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Abstract

Since the seminal work of John Nash, convex combinations of actions are known to guarantee
the existence of equilibria in strategic-form games. This paper introduces an alternative notion
of randomisation among actions – possibilistic randomisation – and investigates the mathematical
consequences of doing so. The framework of possibility theory gives rise to two distinct notions
of equilibria both of which are characterised in our main results: a qualitative one based on the
Sugeno integral and a quantitative one based on the Choquet integral. Then the two notions of
equilibrium are compared against a coordination game with payoff-distinguishable equilibria known
as the Weak-link game.

Keywords: Possibilistic Radomisation, Mixed Strategies, Possibilistic Expected Utility, Nash
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1. Introduction and motivation

A key foundational question in game theory is to do with defining solution concepts for strategic
situations in which players interact rationally. To accomplish this normative task, rationality
is defined as the maximisation of the player’s own welfare (as they perceive it) subject to the
predictions made by their opponents, all of whom are assumed to be rational. Moreover it is
assumed that players have common knowledge of each other’s rationality. In the standard analysis
of strategic-form games, (also known as static games or simultaneous-moves games), the individual
rationality of players is defined as the maximisation of complete and transitive preferences over
the payoffs of the game, i.e. the consequences of their actions. A central result is due to John
Nash who elaborates on work by Cournot, Borel and von Neumann, among others (see [41] for
a terse historical account). Nash defined a profile of actions/strategies (one for each player) an
equilibrium if each player’s action maximises their expected payoff given the other players’ actions.
Nash’s seminal 1950 result identifies the rather general conditions under which such an equilibrium
is guaranteed to exist.

In the particular context of two-person zero-sum games, von Neumann had observed in 1928
that not all games admit solutions in what would be later called pure actions. As noted, among
others by Luce and Raiffa in their classic [35] (p.70) this opens up two scenarios. In the first, players
give up playing, because no profile of strategies satisfies the conditions for being an equilibrium.
This scenario, though, is not compatible with the normative goal of the theory. Hence the only
viable alternative is to interpret the indecisiveness which arises from the lack of equilibria in pure
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actions as indifference among which action should be selected as one’s own half of an equilibrium
point. In the decision-theoretic tradition such an indifference has been formalised by assuming
that each player delegates their choice of action to a randomising device, the obvious choice being
a probability distribution over the set of actions, called a mixed strategy.

So, the idea of mixing actions or strategies entered game theory pretty much as i entered
algebra: as a mathematical device sufficient to provide a solution to all problems of a certain kind.
Just like extending R to the complex field makes all quadratic equations solvable, similarly allowing
for mixed actions guarantees that all games have a Nash equilibrium.

Let us pause for a second and ask why the randomising device which has been used to define
mixed strategies turned out probability distributions. The reasons for this choice are all too clear:
during the 1920s probability was well understood in connection to randomness and possibly the only
mathematical way of representing it. In addition, randomising pure strategies through probability
distributions gives rise to convex sets from which to make choices, and this pays significant and
well-known mathematical dividends.

It wasn’t until the late 1960’s that game theorists took a closer look at the meaning of mixed
strategies, and sought to give it a behavioural foundation. This was achieved in [30], where J.
Harsanyi identified the conditions under which equilibria in mixed strategies in a game of perfect
information can be seen as equilibria in pure actions of a corresponding game of imperfect infor-
mation. This method, known as purification, provides a behavioural foundation – i.e. a tangible
game theoretic meaning – to the notion of mixed strategy by turning an equilibrium on random
acts into an equilibrium in beliefs (about player’s types). Hence there is an intriguing and subtle
relation between the notion of randomisation in games and the behavioural interpretation of it.

1.1. The goal and structure of this paper

Our concern in this paper is with the mathematical, as opposed to behavioural, interpretation of
mixed strategies. Much work has been done in the past few decades on non-probabilistic measures
of uncertainty (see [29, 47]) and this clearly allows for alternative notions of randomisation. It is
only natural then that we take one big step back and model indifference among actions by means
of non-probabilistic randomisation. The goal of this paper is to investigate the mathematical
consequences of assuming that randomisations of actions in strategic-form games games occur by
attaching to each set of pure actions a possibility distribution. We defer to future work the related,
but quite distinct, question of investigating possibilistic equilibria in beliefs.

Possibility theory [18] has been developed over the past few decades as a model of uncertainty
capable of representing incomplete information, rather than uncertainty quantification. Informally
speaking possibility theory allows for a more coarse-grained (and more human-like [45]) represen-
tation of uncertainty than probability theory, accommodating both qualitative and quantitative
approaches [20]. This twofold nature made possibility theory relevant in a variety of domains, from
logic-based artificial intelligence [21], to decision theory [19, 15, 22] and statistics [13]. This work
aims at making the first steps toward bringing the key concepts of possibility theory to bear the
foundations of (non-cooperative) game theory.

The paper is organised as follows. Section 2 provides the relevant background on strategic-
form games and possibility theory. In particular, we introduce the notions of Choquet and Sugeno
integrals for possibility measures that underpin two alternative concepts of expected utility in
possibility theory. The main contribution of the paper is presented in Section 3. We begin by
expanding strategic-form games with possibilistic mixed strategies, which are possibility distribu-
tions over a player’s strategy set, and define the concepts of Choquet and Sugeno equilibrium.
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Possibilistic mixed strategies are not given here any specific interpretation, and are simply taken
as an alternative way to represent the act of randomisation. Our main results, Theorem 13 and
Theorem 22, identify the exact conditions a profile of possibilistic mixed strategies must satisfy to
be a Choquet and Sugeno equilibrium, respectively.

Since possibilistic randomisation gives rise to two distinct notions of equilibrium, it is natural
to articulate a comparison between them. We do so through the analysis of a weak-link game (a.k.a
minimum effort game) in Section 4. The reason we regard this game as one of particular interest
for the purposes of this paper lies in the fact that it is a coordination game, i.e. one in which each
combination of the same action yields an equilibrium (in pure strategies). Whilst those equilibria
can be distinguished by their payoffs, a player who selects their part of a Nash equilibrium cannot
make this distinction. Hence Nash equilibrium cannot guide players to coordinate on the payoff-
efficient action profiles. With Theorem 27 we give a characterisation, specific for weak-link games,
of when a pair of possibilistic mixed strategies forms a Choquet equilibrium. Here, by explicitly
interpreting possibilistic mixed strategies as an index of commitment, we show that Theorem 27
leads to the following interpretation: for a weak-link game, a pair of possibilistic mixed strategies
forms a Choquet equilibrium provided that each disagreement in the level of commitment that each
player has with respect to a given strategy pair is compensated by an agreement on a strategy pair
with a higher payoff. We argue that this approach shows that, when applied to weak-link games,
the concept of a Choquet equilibrium offers a refinement of Nash equilibria.

We end this article with some final considerations on the content and scope of this paper and
on future work.

1.2. Related literature

Not much work has been devoted to explore the relevance of possibility theory to game theory, as
we pointed out in our preliminary investigations on the subject [32, 33, 34]. In those papers we
introduced the notions of a possibilistic game and possibilistic mixed strategy, along with a concept
of possibilistic equilibrium based on the Sugeno integral [48] (called in the present work “Sugeno
equilibrium”). In [34], we showed that equilibria of this kind always exist and characterised the
conditions for a possibilistic mixed strategy combination to be an equilibrium (characterisation
which we improve in the present article). The work by Ben Amor, Fargier and Sabbadin [1] later
introduced a notion of strategic-form games with possibilistic mixed strategies and possibilistic
equilibria corresponding to those previously defined in [34]. Not directly related to our work is the
paper by De Clercq et al. [8], who study the use of possibilistic logic [21] to model situations in
which agents are uncertain about other agents’ goals in Boolean games [25], i.e. logic-based games
where players’ utilities are represented by Boolean formulas.

In a recent article, Radul [44] investigates with topological techniques the concept of equilibrium
proposed in [23] for games where players’ beliefs about their opponents’ behaviour are modelled as
possibility measures and expectation is computed with the Sugeno integral. This kind of equilibria
is shown to always exist, but note the shift in the main question, which is no longer on how to
randomise in non-probabilistic ways but is how to generalise equilibria in beliefs beyond probability.

