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Cimaganda rockslide

PALEO-EVENT, 17th century (1698):

Rock volume involved: 7,5 Mm3

Two or more steps (Mazzoccola D., 1996)

2012 EVENT:

Rock volume involved: 20.000 m3

Triggering factor: 267 mm of rain in 4 days (return time: 50 yr)

PREDISPONENT ELEMENTS TO ROCK FALLS AND INSTABILITY

EVENTS ALONG THE SLOPE:

• Discontinuity sets features:

K2 Vertical tensile fractures // axial Valley (N-S)

K3 Shear planes (NE-SW diping to NW)

• Steep slopes with vertical cliffs
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Numerical model

2012 landslide 

scarp

SET TIPO Imm. [°] dip [°] Mean length [m] Intensity of fracturing

K1 Shistosity 34 27 / /

K2 Joint 287 78 58.2 0.00013

K3 Joint 222 79 34.3 0.00013

IMPLICIT

EXPLICIT

Joint network: ‘’Beacher’’ model

FIELD 

SURVEYS
LABORATORY 

TESTS+
Numerical code: Finite element

(RS2, Rocscience)

Morphology:

DTM  2002 Regione Lombardia (20x20)

Material properties:

HB parameters, E0 as function of depth; 

Anisotropy behaviour.

Joint network: 

Fracture intensity as function of depth;

MC /equivalent MC parameters

Boundary conditions: 

Auto restrain surface (pins)

Mesh:

Uniform 6 noded triangles

X

Y

200 m

2
0

0
 m

- Geological 

- Geomorphological

- Geomechanical

- Joint shear tests

- Monoaxial tests

N↑

Water table

Liro Torrent

DTM 2002



A.M.A.L.P.I.18

Numerical modeling: ordinary conditions

2012 landslide 

scarp

The distribution and entity 

of simulated displacements 

are suitable with the direct 

measurements and 

observations carried out 

during geological surveys

500 m
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Transient finite element analysis

Hydraulic parameters

Rock masses principal hydraulic
conductivities were calculated
considering joint orientation, JRC,
aperture and fracture frequency of
each discontinuity set
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• An accurate geomechanical characterization of the “Cimaganda” rockslide slope was carried out. This led to implement

a numerical model through which it was possible to simulate the general evolution of the slope;

• The simulation of the 2012 event was possible by applying the worst mechanical detected properties and considering

the hydrogeological conditions with a return period of 50 years as triggering factor.

• After the 2012 rockslide, new events on right flank of the Cimaganda slope could develop only as a consequence of

progressive hydro-mechanical degradation or very intense rainfalls. However this does not exclude single rock mass

falls, which are favored by the orientation, persistency and aperture of discontinuity sets.

FUTURE PLANS

• This work represents a solid base to improve the analysis of the Cimaganda paleo-event and explore instability-

forecasting scenarios in order to enhance rockslide risk management.

Final remarks and future plans
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