → x . □

The next result is an immediate consequence of Propositions 6 and 10. However the previous proposition yields now

an alternative proof:

Corollary 13. If f is a monotone polynomial on a finitely presented Heyting algebra H , then

ν . f := f (⊤) . (13)

Proof. It is easy to see that if f is a monotone polynomial on a finitely presented Heyting algebra, then ∃x . f = f (⊤).

Thus we have

ν . f = ∃x .(x ∧ (x → f (x ))) = ∃x .(x ∧ f (x )) = ⊤ ∧ f (⊤) = f (⊤) . □

Let us come back to a more syntactic perspective. If ϕ (x ) is a formula-term positive in x whose variables distinct

from x are among y1, . . . ,yn , then the equality ϕ2 (⊤) = ϕ (⊤) holds in the free Heyting algebra on the set {y1, . . . ,yn }

(which is finitely presented). Since such a free Heyting algebra is a subalgebra of the Lindenbaum–Tarski algebra, this

means that ϕ (⊤) LJ ϕ (ϕ (⊤)) and ϕ (ϕ (⊤)) LJ ϕ (⊤). A similar argument, using free Heyting algebras, can be used to

generalize Corollary 13 to all Heyting algebras, thus leaving out the requirement that the algebra H is finitely presented.

6 THE ELIMINATION PROCEDURE

We present in this Section our first main result, a procedure that both axiomatizes and eliminates least fixed-points of

the form µx .ϕ with ϕ fixed-point free. Together with the axiomatization of greatest fixed-points given in Proposition 10

and Corollary 13, the procedure can be extended to a procedure to construct a fixed-point free formulaψ equivalent

to a given formula χ of the IPCµ . To ease the reading of the content of this Section and of the remaining ones, we

introduce the following notation:

[α]ϕ =def α → ϕ .

When using the notation above, we shall always assume that the special variable x does not occur in the formula α .

Definition 3. An occurrence of the variable x is strongly positive in a formula-term ϕ if there is no subformula ψ

of ϕ of the formψ0 → ψ1 such that x is located inψ0. A formula-term ϕ is strongly positive in the variable x if every

occurrence of x is strongly positive in ϕ. An occurrence of a variable x is weakly negative in a formula-term ϕ if it is not

strongly positive. A formula-term ϕ is weakly negative in the variable x if every occurrence of x is weakly negative in ϕ.

We shall also say that a variable x is strongly positive (resp. weakly negative) in a formula ϕ when ϕ is strongly

positive (resp. weakly negative) in the variable x . Observe that a variable might be neither strongly positive nor weakly

negative in a formula-term.
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6.1 Summary of the procedure

In order to compute the least fixed-point µx .ϕ, we take the following steps:

(1) We rename all the weakly negative occurrences of x in ϕ to a fresh variabley, so ϕ (x ) = ψ (x ,x/y) withψ strongly

positive in x and weakly negative in y.

(2) Computation of a normal form. We compute a normal form of ψ (x ,y), that is, a formula equivalent to ψ (x ,y)

which is a conjunction

∧
i ∈I ψi (x ,y) with eachψi disjunctive in x (see Definition 4 below) or not containing the

variable x .

(3) Strongly positive elimination. For each i ∈ I : if x has an occurrence inψi , we compute then a formulaψ ′i equivalent

to the least fixed-point µx .ψi (x ,y) and observe thatψ ′i is weakly negative in y; otherwise, we letψ ′i = ψi .

(4) Weakly negative elimination. The formula

∧
i ∈I ψ

′
i (y) is weakly negative in y; we compute a formula χ equivalent

to µy .
∧
i ψ
′
i (y) and return it.

The correctness of the procedure relies on the following chain of equivalences:

µx .ϕ (x ) = µy .µx .ψ (x ,y) , where we use (Diag),

= µy .µx .
∧
i ∈I

ψi (x ,y) = µy .
∧
i ∈I

µx .ψi (x ,y) , using Corollary 9,

= µy .
∧
i ∈I

ψ ′i (y) = χ .

6.2 Computation of a normal form

If a formula-term ϕ does not contain the variable x , then x is both strongly positive and weakly negative in this formula.

Yet, in this case, we have µx .ϕ = ϕ, thus it is a trivial case for the sake of computing its least fixed-point. For this reason

we present below a grammar recognising strongly positive formula-terms containing the variable x . The grammar is

ϕ ⇒ x | [α]ϕ | β ∨ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | γ ∧ ϕ (14)

where conjunctions and disjunctions are taken up to commutativity and where α , β ,γ do not contain the variable x .

Another key concept for the elimination procedure is the notion of disjunctive formula, obtained by eliminating the last

two productions from the above grammar.

Definition 4. The set of formula-terms that are disjunctive in the variable x is generated by the grammar

ϕ ⇒ x | [α]ϕ | β ∨ ϕ | ϕ ∨ ϕ , (15)

where α and β are formulas with no occurrence of the variable x . A formula-term ϕ is in normal form (w.r.t. x ) if it is a

conjunction of formula-terms ϕi , i ∈ I , so that each ϕi either does not contain the variable x , or it is disjunctive in x .

Due to equation (2) and since the usual distributive laws hold in Heyting algebras, every strongly positive formula-

term is equivalent to a formula-term in normal form, as witnessed by the following Lemma.

Lemma 14. Every formula-term that is strongly positive in x and contains the variable x is equivalent to a conjunction

of disjunctive formulas and of a formula that does not contain x .

Proof. By induction, we associate to each such formula a set tr(ϕ) of disjunctive formulas and formula c (ϕ) so that

ϕ =
IPC

c (ϕ) ∧
∧
{ δ | δ ∈ tr(ϕ) } . (16)
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We let

tr(x ) =def { x } , c (x ) =def ⊤ ;

tr([α]ϕ) =def { [α]δ | δ ∈ tr(ϕ) } , c ([α]ϕ) =def [α] c (ϕ) ;

tr(β ∨ ϕ) =def { β ∨ δ | δ ∈ tr(ϕ) } , c (β ∨ ϕ) =def β ∨ c (ϕ) ;

tr(ϕ1 ∨ ϕ2) =def { c (ϕ1) ∨ δ2 | δ2 ∈ tr(ϕ2) } c (ϕ1 ∨ ϕ2) =def c (ϕ1) ∨ c (ϕ2) ;

∪ { c (ϕ2) ∨ δ1 | δ1 ∈ tr(ϕ1) }

∪ { δ1 ∨ δ2 | δ1 ∈ tr(ϕ1),δ2 ∈ tr(ϕ2) } ,

tr(ϕ1 ∧ ϕ2) =def tr(ϕ1) ∪ tr(ϕ2) , c (ϕ1 ∧ ϕ2) =def c (ϕ1) ∧ c (ϕ2) ;

tr(γ ∧ ϕ) =def tr(ϕ) , c (γ ∧ ϕ) =def γ ∧ c (ϕ) .

Verification that (16) holds is routine. □

6.3 Strongly positive elimination

We tackle here the problem of computing the least fixed-point µx .ϕ of a formula-term ϕ which is disjunctive in x . Recall

that the formulas α and β appearing in a parse tree as leaves—according to the grammar (15)—do not contain the

variable x . We call such a formula α a head subformula of ϕ, and such a β a side subformula of ϕ, and thus we put:

Head(ϕ) =def { α | α is a head subformula of ϕ } , Side(ϕ) =def { β | β is a side subformula of ϕ } .

Recall that a monotone function f : P −−→ P is inflating if x ≤ f (x ), for all x ∈ P .

Lemma 15. The interpretation of a strongly positive disjunctive formula ϕ as a function of x is inflating.

The proof of this lemma is by induction, using the grammar (15) that defines disjunctive formulas.

The key observation needed to prove Proposition 17 below is the following Lemma on monotone inflating functions.

In the statement of the lemma we assume that P is a join-semilattice, and that f ∨ д is the pointwise join of the two

functions f and д.

Lemma 16. If f ,д : P −−→ P are monotone inflating functions, then f ∨ д and f ◦ д are monotone inflating and

Pref ∨д = Pref ◦д . Consequently, for any monotone function h : P −−→ P , we have

µ .( f ∨ д ∨ h ) :=: µ .( ( f ◦ д) ∨ h ) . (17)

Proof. It is easy to see that f ∨д and f ◦д are monotone inflating, so we only verify that Pref ∨д = Pref ◦д . Observe

firstly that Pref ∨д = Pref ∩ Preд . If p ∈ Pref ◦д , then f (p) ≤ f (д(p)) ≤ p and д(p) ≤ f (д(p)) ≤ p, showing that

p ∈ Pref ∨д . Conversely, if p ∈ Pref ∨д , then p is a fixed point of both f and д, since these functions are inflating. It

follows that f (д(p)) = f (p) = p, showing p ∈ Pref ◦д .

We have argued that Pref ∨д coincides with Pref ◦д ; this implies that Pre(f ◦д)∨h = Pref ∨д∨h and, from this equality,

equation (17) immediately follows. □

Proposition 17. If ϕ is a disjunctive formula-term, then

µx .ϕ :=



∧
α ∈Head(ϕ )

α


(
∨

β ∈Side(ϕ )

β ) . (18)
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Proof. For ψ , χ formula-terms, let us write ψ ∼ χ when µx .ψ = µx .χ . We say that a disjunctive formula ψ is

reduced (w.r.t. ϕ) if either it is x , or it is of the form β ∨ x (or x ∨ β) for some β ∈ Side(ϕ), or of the form [α]x for some

α ∈ Head(ϕ). A set Φ of disjunctive formulas is reduced if every formula in Φ is reduced.

We shall compute a reduced set of disjunctive formulas Φk such that ϕ ∼
∨

Φk . Thus let Φ0 = {ϕ }. If Φi is not

reduced, then there is ϕ0 ∈ Φi which is not reduced, thus of the form (a) β ∨ψ (orψ ∨ β) withψ , x , or (b) [α]ψ with

ψ , x , or (c)ψ1 ∨ψ2. According to the case (ℓ), with ℓ ∈ { a,b, c }, we let Φi+1 be (Φi \ {ϕ0 })∪Ψℓ where Ψℓ is as follows:

Ψa = { β ∨ x ,ψ }, Ψb = { [α]x ,ψ }, Ψc = {ψ1,ψ2 } .