2. Background

2.1. Strategic-form Games

For present purposes it is sufficient to recall a selection of key definitions for static, non-cooperative,
games in strategic form. All the games in this article are assumed to be two-person games. In-

3



terested readers can refer to classic introductions such as [43], the more recent [39], or the freely
available [2].

Definition 1 (Strategic-form Game). A strategic-form game is a tuple

G = 〈N,S1, S2, u1, u2〉

where:

1. N = {1, 2} is the set of players of the game.

2. Si is a finite set of strategies for each player i ∈ {1, 2}, also called strategy space.

3. ui : S1×S2 → R+, for each player i ∈ {1, 2}, is a non-negative real-valued function (different
from the identically zero function) called utility function (or payoff function).

Given a player i ∈ {1, 2}, we sometimes refer to the other player as −i. The elements of each Si
are often referred to as pure strategies. We usually denote by si an arbitrary strategy for player i.
Given si ∈ Si, s−i ∈ S−i is used to denote a strategy for the other player. A strategy combination
is any pair (s1, s2) ∈ S1 × S2.

Definition 2 (Best response). Let G be a strategic-form game. Player’s 1 best response to any
s2 ∈ S2 is a strategy s1 ∈ S1 such that for all s′1 ∈ S1

ui(s1, s2) ≥ ui(s′1, s2).

The definition for Player 2 is analogous.

Definition 3 (Pure Strategy Nash Equilibrium). Let G be a strategic-form game. We call a pair
of pure strategies (s1, s2) ∈ S1 × S2 a Nash equilibrium (NE, for short) if each player’s strategy is
a best response to the other player’s strategy.

It is well known that not all strategic-form games admit a pure strategy Nash equilibrium. This
situation is obviated by allowing players to not simply choose one among their pure strategies, but
among all possible mixed strategies, i.e. all probability distributions over their strategy set. More
formally:

Definition 4 (Mixed Strategy). In a strategic-form game G, a mixed strategy σi for player i is
a probability distribution over the set of strategies Si, i.e. a function σi : Si → [0, 1] such that∑

si∈Si

σi(si) = 1.

Similar to pure strategies, any pair of mixed strategies (σ1, σ2) is called a mixed strategy profile or
mixed strategy combination.

Definition 5 (Mixed Extension). Let

G = 〈N,S1, S2, u1, u2〉

be a strategic-form game. The mixed extension of G is the game

G = 〈N,MS1,MS2, eu1, eu2〉

where, for i ∈ {1, 2}:
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• Each MSi is the set of all mixed strategies of player i over Si.

• Each eui : MS1 ×MS2 → R is a payoff function that associates with each mixed strategy
combination (σ1, σ2) its expected utility

eui(σ1, σ2) =
∑

(s1,s2)∈S1×S2

((σ1(s1) · σ2(s2)) · ui(s1, s2)) .

Both the concept of best response and Nash equilibrium in pure strategies are easily generalised
to mixed strategies.

Definition 6 (Best Response: Mixed Strategies). Let G a strategic-form game and let G be its
mixed extension. Player 1’s mixed strategy σ1 is called a best response to σ2 if, for all σ′1 ∈MS1,

eu1(σ1, σ2) ≥ eu1(σ′1, σ2).

The definition for Player 2 is analogous.

Definition 7 (Mixed Strategy Nash Equilibrium). Let G a strategic-form game and let G be its
mixed extension. We call a pair of mixed strategies (σ1, σ2) ∈MS1 ×MS2 a mixed strategy Nash
equilibrium if each player’s mixed strategy is a best response to the other player’s mixed strategy.

The following celebrated theorem by John Nash shows that every strategic-form game admits an
equilibrium in mixed strategies.

Theorem 8 (Nash, 1951). Every strategic-form game has mixed extension that admits mixed
strategy Nash equilibria.

2.2. Possibility Measures, Choquet and Sugeno Integration

In this section, we provide the background notions concerning possibility measures and distribu-
tions, and Choquet and Sugeno integration. The reader can find a full account of these topics in
[9, 10, 11, 20, 27]. In what follows, we will use the symbols ∧ and ∨ to represent the functions
corresponding to the minimum and maximum of real numbers, respectively.

Given a set X, a set function is a mapping µ : 2X → R assigning a real number to each set in
2X . A set function µ is called:

1. Grounded, if µ (∅) = 0;

2. Normalised, whenever µ (X) = 1;

3. Monotone, if, for all A,B ∈ 2X such that A ⊆ B, µ (A) ≤ µ (B);

4. Maxitive, if, for all A,B ∈ 2X , µ (A ∪B) = µ (A) ∨ µ (B).

A capacity is a grounded monotone set function.
A possibility measure Π : 2X → [0, 1] is a normalised and maxitive capacity. A possibility

distribution is a function π : X → [0, 1] such that∨
x∈X

π(x) = 1.
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Given a possibility distribution π on a set X, the function Π : 2X → [0, 1] such that for all A ∈ 2X

Π (A) = sup
x∈A

π (x)

is a possibility measure called the possibility measure generated from π. Given a possibility measure
Π : 2X → [0, 1], the function π : X → [0, 1] defined π(x) = Π({x}) is a possibility distribution.

We call a non-empty subcollection F of 2X an algebra, whenever F is closed under finite
union and complementation. Given a set X and an algebra F , a function f : X → R is called
F-measurable if the sets

{x : f (x) > t} and {x : f (x) ≥ t}

belong to F for all t ∈ R.
Let f be a bounded non-negative F-measurable function and let Π be a possibility measure.

The Choquet integral of f with respect to Π is defined as∫ Ch
fdΠ =

∫ ∞
0

Π ({x ∈ X : f (x) ≥ t}) dt,

with t ∈ R, where the right-hand side is the Riemann integral (see [7]).
As usual with Sugeno integration, the function f is assumed to have the same range as the

possibility measure (see [6, 9, 10]). This range is usually assumed to be [0, 1], but, in both cases,
it can be any interval [a, b] ⊂ R. So, let f : X → [0, 1] be a F-measurable function and let Π be a
possibility measure. The Sugeno integral of f with respect to Π is defined as∫ S

fdΠ =
∨

t∈[0,1]

(Π ({x ∈ X : f (x) ≥ t}) ∧ t)

(see [48]).
Suppose that X = {x1, . . . , xn} is a finite set and that F = 2X . Every function f : X → R is

clearly F-measurable and is called a finite function. Both the Choquet and the Sugeno integral of
a finite function take a simpler form. Take a permutation α over X such that

f
(
xα(1)

)
≤ f

(
xα(2)

)
≤ . . . ≤ f

(
xα(n)

)
,

and let
Aα(j) =

{
xα(j), . . . , xα(n)

}
.

The Choquet integral and the Sugeno integral of a finite function f with respect to a possibility
measure Π have the following form:∫ Ch

fdΠ =

n∑
j=1

(
f
(
xα(j)

)
− f

(
xα(j−1)

))
·Π
(
Aα(j)

)
,

with f
(
xα(0)

)
= 0 by convention, and∫ S

fdΠ =

n∨
j=1

(
f
(
xα(j)

)
∧Π

(
Aα(j)

))
.
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As shown in [17], the Sugeno integral for possibility measures can be alternatively defined as
follows: ∫ S

fdΠ =
∨
x∈X

(f (x) ∧ π (x)) ,

where π is the possibility distribution associated to Π.
Possibility measures were originally introduced by Zadeh in [50]. Since then, they have been

studied as measures of uncertainty capable of representing incomplete information and as models of
partial belief offering both a qualitative and a numerical alternative to probabilities [20]. Similar
to probabilities, possibility measures lend themselves to several different interpretations. The
epistemic interpretation is one of the most prominent ones and sees possibilities as a measure of
plausibility of the occurrence of an event. In this context, a possibility distribution over a set of
alternatives can be seen as a way to rank how plausible or likely each option is. Possibility can
also be seen as a measure of logical consistency. The possibility of a proposition is a measure of
how consistent it is with the available information. Another interpretation of possibilities is that
of measures of feasibility: they rank how different options are easy to achieve. Finally, possibility
measures can be cast in a deontic framework and be seen as a way to measure permissibility to
evaluate the degree to which an action is allowed or permitted.

In this work our view of possibility remains neutral and we do not take any stance in regards
to its interpretation. As mentioned above, we simply see a possibility distribution as a way to
formalise a different notion of randomisation.

