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Abstract
In many real-world applications, the phenomena of interest are continuous in nature and
modeled through continuous probability distributions, but their observed values are actually
discrete and hence it would be more reasonable and convenient to choose an appropriate
(multivariate) discrete distribution generated from the underlying continuous model preserv-
ing one or more important features. In this paper, two methods are discussed for deriving a
bivariate discrete probability distribution from a continuous one by retaining some specific
features of the original stochastic model, namely (1) the joint density function, or (2) the joint
survival function. Examples of applications are presented, which involve two types of bivari-
ate exponential distributions, in order to illustrate how the discretization procedures work and
show whether and to which extent they alter the dependence structure of the original model.
We also prove that some bivariate discrete distributions that were recently proposed in the
literature can be actually regarded as discrete counterparts of well-known continuous mod-
els. A numerical study is presented in order to illustrate how the procedures are practically
implemented and to present inferential aspects. Two real datasets, considering correlated
discrete recurrence times (the former) and counts (the latter) are eventually fitted using two
discrete analogues of a bivariate exponential distribution.

Keywords Bivariate exponential distribution · Bivariate failure rates · Copula · Correlated
counts · Linear correlation · Survival function

1 Introduction

Deriving discrete analogues of continuous probability distributions has recently drawn atten-
tion of researchers; this procedure is often referred to as “discretization”, even if the word
may sound a bit ambiguous, being used also in other broader or different contexts (just think
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about discretization of ordinary, partial or stochastic differential equations or continuous
time/space processes).

In many real-world applications, e.g., in reliability engineering (Bebbington et al. 2012),
the random variables modeling the phenomena of interest are continuous in nature, but their
observed values are actually discrete and hence it is reasonable and convenient to choose
an appropriate (multivariate) discrete distribution generated from the underlying continuous
model preserving one or more important features. In the context of multivariate statistical
analysis, the researcher sometimes deals with observable variables that are categorized into
classes or measured as discrete, and can be regarded as the result of coarse-grained measure-
ment (discretization) of an underlying continuous (unobservable or latent) variable (Loehlin
2004).

Finding a discrete analogue to a continuous distribution can be also useful in some appli-
cations where dealing with a continuous model is computationally cumbersome and properly
substituting it with a discrete version can produce an approximate but still acceptable solution
with a much smaller computational effort. In this sense, a relevant example in the engineering
field is the computation of the reliability parameter in complex stress-strength models (Kotz
et al. 2003). If the distributions of strength and stress are known, then the reliability can be
obtained by using ordinary transformation techniques, but when the functional relationships
of strength and stress are complex, such analytical techniques are intractable and alterna-
tive techniques must be adopted to arrive at a close approximation for the actual reliability.
One viable technique is represented by discretization: the stress and strength continuous
random components are discretized and an approximate value of the reliability parameter
of the original continuous set-up is computed on the discretized set-up (Roy and Dasgupta
2001). In stochastic programming, the evaluation of the expected value of some continuous
stochastic quantity appearing in the objective function may require, among all, multivariate
numerical integration, which is a rather cumbersome task; this obstacle can be overcome by
approximating the continuous distribution via a finite number of points, called “scenarios”,
which allow to model the stochastic problem as a deterministic optimization problem (see
e.g. Ruszczyński and Shapiro 2003). In Tancrez et al. (2011), in the context of analysis of
manufacturing systems with finite capacity, the authors suggest discretization of continuous
processing time distributions with finite support into discrete probability distributions with
a finite number of points, which result more tractable for subsequent analytical modeling
through a Markov chain.

In recent decades, a large number of research papers dealing with a discrete distribution
derived by discretizing a continuous one, according to some criterion, have appeared in a scat-
tered manner in statistical literature. There are several ways to derive a discrete distribution
from a continuous one and no universally accepted criterion exists for producing a distribu-
tion that can unequivocally be called the discrete version of a continuous one. In the current
literature, we can find three papers that deal with discrete analogues of continuous distribu-
tions in depth. Bracquemond and Gaudoin (2003) carried out a survey on discrete lifetime
distributions derived from continuous ones; Lai (2013) described issues in the construction
of such discrete lifetime distributions, and more recently, Chakraborty (2015) provided an
exhaustive review of different methods of generating discrete probability distributions as
analogues of continuous probability distributions.