By Lemma 16, we have

∨
Φi ∼

∨
Φi+1. Moreover, for some k ≥ 0, Φk is reduced and Φk ⊆ { [α]x | α ∈ Head(ϕ) } ∪

{ β ∨ x | β ∈ Side(ϕ) } ∪ { x }. Consequently

µx .ϕ (x ) = µx .
∨

Φk ≤ µx .(x ∨
∨

α ∈Head(ϕ )

[α]x ∨
∨

β ∈Side(ϕ )

β ∨ x ) . (19)

On the other hand, if α ∈ Head(ϕ), then ϕ (x ) = ψ1 (x , [α]ψ2 (x )) for some disjunctive formulasψ1 andψ2, so

[α]x ≤ [α]ψ2 (x ) ≤ ψ1 (x , [α]ψ2 (x )) = ϕ (x )

and, similarly, β ∨ x ≤ ϕ (x ), whenever β ∈ Side(ϕ). It follows that

x ∨
∨

α ∈Head(ϕ )

[α]x ∨
∨

β ∈Side(ϕ )

β ∨ x ≤ ϕ (x ) ,

whence, by taking the least fixed-point in both sides of the above inequality, we derive equality in (19). Finally, in order

to obtain (18), we compute as follows:

µx .(x ∨
∨
α ∈Head(ϕ ) [α]x ∨

∨
β ∈Side(ϕ ) β ∨ x )

= µx .([α1] . . . [αn]x ∨ (x ∨
∨

β ∈Side(ϕ )

β ∨ x )) by Lemma 16, with Head(ϕ) = { α1, . . . ,αn },

= µx .(



∧
α ∈Head(ϕ )

α


x ∨ (x ∨

∨
β ∈Side(ϕ )

β ∨ x )), since [α1] . . . [αn]x =
[∧

i=1, ...,n αi
]
x ,

= µx .(



∧
α ∈Head(ϕ )

α


(x ∨

∨
β ∈Side(ϕ )

β ∨ x )), by Lemma 16,

=



∧
α ∈Head(ϕ )

α


µx .(x ∨

∨
β ∈Side(ϕ )

β ∨ x ), by Proposition 8,

=



∧
α ∈Head(ϕ )

α


(
∨

β ∈Side(ϕ )

β ) . □

Example 18. Formula (18) yields

µx .( [α1] (β1 ∨ x ) ∨ [α2] (β2 ∨ x ) ) = [α1 ∧ α2] (β1 ∨ β2) .

Remark 19. Let ϕ be a disjunctive formula and consider an occurrence in ϕ of a variable y distinct from x . Necessarily,

such an occurrence is located in some head subformula or in some side subformula of ϕ. Therefore we can map such an

occurrence to an occurrence of the same variable within the formula on the right of the equality (18); notice that a
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weakly negative occurrence is mapped to a weakly negative occurrence. Since every occurrence of a variable y in the

formula on the right of (18) has a preimage through the mapping, we conclude the following observation, which is

necessary for the global elimination procedure to work: if a variable y is weakly negative in the disjunctive formula ϕ,

then it is still weakly negative in the formula µx .ϕ as defined by equation (18). Similarly, if ϕ is strongly positive in x and

weakly negative in y, then y is weakly negative in each conjunct appearing on the right of equation (16).

6.4 Weakly negative elimination

Recall that we are considering formulas ϕ in which every occurrence of the variable x is positive. Therefore, if ϕ is

weakly negative in x , then we can write

ϕ (x ) = ψ0 (ψ1 (x ), . . . ,ψn (x )) , (20)

for formula-terms ψ0 (y1, . . . ,yn ) and ψi (x ), i = 1, . . . ,n, such that: (a) all the variables yi are negative in ψ0; (b) for

i = 1, . . . ,n, x is negativeψi .

Proposition 20. Let ϕ be a formula which is weakly negative in x . Let ⟨ν1, . . . ,νn⟩ be a collection of formula-terms

denoting the greatest solution of the system of equations {yi = ψi (ψ0 (y1, . . . ,yn )) | i = 1, . . . ,n }. Thenψ0 (ν1, . . . ,νn ) is

a formula equivalent to µx .ϕ (x ).

Proof. Let v : X \ { x ,y1, . . . ,yn } −−→ H be a partial valuation into a Heyting algebra H , put f0 = Jψ0Kv and, for

i = 1, . . . ,n, fi = Jψi Kv . Then f0 is a monotone function from [Hop
]
n
toH . HereHop

is the poset with the same elements

asH but with the opposite ordering relation. Similarly, for 1 ≤ i ≤ n, fi : H −−→ Hop
. If we let

¯f = ⟨fi | i = 1, . . . ,n⟩◦ f0,

then
¯f : [Hop

]
n
−−→ [Hop

]
n
. We exploit next the fact that (·)op is a functor, so that f op : Pop −−→ Qop

is the same

monotone function as f , but considered as having distinct domain and codomain. Then, using (Roll), we can write

µ .( f0 ◦ ⟨fi | i = 1, . . . ,n⟩ ) = f0 ( µ .( ⟨fi | i = 1, . . . ,n⟩ ◦ f0 ) ) = f0 ( µ . ¯f ) = f0 ( ν . ¯f
op ) , (21)

since the least fixed-point of f in Pop is the greatest fixed-point of f op in P . That is, if we consider the function

⟨fi | i = 1, . . . ,n⟩◦ f0 as sending a tuple of elements ofH (as opposite toHop
) to another such a tuple, then equation (21)

proves that a formula denoting the least fixed-point of ϕ is constructible out of formulas for the greatest solution of the

system mentioned in the statement of the proposition. □

As far as computing the greatest solution of the system mentioned in the proposition, this can be achieved by using

the Bekic elimination principle (see Lemma 3). This principle implies that solutions of systems can be constructed from

solutions of linear systems, i.e. from usual parametrized fixed-points. In our case, as witnessed by equation (13), these

parametrized greatest fixed-points are computed by substituting ⊤ for the fixed-point variable.

Example 21. Consider the weakly negative ϕ defined by

ϕ (x ) =def ((x → c ) → a) ∨ ((x → d ) → b) . (22)

We can take then

ψ0 (y1,y2) =def y1 → a ∨ y2 → b , ψ1 (x ) =def x → c , ψ2 (x ) = x → d .

The system of equations whose greatest solution we need to compute is

y1 = ψ1 (ψ0 (y1,y2)) = (y1 → a ∨ y2 → b) → c , y2 = ψ2 (ψ0 (y1,y2)) = (y1 → a ∨ y2 → b) → d .
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Fixed-point elimination in the Intuitionistic Propositional Calculus 17

The Bekic elimination principle is used to find this solution:

νy2
.ψ2 (ψ0 (y1,y2)) = νy2

.((y1 → a) ∨ (y2 → b)) → d = ((y1 → a) ∨ (⊤ → b)) → d = ((y1 → a) ∨ b) → d ,

ν1 = νy1
.ψ1 (ψ0 (y1,νy2

.ψ2 (ψ0 (y1,y2)))) = ψ1 (ψ0 (⊤,νy2
.ψ2 (ψ0 (⊤,y2))))

= (⊤ → a ∨ (((⊤ → a) ∨ b) → d ) → b) → c = (a ∨ (((a ∨ b) → d ) → b)) → c ,

ν2 = ((ν1 → a) ∨ b) → d .

Then, by (Roll), we have µx .ϕ (x ) = ν1 → a ∨ ν2 → b.

In the next Section, Proposition 29 shall provide an alternative of the least fixed-point of a weakly negative formula

ϕ by means of approximants.

7 UPPER BOUNDS FOR CLOSURE ORDINALS

The closure ordinal of ϕ (x ) ∈ FIPC is the least integer n for which we can write µx .ϕ (x ) = ϕ
n (⊥). In view of the proof

of Proposition 4, the closure ordinal always exists, for each intuitionistic formula ϕ (x ) positive on x . Closure ordinals

yield a representation of least fixed-points of formulas alternative to the one presented in the previous Section. Such

representation can be exploited notationally, as in µ-calculi with explicit approximations [Dam and Gurov 2002]. Also it

can be exploited computationally because of the reduced space requirements, at least when variable sharing is used.

Finally, it can be exploited to provide axiomatizations. In this Section we begin the study of (finite) closure ordinals.

7.1 General results

In this Section all the posets we consider shall have a least element, denoted by ⊥ as usual. We say that a monotone

function f : P −−→ P converges in n steps to its least fixed-point if f n+1 (⊥) = f n (⊥) or, equivalently, if µ . f = f n (⊥);

in such a case the least of those integers n is called the closure ordinal of f and it is denoted by cl ( f ). We informally

call the f n (⊥), n ≥ 0, the approximants (or approximations) of (the least fixed-point of) f . If f : Q × Pn −−→ Pk is a

monotone function and { i1 < i2 < . . . < ik } ⊆ { 1, . . . ,n }, then we write cl(xi
1
, ...,xik )

( f ) ≤ n if, for each q ∈ Q and

p⃗ ∈ Pn−k , cl ( f(q,p⃗ ) ) ≤ n, where f(q,p⃗ ) : Pk −−→ Pk is the monotone function obtained from f by fixing q ∈ Q and

evaluating all the variables x j with j < { i1, . . . , ik } by means of the vector p⃗.

The next propositions suggest how to compute convergence of monotone functions based on the properties of least

fixed-points that we have introduced in Section 2.

Proposition 22 (Convergence for (Roll)). Let f : P −−→ Q and д : Q −−→ P be monotone functions. If µ .( f ◦ д) =

( f ◦ д)n (⊥), then µ .(д ◦ f ) = (д ◦ f )n+1 (⊥). Therefore cl (д ◦ f ) ≤ 1 + cl ( f ◦ д).

Proof. We observe that

µ .(д ◦ f ) = д(µ .( f ◦ д)) = д ◦ ( f ◦ д)n (⊥) ≤ д ◦ ( f ◦ д)n ( f (⊥)) = (д ◦ f )n+1 (⊥) .

Since the converse inclusion always holds, we have proved the proposition. □

Example 23. Consider ϕ (x ) =def (x → b) → a. By using Proposition 20 (withψ0 (y1) =def (y1 → a) andψ1 (x ) =def

(x → b)) we know that

µx .ϕ (x ) = (νx .(x → a) → b) → a = ((⊤ → a) → b) → a = (a → b) → a .
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18 Ghilardi, Gouveia, and Santocanale

Otherwise, we can combine Propositions 10 and 22 to deduce µx .ϕ (x ) = ϕ
2 (⊥). Indeed, a direct computation of the

approximants yields

ϕ (⊥) = a , ϕ2 (⊥) = (a → b) → a .

This example shows that the bound on the convergence given in Proposition 22 is tight, since the equality ϕ2 (⊥) = ϕ (⊥)

only holds for arbitrary a and b whenever H is a Boolean algebra. As a matter of fact, note that this equality is Peirce’s

law

(a → b) → a = a ,

which forces a Heyting algebra to be Boolean.

Proposition 24 (Convergence for (Bekic)). Let ⟨f ,д⟩ : P ×Q −−→ P ×Q be a monotone mapping. Put h(x ) =def
f (x , µy .д(x ,y)). Letm,n ≥ 0 be such that µy .д(x ,y) = дmx (⊥) for each x ∈ P and µx .h(x ) = hn (⊥). Then

µ .⟨f ,д⟩ = ⟨f ,д⟩(n+1) (m+1)−1 (⊥,⊥) . (23)

That is, cl (⟨f ,д⟩) ≤ (cly (д) + 1) (cl (h) + 1) − 1.

Proof. Let us define by induction the following sequences:

f0 = g0 = ⊥, fi+1 = f (fi , gi ) , gi+1 = д(fi , gi ) ,

κ0 = h0 = ⊥ , κi+1 = (дhi )
m (⊥) , hi+1 = f (hi ,κi+1) .