3. Possibilistic Mixed Extensions

In this section, we introduce the notion of a possibilistic mixed extension, i.e. extensions of
strategic-form games where players are equipped with the set of all possibility distributions over
their strategy space. Each player will have a certain expectation on their outcome based on their
and the other players’ distributions. We offer two distinct approaches to model players’ expec-
tation: a quantitative approach, based on the Choquet integral, and a qualitative one, based on
the Sugeno integral. Again, it is worth pointing out that we are not making any assumptions
concerning the interpretation of possibility distributions here (later, in Section 4, they will be seen
as a measure of commitment for a player to make certain choices). The results we present in this
section are independent of any interpretation.

Definition 9 (Possibilistic Mixed Strategy). Given a strategic-form game G, a possibilistic mixed
strategy for a player i ∈ {1, 2} is a possibility distribution πi : Si → [0, 1].

We denote by Σi the set of all possibilistic mixed strategies of player i.
The possibilistic mixed strategies of the players will have an effect on the game and on the

players’ expectations concerning the outcome. A player’s expectation will depend not only on
their own strategy but also on the other player’s. For this, we need a notion of joint distribution.
Given a pair of possibility distributions (π1, π2) (one for each player) we define the joint possibilistic
mixed strategy of (π1, π2) as the joint possibility distribution

π× : S1 × S2 → [0, 1]

such that for each pair (s1, s2) ∈ S1 × S2

π× (s1, s2) = π1 (s1) ∧ π2 (s2) .
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It is worth pointing out that for the definition of a joint distribution we could have chosen any
triangular norm (see, e.g. [36]) to combine π1 and π2.

1 The choice of the minimum function ∧ is a
standard choice in the framework of possibility theory and also works both with the quantitative
and qualitative approaches of Choquet and Sugeno integration.

In order to study equilibrium concepts based on possibility distributions, it seems natural to
adopt a notion of expectation for possibility measures. The two most common approaches towards
defining expectation for possibility measures are based on the Choquet and the Sugeno integral
[28]. The next two subsections introduce and analyse a concept of possibilistic mixed extensions
of games where players’ expectation is based on these two different notions.

3.1. Quantitative Approach: Choquet Expectation

We start by defining the notion of Choquet expectation.
Take a strategic-form game G with set of strategy combinations,

S1 × S2 = {(s1, s2)1 , . . . , (s1, s2)m}

and take a permutation αi, for each i ∈ {1, 2}, on S1 × S2 such that

ui

(
(s1, s2)αi(1)

)
≤ ui

(
(s1, s2)αi(2)

)
≤ · · · ≤ ui

(
(s1, s2)αi(m)

)
.

Let Aαi(j) ⊆ S1 × S2 be defined as

Aαi(j) =
{

(s1, s2)αi(j) , (s1, s2)αi(j+1) , . . . , (s1, s2)αi(m)

}
,

with i ∈ {1, 2} and 1 ≤ j ≤ m.
Let (π1, π2) ∈ Σ1 ×Σ2 be a pair of possibility distributions for G. Given the joint distribution

π× on S1 × S2, let Π be the possibility measure generated from π×. The Choquet expectation of
player i is the Choquet integral of the utility function ui with respect to the possibility measure Π
and is defined as

EChi (π1, π2) =

∫ Ch
uidΠ =

m∑
j=1

(
ui

(
(s1, s2)αi(j)

)
− ui

(
(s1, s2)αi(j−1)

))
·Π
(
Aαi(j)

)
,

where
Π
(
Aαi(j)

)
=

∨
(s1,s2)∈Aαi(j)

(π1 (s1) ∧ π2 (s2)) ,

and ui

(
(s1, s2)αi(0)

)
= 0, by convention.

We now introduce the possibilistic counterpart of Definition 5 as well as specific notions of best
response and equilibrium for Choquet integrals w.r.t. possibility measures.

1A triangular norm [36] is a binary function ∗ : [0, 1]2 → [0, 1] that is commutative, associative, monotone and
has 1 as a neutral element.
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Definition 10 (Choquet Mixed Extension). Let

G = 〈N,S1, S2, u1, u2〉

be a strategic-form game. The Choquet mixed extension of G is the game

GCh = 〈N,Σ1,Σ2, eu1, eu2〉

where, for i ∈ {1, 2}:

• Each Σi is the set of all possibilistic mixed strategies of player i over Si.

• Each eui : Σ1 × Σ2 → R is a payoff function that associates with each possibilistic mixed
strategy combination (π1, π2) its Choquet expected utility

eui (π1, π2) = EChi (π1, π2) .

Definition 11 (Best Response: Choquet). Let G be a strategic-form game and GCh be its Choquet
mixed extension. Player 1’s best response to a possibilistic mixed strategy π2 ∈ Σ2 is a possibility
distribution π1 ∈ Σ1 such that, for all π′1 ∈ Σ1:

ECh1 (π1, π2) ≥ ECh1
(
π′1, π2

)
.

The definition for Player 2 is analogous.

Definition 12 (Choquet Equilibrium). Let G be a strategic-form game and GCh be its Choquet
mixed extension. We call a pair of possibilistic mixed strategies (π1, π2) ∈ Σ1 × Σ2 a Choquet
equilibrium for G (CE, for short) if each player’s possibilistic mixed strategy is a best response to
the other player’s possibilistic mixed strategy.

For a strategic-form game G, we denote by Ch(G) its set of Choquet equilibria.
We now explore the existence of CEs for games with possibilistic mixed strategies.

Theorem 13. Let G and GCh be a strategic-form game and its Choquet mixed extension, respec-
tively. Let (π1, π2) ∈ Σ1 × Σ2. For each player i = {1, 2} and 1 ≤ j ≤ m let

Amax
αi(j)

=

{
(s1, s2) | (s1, s2) ∈ Aαi(j) and s−i ∈ argmax

s′−i∈S−i,(s′1,s′2)∈Aαi(j)
π−i

(
s′−i
)}

.

Then, the following conditions are equivalent:

1. (π1, π2) is a Choquet equilibrium for G.

2. For every 1 ≤ j ≤ m such that u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

)
> 0, there exists

(s1, s2) ∈ Amax
α1(j)

such that

π1 (s1) ≥ π2 (s2) ,

and for every 1 ≤ j ≤ m such that u2

(
(s1, s2)α2(j)

)
− u2

(
(s1, s2)α2(j−1)

)
> 0 there exists

(s′1, s
′
2) ∈ Amax

α2(j)
such that

π2
(
s′2
)
≥ π1

(
s′1
)
.
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Proof. (1)⇒ (2): Suppose (2) does not hold. Without any loss of generality we can assume that for

player 1 and for some j such that u1

(
(s1, s2)α1(j)

)
−u1

(
(s1, s2)α1(j−1)

)
> 0, for all (s1, s2) ∈ Amax

α1(j)

π1 (s1) < π2 (s2) .

Choose a strategy combination (s′1, s
′
2) ∈ Amax

α1(j)
, and take a new possibility distribution π′1 for

player 1 such that, for all s1 ∈ S1 \ {s′1},

π′1 (s1) = π1 (s1) and π′1
(
s′1
)

= π2
(
s′2
)
,

i.e.: π′1 differs from π1 only in the value assigned to the strategy s′1, so that

π′1(s
′
1) > π1(s

′
1).

Let Π′ be the possibility measure generated by the joint possibility distribution π′× obtained from
π′1 and π2. Then, for each 1 ≤ j′ ≤ m, with j′ 6= j,

Π
(
Aα1(j′)

)
=

∨
(s1,s2)∈Aα1(j′)

(π1 (s1) ∧ π2 (s2)) ≤
∨

(s1,s2)∈Aα1(j′)

(π′1 (s1) ∧ π2 (s2)) = Π′
(
Aα1(j′)

)
,

and, for j,

Π
(
Aα1(j)

)
=

∨
(s1,s2)∈Aα1(j)

(π1 (s1) ∧ π2 (s2)) < π2(s2),

Π′
(
Aα1(j)

)
=

∨
(s1,s2)∈Aα1(j)

(π′1 (s1) ∧ π2 (s2)) = π2(s2).

Consequently
ECh1 (π1, π2) < ECh1

(
π′1, π2

)
,

and so (π1, π2) is not an equilibrium and (1) does not hold.