Methods and issues related to the construction of bivariate discrete distributions, which
are disseminated in the literature, have been reviewed in Lai (2006). Sixteen (clusters of)
techniques have been there identified and described; however, there is no explicit mention at
any “discretization” technique, capable of recovering a bivariate discrete distribution from
a bivariate continuous distribution. In this paper, generalizing extant univariate techniques,
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we illustrate two methods that can be usefully employed in order to construct a discrete
counterpart to a bivariate continuous distribution. Thework is structured as follows: in the next
section, we recall two methods for the discretization of univariate random variables; Sect. 3
introduces and describes their extension to the bivariate case highlighting their properties;
Sect. 4 illustrates two examples of applications involving just as many bivariate continuous
distributions; Sect. 5 provides a numerical example; in Sect. 6, real datasets are fitted by two
discrete analogues of a bivariate exponential distribution; Sect. 7 concludes the paper with
some final remarks.

2 Discretizationmethods in the univariate context

In the univariate context, a continuous random variable (rv) may be characterized either
by its probability density function (pdf), cumulative distribution function (cdf), survival
function (sf), moment generating function, moments, hazard rate function, etc. Basically, the
construction of a discrete analogue from a continuous distribution is based on the principle
of preserving one or more characteristic properties. Within this framework, two of the most
popular and intuitive discretization methods are those preserving i) the pdf, ii) the sf of the
continuous rv; they will be now briefly recalled.

2.1 Discretization preserving the pdf

In this method (see Chakraborty 2015, p. 4, where it is referred to as “Methodology II”) a
discrete rv X is derived as an analogue of the continuous rvW with pdf fW (w), −∞ < w <

+∞, by defining its pmf as follows:

P(X = k) = fW (k)/
+∞∑

j=−∞
fW ( j) k ∈ Z. (1)

The pmf (1) may not always have a closed expression due to the infinite series sum at the
denominator, which acts as a normalizing constant.

Examples of discrete distributions derived following this method are the discrete Laplace
distribution by Inusah and Kozubowski (2006), the discrete skew Laplace distribution by
Kozubowski and Inusah (2006); and the discrete Normal distribution proposed by Kemp
(1997).

2.2 Discretization preserving the sf

This method (see Chakraborty 2015, pp. 9–10, where it is referred to as “Methodology IV”)
considers a continuous rv W with sf SW (w) and derives a discrete rv X whose pmf is given
by:

P(X = k) = FW (k + 1) − FW (k) = SW (k) − SW (k + 1) k ∈ Z. (2)

This discrete analogue preserves the sf, since SX (k) = SW (k) for each integer k. The resulting
pmf is in a compact form if the continuous sf SW (w) is. It can be shown that X is equal in
distribution to �W� (largest integer less than or equal to W ).
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Two examples of discrete distributions derived following this criterion are the discrete
Weibull distribution introduced by Nakagawa and Osaki (1975) and the discrete normal
distribution by Roy (2003).

If applied to the same continuous distribution, the two methods above generally give
birth to two different discrete distributions. A very important exception is represented by the
exponential distribution, with pdf f (w) = λe−λw , w > 0, λ > 0, and sf SW (w) = e−λw;
in this case, the two methods yield the same discrete distribution X , with pmf p(x) =
e−λx (1−e−λ), x ∈ N, i.e., a geometric rv with parameter θ = e−λ (providing the probability
of non-zero values).

These two methods are open to being extended to the bivariate context; this will be
discussed in the next section.

3 Extending discretization to the bivariate context

Henceforth, we will consider a bivariate continuous rv (W , Z), with joint pdf f (w, z), cdf
FWZ (w, z) := P(W ≤ w, Z ≤ z) and sf SW Z (w, z) := P(W ≥ w, Z ≥ z), which we want
to discretize into a bivariate discrete rv (X , Y ), with joint pmf p(x, y), cdf FXY (x, y), and
sf SXY (x, y). For the sake of simplicity, but without any loss of generality, we will always
assume that the bivariate continuous rv is defined over the support R+ × R

+, i.e., outside
this region f (w, z) is zero; we also assume that f (w, z) is finite.

3.1 Method I: Bivariate discretization preserving the joint pdf

Definition 1 (D-type bivariate discrete distribution) Given a bivariate continuous rv (W , Z)

with pdf f (w, z), its D-type bivariate discrete analogue is the rv (X , Y ) with pmf

p(x, y) = f (x, y)/
∑

i∈N

∑

j∈N
f (i, j), x ∈ N, y ∈ N. (3)

It is trivial to show that (3) is a correctly defined pmf. The discretization method under-
lying Definition 1 is the bivariate analogue of the univariate method recalled in Sect. 2.1:
it preserves, up to a multiplicative factor, the expression of the joint pdf of the underlying
continuous bivariate rv at any element of the support of its discrete analogue. The distribu-
tion generated using this technique may not always have a compact closed form due to the
normalizing constant at the denominator of (3). The marginal pmf of X is given by

pX (x) =
∑

j f (x, j)
∑

i
∑

j f (i, j)
= g(x)∑

i g(i)
,

with g(i) = ∑
j f (i, j). Note that pX (x) in general is not the univariate discrete analogue

of f (x) according to the method outlined in Sect. 2.1; this would be

p∗
X (x) = f (x)∑∞

i=0 f (i)
=

∫ ∞
0 f (x, z)dz

∑∞
i=0

∫ ∞
0 f (x, z)dz

.