Notice first that, for each i ≥ 0, ⟨f ,д⟩i (⊥,⊥) = ⟨fi , gi ⟩, On the other hand, we have

hi+1 = f (hi ,κi+1) = f (hi , (дhi )
m (⊥)) = f (hi , µy .д(hi ,y)) = h(hi ) ,

so, by a straightforward induction, we obtain that hi = h
i (⊥). Then, by the Bekic property,

µ .⟨f ,д⟩ = ⟨hn (⊥), (дhn (⊥) )
m (⊥)⟩ = ⟨hn ,κn+1⟩.

Claim. Letψ : N −−→ N be any function. For each i ≥ 0,

(1) hi ≤ fψ (i ) implies κi+1 ≤ gψ (i )+m ;

(2) hi ≤ fψ (i ) implies hi ≤ fψ (i )+m+1
.

Proof of Claim. (1) Let us suppose that hi ≤ fψ (i ) and prove that (дhi )
ℓ (⊥) ≤ gψ (i )+ℓ for ℓ = 0, . . . ,m. This relation

trivially holds for ℓ = 0 and, supposing it holds for ℓ,

(дhi )
ℓ+1 (⊥) = дhi (д

ℓ
hi
(⊥)) ≤ дhi (gψ (i )+ℓ ) = д(hi , gψ (i )+ℓ )

≤ д(fψ (i ) , gψ (i )+ℓ ) ≤ д(fψ (i )+ℓ , gψ (i )+ℓ ) = gψ (i )+ℓ+1
.

Thus, for ℓ =m, we have κi+1 = (дhi )
m (⊥) ≤ gψ (i )+m .

(2) If we suppose hi ≤ fψ (i ) , then κi+1 ≤ gψ (i )+m by (1), and

hi+1 = f (hi ,κi+1) ≤ f (fψ (i ) , gψ (i )+m ) ≤ f (fψ (i )+m , gψ (i )+m ) = fψ (i )+m+1
.

Claim □
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If now we letψ (i ) =def i (m + 1), then hi ≤ fψ (i ) , for all i ≥ 0, by induction on i and using part (2) of the Claim. Then

we deduce that

µ .⟨f ,д⟩ = ⟨hn ,κn+1⟩

≤ ⟨fψ (n) , gψ (n)+m⟩ ≤ ⟨fψ (n)+m , gψ (n)+m⟩ = ⟨f ,д⟩
ψ (n)+m (⊥,⊥) ,

showing that the function ⟨f ,д⟩ converges to its least fixed-point inψ (n) +m = (n + 1) (m + 1) − 1 steps. □

Example 25. We argue that the upper bound (n + 1) (m + 1) − 1 = (m + 1)n +m given in Proposition 24 is tight. For

m,n ≥ 1, let P and Q be respectively the n + 1-element chain { 0 < 1 < . . . < n } and the (n + 1)m + 1-element chain

{ 0 < 1 < . . . < (n + 1)m }. On these chains define the successor function s by s (x ) = x + 1 if x , ⊤ and, otherwise,

s (⊤) = ⊤. If y ∈ Q , then it can be written in the form zm + k for some 0 ≤ k < m and 0 ≤ z ≤ n + 1. Define the

mappings f : P ×Q → P and д : P ×Q → Q as follows:

f (x , zm + k ) =



x , if z ≤ x ,

s (x ) , otherwise,

д(x , zm + k ) =



xm + k + 1 , if z ≤ x ,

(x + 1)m , otherwise.

where 0 ≤ k < m. Both f and д are monotone (for example, f (x , zm + k ) = max(x ,min(z, s (x )))). Consider now the

mapping ⟨f ,д⟩ : P ×Q −−→ P ×Q and recall that h(x ) = f (x , µy .д(x ,y)). The following holds:

µy .д(x ,y) = (x + 1)m = [дx ]
m (⊥) , h(x ) = f (x , (x + 1)m) = s (x ) , µx .h(x ) = n = h

n (⊥) .

It follows that µ .⟨f ,д⟩ = (n, µy .д(n,y)) = (n, (n + 1)m). Finally observe that

⟨f ,д⟩(m+1) (n+1)−2 (⊥,⊥) = (n,nm +m − 1) < (n, (n + 1)m) = ⟨f ,д⟩(m+1)n+m (⊥,⊥).

Proposition 26 (Convergence for (Diag)). Let f : P×P −−→ P be a monotone function and puth(x ) =def µy . f (x ,y).

Let n,m ≥ 0 be such that h(x ) = fmx (⊥), for each x ∈ P , and µx .h(x ) = hn (⊥). Then µx . f (x ,x ) = f nm (⊥,⊥). That is,

cl ( f ◦ ∆) ≤ cl (h)cly ( f ).

Proof. An easy inspection shows that cl ( f ◦ ∆) = cl (⟨f , f ⟩) and hence we refer back to Proposition 24. Consider

fi , gi ,κi , hi as defined in the proof of that Proposition. Here we have д = f , so gi = fi for each i ≥ 0, and moreover

hi+1 = f (hi , µy .д(hi ,y)) = f (hi , µy . f (hi ,y)) = µy . f (hi ,y) = µy .д(hi ,y) = κi+1 ,

so hi = κi for each i ≥ 0. According to the Claim in the proof of Proposition 24, hi ≤ fψ (i ) implies κi+1 ≤ gψ (i )+m ; that

is, hi+1 ≤ fψ (i )+m since f = д. Therefore, lettingψ (i ) =def im, we deduce hi ≤ fψ (i ) for all i ≥ 0 which implies that

µx . f (x ,x ) = µx .µy . f (x ,y) , by (Diag),

= µx .h(x ) , since h(x ) = µy . f (x ,y),

= hn , since hn = h
n (⊥) and we assume that µx .h(x ) = h

n (⊥),

≤ fnm , since hn ≤ fψ (n) andψ (n) = nm,

as needed. □
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7.2 Results for Heyting algebras

In many cases, formula (23) given in Proposition 24 does not yield a tight upper bound. In particular this happens when

we want to estimate the convergence of weakly negative formulas whose least fixed-points can be computed by using

the Bekic property, as we have seen in the previous Section 6.4.

In order to improve the upper bound given in (23), we need the following observation.

Lemma 27. Let ⟨f ,д⟩ : P ×Q −−→ P ×Q be a monotone mapping, put h(x ) =def f (x , µy .д(x ,y)), letm,n ≥ 0 be such

that µy .д(x ,y) = дmx (⊥) for each x ∈ P and µx .h(x ) = hn (⊥). Under these hypothesis we have

π1 (µ .⟨f ,д⟩) = π1 (⟨f ,д⟩
n (m+1) (⊥,⊥)) .

Proof. Using the same notation as in the proof of Proposition 24, it is enough to observe that

µ .⟨f ,д⟩ ≤ ⟨fψ (n) , gψ (n)+m⟩ ≤ µ .⟨f ,д⟩ ,

withψ (n) = n(m + 1), so π1 (⟨f ,д⟩
ψ (n) ) = fψ (n) = π1 (µ .⟨f ,д⟩). □

By using the lemma, we are going to obtain the tight upper bound for the least solution of system of equations used

for weakly negative formula-terms.

Proposition 28. Consider a monotone ⟨f1, . . . , fk ⟩ : Q × Pk −−→ Pk and suppose that, for each д : Q × Pk −−→ P

in the cone generated by the functions { f1, . . . , fk } ∪ { ⊥ }, clxi (д) ≤ 1 for each i = 1, . . . ,k . Then µ .⟨f1, . . . , fk ⟩q ≤

⟨f1, . . . , fk ⟩
k
q (⊥) for each q ∈ Q or, said otherwise, cl(x1, ...,xk ) (⟨f1, . . . , fk ⟩) ≤ k .

Proof. The proof is by induction on k ≥ 1. When k = 1 then, clx1
( f1) ≤ 1 by assumption.

Now suppose that k > 1 and that the property holds for all monotone functions ⟨fi1 , . . . , fil ⟩ : Q × Pℓ −−→ Pℓ with

ℓ < k .

By the induction hypothesis, cl(x2, ...,xk ) (⟨f2, . . . , fk ⟩) ≤ k − 1. For each q ∈ Q consider the function hq defined

by hq (x1) =def f1 (q,x1, ⟨f2, . . . , fk ⟩
k
(q,x1 )

(⊥)); hq belongs to the cone generated by { f1, . . . , fk } ∪ { ⊥ } and therefore

clx1
(hq ) ≤ 1 by assumption. We can therefore apply Lemma 27 (with f = hq , д = ⟨f2, . . . , fk ⟩, n = 1 andm = k − 1) to

deduce that, for each q ∈ Q ,

π1 (µ .⟨f1, . . . , fk ⟩q ) ≤ π1 (⟨f1, . . . , fk ⟩
1·(k−1+1)
q ) (⊥) = π1 (⟨f1, . . . , fk ⟩

k
q (⊥)) .

In a similar way we deduce

πi (µ .⟨f1, . . . , fk ⟩q ) ≤ πi (⟨f1, . . . , fk ⟩
k
q (⊥)) ,

for each i = 1, . . . ,k , and therefore µ .⟨f1, . . . , fk ⟩q ≤ ⟨f1, . . . , fk ⟩
k
q (⊥). □

To see that the bound given in the previous proposition is tight it is enough to compute the least solution of the

system of equations

{ xi = { ai } ∪ xi−1 mod k | i = 0, . . . ,k − 1 } ,

in the powerset of P ({ a1, . . . ,ak }).

We can finally give a better upper bound to closure ordinals of weakly negative formula-terms.
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Proposition 29. Let ϕ (x ) be a weakly negative formula-term, so that we have a decomposition of the form (20). Then

ϕ (x ) converges to its least fixed-point in at most n + 1 steps.

Proof. By combining Propositions 10 and 28, we have

ν .(⟨ψi | i = 1, . . . ,n⟩ ◦ψ0) = (⟨ψi | i = 1, . . . ,n⟩ ◦ψ0)
n (⊤) . (24)

Considering that

µ .ϕ = µ .(ψ0 ◦ ⟨ψi | i = 1, . . . ,n⟩) = ψ0 (ν .(⟨ψi | i = 1, . . . ,n⟩ ◦ψ0))

we can use equation (24) and Proposition 22 to deduce that

µ .ϕ = (ψ0 ◦ ⟨ψi | i = 1, . . . ,n⟩)n+1 (⊥) . □

We can expect that other formulas for fixed-points have a counterpart with closure ordinals. This is the case for

equation (9). To give an account of it, we firstly prove a Lemma.

Lemma 30. LetH be a Heyting algebra and let f and д be monotone polynomials onH . For every pair of natural numbers

n,m such that n +m ≥ 1, f n (⊥) ∧ дm (⊥) ≤ ( f ∧ д)n+m−1 (⊥).

Proof. Let h denote the polynomial f ∧ д on H . We prove the result by induction on k = n +m ≥ 1.

If n +m = 1, then either n = 0 orm = 0. In this case either f n (⊥) = ⊥ or дm (⊥) = ⊥, so f n (⊥) ∧дm (⊥) = ⊥, so the

result is obvious.