(2) ⇒ (1): Suppose that (2) holds. Then, for player 1, and all π′1 ∈ Σ1, for each j such that

u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

)
> 0,

Π′
(
Aα1(j)

)
=

∨
(s′′1 ,s′′2)∈Aα1(j)

(π′1 (s′′1) ∧ π2 (s′′2)) ≤ π2 (s2) =∨
(s′′1 ,s′′2)∈Aα1(j)

(π1 (s′′1) ∧ π2 (s′′2)) = Π
(
Aα1(j)

)
.

So, we have that
ECh1

(
π′1, π2

)
≤ ECh1 (π1, π2) ,

A similar argument holds for player 2, and so (π1, π2) is a CE.

The following corollary is an immediate consequence of the previous result.

Corollary 14. Every strategic-form game G admits a Choquet equilibrium, i.e. Ch(G) 6= ∅. In
particular, every (π1, π2) ∈ Σ1 × Σ2 is an equilibrium whenever, for every i and every si ∈ Si,
πi (si) = 1.
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Proof. It is easy to see that the above case satisfies condition (2) of Theorem 13.

The set of CEs for strategic-form games is invariant under affine transformations.

Definition 15. Two strategic-form games

G1 = {N,S1, S2, u1, u2} G2 = {N,S1, S2, v1, v2}

with the same sets of pure strategies are strategically equivalent if, for each player i, the function
ui is a positive affine transformation of the function vi: i.e., there exist ai > 0 and bi ∈ R such
that

vi(s1, s2) = ai · ui(s1, s2) + bi

for all (s1, s2) ∈ S1 × S2.

Proposition 16. Let G1 and G2 be two strategically equivalent strategic-form games. Then

Ch(G1) = Ch(G2),

i.e. both games have the same set of Choquet equilibria.

Proof. The proof is easy. Suppose that a pair (π1, π2) is a CE for G1 but not for G2. Then,
without any loss of generality, we can assume there exists a distribution π′1 ∈ Σ1 such that

m∑
j=1

(
v1

(
(s1, s2)α1(j)

)
− v1

(
(s1, s2)α1(j−1)

))
·Π
(
Aα1(j)

)
<

m∑
j=1

(
v1

(
(s1, s2)α1(j)

)
− v1

(
(s1, s2)α1(j−1)

))
·Π′

(
Aα1(j)

)
,

where Π and Π′ are the possibility measures derived from the joint distribution of π1 and π2, and
π′1 and π2, respectively.

From the fact that
v1(s1, s2) = a1 · u1(s1, s2) + b1

we easily obtain

m∑
j=1

(
u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

))
·Π
(
Aα1(j)

)
<

m∑
j=1

(
u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

))
·Π′

(
Aα1(j)

)
,

which means that (π1, π2) is not a CE for G1, contradicting the original assumption.
The converse can be proved with a similar argument.

Theorem 13 implicitly gives us a polynomial-time algorithm to check whether two possibility
distributions form a CE.

Proposition 17. Let G and GCh be a strategic-form game and its Choquet mixed extension,
respectively. Checking whether any (π1, π2) ∈ Σ1×Σ2 is a Choquet equilibrium for G is in PTIME.
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Proof. The input is an explicit representation of the game G containing, for each player, the value
of their utility function at each strategy combination, along with the distributions π1 and π2. The
algorithm proceeds as follows.

For player 1, order the elements of S1 × S2 in terms of their utility, obtaining

u1

(
(s1, s2)α1(1)

)
≤ u1

(
(s1, s2)α1(2)

)
≤ · · · ≤ u1

(
(s1, s2)α1(m)

)
.

Then, for each 1 ≤ j ≤ m, if u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

)
> 0 define the sets

Aα1(j) and Amax
α1(j)

,

and check

(]) if there is any (s1, s2) ∈ Amax
α1(j)

such that π1(s1) ≥ π2(s2).

If for any j the answer to (]) is negative, the algorithm stops and (π1, π2) is not an equilibrium.
If not, the process is repeated for player 2, i.e.: order the set of strategy combination in terms on

player 2’s utility, and for each 1 ≤ j ≤ m, if u2

(
(s1, s2)α2(j)

)
− u2

(
(s1, s2)α2(j−1)

)
> 0, define the

sets
Aα2(j) and Amax

α2(j)
,

and check

(]]) if there is any (s1, s2) ∈ Amax
α2(j)

such that π2(s2) ≥ π1(s1).

If for any j the answer to (]]) is negative, the algorithm stops and (π1, π2) is not an equilibrium.
If not, the process reaches the end and (π1, π2) is a CE.

It is clear that both the definition of Aαi(j) and Amax
αi(j)

for each player i and checking the

conditions (]) and (]]) can be computed in time polynomial in the size of the input.

3.2. Qualitative Approach: Sugeno Expectation

We start by defining the notion of Sugeno expectation for strategic-form games. Following the
definition of Sugeno integration given in Section 2, when dealing with the expected utility with
respect to a possibility measure, we assume the range of a utility function u to be a subset of [0, 1]
containing both 0 and 1 (see [6]).

Remark 18. From now on, whenever we deal with Sugeno expected utility, we assume strategic-
form games to have utility functions ui, i ∈ {1, 2}, such that

ran(ui) = {0, a1, . . . , ami−2, 1} ⊂ [0, 1].

Take a strategic-form game G with set of strategy combinations,

S1 × S2 = {(s1, s2)1 , . . . , (s1, s2)m}

and take a permutation αi, for each i ∈ {1, 2}, on S1 × S2 such that

ui

(
(s1, s2)αi(1)

)
≤ ui

(
(s1, s2)αi(2)

)
≤ · · · ≤ ui

(
(s1, s2)αi(m)

)
.

12



Let Aαi(j) ⊆ S1 × S2 be defined as

Aαi(j) =
{

(s1, s2)αi(j) , (s1, s2)αi(j+1) , . . . , (s1, s2)αi(m)

}
,

with i ∈ {1, 2} and 1 ≤ j ≤ m.
Let (π1, π2) ∈ Σ1 × Σ2 be a pair of possibilistic mixed strategies for G. Given their joint

distribution π× on S1 × S2, let Π be the possibility measure generated from π×. The Sugeno
expectation of player i is the Sugeno integral of the utility function ui with respect to the possibility
measure Π and is defined as

ESi (π1, π2) =

∫ S
uidΠ =

m∨
j=1

(
ui

(
(s1, s2)αi(j)

)
∧Π

(
Aαi(j)

))
.

Given [17], ESi (π1, π2) can be equivalently written in the following form:

ESi (π1, π2) =

∫ S
uidΠ =

∨
(s1,s2)∈S1×S2

(ui ((s1, s2)) ∧ (π1 (s1) ∧ π2 (s2))) .

We now introduce the possibilistic counterpart of Definition 5 as well as specific notions of best
response and equilibrium for Sugeno integrals w.r.t. possibility distributions.

Definition 19 (Sugeno Mixed Extension). Let

G = 〈N,S1, S2, u1, u2〉

be a strategic-form game. The Sugeno mixed extension of G is the game

GS = 〈N,Σ1,Σ2, eu1, eu2〉

where, for i ∈ {1, 2}:

• Each Σi is the set of all possibilistic mixed strategies of player i over Si.

• Each eui : Σ1 × Σ2 → R is a payoff function that associates with each possibilistic mixed
strategy combination (π1, π2) its Sugeno expected utility

eui (π1, π2) = ESi (π1, π2) .

Definition 20 (Best Response: Sugeno). Let G be a strategic-form game and GS be its Sugeno
mixed extension. Player 1’s best response to a possibilistic mixed strategy π2 ∈ Σ2 is a possibility
distribution π1 ∈ Σ1 such that, for all π′1 ∈ Σ1:

ES1 (π1, π2) ≥ ES1
(
π′1, π2

)
.

The definition for Player 2 is analogous.

Definition 21 (Sugeno Equilibrium). Let G be a strategic-form game and GS be its Sugeno mixed
extension. We call a pair of possibilistic mixed strategies (π1, π2) ∈ Σ1 × Σ2 a Sugeno equilibrium
for G (SE, for short) if each player’s possibilistic mixed strategy is a best response to the other
player’s possibilistic mixed strategy.

13



For a strategic-form game G, we denote by S(G) the set of its Sugeno equilibria.
We now give a characterisation of the conditions for a pair of possibilistic mixed strategies to

be a Sugeno equilibrium.