Symmetrical arguments hold for Y .
An interesting property of this discretization technique is the following: if the continuous

bivariate distribution has independent components, then the corresponding bivariate discrete
distribution has independent components too. In fact, if this hypothesis holds, we can write
f (w, z) as the product fW (w) fZ (z) of the two marginal pdfs, and then
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p(x, y) = fW (x)∑
i∈N fW (i)

· fZ (y)∑
j∈N fZ ( j)

,

where the two factors on the right side are the pmfs of the components X and Y of the
discrete bivariate rv; these are actually the univariate discrete analogues (according to the
first univariate method of Sect. 2.1) of the continuous univariate components W and Z .

3.2 Method II: Bivariate discretization preserving the joint sf

Definition 2 (S-type bivariate discrete distribution) Given a bivariate continuous rv (W , Z)

with sf SW ,Z (w, z), its S-type bivariate discrete analogue is the rv (X , Y ) with pmf

p(x, y) = SW Z (x, y) + SW Z (x + 1, y + 1) − SW Z (x, y + 1) − SW Z (x + 1, y)

=
1∑

i=0

1∑

j=0

(−1)i+ j S(x + i, y + j), x, y ∈ N. (4)

It can be easily proved that the function (4) is a valid pmf, i.e., p(x, y) ≥ 0 ∀(x, y) ∈ N×N

and
∑∞

i=0
∑∞

j=0 p(i, j) = 1.

Proof The former property is trivial to prove, recalling and reformulating the rectangle
inequality for bivariate rvs: the right member of (4) is in fact equal to FWZ (x, y)+ FWZ (x +
1, y + 1) − FWZ (x, y + 1) − FWZ (x + 1, y) = P(x < W < x + 1, y < Z < y + 1) ≥ 0
∀(x, y) ∈ R

+ × R
+.

As to the latter, exploiting telescoping properties, we have

∞∑

i=0

∞∑

j=0

p(i, j) =
∞∑

i=0

∞∑

j=0

SW Z (i, j)−SW Z (i, j + 1)+SW Z (i + 1, j + 1)−SW Z (i + 1, j)

=
∞∑

i=0

SW Z (i, 0) − SW Z (i + 1, 0) = SW Z (0, 0) = P(W ≥ 0, Z ≥ 0) = 1.


�
The discretization method underlying Definition 2 is the bivariate analogue of the univari-

ate method recalled in Sect. 2.2. In fact, the following result can be proved.

Proposition 1 The S-type bivariate discrete rv (X , Y ) preserves the sf of the parent bivariate
continuous rv (W , Z) for any pair of non-negative integers, i.e., SXY (h, k) = SW Z (h, k) for
any (h, k) ∈ N × N.
The S-type distribution also preserves the expression of the sfs of the marginal components:
SX (h) = SW (h),∀h ∈ N; SY (k) = SZ (k),∀k ∈ N.

Proof For any non-negative integers h and k we have:

SXY (h, k) =
∞∑

i=h

∞∑

j=k

p(i, j) =
∞∑

i=h

∞∑

j=k

SW Z (i, j) − SW Z (i, j + 1) + SW Z (i + 1, j + 1) − SW Z (i + 1, j)

=
∞∑

i=h

SW Z (i, k) − SW Z (i + 1, k) = SW Z (h, k).

Then, we also obtain, ∀h, k ∈ N,

SX (h) = SXY (h, 0) = SW Z (h, 0) = SW (h) (5a)
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SY (k) = SXY (0, k) = SW Z (0, k) = SZ (k). (5b)


�
Exploiting the results of Proposition 1, we can state the following:

Proposition 2 The marginal components X and Y of the S-type bivariate discrete rv (X , Y )

are the discrete analogues (according to the method of Sect. 2.2) of the marginal components
W and Z of the parent bivariate continuous rv (W , Z).

Proof By using (5a), we have that

pX (x) = SX (x) − SX (x + 1) = SW (x) − SW (x + 1) (6)

and

FX (x) = 1 − P(X ≥ x + 1) = 1 − SX (x + 1) = 1 − SW (x + 1) = FW (x + 1);
and similarly for Y . (6) means that the marginal discrete distribution of X is actually the
discrete analogue of the marginal continuous distribution of W according to the univariate
method of Sect. 2.2 synthesized by (2). Analogous argument holds for Y . 
�

From the two results above, another property descends.