Now suppose that the result holds for any pair of numbers n′,m′ such that 1 ≤ n′ +m′ ≤ k . Letm and n be such

thatm + n = k + 1. The following holds:

f n (⊥) ∧ дm (⊥) =f n (⊥) ∧ дm (⊥) ∧ f n (⊥) ∧ дm (⊥)

≤ f ( f n−1 (⊥) ∧ дm (⊥)) ∧ д( f n (⊥) ∧ дm−1 (⊥)) , using strongness,

≤ f (hk−1 (⊥)) ∧ д(hk−1 (⊥)) , by the IH,

= hk (⊥) = hn+m−1 (⊥) . □

Next we show that cl ( f ∧ д) < cl ( f ) + cl (д). This relation holds when cl ( f ) + cl (д) > 0; in order to settle trivial

cases, we let hk (⊥) = ⊥ for k < 0 in the statement of the Proposition below.

Proposition 31. Let H be an Heyting algebra. If f and д are monotone polynomials on H such that µx . f (x ) = fm (⊥)

and µx .д(x ) = дn (⊥), then µx .( f ∧ д) (x ) = ( f ∧ д)m+n−1 (⊥). That is, cl ( f ∧ д) ≤ cl ( f ) + cl (д) − 1.

Proof. Let h(x ) = f (x ) ∧ д(x ) and compute as follows:

hn+m−1 (⊥) ≤ µx .h(x ) = µx .( f (x ) ∧ д(x ))

= µx . f (x ) ∧ µx .д(x ) , by Proposition 9,

= f n (⊥) ∧ дm (⊥)

≤ hn+m−1 (⊥) , by Proposition 30,

so we have the equality µx .h(x ) = h
n+m−1 (⊥). □

Proposition 32. The upper boundm + n − 1 given in Proposition 31 is tight.
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Proof. Observe that if H is a Heyting algebra which is a chain, then x → a = ⊤, if x ≤ a, and x → a = a, otherwise.

If H is such an Heyting algebra which contains the chain ⊥ ≤ a0 < a1 < a2 < . . . < ak−1
< ak = ⊤, let

fj (x ) =def (x → aj−1) → aj , for j = 1, . . . ,k − 1.

We have then, for each i, j with 0 ≤ i ≤ k and 1 ≤ j < k ,

fj (ai ) = (ai → aj−1) → aj =



aj i < j ,

⊤ i ≥ j .

Define then

fa0,a1, ...,ak−1
(x ) =def

∧
j=1, ...,k−1

fj (x ) .

Claim. For each i = 1, . . . ,k we have

f ia0,a1, ...ak−1

(⊥) = ai .

Proof of Claim. The relation trivially holds for i = 1. Assuming it holds for i , we have

f i+1

a0,a1, ...,ak−1

(⊥) =
∧

j=1, ...,k−1

fj (ai ) =
∧

i<j≤k−1

fj (ai ) =
∧

i<j≤k−1

aj = ai+1 .

Observe that the above relation holds also when i + 1 = k , in which case { j | i < j ≤ k − 1 } = ∅, so the meet above is

empty, so equal to ⊤ = ak . □

It follows from the Claim that µx . fa0,a1, ...,ak−1
(x ) = f ka0,a1, ...,ak−1

(⊥) = ⊤ > ak−1
= f k−1 (⊥).

Now assume that H contains the chain ⊥ ≤ a0 < a1 < a2 < . . . < am+n−2 < am+n−1 = ⊤. We have then

fa0,a1, ...,an+m−2
(x ) = fa0,a1, ...,an−1

(x ) ∧ fan−1,an, ...,an+m−2
(x ) ,

with

µx . fa0,a1, ...,an−1
(x ) = f na0,a1, ...,an−1

(⊥) ,

µx . fan−1,an, ...,an+m−2
(x ) = fman−1,an, ...,an+m−2

(⊥) ,

µx . fa0,a1, ...,an+m−2
(x ) = f n+m−1

a0,a1, ...,an+m−2

(⊥) > f n+m−2

a0,a1, ...,an+m−2

(⊥) . □

Finally, we provide a tight upper bound for closure ordinals of disjunctive formulas.

Proposition 33. If ϕ is a disjunctive formula, then

µx .ϕ (x ) = ϕ
n+1 (⊥) , (25)

where n is the cardinality of the set Head(ϕ).

Proof. By Proposition 17 we know that µx .ϕ (x ) =
[∧

i=1, ...,n αi
]
(
∨
β ∈Side(ϕ ) β ). We have seen that, for α ∈

Head(ϕ), [α]x ≤ ϕ (x ) and, similarly, β ∨ x ≤ ϕ (x ) for β ∈ Side(ϕ). Thus we have∨
β ∈Side(ϕ )

β =
∨

β ∈Side(ϕ )

β ∨ ⊥ ≤ ϕ (⊥) .
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Let Head(ϕ) = { α1, . . . ,αn } and suppose that

[αi ] . . . [α1] (
∨

β ∈Side(ϕ )

β ) ≤ ϕi+1 (⊥) .

Then

[αi+1] [αi ] . . . [α1] (
∨

β ∈Side(ϕ )

β ) ≤ [αi+1] (ϕi+1 (⊥)) ≤ ϕ (ϕi+1 (⊥)) = ϕi+2 (⊥) .

Whence

µx .ϕ (x ) =



∧
i=1, ...,n

αi


(
∨

β ∈Side(ϕ )

β ) = [αn] . . . [α1] (
∨

β ∈Side(ϕ )

β ) ≤ ϕn+1 (⊥) . □

We prove the next proposition using Kripke models, see e.g. [Bezhanishvili and de Jongh 2006, §3.3]. A Kripke model

is a triple ⟨W , ≤,V ⟩ where ≤ is an ordering on the setW andV is a downward closed valuation of atomic formulas (that

is, w ∈ V (p) and w ′ ≤ w implies w ∈ V (p), for each atomic formula p). The forcing relation ⊩ between worlds and

formulas is defined as usual for atomic formulas and formulas of the form ⊥,ϕ ∨ψ ,⊤,ϕ ∧ψ . For implication formulas

we have

w ⊩ ϕ → ψ iff ∀w ′ ≤ w, w ′ ⊩ ϕ ⇒ w ′ ⊩ ψ .

Proposition 34. The above upper bound given in equation (25) is tight.

Proof. For each n ≥ 0, consider the formula

ϕn (x ) =def b ∨
∨

i=1, ...,n
ai → x ,

and the KripkemodelKn = ⟨P ({ 1, . . . ,n }), ⊆,V ⟩withV (b) = { ∅ } and, for i = 1, . . . ,n,V (ai ) = { s ⊆ { 1, . . . ,n } | i < s }.

We have therefore s ⊩ ai iff i < s , for s ∈ P ({ 1, . . . ,n }). Let us compute the value of ϕn (x ).

s ⊩ ai → x iff ∀s ′ ⊆ s, i < s ′ ⇒ s ′ ⊩ x iff s \ { i } ⊩ x ,

whence

s ⊩ ϕn (x ) iff either s = ∅ or s \ { i } ⊩ x , for some i ∈ { 1, . . . ,n } .

Thus it is immediate to see that

ϕk+1

n (∅) = { s ⊆ { 1, . . . ,n } | card s ≤ k }

so that ϕn converges in no less than n + 1 steps. □

8 RUITENBURG’S NUMBERS FOR STRONGLY POSITIVE FORMULAS

Let ϕ be a formula of the Intuitionistic Propositional Calculus (possibly) containing the variable x . By ϕn we denote the

iterated substitution of x in ϕ for ϕ, defined by induction by ϕ0 =def x and ϕn+1 =def ϕ[ϕn/x]. We let ρ (ϕ) be the least

non-negative integer n such that the relation ϕn+2 = ϕn holds; ρ (ϕ) is defined for any formula ϕ of the Intuitionistic

Propositional Calculus, by [Ruitenburg 1984], and moreover cl (ϕ) ≤ ρ (ϕ). A fine analysis of Ruitenburg’s work shows

that ρ (ϕ) ≤ 2n + 2, where n counts the implication subformulas and the propositional variables in ϕ.
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The tools developed until now allow to construct an upper bound for cl (ϕ) for any formula ϕ of the Intuitionistic

Propositional Calculus, yet the bound so obtained is exponential in the size of ϕ; thus, in view of the relation cl (ϕ) ≤

ρ (ϕ) ≤ 2n + 2, it is not optimal. We exemplify this point. Let ϕ be a strongly positive formula and let n be its size

(the number of all symbols and propositional variables in ϕ). When transforming ϕ into a conjunction of disjunctive

formulas, so

ϕ =
IPC

∧
i=1, ...,k

ϕi , (26)

the number k of conjuncts might be exponentially bigger than n. Say that cl (ϕi ) ≤ N for each i = 1, . . . ,k . An iterated

application of Proposition 31 yields the following upper bound:

cl (ϕ) = cl (
∧
i
ϕi ) ≤ 1 +

∑
i=1, ...,k

(cl (ϕi ) − 1) ≤ 1 + k (N − 1) ,

which depends on some possibly very large k .

From now on, our goal shall be to give an upper bound for cl (ϕ) when ϕ is a formula such as the one in (either

side of) equation (26). Since our proofs actually yield upper bounds for Ruitenburg’s numbers ρ (ϕ) (and a proof of

Ruitenburg’s theorem for these formulas) we present our results directly as bounds for the numbers ρ (ϕ).

While the procedure that transforms a strongly positive formulaϕ (say as the one on the left of (26)) into a conjunction

of disjunctive formulas ϕi (as the one on the right of (26)) might exponentially increase the size of the formula, as

argued above, it does not increase the number of head subformulas nor the number of side subformulas. Therefore we

give bounds as functions of these two parameters, which eventually ensures an upper bound to Ruitenburg’s numbers

of strongly positive formulas which is quadratic in the size of the formulas. In view of obtaining these upper bounds we

can (and shall) suppose that all the head or side subformulas are propositional variables.

In the following we let A =def { α1, . . . ,αN } and B =def { β1, . . . , βM } be two (finite) disjoint sets of propositional

variables; we also suppose that the special propositional variable x does not belong to either of A and B. We consider

formulas of the Intuitionistic Propositional Calculus generated by the following grammar:

ϕ ⇒ x | [A]ϕ | (
∨

B) ∨ ϕ | ϕ ∨ ϕ , (27)

where A ⊆ A, B ⊆ B and, as before, [A]ϕ =
∧
A → ϕ. That is, formulas generated by the above grammar are

disjunctive formulas, as defined by the grammar (15), whose head formulas are conjunctions of propositional variables

from A, and whose side formulas are disjunctions of propositional variables from B. We let Disj(A,B) be the set

of formulas generated by (27). We consider formulas in Disj(A,B) as elements of FH[α1, . . . ,αN , β1, . . . , βM ,x], the

free Heyting algebra on the generators α1, . . . ,αN , β1, . . . , βM ,x . Substitution of a formula ψ for the variable x in a

formula ϕ, usually noted by ϕ[ψ/x], yields a monoid structure on FH[α1, . . . ,αN , β1, . . . , βM ,x]. We write ϕ ◦ψ for

ϕ[ψ/x] or sometimes, ϕ (ψ ). Since formulas in Disj(A,B) are closed under substitution, Disj(A,B) is a submonoid of

FH[α1, . . . ,αN , β1, . . . , βM ,x]. Disj(A,B) is actually an ordered submonoid, meaning that the following clause is valid:

ϕ ≤ ϕ ′ andψ ≤ ψ ′ implies ϕ ◦ψ ≤ ϕ ′ ◦ψ ′ . (28)
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This is mainly because the variable x never occurs under the left side of any implication in a formula in Disj(A,B).