Theorem 22. Let G and GS be a strategic-form game and its Sugeno mixed extension, respectively.
Let (π1, π2) ∈ Σ1 × Σ2 and let

B1 = argmax
(s1,s2)∈S1×S2

(π2(s2) ∧ u1(s1, s2)) and B2 = argmax
(s1,s2)∈S1×S2

(π1(s1) ∧ u2(s1, s2)) .

Then the following conditions are equivalent:

1. (π1, π2) is a Sugeno equilibrium for G.

2. There exists (s1, s2) ∈ B1 such that

π1(s1) ≥ π2(s2) ∧ u1 (s1, s2) ,

and there exists (s1, s2) ∈ B2 such that

π2(s2) ≥ π1(s1) ∧ u2 (s1, s2) .

Proof. (1)⇒ (2): Suppose (2) does not hold. Without any loss of generality, we can assume that
for player 1 and all (s1, s2) ∈ B1,

π1(s1) < π2(s2) ∧ u1 (s1, s2) .

Moreover, it is clear that, for all (s1, s2) ∈ B1,

ES1 (π1, π2) < π2(s2) ∧ u1 (s1, s2) .

Choose a strategy combination (s′1, s
′
2) ∈ B1 and take a new possibility distribution π′1 ∈ Σ1

for player 1 such that, for all s1 ∈ S1 \ {s′1},

π′1(s1) = π1(s1) and π′1(s
′
1) = π2(s

′
2) ∧ u1

(
s′1, s

′
2

)
,

i.e.: π′1 differs from π1 only in the value assigned to the strategy s′1, so that

π′1(s
′
1) > π1(s

′
1).

It is clear that, by construction,

ES1 (π′1, π2) = π2(s
′
2) ∧ u1

(
s′1, s

′
2

)
,

and so,
ES1 (π1, π2) < π2(s

′
2) ∧ u1

(
s′1, s

′
2

)
= ES1 (π′1, π2).

Then (π1, π2) is not a Sugeno equilibrium and (1) does not hold.

(2)⇒ (1): Suppose that (2) holds and let (s1, s2) ∈ B1 be such that

π1(s1) ≥ π2(s2) ∧ u1 (s1, s2) .
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Given that (s1, s2) ∈ B1, then, for all (s′1, s
′
2),

π2(s
′
2) ∧ u1

(
s′1, s

′
2

)
≤ π2(s2) ∧ u1 (s1, s2) ,

and so

π1(s
′
1) ∧ π2(s′2) ∧ u1

(
s′1, s

′
2

)
≤ π2(s2) ∧ u1 (s1, s2) = π1(s1) ∧ π2(s2) ∧ u1 (s1, s2) ,

and
ES1 (π1, π2) = π1(s1) ∧ π2(s2) ∧ u1 (s1, s2) .

Also, for any distribution π′1 and any (s′1, s
′
2) we have that

π′1(s
′
1) ∧ π2(s′2) ∧ u1

(
s′1, s

′
2

)
≤ π2(s2) ∧ u1 (s1, s2) ,

and so, for all π′1
ES1 (π′1, π2) ≤ ES1 (π1, π2).

A similar argument can be made for any (s1, s2) ∈ B2 such that

π2(s2) ≥ π1(s1) ∧ u2 (s1, s2) .

Therefore, (π1, π2) is a Sugeno a equilibrium.

The following corollary similar to Corollary 14 is an immediate consequence of the previous result.

Corollary 23. Every strategic-form game G admits a Sugeno equilibrium, i.e. S(G) 6= ∅. In
particular, every (π1, π2) ∈ Σ1 × Σ2 is an equilibrium whenever, for every i and every si ∈ Si,
πi (si) = 1.

In the previous subsection, we defined two games to be strategically equivalent whenever the
utility functions of one of them are an affine transformation of the functions of the other. Proposi-
tion 16 shows that strategically equivalent strategic-form games share the same Choquet equilibria.
This clearly does not apply to Sugeno equilibria, the obvious reason being the fact that we require
the utility functions ui, i ∈ {1, 2}, to be such that

ran(ui) = {0, a1, . . . , ami−2, 1} ⊂ [0, 1].

Theorem 22 implicitly gives us a polynomial-time algorithm to check whether two possibilistic
mixed strategies form a SE.

Proposition 24. Let G and GS be a strategic-form game and its Sugeno mixed extension, respec-
tively. Checking whether any (π1, π2) ∈ Σ1 × Σ2 is a Sugeno equilibrium for G is in PTIME.

Proof. The input is an explicit representation of the game G containing, for each player, the value
of their utility function at each strategy combination, along with the distributions π1 and π2. The
algorithm proceeds as follows.

For player 1 define the set B1, and check if there is any

(s1, s2) ∈ B1 (1)
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such that
π1(s1) ≥ π2(s2) ∧ u1(s1, s2).

For player 2 define the set B2, and check if there is any

(s1, s2) ∈ B2 (2)

such that
π2(s2) ≥ π1(s2) ∧ u2(s1, s2).

If the answer to either (1) or (2) is negative, the algorithm stops and (π1, π2) is not an equilibrium.
Otherwise, (π1, π2) is a SE.

It is clear that both sets B1, B2 and the subsequent checks can be computed in time polynomial
in the size of the input.

4. An Application to Coordination Games

Building on pioneering contributions by Emile Borel and John von Neumann, the first fully-fledged
general characterisation of the conditions for the existence of equilibria in strategic-form games was
put forward by John Nash in [42]. This provided a principled answer to the question as to how
to think and act rationally in strategic situations, which also is the unique such answer if exactly
one equilibrium exists. However, it is easy to construct games with multiple equilibria, which, as
noted by Schelling in [46], model quite closely a number of real-world social situations. A game
with multiple payoff-indistinguishable equilibria is called a pure coordination game. If equilibria
are payoff-distinguishable they are called coordination games. These games put on display a sit-
uation of strategic uncertainty, where rational players are faced with the problem of selecting an
equilibrium among many. Coordination games are of particular interest given that some equilibria
are more rewarding than others for all players. Typically, these games embody a tension between
efficiency and security (or risk-dominance), as players choosing strategies that support payoff-
superior equilibria incur in greater losses if their choice is not matched by their opponent. As a
consequence, two types of coordination failure may occur: a disequilibrium outcome and coordina-
tion on a suboptimal equilibrium. Harsanyi and Selten (see [31]) formalised the tradeoff implicit in
these games and stated that rational players, in the presence of common knowledge of rationality,
should select the efficient (i.e., payoff-dominant) equilibrium. However, subsequent experimental
studies convincingly demonstrated that Harsanyi and Selten’s prediction holds true only under
very special conditions, while in all remaining cases coordination failure occurs almost invariably.
Building on this, [12] showed that common knowledge of the recommendation to play (one’s part
of) the efficient equilibrium is not conducive to coordinating on the most rewarding equilibrium.
In short, the problem of identifying the rational course of action in a multiple equilibrium game
remains essentially open.

In this section we suggest that possibilistic equilibria may play an interesting role in addressing
the problem. To do so, we cast a paradigmatic example of coordination game – the so-called weak-
link (WLG) a.k.a. minimum effort game – in the language of strategic-form games with possibilistic
mixed strategies. On-time aircraft departures are prototypical examples of coordination problems
of the weak-link type (see, e.g., [37]), since the airplane cannot take-off before all operations (e.g.,
fuelling, security checks, loading of luggage, boarding of passengers, etc.) have been completed.
Other examples include relationships between different branches of a bank, the writing of a grant
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proposal involving several participants, an edited volume involving several authors, and many
others [3, 4]. Common to all aforementioned examples is the fact that the output is determined by
the agent exerting the lowest level of effort (the “weak link”), and any effort above the minimum
is wasted.

Here we interpret possibilistic mixed strategies as an index of commitment of a player towards
their strategies. Analysing the WLG helps us putting forward a significant distinction between
Choquet and Sugeno expectations to the extent that Choquet equilibria do provide us with a
symmetry-breaking device which singles out the commitment to play higher-payoff (and hence
higher-risk) strategies (Theorem 27). Since WLGs are typically seen as models for analysing the
tradeoffs between payoff-dominant and risk-dominant equilibria, the existence of Choquet equilibria
feeds back suggesting that the use of possibility distributions and Choquet expectation offers a
novel approach to the refinement and selection of Nash Equilibria. In addition, it supports our
interpretation of possibilistic mixed strategies as an index of commitment of a player towards their
available choices.

4.1. Weak-link Games

A weak-link game is defined by n players who must simultaneously choose a natural number x in
{1, 2, . . . , q}. The payoff function for the game is defined as follows:

ui (x1, x2, . . . xn) = a+ b ·min (x1, x2, . . . xn)− c · [xi −min (x1, x2, . . . xn)] (3)

where xi is the number chosen by player i, and a, b and c are positive parameters. xi is intuitively
interpreted as the “effort level chosen by player i”. Provided that the payoff function is common
knowledge, the game has n pure Nash equilibria, corresponding to the n action combinations in
which all players select the same effort level. Furthermore, the Nash equilibria can be Pareto-
ranked, with the combination

{x1 = x2 = · · · = xn = q}

being the efficient, or payoff-dominant equilibrium. Vice versa, the combination

{x1 = x2 = · · · = xn = 1}

corresponds to the secure equilibrium, see [31].
In this work, we only consider WLGs with two players. We denote by W any weak-link game

where each player i ∈ {1, 2} has a non-empty strategy set

S = {1, . . . , q}

with q ∈ N, and where

ui (x1, x2) = a+ b ·min (x1, x2)− c · [xi −min (x1, x2)] (4)

is a non-negative function.
In the next subsections, we will study the Choquet and Sugeno mixed extensions of WLGs.

Each player i ∈ {1, 2} will be assumed to have the full set Σ of possibility distributions over their
strategy set, i.e. each πi ∈ Σ is such that

πi : S → [0, 1]
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(notice that the set of possibilistic mixed strategies Σ is the same for each player). A possibility
distribution is interpreted as a ranking or an index specifying the commitment for a player to play
a certain strategy. If the players assign the same degree of possibility towards a strategy s ∈ S,
i.e. π1(s) = π2(s), we say that the players agree on s. In other words, both players have the same
commitment towards playing the same strategy and making the same effort.

Example 25. Let W7 be the WLG with the following parameter values: n = 2, q = 7, a = 6,
b = c = 1. The payoff functions of W7 are defined as follows, for each player i:

ui (x1, x2) = 6 + min (x1, x2)− [xi −min (x1, x2)]. (5)

For these parameters, the game presents seven Pareto-ranked Nash equilibria, with the combination

x1 = x2 = 7

representing the payoff-dominant equilibrium and the combination

x1 = x2 = 1

the secure equilibrium. Each player is penalised the further their choice is from the minimum in
the group. The resulting payoff matrix is shown in Table 1.

Player 1

Player 2

1 2 3 4 5 6 7

1 7
7

6
7

5
7

4
7

3
7

2
7

1
7

2 7
6

8
8

7
8

6
8

5
8

4
8

3
8

3 7
5

8
7

9
9

8
9

7
9

6
9

5
9

4 7
4

8
6

9
8

10
10

9
10

8
10

7
10

5 7
3

8
5

9
7

10
9

11
11

10
11

9
11

6 7
2

8
4

9
6

10
8

11
10

12
12

11
12

7 7
1

8
3

9
5

10
7

11
9

12
11

13
13

Table 1: Payoff of the 2-player weak-link game W7.

4.2. Quantitative Approach

To understand how to use the concept of Choquet expectation for WLGs, we explain how it is
computed for the game W7. Let (π1, π2) ∈ Σ× Σ be a pair of possibilistic mixed strategies. The
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first step is to compute the joint distribution π× of the players from the marginal distributions
π1, π2. Take a permutation αi on S × S such that

ui

((
s, s′

)
αi(1)

)
≤ ui

((
s, s′

)
αi(2)

)
≤ · · · ≤ ui

((
s, s′

)
αi(49)

)
,

and the sets Aαi(j) ⊆ S × S as

Aαi(j) =
{(
s, s′

)
αi(j)

,
(
s, s′

)
αi(j+1)

, . . . ,
(
s, s′

)
αi(49)

}
.

For each Aαi(j), compute its possibility value

Π
(
Aαi(j)

)
=

∨
(s,s′)∈Aαi(j)

(
π1(s) ∧ π2(s′)

)
.

The Choquet expectation for player i is given by

EChi (π1, π2) =
49∑
j=1

(
ui

((
s, s′

)
αi(j)

)
− ui

((
s, s′

)
αi(j−1)

))
·Π
(
Aαi(j)

)
.

The above definition can be significantly simplified. Let J be the set of all 1 ≤ j ≤ 49 such

that ui

(
(s1, s2)α1(j)

)
− ui

(
(s1, s2)αi(j−1)

)
> 0. For each j′ ∈ J

ui

((
s, s′

)
αi(j′)

)
− ui

((
s, s′

)
αi(j′−1)

)
= 1.

Then we have that
EChi (π1, π2) =

∑
j′∈J

Π
(
Aαi(j′)

)
.

From Corollary 14, we know a CE for WLGs always exists and it coincides with the trivial
equilibrium in which both player 1 and player 2 assign maximum value to each single strategy.
This situation coincides with the case where none of the players actually cares about the outcome,
i.e. they are indifferent on which strategy to play. This is not the only equilibrium and, in fact,
as we prove below, every situation in which both players agree on all strategies, i.e. they have
the same commitment to play each strategy, is also an equilibrium. Full agreement though is not
required for the existence of an equilibrium, as shown in the following example.

Example 26. Consider the weak-link game W7 and the following pair of possibilistic mixed strate-
gies:

π1 = (0, 0, 0.5, 0.5, 1, 0.3, 0.5) π2 = (1, 1, 0.5, 0.5, 1, 0.4, 0.5) .

It is clear that the players’ distributions are quite different in the pair (π1, π2). To see that (π1, π2)
is a CE, we check whether condition (2) of Theorem 13 is satisfied. Table 2 and Table 3 give a
visual representation of this process. For each 1 ≤ j ≤ 49 such that

ui

(
(s1, s2)α1(j)

)
− ui

(
(s1, s2)αi(j−1)

)
> 0 :

• The cells highlighted in light grey correspond to the strategy combinations (s, s′) ∈ Aαi(j).
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Aα1(1)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(2)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(3)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(5)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(7)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(10)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(13)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(23)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(31)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(38)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(43)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(47)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα1(49)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Table 2: Aα1(j) sets in the weak-link game W7 (Example 26).

• The white cells correspond to the strategy combinations (s, s′) 6∈ Aαi(j).

• The cells highlighted in grey correspond to those strategy combinations that belong to Amax
αi(j)

(see Theorem 13).

• The cells highlighted in dark grey correspond to the strategy profiles (s, s′) ∈ Amax
αi(j)

for which

πi(si) ≥ π−i(s−i).

Table 2 and Table 3 show that Condition (2) of Theorem 13 is satisfied and so (π1, π2) is a CE.

The above example shows that for a WLG disagreement in terms of having a different com-
mitment over the possible choices does not negate a CE. In this case, while the players heavily
disagree on the first strategies, they show a much higher level of agreement over strategies to play
higher numbers (i.e. over strategies that have more effort in the WLG). This is a key point for the
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Aα2(1)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(2)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(3)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(5)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(7)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(10)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(13)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(23)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(31)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(38)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(43)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(47)

1 1 .5 .5 1 .4 .5
0

0

.5

.5

1

.3

.5

Aα2(49)

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Table 3: Aα2(j) sets in the weak-link game W7 (Example 26).
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existence of CEs in WLGs, and is a consequence of a more general characterisation that we give
here below. This characterisation is specific to WLGs and simplifies the one given in Theorem 13.

Theorem 27. Let W be any weak-link game, let W be its Choquet mixed extension and let
(π1, π2) ∈ Σ× Σ. The following statements are equivalent:

1. (π1, π2) is a Choquet equilibrium for W;

2. For all s ∈ S, if π1(s) 6= π2(s), then s 6= q and there exists s′ ∈ S such that s′ > s and

π1(s
′) = π2(s

′) ≥ π1(s) ∨ π2(s).

Proof. (1)⇒ (2): Suppose (2) does not hold. Let Y ⊆ S be the set of strategies for which condition
(2) fails and let s be its greatest element. We have that either s = q or for all s′ > s

(a) π1(s
′) 6= π2(s

′) and s′ satisfies condition (2), or

(b) π1(s
′) = π2(s

′) < π1(s) ∨ π2(s).