Moreover, formulas are inflating, meaning that

x ≤ ϕ , for each ϕ ∈ Disj(A,B) . (29)

8.1 The support of a formula

We define next two functions, SuppA and SuppB , with domain Disj(A,B) and codomain P (A) and P (B), respectively:

SuppA (x ) =def ∅ ,

SuppA ( [A]ϕ ) =def A ∪ SuppA (ϕ) ,

SuppA ( (
∨

B) ∨ ϕ ) =def SuppA (ϕ) ,

SuppA (ϕ0 ∨ ϕ1) =def SuppA (ϕ0) ∪ SuppA (ϕ1) ,

SuppB (x ) =def ∅ ,

SuppB ( [A]ϕ ) =def SuppB (ϕ) ,

SuppB ( (
∨

B) ∨ ϕ ) =def B ∪ SuppB (ϕ) ,

SuppB (ϕ0 ∨ ϕ1) =def SuppB (ϕ0) ∪ SuppB (ϕ1) .

We also let

Supp(ϕ) =def (SuppA (ϕ), SuppB (ϕ)) ,

so Supp(ϕ) ∈ P (A) × P (B).

8.2 Word formulas

In the inverse direction, given (A,B) ∈ P (A) × P (B), we define

ϕ (A,B ) =def [A] (
∨

B ∨ x ) .

Notice that ϕ (∅,B ) = [⊤] (
∨

B ∨ x ) =
∨

B ∨ x and ϕ (A,∅) = [A] (⊥ ∨ x ) = [A]x . Let us develop the basic properties of

the formulas ϕ (A,B ) .

Proposition 35. For each (A0,B0), (A1,B1) ∈ P (A) × P (B) and each ϕ ∈ Disj(A,B),

ϕ (A0,∅) ◦ ϕ (A1,B1 ) = ϕ (A0∪A1,B1 ) ,

ϕ (A0,B0 ) ◦ ϕ (∅,B1 ) = ϕ (A0,B0∪B1 ) ,

ϕ (A0,B0 ) ◦ ϕ ◦ ϕ (A1,B1 ) = ϕ (A0,B0\B1 ) ◦ ϕ ◦ ϕ (A1\A0,B1 ) .

Proof. The first two properties are immediate from the definition of ϕ (A,B ) . For the third, notice that

ϕ (A0,B0 ) ◦ϕ ◦ ϕ (A1,B1 )

= [A0] (
∨

B0 ∨ ϕ ( [A1] (
∨

B1 ∨ x )/x ) )

= [A0 ∩A1] [A0 \A1] (
∨

B0 ∨ ϕ ( [A0 ∩A1] [A1 \A0] (
∨

B1 ∨ x )/x ))

= [A0 ∩A1] [A0 \A1] (
∨

B0 ∨ ϕ ( [A1 \A0] (
∨

B1 ∨ x )/x )) , by Lemma 7,

= [A0] (
∨

B0 ∨ ϕ ( [A1 \A0] (
∨

B1 ∨ x )/x ))

= [A0] (
∨

B0 \ B1 ∨ ϕ ( [A1 \A0] (
∨

B1 ∨ x ) )) , since ϕ (β0 ∨ x ) = β0 ∨ ϕ (β0 ∨ x ),

= ϕ (A0,B0\B1 ) ◦ ϕ ◦ ϕ (A1\A0,B1 ) . □

An immediate consequence of the proposition is the following:
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Lemma 36. For each (A,B) ∈ P (A) × P (B), ϕ2

(A,B ) = ϕ (A,B ) , so ρ (ϕ (A,B ) ) = 1.

We extend the definition of the correspondence sending (A,B) ∈ P (A) × P (B) to ϕ (A,B ) ∈ Disj(A,B) to the set of

all words over the alphabet P (A) × P (B)—that shall be noted by (P (A) × P (B))∗, as usual. Syntactically, this amounts

to defining ϕw for eachw ∈ (A × B)∗, as follows:

ϕϵ =def x , ϕ (A,B )w =def ϕ (A,B ) ◦ ϕw .

We call a formula of the form ϕw for somew ∈ (P (A) × P (B))∗ a word formula.

Lemma 37. For eachw ∈ (P (A) × P (B))∗, ϕw ∈ Disj(A,B). Moreover, ifw = (A1,B1) . . . (Ak ,Bk ), then

Supp(ϕw ) = (
⋃

i=1...,k

Ai ,
⋃

i=1...,k

Bi ) , (30)

ϕw ≤ ϕ
2

w = ϕSupp(ϕw ) , (31)

ρ (ϕw ) ≤ 2 . (32)

Proof. The first statement is a consequence of formulas of Disj(A,B) being closed under substitution. Equation (30)

is easily proved by induction. The relation ϕw ≤ ϕ
2

w is an easy consequence of conditions (28) and (29). ϕ2

w = ϕSupp(ϕw )

is obtained by iteratively applying the relations in Proposition 35. Finally we argue that ϕ3

w = ϕ
2

w (so ρ (ϕw ) = 2) as

follows:

ϕ2

w ≤ ϕ
3

w ≤ ϕ
4

w = ϕ
2

Supp(ϕw ) = ϕSupp(ϕw ) = ϕ
2

w . □

In view of (30), let us define

Supp( (A1,B1) . . . (Ak ,Bk ) ) =def (
⋃

i=1...,k

Ai ,
⋃

i=1...,k

Bi ) ,

so Supp(w ) = Supp(ϕw ).

Lemma 38. For each ϕ ∈ Disj(A,B), ϕ ≤ ϕSupp(ϕ ) .

Proof. We inductively define, for eachϕ ∈ Disj(A,B), a wordw (ϕ) such thatϕ ≤ ϕw (ϕ ) and Supp(ϕ) = Supp(w (ϕ)).

Then, using equation (31), we deduce

ϕ ≤ ϕw (ϕ ) ≤ ϕSupp(w (ϕ )) = ϕSupp(ϕ ) .

We letw (x ) =def (∅, ∅),w ([A]ϕ) =def (A, ∅)w (ϕ),w (
∨

B ∨ ϕ) =def (∅,B)w (ϕ) , and

w (ϕ0 ∨ ϕ1) =def w (ϕ0)w (ϕ1) .

By induction, it is proved that ϕ ≤ ϕw (ϕ ) and Supp(ϕ) = Supp(w (ϕ)), the only non-obvious inductive case being the

last, which we prove next. For i = 0, 1, letwi =def w (ϕi ) and suppose that ϕi ≤ ϕwi and Supp(ϕi ) = Supp(ϕwi ). Then

Supp(ϕ) = Supp(ϕ0) ∪ Supp(ϕ1) = Supp(ϕw0
) ∪ Supp(ϕw1

) = Supp(ϕw0
◦ ϕw1

) = Supp(ϕw0w1
) and

ϕ = ϕ0 ∨ ϕ1 ≤ ϕ0 ◦ ϕ1 ≤ ϕw0
◦ ϕw1

= ϕw (ϕ ) ,

where the relation ϕ0 ∨ ϕ1 ≤ ϕ0 ◦ ϕ1 is a consequence of ϕi , i = 0, 1, being inflating. □
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We shall see later—as a particular instance of Theorem 45—thatϕn = ϕSupp(ϕ ) for somen, and for eachϕ ∈ Disj(A,B).

That is, ϕSupp(ϕ ) yields a closed expression of the formula ϕρ (ϕ ) . We shall further exploit word formulas in the rest of

the section and heavily rely on the next observation.

Definition 5. For (A,B) ∈ P (A) × P (B) andw = (A1,B1), . . . , (Ak ,Bk ) ∈ (P (A) × P (B))∗, we let

(A,B) ◁ (A1,B1) . . . (Ak ,Bk ) iff ∃l ≤ k s.t. A ⊆
⋃
j≤l

Aj and B ⊆
⋃
j≥l

Bj . (33)

Proposition 39. If (A,B) ◁w , then ϕ (A,B ) ≤ ϕw .

Proof. Let w = (A1,B1), . . . , (Ak ,Bk ) and let ℓ be such that (33) holds. Define wL = (A1,B1), . . . , (Aℓ , ∅) and

wR = (∅,Bℓ ), . . . , (An ,Bk ). Observe that

ϕ (A,∅) ≤ ϕ (
⋃
i=1. . .ℓ Ai ,∅) = ϕ (A1,∅) ◦ . . . ◦ ϕ (Aℓ,∅) ≤ ϕ (A1,B1 ) ◦ . . . ◦ ϕ (Aℓ−1,Bℓ−1 ) ◦ ϕ (Aℓ,∅) = ϕwL ,

and, similarly, ϕ (∅,B ) ≤ ϕwR . It follows that ϕ (A,B ) = ϕ (A,∅) ◦ ϕ (∅,B ) ≤ ϕwL ◦ ϕwR = ϕw . □

8.3 Conjunctions of star formulas

In the next definition, if X ,Y ⊆ (P (A) × P (B))∗, then we let

X · Y =def {wv | w ∈ X , v ∈ Y } .

Definition 6. The set Branches(ϕ) ⊆ (P (A) × P (B))∗ of branches of ϕ ∈ Disj(A,B) is defined by induction:

Branches(x ) =def { ϵ }

Branches(
∨

B ∨ ϕ) =def { (∅,B) } · Branches(ϕ)

Branches([A]ϕ) =def { (A, ∅) } · Branches(ϕ)

Branches(ϕ0 ∨ ϕ1) =def Branches(ϕ0) ∪ Branches(ϕ1) .

The formula br(ϕ) is then defined as follows:

br(ϕ) =def
∨
{ϕw | w ∈ Branches(ϕ) } .

A formula ϕ ∈ Disj(A,B) is a star formula if br(ϕ) = ϕ.

It is easily seen that if w = (A1,B1) . . . (Ak ,Bk ), then Branches(ϕw ) = { (A1, ∅) (∅,B1) . . . (Ak , ∅) (∅,Bk ) }, so

br(ϕw ) = ϕw and ϕw is a star formula. Similarly, if {wi | i ∈ I } is a finite subset of (P (A) × P (B))∗, then
∨
i ∈I ϕwi is a

star formula.