Let us assume, without any loss of generality, that

π1(s) < π2(s).

If s = q, then (π1, π2) is not a CE. In fact Aα1(q2) contains only the element (q, q) and, since

π1(q) < π2(q),

condition (2) of Theorem 13 fails.
Assume then that s < q. For all s′ > s we have that

π2(s
′) < π2(s).

In fact, if s′ satisfies (b) then

π1(s
′) = π2(s

′) < π1(s) ∨ π2(s) = π2(s).

If s′ satisfies (a), then it must be the case that

π2(s
′) < π1(s) ∨ π2(s) = π2(s),

since condition (2) fails for s.
Now, let Aα1(j) be the smallest set containing all strategy combinations (s′′, s′′′) such that

u1(s, s) ≤ u1(s
′′, s′′′). Aα1(j) contains all pairs (s′, s′) with s′ > s, and, since we have established

that
π2(s

′) < π2(s),

it is easy to see that
Amax
α1(j)

= {(s, s)} .

We have assumed that
π1(s) < π2(s),

consequently, condition (2) of Theorem 13 fails and (π1, π2) is not a CE.
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(2)⇒ (1): Suppose (1) does not hold, i.e. (π1, π2) is not a CE. Without any loss of generality,
by Theorem 13, we can assume that for player 1, there exists 1 ≤ j ≤ q2 such that

u1

(
(s1, s2)α1(j)

)
− u1

(
(s1, s2)α1(j−1)

)
> 0

so that for all (s, s′) ∈ Amax
α1(j)

,

π1(s) < π2(s
′).

Now, notice that for all (s, s′) ∈ Amax
α1(j)

, also (s′, s′) ∈ Aα1(j). In fact, it is easy to check that, in
general,

u1(s, s
′) ≤ u1(s′, s′).

If s ≤ s′
u1(s, s

′) = a+ b ·min(s, s′)− c · (s−min(s, s′)) = a+ b · s,

u1(s
′, s′) = a+ b ·min(s′, s′)− c · (s′ −min(s′, s′)) = a+ b · s′,

and so
u1(s, s

′) = a+ b · s ≤ a+ b · s′ = u1(s
′, s′).

If s ≥ s′
u1(s, s

′) = a+ b ·min(s, s′)− c · (s−min(s, s′)) = a+ b · s′ − c · (s− s′),

u1(s
′, s′) = a+ b ·min(s′, s′)− c · (s′ −min(s′, s′)) = a+ b · s′,

and so
u1(s, s

′) = a+ b · s′ − c · (s− s′) ≤ a+ b · s′ = u1(s
′, s′).

This shows that (s′, s′) ∈ Aα1(j) and consequently (s′, s′) ∈ Amax
α1(j)

, which means that

π1(s
′) < π2(s

′).

If s′ = q, we have reached our conclusion. Otherwise, suppose that s′ < q and for some s′′ > s′,

π1(s
′′) = π2(s

′′) ≥ π1(s′) ∨ π2(s′).

It is clear that (s′′, s′′) ∈ Aα1(j) and also (s′′, s′′) ∈ Amax
α1(j)

. This contradicts our original assumption,

so it must be the case that (2) does not hold.
This concludes the proof of the theorem.

In spite of the technicalities, the above result gives us a fairly clear picture of whether two pos-
sibility distributions form a Choquet equilibrium. While this always trivially happens when players
fully agree in their distributions, disagreement is clearly tolerated. That is the case whenever dis-
agreement in playing a certain strategy is superseded by fully agreeing to playing a strategy with
a higher effort. In other words: for an equilibrium to exist, any time two players have a different
possibility to play a certain strategy, they must both have a higher and the same possibility to
play a strategy that requires a greater effort than the one they disagreed upon.

In this sense, Choquet equilibria can be seen to provide an interesting refinement of Nash
equilibria. To see this, recall that the coordination games, of which the WLG provides a special
case, raise the question of selecting among payoff-distinguishable equilibria which nonetheless are
all Nash equilibria. So, selecting from this set effectively means achieving two goals. First, the
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symmetry among equilibria must be broken. Second, it must be broken in such a way that the most
desirable equilibria become salient. For the WLG, higher payoff equilibria clearly count as such.
The significance of Theorem 27 can then be analysed again from this perspective. We have two
cases to consider. Suppose that player 1 and player 2 agree fully on their possibility distributions
on S for game W. Then possibilistic mixed strategies do not allow us to make any distinction
among the set of Nash equilibria. This however should not be surprising, for any method for
selecting among Nash equilibria must break the symmetry of the coordination game, a task that
certainly cannot be accomplished by a pair of identical possibility distributions. So, symmetry
must be broken by some form of disagreement between π1 and π2, which brings us to the second,
more interesting, case. What our analysis of Choquet equilibria in the WLG brings forward is then
that such a disagreement makes higher payoff strategies more salient. For disagreement on lower
payoff strategies, in a Choquet Equilibrium, is compensated by agreement on payoff superior ones.
This is precisely the kind of refinement of Nash equilibrium desirable for the WLG.

4.3. Qualitative Approach

As mentioned in Remark 18, whenever we deal with Sugeno expected utility, we assume strategic-
form games to have utility functions ui, i ∈ {1, 2}, such that

ran(ui) = {0, a1, . . . , ami−2, 1} ⊂ [0, 1]

so that their range belong to the same scale as the possibility distributions. In the weak-link game,
each utility function is of the form

ui : {1, . . . , 7} × {1, . . . , 7} → {1, . . . , 13},

so, in order to use Sugeno expected utility, we have two options:

1. We rescale the range of ui and define an order-preserving bijection

h : {1, . . . , 13} →
{

0,
1

12
, . . . ,

11

12
, 1

}
to obtain new utility functions

u′i = h(ui)

and define a new game that is strategically equivalent to the WLG.

2. We rescale the range of the possibility distributions πi so that, for each player i,

πi : {1, 2, . . . , 7} → [1, 13].

In this section, we follow the second approach. Notice that the setting and the results of Section
3.2 easily hold.

Recall that the expected utility for each player i is given by

ESi (π1, π2) =
∨

(s1,s2)∈S1×S2

(ui ((s1, s2)) ∧ (π1 (s1) ∧ π2 (s2))) .

From Corollary 23, we know that a SE always exists and coincides with the case where both
distributions assign maximum value to all the strategies. This is not the only equilibrium and, in
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fact, there are many, such as those that correspond to situations in which both players agree on
all strategies, meaning that they have the same commitment toward playing the same strategies.

Similar to the case of Choquet expectation, equilibria exist also in the presence of disagreement.
Consider first situations with extremal distributions (i.e. distributions assigning to each strategy
either the maximum or the minimum) for both players. A SE can exist even when players disagree
on their extremal distributions. For instance, with the distributions

π1 = (13, 1, 1, 13, 13, 1, 1) π2 = (1, 13, 13, 1, 13, 1, 1),

player 1 and player 2 disagree for strategies from 1 to 4, but agree on the remaining strategies. We
can use Theorem 22 to see that (π1, π2) is a SE. In fact

B1 = {(5, 5)} and π1(5) = 13 ≥ (π2(5) ∧ u1(5, 5)) = (13 ∧ 11) = 11;

and
B2 = {(5, 5)} and π2(5) = 13 ≥ (π1(5) ∧ u2(5, 5)) = (13 ∧ 11) = 11.

In this case both players assign the maximum value to different strategies but agree on a strategy
for which the related effort is greater than the effort for those strategies for which they have a
different commitment.

The case of non-extremal distributions is similar. While full, agreement always guarantees an
equilibrium, disagreement does not necessarily negate the SE. Take for instance, the distributions

π′1 = (13, 7, 13, 5, 12, 6, 3) π′2 = (3, 13, 1, 1, 12, 2, 2).

Both players heavily disagree over many strategies but agree to a very high degree on strategy 5.
The fact that (π′1, π

′
2) is a SE is shown by the following:

B1 = {(5, 5)} and π′1(5) = 12 ≥ (π′2(5) ∧ u1(5, 5)) = (12 ∧ 11) = 11;

and
B2 = {(5, 5)} and π′2(5) = 12 ≥ (π′1(5) ∧ u2(5, 5)) = (12 ∧ 11) = 11.