Lemma 40. For each ϕ ∈ Disj(A,B), br(ϕ) ≤ ϕ and Supp(br(ϕ)) = Supp(ϕ).
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Proof. A straightforward induction:

br(x ) = ϕϵ = x .

br((
∨

B) ∨ ϕ) =
∨
{ϕ (∅,B ) ◦ ϕw | w ∈ Branches(ϕ) }

≤ ϕ (∅,B ) ◦ (
∨
{ϕw | w ∈ Branches(ϕ) }) ≤ ϕ (∅,B ) ◦ ϕ = (

∨
B) ∨ ϕ .

br([A]ϕ) =
∨
{ϕ (A,∅) ◦ ϕw | w ∈ Branches(ϕ) }

≤ ϕ (A,∅) ◦ (
∨
{ϕw | w ∈ Branches(ϕ) }) ≤ ϕ (A,∅) ◦ ϕ = [A]ϕ .

br(ϕ0 ∨ ϕ1) =
∨
{ϕw | w ∈ Branches(ϕ0) } ∪ {ϕw | w ∈ Branches(ϕ1) }

= br(ϕ0) ∨ br(ϕ1) ≤ ϕ0 ∨ ϕ1 . □

We come back now to our original goal, that of estimating upper bounds for formulas ϕ of the form ϕ =
∧
i ∈I ϕi as

in display (26), where now ϕi ∈ Disj(A,B) for each i ∈ I . The next Proposition reduces the problem of giving a closed

expression for ϕρ (ϕ ) and estimating an upper bound for the Ruitenburg number of ϕ as in (26) to that of a conjunction

of star formulas, that is, formulas of the form

ϕ =def
∧
i
ϕi , with ϕi =def

∨
j ∈Ji

ϕwi, j and wi, j ∈ (P (A) × P (B))∗ . (34)

To understand how we shall use Proposition 41, recall that Supp(ϕi ) = Supp(br(ϕi )) for all i; moreover, we shall

show (Propositions 43 and 44 below) that

∧
i ϕSupp(br(ϕi )) ≤ (

∧
i br(ϕi ))n for n large enough. These two facts entail∧

i ϕSupp(ϕi ) ≤
∧
i br(ϕi )n (for large n), which is the condition under which Proposition 41 holds.

Proposition 41. Let I be a finite set, let ϕi ∈ Disj(A,B) for each i ∈ I , and let n ≥ 0; suppose that
∧
i ϕSupp(ϕi ) ≤

(
∧
i br(ϕi ))n . Then the following holds:

(i)
∧
i ϕSupp(ϕi ) ≤ (

∧
i ϕi )

n ,

(ii)
∧
i ϕSupp(ϕi ) = (

∧
i ϕi )

ρ (
∧
i ϕi ) , and

(iii) ρ (
∧
i ϕi ) ≤ ρ (

∧
i br(ϕi )).

Proof. Statement (i) of the proposition follows from

∧
i br(ϕi ) ≤

∧
i ϕi , so (

∧
i br(ϕi ))n ≤ (

∧
i ϕi )

n
and

∧
i ϕSupp(ϕi ) ≤

(
∧
i br(ϕi ))n ≤ (

∧
i ϕi )

n
. We observe now that the relation

∧
i ϕSupp(ϕi ) ≤ (

∧
i ϕi )

n
implies∧

i
ϕSupp(ϕi ) = (

∧
i
ϕi )

n .

To this goal, it is enough to argue that (
∧
i ϕi )

n ≤
∧
i ϕSupp(ϕi ) , for each n ≥ 0, which follows from (

∧
i ϕi )

n ≤ ϕni ≤

ϕnSupp(ϕi )
= ϕSupp(ϕi ) (since ϕSupp(ϕi ) is idempotent), for each i ∈ I .

Therefore, if (i ) holds, then
∧
i ϕSupp(ϕi ) ≤ (

∧
i ϕi )

n+1
as well, since (

∧
i ϕi )

n ≤ (
∧
i ϕi )

n+1
, and then

(
∧
i
ϕi )

n+1 =
∧
i
ϕSupp(ϕi ) = (

∧
i
ϕi )

n .

From these relations we immediately infer (ii). For (iii) we argue as follows. Let K0 = ρ (
∧
i br(ϕi )) and K1 = ρ (

∧
i ϕi );

since Supp(ϕi ) = Supp(br(ϕi )), we also derive
∧
i ϕSupp(ϕi ) = (

∧
i br(ϕi ))K0

as an instance of (ii). The relation K1 ≤ K0

follows then by the inequalities

(
∧
i
br(ϕi ))k ≤ (

∧
i
ϕi )

k ≤
∧
i
ϕSupp(ϕi ) = (

∧
i
ϕi )

K1 = (
∧
i
br(ϕi ))K0 ,
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valid for any k ≥ 0. □

Let us give an explicit form to the iterates of a formula ϕ as in (34). To this goal, we shall assume that Ji = { 1, . . . ,k } =

[k] for each i ∈ I . We do not loose generality with this assumption, since the formula ϕi is equivalent to ϕi ∨ ϕϵ . We

shall make use of the distributive law (of disjunctions w.r.t. conjunctions) in the following form:∨
j ∈[k]

∧
i ∈I

X j,i =
∧

f :[k]−→I

∨
j ∈[k]

X j,f (j ) . (35)

Let us also introduce the following notation:

Stratn =def
∏

1≤ℓ≤n

I [k]
ℓ−1

.

An element f ∈ Stratn is a tuple ( f1, . . . , fn ) with fℓ : [k]
ℓ−1 −−→ I , for each ℓ = 1, . . . ,n. In particular, for ℓ = 1, we

identify f1 ∈ I
[k]

0

≃ I [1]
with an element of I . We think of a tuple ( f1, . . . , fn ) ∈ Stratn as a memory aware strategy

for the first player of a two player game: the strategy tells him how to incrementally choose a tuple (i1, . . . , in ) ∈ I
n

as a function of the opponent’s choices (j1, . . . jn−1) (where jℓ ∈ [k] for ℓ = 1, . . . ,n − 1), so iℓ = fℓ (j1, . . . , jℓ−1
)

for ℓ = 1, . . . ,n. We recall that there is a canonical bijection between I × Strat[k]

n and Stratn+1, as witnessed by the

following computations:

I × Strat[k]

n = I × (
∏

1≤ℓ≤n

I [k]
ℓ−1

)[k] ≃ I [k]
0

×
∏

1≤ℓ≤n

I [k]
ℓ
≃ Stratn+1 .

An explicit description of the bijection is as follows:

( f0,д) ∈ I × Strat
[k]

n 7→ ( f0,h1, . . . ,hn ) ∈ Stratn+1 ,

where for ℓ ≥ 1 we have

hℓ (j1, j2, . . . , jℓ−1
) = [д(j1)]ℓ (j2, . . . , jℓ−1

) .

Proposition 42. Let ϕ be of the form as in display (34). For each n ≥ 1, we have

ϕn =
∧

(f1, ...,fn )∈Stratn

∨
j1

ϕwf
1
, j

1

(
∨
j2

ϕwf
2
(j

1
), j

2

(. . .
∨
jn

ϕwfn (j
1
, j

2
. . .jn−1

), jn
)) . (36)

In order to increase the readability, we shall write in the proof of the proposition and in the rest of this section ϕi, j

in place of the more appropriate ϕwi, j .

Proof of Proposition 42. When n = 1, then equation (36) reduces to

ϕ =
∧
f1∈I

∨
j1∈[k]

ϕf1, j1 ,
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so it holds simply by definition of ϕ. Notice now that a word formula, and in particular each ϕi, j , commutes with

conjunctions; we use this fact in the inductive step. We suppose that (36) holds for n ≥ 1 and compute as follows:

ϕn+1 = ϕ (ϕn )

=
∧
i0∈I

∨
j0∈[k]

ϕi0, j0 (
∧

f ∈Stratn

∨
j1

ϕf1, j1 (
∨
j2

ϕf2 (j1 ), j2 (. . .
∨
jn

ϕfn (j1, j2 ...jn−1 ), jn ))) , by the inductive hypothesis,

=
∧
i0∈I

∨
j0∈[k]

∧
f ∈Stratn

ϕi0, j0 (
∨
j1

ϕf1, j1 (
∨
j2

ϕf2 (j1 ), j2 (. . .
∨
jn

ϕfn (j1, j2 ...jn−1 ), jn ))) ,

since ϕi0, j0 commutes with conjunctions,

=
∧
i0∈I

∧
д:[k]−→Stratn

∨
j0∈[k]

ϕi0, j0 (
∨
j1

ϕд (j0 )1, j1 (
∨
j2

ϕд (j0 )2 (j1 ), j2 ( . . . . . .
∨
jn

ϕд (j0 )n (j1, j2 ...jn−1 ), jn ))) , using (35),

=
∧
i0∈I

∧
д:[k]−→Stratn

∨
j1

ϕi0, j1 (
∨
j2

ϕд (j1 )1, j2 (
∨
j3

ϕд (j1 )2 (j2 ), j3 ( . . . . . .
∨
jn+1

ϕд (j1 )n (j2, j3 ...jn ), jn+1
)))

=
∧

h∈Stratn+1

∨
j1

ϕh1, j1 (
∨
j2

ϕh2 (j1 ), j2 (
∨
j3

ϕh3 (j1, j2 ), j3 ( . . . . . .
∨
jn+1

ϕhn+1 (j1, j2, j3 ...jn ), jn+1
))) . □

8.4 A game for iterated conjunctions of star formulas

Let ϕ =
∧
i ∈I ϕi with ϕi =

∨
j ∈[k]

ϕwi, j . For each K ≥ 1, we describe next a two-player game G (ϕ,K ) (between Eve

and Adam, and where Adam is the first player) with the following property: if Eve has a winning strategy in G (ϕ,K ),

then the relation ∧
i ∈I

ϕSupp(ϕi ) ≤ ϕ
K

holds. Therefore, using Proposition 41, if Eve has a winning strategy in G (ϕ,K ), then ϕρ (ϕ ) =
∧
i ϕSupp(ϕi ) and that

ρ (ϕ) ≤ K . Positions and moves of the game G (ϕ,K ) are as follows. Adam’s positions are of the form (i1, j1) . . . (in , jn ),

wheren ≤ K and, for ℓ = 1, . . . ,n, iℓ ∈ I and jℓ ∈ [k]. In such a position (whenn < K ) Adam chooses in+1 ∈ I and moves

to the position (i1, j1) . . . (in , jn ) (in+1, ?). In this position Eve chooses jn+1 and moves to (i1, j1) . . . (in , jn ) (in+1, jn+1).

The length of a position (i1, j1) . . . (in , jn ) is the integer n. The initial position is ϵ (the empty sequence or, in other

words, the sequence of length n = 0).

To each of Adam’s positionp = (i1, j1) . . . (ik , jk ), letwp = wi1, j1 . . .wik , jk . A terminal positionp = (i1, j1) . . . (iK , jK )

is a win for Eve (and a loss for Adam) if, for some i ∈ I , Supp(ϕi ) ≤ ϕw withw = wi1, j1 . . .wiK , jK .

Proposition 43. If Eve has a winning strategy in the game G (ϕ,K ), then∧
i ∈I

Supp(ϕi ) ≤ ϕK .

Proof. In view of (36) we need to show that, for any f ∈ StratK ,
∧
i ∈I Supp(ϕi ) ⊩ ⊕( f ), where

⊕( f ) =def
∨
j1

ϕf1, j1 (
∨
j2

ϕf2 (j1 ), j2 (. . .
∨
jK

ϕfK (j1, j2 ...jK−1 ), jK )) .

Let f ∈ StratK be fixed and observe that such an f yields a strategy (not a winning one) for Adam in the game G (ϕ,K ).

Now, if д is a winning strategy for Eve in this game, then f and д determine a play f || д in the game such that, for

some i ∈ I , ϕSupp(ϕi ) ≤ ϕwf ||д . We have then

∧
i ϕSupp(ϕi ) ≤ ϕSupp(ϕi ) ≤ ϕwf ||д ≤ ⊕( f ). □

Recall that card(A) = N and card(B) = M .
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Proposition 44. Eve has a winning strategy in the game G (ϕ, (N + 1) (M + 1)).

Proof. Eve keeps a memory in order to decide how to move. Her memory is a pair (A,B) ∈ P (A) × P (B) and, at

the beginning of the play, (A,B) = (∅, ∅).

At each position p = (i1, j1) . . . (iℓ , jℓ ) of the play, if the memory is (Ap ,Bp ), then Ap = SuppA (wp ), where

wp = wi1, j1wi2, j2 . . .wiℓ, jℓ . In particular, if p′ is a prefix of p, then Ap′ ⊆ Ap . Moreover, if wp = w0w1 with w0 being

the shortest prefix ofwp such that SuppA (w0) = Ap , then Bp ⊆ SuppB (w1). Notice that these conditions imply that

(Ap ,Bp ) ◁wp , so ϕ (Ap,Bp ) ≤ ϕwp by Lemma 39.

Let p = (i1, j1) . . . (iℓ , jℓ ). At position p (iℓ+1
, ?), Eve chooses jℓ+1

so that, if p′ = p (iℓ+1
, jℓ+1

), SuppA (wp′ ) is strictly

greater than Ap = SuppA (wp ). If it is possible to choose such jℓ+1
, then she updates her memory to (SuppA (wp′ ), ∅).

Otherwise, if it is not possible to choose jℓ+1
with these properties, then Eve chooses jℓ+1

so SuppB (wiℓ+1, jℓ+1
) strictly

includes Bp . She updates then the memory to (Ap′ ,Bp′ ) = (Ap ,Bp ∪ SuppB (ϕwiℓ+1
, jℓ+1

)). If it is not possible to operate

that kind of choices, then Eve chooses some jℓ+1
at random and sets (Ap′ ,Bp′ ) = (Ap ,Bp ).

Now, in a play, there are at most N + 1 values for Ap and, for each fixed Ap , there are at mostM + 1 values for Bp .

Therefore, within (N + 1) (M + 1) rounds either

(a) the play visits an Eve’s position p (iℓ+1
, ?)—therefore with ℓ < (N +1) (M+1) and p of the form (i1, j1) . . . (iℓ , jℓ )—

where she cannot extend Ap nor Bp ; that is, we have SuppA (wiℓ+1, j ) ⊆ Ap and SuppB (wiℓ+1, j ) ⊆ Bp , for each

j ∈ [k]; or

(b) the play ends up in an Adam’s position p = (i1, j1) . . . (iℓ , jℓ ) with ℓ = (N + 1) (M + 1), where now Ap = A and

Bp = B.

Suppose (a). Since Supp(ϕiℓ+1
) = (
⋃
j SuppA (wiℓ+1, j ),

⋃
j SuppA (wiℓ+1, j )), we have SuppA (ϕiℓ+1

) ⊆ Ap and SuppB (ϕiℓ+1
) ⊆

Bp . Since (Ap ,Bp ) ◁wp , it also follows that Supp(ϕiℓ+1
) ◁wp , so ϕSupp(ϕiℓ+1

) ≤ ϕwp by Lemma 39. This shows that the

position p (as well as any of its extensions) is a win for Eve. If (b) then Ap = A and Bp = B so, in a similar way as

before, we have ϕSupp(ϕi ) ≤ ϕwp , this time for each i ∈ I . □

We can now state the main result of this section.

Theorem 45. Let ϕ =
∧
i ∈I ϕi where each ϕi is a disjunctive formula. Then ρ (ϕ) ≤ (N + 1) (M + 1) where N is the

number of distinct head subformulas of ϕ andM is the number of distinct side subformulas occurring in any of the ϕi .

Proof. The statement holds iff and only if it holds when head and side subformulas of ϕ are propositional variables,

that is, whenϕi ∈ Disj(A,B) for each i ∈ I , with card(A) = N and card(B) = M . Moreover, according to Proposition 41,

the statement of the theorem holds if

∧
i ∈I ϕSupp(ϕi ) ≤ ϕ

(N+1) (M+1)
and under the additional assumption that each ϕi

is a star formula. Now the relation

∧
i ∈I ϕSupp(ϕi ) ≤ ϕ

(N+1) (M+1)
is a consequence of Proposition 44, stating that Eve

has a winning strategy in the game G (ϕ, (N + 1) (M + 1)), and of Proposition 43, relating such a winning strategy to the

relation. □

Remark 46. The upper bound given in Theorem 45 appears to be orthogonal to bound implicit in Ruitenburg’s paper

[Ruitenburg 1984]. In the bound ρ (ϕ) ≤ 2n + 2, the size n of ϕ is at least the number of implication subformulas of

ϕ. Now, in a formula of the form

∧
i ∈I ϕi with ϕi ∈ Disj(A,B), the number of implication subformulas might be

exponentially larger than N andM . Therefore the bound given in Theorem 45 is in this case tighter than Ruitenburg’s

bound. Conversely, we can derive from Theorem 45 a quadratic (in the size of the formula) upper bound for Ruitenburg’s

numbers of strongly positive formulas. This is achieved by considering that the size of a strongly positive formula is
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greater than the number of all the head and side subformulas in the conjuncts of its normal form (as in Lemma 14).

Ruitenburg’s upper bound is in this case tighter.

Remark 47. The following example shows that the quadratic upper bound is necessary, at least with respect to finding

a winning strategy for Eve. Let A =def { α1, . . . ,αN } and B =def { β1, . . . , βN }. For each k = 1, . . . ,N , let Pk (B) be

the set of subsets of B if size k . Let I = { (k,B) | B ∈ Pk (B) } and, for each (k,B) ∈ I , consider the branch formula

ϕ (k,B ) =def
∨
β ∈B

ϕ ( { αk }, { β }) .

Adam can use the following winning strategy in all the games G (ϕ,K ) with K <
N (N−1)

2
. He starts by choosing (N ,B)

until Eve has chosen at least N − 1 different symbols from B. Let βN the only symbol not chosen by Eve. Then Adam

chooses (N − 1,B \ { βN }) and iterates this choice until Eve has chosen exactly N − 2 different symbols. Let βN−1 be

the only symbol from B \ { βN } which has not been chosen by Eve, then Adam chooses (N − 2,B \ { βN , βN−1 }), and

so on. Eve needs N − 1 + (N − 2) + (N − 2) + . . . rounds to win. This example raises the question of the completeness

of the game: does the existence of an Adam’s winning strategy in G (ϕ,K ) implies that

∧
i ∈I ϕSupp(ϕi ) ≰ ϕK ?

Remark 48. We considered

ϕn (x ) =def
∨

i=1, ...,n
αi → (βi ∨ x ) .

and used fCube [Ferrari et al. 2010] to compute the values of cl (ϕn ) and ρ (ϕn ). For n ∈ { 2, 3, 4, 5 }, we obtained that

cl (ϕn ) = ρ (ϕn ) = n + 1. This raises the question whether there is any strongly positive formula of the IPC for which

we have cl (ϕn ) < ρ (ϕn ).

9 A CONSTANT UPPER BOUND FOR DISJUNCTIONS OF ALMOST-TOPOLOGIES

In this Section we exemplify how investigating (lower bounds of) closure ordinals might lead to uncover non-trivial

properties of Heyting algebras. Example 21 illustrated the elimination procedure in the case of weakly negative

formula-terms. It considered a formula-term of the form

ϕ (x ) =def
∨
i ∈I

(x → bi ) → ai ,

where the index set was a two element set. In view of the similarity of these formulas with the disjunctive formulas

of Section 6, we conjectured that closure ordinals of formulas as the ones above increase as the size of I becomes

larger—so to exhibit tightness of the upper bound on closure ordinals of weakly negative formula-terms presented in

Proposition 29. Yet, all our automatized tests, for which we used the tool fCube [Ferrari et al. 2010], pointed towards

the opposite direction. We finally managed to disprove the conjecture: all these formula-terms converge to their least

fixed-points in 3 steps.

Let H be a Heyting algebra. For a,b ∈ H , we call ja,b defined by

ja,b (x ) =def (x → a) → b ,

an almost-topology (briefly, an atop). The reason is the following: when a = b, then ja,a is a closure operator (that

is, a monotone inflating idempotent function on H ); more than that, it is a Lawvere-Tierney topology or nucleus, see

[Johnstone 1982, Chapter II, section 2], meaning that they are strong: x ∧ ja,a (y) ≤ ja,a (x ∧ y), for each x ,y ∈ H . We

Manuscript submitted to ACM



Fixed-point elimination in the Intuitionistic Propositional Calculus 33

shall consider disjunctions of atops, for which we need a convenient notation: for a family of pairs Π = { (ai ,bi ) | i ∈ I },

we shall write

ϕΠ (x ) =def
∨
i ∈I

jai ,bi (x ) . (37)

9.1 Elementary properties of atops

In the following, we use [a,b] to denote the closed interval { x | a ≤ x ≤ b }.

Lemma 49. The following holds, for each x ∈ H :

(i) x ≤ ja,b (x ) if and only if x ≤ a → b. In particular, if a ≤ b, then x ≤ ja,b (x );

(ii) j2a,b (x ) = ja,b (x ) if and only ja,b (b) ≤ ja,b (x ). In particular, this holds when b ≤ x .

Consequently, the restriction of ja,b to the interval [b,a → b] is a closure operator.

Proof. (i) x ≤ (x → a) → b iff x ∧ x → a ≤ b, iff x ∧ a ≤ b, iff x ≤ a → b. For the second statement, notice that if

a ≤ b, then x ≤ ⊤ = a → b.

(ii) Notice firstly that the condition j2a,b (x ) = ja,b (x ) is equivalent to j2a,b (x ) ≤ ja,b (x ). As a matter of fact,

ja,b (x ) ≤ a → b for each x ∈ H so by (i) we always have ja,b (x ) ≤ j2a,b (x ).

We prove that j2a,b (x ) ≤ ja,b (x ) is equivalent to ja,b (b) ≤ ja,b (x ). By repeated use of compatibility, we have the

following equality:

j2a,b (x ) ∧ (x → a) = ja,b ((x → a) → b) ∧ (x → a) = ja,b (((x → a) → b) ∧ (x → a)) ∧ (x → a) ,

= ja,b (b ∧ (x → a)) ∧ (x → a) = ja,b (b) ∧ (x → a) .

It follows that

j2a,b (x ) ≤ ja,b (x ) iff ja,b (b) ∧ (x → a) = j2a,b (x ) ∧ (x → a) ≤ b iff ja,b (b) ≤ ja,b (x ) .