As another example, consider the distributions

π′′1 = (13, 1, 6, 1, 6, 1, 6) π′′2 = (13, 6, 1, 6, 1, 6, 1).

Both players have the same and highest commitment to play 1 and heavily disagree on all the other
strategies. Still, the pair (π′′1 , π

′′
2) is a Sugeno equilibrium. In fact:

B1 = {(1, 1)} and π′′1(1) = 13 ≥ (π′′2(1) ∧ u1(1, 1)) = (13 ∧ 7) = 7;

and
B2 = {(1, 1)} and π′′2(1) = 13 ≥ (π′′1(1) ∧ u2(1, 1)) = (13 ∧ 7) = 7.

The above examples of the WLG with with Sugeno expectation suggest that agreement among
players with respect to their commitment to playing certain strategies is always better but dis-
agreement is not detrimental. The situation shares some similarities with Choquet expectation,
but there are some crucial differences. The first one is in the role of the utility function and how
the expected value is computed. In the case of Choquet expectation, utility functions play no
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role in the existence of equilibria. Theorem 27 clearly shows that comparing the values of the
possibility distributions is the only thing that matters. In Sugeno expectation, however, the values
of the utility functions play a fundamental role. This is evident from the way the Sugeno integral
is defined and also from the characterisation given in Theorem 22 and is due to its essentially
qualitative nature. In a Choquet integral the value of a possibility measure is multiplied by the
difference between values of the utility function. The possibilistic value can then be seen as a sort
of modifier or weight. In a Sugeno integral the values of a possibility measure (distribution) and
of the utility function are combined with the minimum function. The result of this combination
is either one value or the other. The possibilistic value does not simply act as a modifier or a
weight but is treated as an entity equal to the the utility and has to be compared to it. So, when
dealing with Sugeno equilibria for the WLG, we cannot take into account only the possibilistic
mixed strategies and the players’ commitment. Their utility functions will always play a role.

Another clear difference between Sugeno and Choquet expectation emerges in situation of
disagreement. Disagreement between possibilistic mixed strategies in a Choquet equilibrium is
resolved by the players agreeing to play a same strategy with higher effort with a higher commitment
than the strategy they disagreed upon. As proven in Theorem 27, agreement on strategies with
higher effort is unavoidable in a CE. For Sugeno expectation this kind of agreement is not necessary
for the equilibrium to exist. In the distributions

π′1 = (13, 7, 13, 5, 12, 6, 3) and π′2 = (3, 13, 1, 1, 12, 2, 2),

players agree on 5, but clearly disagree on both 6 and 7. Even more notable is the case of distri-
butions

π′′1 = (13, 1, 6, 1, 6, 1, 6) and π′′2 = (13, 6, 1, 6, 1, 6, 1),

where players fully agree on 1, but substantially disagree on all the strategies with higher ef-
fort. This shows that in situations of disagreement, Sugeno expectation is not conducive to the
commitment to higher payoff strategies in the same way Choquet expectation is.

For these reasons we believe that Sugeno expectation cannot play a prominent role in the
selection of multiple Nash equilibria when applied to WLGs.

5. Conclusions and further work

Randomisation was introduced in the analysis of strategic-form games as a tool to solve the exis-
tence of equilibria. It was originally understood as probabilistic randomisation, since, in the early
development of game theory (culminated in the 1950s), there was hardly any choice other than
probability theory in the formal modelling of uncertainty. Over the past few decades, a variety
of alternative approaches to uncertainty has been investigated in the wider field of uncertain rea-
soning (see [29, 47]) and it is only natural to ask which non-probabilistic measures of uncertainty
can be used consistently for randomising purposes and how this may contribute to the analysis of
strategic interaction.

We devoted the initial part of this paper to trying to answer this question for the possibilis-
tic setting. We extended strategic-form games with a concept of randomisation formally encoded
through possibilistic mixed strategies. We revisited the usual notion of equilibrium in this frame-
work and studied its game-theoretic and computational properties. In particular, we investigated
two distinct instantiations of the notion of possibilistic equilibria: one based on the Choquet inte-
gral and one based on the Sugeno integral. Our main results, Theorem 13 and Theorem 22 fully
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identify the conditions under which a pair of possibilistic mixed strategies forms a Choquet or a
Sugeno equilibrium, respectively.

The second part of the paper is devoted to exploring the impact of possibilistic randomisation
in the formal analysis of games. In Section 4, we applied our approach to the problem of strategic
uncertainty and equilibrium selection in weak-link games and put forward an interpretation of pos-
sibility distributions in terms of players’ commitment. This analysis, which is carried out through
representative examples, allowed us to reach two conclusions. First, the notion of possibilistic
expectation can provide a formal way of distinguishing appropriately among the multiple Nash
equilibria of a weak-link game. This clearly shows the potential of possibilistic equilibria in the
analysis of coordination games. And it does so appropriately because it delivers a recommendation
which is intuitively rational in the context of the game namely, team-up for a better collective
outcome! Second, we observe that this improvement over the classical setting can be obtained
only with Choquet equilibria. This provides an operational way of distinguishing two notions of
possibilistic equilibrium which would otherwise be equally consistent from the purely mathematical
point of view. This we regard as a contribution to the interpretation of possibility theory in the
wider field of uncertain reasoning.

Our initial results into possibilistic randomisation are indeed encouraging both from the math-
ematical point of view and from the point of view of its applicability in game theory. Much is still
to be done in this latter direction. First we will aim at investigating in full generality, rather than
with representative examples, the capability of Choquet equilibria to provide a principled solution
to the vexed question of selecting among multiple Nash Equilibria. This will involve testing this
framework against general coordination games, including pure coordination ones, and comparing
our findings with the results obtained in the field of global games (see [5, 40]). In a nutshell, the
framework of global games leads to one principled way of selecting uniquely among multiple Nash
equilibria in coordination games. This refinement arises, quite surprisingly, by dispensing with
the assumption of “full” common knowledge among players about the payoff structure, which is
obtained by introducing a small amount of “probabilistic noise” to the description of the strategies.
It will then be natural to ask whether “possibilistic noise” can be defined in a way that it can be
conducive to the selection of a unique Nash equilibrium in pure coordination games.

The second major item for future research on possibilistic randomisation will be concerned with
exploring the viability of extending our commitment interpretation to all strategic-form games.
While in Section 4, we explicitly interpret possibilistic mixed strategies as an index of players’
commitment and obtain a new and interesting analysis of weak-link games, in the rest of the
paper we do not assume any interpretation of what possibilistic randomisation is: we were, in fact,
interested in exploring the general properties of our models and obtaining mathematical results
independent of any interpretation. Still, as briefly recalled in the introductory section, delving
deeper in the behavioural interpretation of possibilistic randomisation is a natural next step.

Indeed the non-probabilistic analysis of equilibrium in beliefs is a question which has recently
attracted significant attention in economic theory. Recall that the notion of (probabilistic) ran-
domisation plays a role in two distinct concepts of interest in game theory. The first is equilibrium
in actions, the second is equilibrium in beliefs. Although the seminal work of Harsanyi [30] con-
nects the two, they lend themselves to distinct levels of analysis. Our present interest lied with
the exploration of the mathematical consequences of assuming that indifference between pure ac-
tions is modelled by possibilistic randomisation. The results we obtained by asking this question
do not bear directly, and hence are not comparable with those of the rich economic literature
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which investigates how equilibria in beliefs can be generalised to non-probabilistic measures of
uncertainty. In particular, Eichberger and Kelsey studied in [23] games where players’ beliefs
about their opponents’ behaviour are modelled as non-additive probabilities. In a similar fashion,
Marinacci introduced in [38] ambiguous games, an extension of strategic-form games that allows
the presence of vagueness in players’ beliefs over the opponents’ choice of strategies. Both in
Eichberger-Kelsey’s and Marinacci’s approach, beliefs are formalised by convex capacities (there-
fore excluding possibility measures, which are not convex [27]) and expectation is defined with the
Choquet integral [7]. Future investigations on the extension of the results of the present paper
to providing a behavioural foundation to possibilistic mixed strategies will certainly have to start
from this background in conjunction with the results obtained in [44].

Further research will be needed to understand whether this approach can be fully and mean-
ingfully generalised in order to offer a coherent and satisfactory behavioural interpretation of pos-
sibilistic randomisation.
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