Finally, if b ≤ x , then ja,b (b) ≤ ja,b (x ) so j2a,b (x ) = ja,b (x ). □

Since ja,b (⊥) = b, ja,b (⊤) = a → b, and ja,b is monotone, we also remark:

Lemma 50. The image of H via ja,b is contained in the interval [b,a → b].

Thus we have ja,b (x ) = ja,b (x ) ∧ (a → b). We shall exploit this fact many times, in conjunction with strongness.

The following Lemma exemplifies this.

Lemma 51. If f : H −−→ H is a strong monotone mapping, then ja,b ( f (x )) ≤ ja,b ( f (ja,b (x ))).

Proof. We compute as follows:

ja,b ( f (x )) = ja,b ( f (x )) ∧ (a → b) , by Lemma 50,

= ja,b ( f (x ∧ (a → b))) ∧ (a → b), since ja,b ◦ f is strong,

≤ ja,b ( f (ja,b (x ∧ (a → b)))) ∧ (a → b) , using Lemma 49.(i) and the fact that x ∧ (a → b) ≤ (a → b),

= ja,b ( f (ja,b (x ))) ,

where in the last step we have again used Lemma 50 and the fact that ja,b ◦ f is strong. □
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To end this Section, it is useful to pinpoint two identities that shall be useful later. The first one is obtained by

repeatedly using compatibility of ja,b :

ja,b (x ) ∧ c = ja∧c,b∧c (x ∧ c ) ∧ c = ja∧c,b∧c (x ) ∧ c .

In particular, since ja,b (x ) = ja,b (x ) ∧ (a → b), we derive

ja,b (x ) = ja∧b,b (x ) ∧ (a → b) . (38)

The latter identity relates a general atop to a specific atop ja,b with the property that a ≤ b which—according to

Lemma 49.(i)—is always inflating.

9.2 Closure of prefixed-points of strong monotone mappings under exponentiation

The following Lemma asserts that prefixed-points of strong monotone mappings are closed under exponentiation. This

property seems to be the hidden principal ingredient in the proof of the main result of this section, Theorem 55.

Lemma 52. Let д : H −−→ H be a strong monotone mapping. If c ∈ Preд , then x → c ∈ Preд , for each x , c ∈ H .

Proof. The Lemma is an immediate consequence of equation (5):д(x → c ) ≤ x → д(c ) ≤ x → c , when c ∈ Preд . □

We shall study next when ja,b (x ) = ja,c (x ). Indeed, in view of Lemma 52, we shall have that ja,b (x ) is a prefixed

point of a strong д, if this equality holds and c is a prefixed-point of д.

Lemma 53. We have ja,b (x ) = ja,c (x ) if and only if x → a ≤ b ↔ c . In particular, if b ≤ c ≤ x ≤ a → b, then

ja,b (x ) = ja,c (x ).

Proof. By symmetry, it will be enough to prove that ja,b (x ) ≤ ja,c (x ) if and only if x → a ≤ b → c .

Suppose that x → a ≤ b → c . Then

((x → a) → b) ∧ (x → a) = b ∧ (x → a) ≤ b ∧ (b → c ) ≤ c

so ja,b (x ) ≤ ja,c (x ). Conversely, suppose that ja,b (x ) ≤ ja,c (x ). Then

b ∧ (x → a) = ((x → a) → b) ∧ (x → a) ≤ c ,

so x → a ≤ b → c .

For the last sentence, we can use the characterization we have just given. Suppose b ≤ c ≤ x ≤ a → b. Then

x → a ≤ ⊤ = b → c . Also c ∧ x → a ≤ x ∧ x → a = x ∧ a ≤ a → b ∧ a ≤ b, so x → a ≤ c → b. □

Proposition 54. Let д be a strong monotone mapping. If c ∈ Preд ∩ [f , e → f ], then je,f (x ) ∈ Preд for each

x ∈ [c, e → f ].

Proof. By the previous Corollary, we can write je,f (x ) = je,c (x ). It follows then from Lemma 52 that je,f (x ) =

je,c (x ) ∈ Preд . □

9.3 Convergence in 3 steps for disjunctions of atops

Let therefore Π = { (ai ,bi ) | i ∈ I } be fixed; in order to improve readability, let us put, for each i ∈ I ,

ji (x ) =def jai ,bi (x ) .
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Theorem 55. The function ϕΠ defined as in equation (37) converges to its least fixed-point in 3 steps.

Proof. We need to prove that jk (ϕ
3

Π (⊥)) ≤ ϕ
3

Π (⊥), for each k ∈ I . If we put b =def ϕΠ (⊥) =
∨
i ∈I bi then we need

to show that

jk (ϕ
2

Π (b)) ≤ ϕ
2

Π (b) for each k ∈ I . (39)

Let, from now on, k ∈ I be fixed and put

Jk (x ) =def jak∧bk ,bk (x ) ,

so jk (x ) = Jk (x ) ∧ (ak → bk ) as from equation 38. We shall argue that, for each i ∈ I , the following relation holds:

ji (Jk (ϕΠ (b))) ≤ Jk (ϕΠ (b)) . (40)

Once equation (40) is proved, we prove (39) as follows:

jk (ϕ
2

Π (b)) = jk (
∨
i ∈I

ji (ϕΠ (b)) ) ≤ jk (
∨
i ∈I

ji (Jk (ϕΠ (b))) ) , by Lemma 51,

≤ jk (
∨
i ∈I

Jk (ϕΠ (b)) ) = jk (Jk (ϕΠ (b))) , using equation (40),

= jk (jk (ϕΠ (b))) , since of jk (x ) = jk (x ) ∧ (ak → bk ) and jk is strong,

= jk (ϕΠ (b)) , using bk ≤ b ≤ ϕΠ (b) and Lemma 49.(ii),

≤ ϕ2

Π (b) .

In order to prove that equation (40) holds, we use Proposition 54 and argue that a certain je,f (x ) is a prefixed-point of

ji . Let, in the statement of the Proposition,

e =def ak ∧ bk ∧ (ai → bi ) , f =def bk ∧ (ai → bi ) , c =def ji (b) , x =def ϕΠ (b) ∧ (ai → bi ) , д = ji .

To apply the Proposition, we need to verify that (i ) f ≤ c ≤ x ≤ e → f and that (ii ) c is a prefixed-point of ji .

(i ) We have b ∧ ai → bi ≤ ai → bi and therefore, by Lemma 49.(i),

b ∧ (ai → bi ) ≤ ji (b ∧ (ai → bi )) = ji (b) ∧ (ai → bi ) = ji (b) .

Using this relation, we see that

f = bk ∧ (ai → bi ) ≤ b ∧ (ai → bi )

≤ ji (b) = c

≤ ϕΠ (b) ∧ (ai → bi ) = x

≤ ⊤ = e → f .

(ii ) From bi ≤ b and Lemma 49.(ii) it immediately follows that c = ji (b) is a prefixed-point of ji .

From (i ), (ii ) and Proposition 54, it follows that je,f (x ) is a prefixed-point of ji . Recall now that

x = ϕΠ (b) ∧ (ai → bi ) ,

je,f (y) = jak∧bk∧(ai→bi ),bk∧(ai→bi ) (c ) ∧ (ai → bi ) = Jk (y) ∧ (ai → bi ) , for each y ∈ H .
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We have therefore

ji (Jk (ϕΠ (b)) = ji (Jk (ϕΠ (b) ∧ (ai → bi )) ∧ (ai → bi )) ∧ (ai → bi )

= ji (je,f (ϕΠ (b) ∧ (ai → bi )))

≤ je,f (ϕΠ (b) ∧ (ai → bi )) ≤ Jk (ϕΠ (b)) ,

proving relation (40). □

Remark 56. The above upper bound is tight. Recall that I is the index set over the disjunction by which ϕΠ is defined, see

(37), so card(I ) is the number of atops being joined. Computations with fCube [Ferrari et al. 2010] show that cl (ϕΠ ) = 2

when card(I ) = 1, and that cl (ϕΠ ) = 3 when card(I ) ∈ { 2, 3, 4, 5 }. Quite interestingly we obtained the same pattern

for Ruitenburg’s numbers: ρ (ϕΠ ) = cl (ϕΠ ) when card(I ) ∈ { 2, 3, 4, 5 }. This raises the question whether the results

presented in this section can be lifted to Ruitenburg’s number; more generally and also considering Remark 48, the

question whether there is any formula ϕ ∈ FIPC for which cl (ϕ) < ρ (ϕ) is open.

10 CONCLUSIONS

By Ruitenburg’s theorem [Ruitenburg 1984] the least and the greatest fixed-point of a monotone polynomial on an

Heyting algebra are constructible by means of finite Kleene’s iterations. The number of iterations needed to reach the

fixed-point is computable from the formula defining the polynomial, and therefore the least and greatest fixed-points

are definable within the Intuitionistic Propositional Calculus. We have emphasized in Sections 4 and 5 that definability

of these fixed-points is a consequence of the important structural properties of the IPC, the deduction theorem and the

existence of bisimulation quantifiers [Ghilardi and Zawadowski 2011; Pitts 1992]. The main contribution of the first

part of this paper is a new perspective on these fixed-points, alternative to the usual Kleene’s iteration, that yields both

an axiomatization of these fixed-points and a fixed-point elimination procedure (described in Section 6). Moreover,

decidability of IPCµ is reduced via this procedure to decidability of the IPC and thus IPCµ is shown to be decidable.

The second part of this paper analyses back the fixed-point elimination procedure from the point of view of Kleene’s

iteration: in Section 7 upper bounds of the finite closure ordinals of formulas of the IPC are systematically discovered;

since they are not in general tight, in Section 8 the critical formulas that arise from the elimination procedure have been

further investigated leading to better approximations (which also apply to Ruitenburg’s number of these formulas). The

complexity of a general investigation of the finite closure ordinals of intuitionistic formulas is witnessed in Section 9

where we exhibit a large class of formulas whose least fixed-point are surprisingly reached in 3 steps.

The second part of this paper is, in our opinion, a rich source of open problems susceptible to grow up to a research

domain that we might name the arithmetic of the IPC. Ruitenburg’s theorem is in this context a cornerstone and, for

this reason, an alternative proof of this result was obtained in [Ghilardi and Santocanale 2018, 2019]. In This proof,

using the duality for finitely presented Heyting algebras developed in [Ghilardi and Zawadowski 2011], yields new

perspectives, yet the approximations of Ruitenburg’s numbers so obtained are again far from being optimal. A deeper

understanding of Ruitenburg’s theorem might come from the results presented in Section 8 where—as in Ruitenburg’s

original proof—the notion of inflating function plays a key role.

Beside Intuitionistic Logic, we conjecture that many of the general results presented in Section 7 generalize to infinite

closure ordinals. It is therefore conceivable that they might be of use in current research on closure ordinals for modal

µ-calculi, see e.g. [Afshari and Leigh 2013; Czarnecki 2010; Gouveia and Santocanale 2017]. Finally, one more question

worth to be answered is to what extent the results presented in this paper can be transferred back to the modal µ-calculi
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on restricted classes of models whose existing literature [Alberucci and Facchini 2009a,b; D’Agostino and Lenzi 2010]

motivated and contributed to advance the present research.
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