Proposition 3 If the bivariate continuous rv (W , Z) has copula C, then its S-type bivariate
discrete analogue (X , Y ) has the same copula C on Ran(FX ) × Ran(FY ), with Ran(F) :=
F(R̄) being the range of F and R̄ = [−∞,+∞].
First recall that we can write

FWZ (w, z) = C(FW (w), FZ (z))

for any (w, z) ∈ R̄× R̄ for some copula C (Sklar 1959). This copula is unique, being (W , Z)

a continuous random vector. Then

FXY (h, k) = P(X ≤ h) + P(Y ≤ k) − 1 + P(X ≥ h + 1, Y ≥ k + 1)

= 1 − SX (h + 1) + 1 − SY (k + 1) − 1 + SXY (h + 1, k + 1) =
= 1 − SW (h + 1) + 1 − SZ (k + 1) − 1 + SW Z (h + 1, k + 1) =
= FWZ (h + 1, k + 1) = C(FW (h + 1), FZ (k + 1)) = C(FX (h), FY (k))

∀(h, k) ∈ N×N; and this means that (X , Y ) has the same copula as (W , Z) for all the points
Ran(FX ) ×Ran(FY ) ⊂ [0, 1]2; please however note that C is not the unique possible copula
for (X , Y ) over [0, 1]2 (Sklar 1959; McNeil et al. 2005, pp. 186–188). Thus, the S-type
bivariate discrete analogue, by preserving the joint sf of its continuous parent distribution,
also preserves its dependence structure, represented by the copula C.

We can also state, in analogy with the univariate case, that the distribution of the S-type
discrete analogue of (W , Z) coincides with that of (�W�, �Z�).
Proposition 4 The S-type bivariate discrete rv (X , Y ) corresponding to the bivariate contin-
uous rv (W , Z) has the same distribution as (�W�, �Z�).
Proof (�W�, �Z�) clearly takes values over N × N and then, recalling Proposition 1,
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P(�W� = h, �Z� = k) = P(h ≤ W < h + 1, k ≤ Z < k + 1)

= SW Z (h, k) + SW Z (h + 1, h + 1) − SW Z (h, k + 1) − SW Z (h + 1, k)

= pXY (h, k)

for any pair (h, k) of non-negative integers. 
�
This result appears consistent with the findings of Proposition 3: since the floor function is
a monotone (non-strictly) increasing function, and since copulas are invariant to (strictly)
increasing transformations, it is predictable that (X , Y ) – or (�W�, �Z�)—has the same
copula as (W , Z), at least on a subset of [0, 1]2.

The discretization technique yielding the S-type discrete analogue shares a property with
the method of Sect. 3.1: if the bivariate continuous distribution has independent components,
then the corresponding bivariate discrete distribution has independent components too. In
fact, if the hypothesis holds, we can write Swz(w, z) as the product SW (w)SZ (z) of the two
marginal sfs, and then, from (4),

p(x, y) = SW (x)SZ (y) + SW (x + 1)SZ (y + 1) − SW (x)SZ (y + 1) − SW (x + 1)SZ (y)

= [SW (x) − SW (x + 1)][SZ (y) − SZ (y + 1)] = pX (x) · pY (y) ∀(x, y) ∈ N × N.

4 Applications

In this section, we consider two bivariate continuous distributions and derive their discrete
analogues according to the two techniques presented in Sect. 3.1, Definition 1, and Sect. 3.2,
Definition 2, highlighting the theoretical aspects there described and underlining their pecu-
liarities and differences.

4.1 Gumbel’s type I bivariate exponential distribution

We consider the bivariate exponential distribution with joint pdf

f (w, z) = λ1λ2[(1 + λλ1w)(1 + λλ2z) − λ]e−(λ1w+λ2z+λλ1λ2wz) w, z ∈ R
+, (7)

with λ1, λ2 > 0 and 0 ≤ λ ≤ 1, usually referred to as Gumbel (type I) bivariate exponential
distribution (see Gumbel 1960; Barnett 1980; Rodrigues et al. 2011; and Balakrishnan and
Lai 2009, pp. 92–95), whose joint cdf is given by:

FWZ (w, z) = 1 − e−λ1w − e−λ2z + e−(λ1w+λ2z+λλ1λ2wz)

and whose joint sf has the following expression:

SW Z (w, z) = e−λ1w−λ2z−λλ1wλ2z, (8)

to which corresponds the Gumbel-Barnett survival copula (Balakrishnan and Lai 2009, p.
95) Ĉ(u, v) = uve−λ ln u ln v . It is easy to show that the marginal distributions ofW and Z are
exponential with parameter λ1 and λ2, respectively. The linear correlation between W and
Z is given by

ρWZ = −1 +
∫ +∞

0

e−x

1 + λx
dx, (9)

so it does not depend on either λ1 or λ2 and is a decreasing function of λ, taking themaximum
value 0 if λ = 0 and the minimum value −0.40365 if λ = 1.
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Applying the first discretization methodology to the joint pdf (7), we have that the nor-
malizing constant is given by

C =
∞∑

i=0

∞∑

j=0

λ1λ2[1 − λ + λλ1i + λλ2 j + λ2λ1λ2i j]e−λ1i (e−λ2−λλ1λ2i ) j (10)

= (1 − λ)λ1λ2

∞∑

i=0

e−λ1i

1 − e−λ2−λλ1λ2i
+ λ2λ21λ

2
2e

−λ2

∞∑

i=0

ie−λ1i e−λλ1λ2i

(1 − e−λ2−λλ1λ2i )2

+ λλ21λ2

∞∑

i=0

ie−λ1i

1 − e−λ2−λλ1λ2i
+ λλ22λ1e

−λ2

∞∑

i=0

e−λ1i e−λλ1λ2i

(1 − e−λ2−λλ1λ2i )2
, (11)

which cannot be reduced to an analytical closed form. The joint pmf of the D-type bivariate
discrete rv can be then written as

p(x, y) = C−1 {
ln θ1 ln θ2θ

x
1 θ

y
2 θ

xy
3 [(1 + x ln θ3/ ln θ2)(1 + y ln θ3/ ln θ1)

+ ln θ3/(ln θ1 ln θ2)]} , (12)

where θ1 = e−λ1 , θ2 = e−λ2 , θ3 = e−λλ1λ2 , or also as

p(x, y) = C∗−1 {
(1 − θ1)(1 − θ2)θ

x
1 θ

y
2 θ

xy
3 [(1 + x ln θ3/ ln θ2)(1 + y ln θ3/ ln θ1)

+ ln θ3/(ln θ1 ln θ2)]} , (13)

being C∗ = C[(1 − θ1)(1 − θ2)]/(ln θ1 ln θ2). Note that the bivariate discrete distribution
defined by (12) or (13) reduces to the product of two geometric pmfs with parameters θ1
and θ2 when θ3 = 1 (corresponding to λ = 0, i.e., independent components for the bivariate
exponential distribution).

The marginal pmf of X can be derived by marginalizing (12) and is given by

pX (x) = C−1θ x
1 ln θ1 ln θ2·[(

1 + ln θ3

ln θ1 ln θ2

)
1

1 − θ2θ
x
3

+ ln θ23

ln θ1 ln θ2

xθ2θ x
3

(1 − θ2θ
x
3 )2

+ ln θ3

ln θ2

x

1 − θ2θ
x
3

+ ln θ3

ln θ1

θ2θ
x
3

(1 − θ2θ
x
3 )2

]
,

and is geometric with parameter θ1 if and only if θ3 = 1.
Applying the second discretization methodology to the sf in (8), we have

p(x, y) = e−λ1x−λ2 y−λλ1xλ2 y + e−λ1(x+1)−λ2(y+1−λλ1(x+1)λ2(y+1)

− e−λ1x−λ2(y+1)−λλ1xλ2(y+1) − e−λ1(x+1)−λ2 y−λλ1(x+1)λ2 y

= θ x
1 θ

y
2 θ

xy
3 [1 + θ1θ2θ3θ

x+y
3 − θ2θ

x
3 − θ1θ

y
3 ], (14)

again with θ1 = e−λ1 , θ2 = e−λ2 , θ3 = e−λλ1λ2 . This pmf corresponds to that of the bivariate
geometric distribution introduced by Roy (1993), which is the only bivariate discrete rv
possessing locally constant bivariate failure rates.We remark that this distribution actually has
geometricmarginswith parameter θ1 and θ2; and that the geometric distribution is the discrete
counterpart (according to both discretizationmethods of Sects. 2.1 and 2.2) of the exponential
distribution. If λ = 0 (θ3 = 1), i.e., if the two components of the bivariate continuous model
are independent, the above joint pmf describes a bivariate geometric rv with independent
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Table 1 Joint pmfs of theD- andS-type discrete analogues ofGumbel’s type I bivariate exponential distribution
(with λ1 = 1, λ2 = 1/3, λ = 1/2)

x, y 0 1 2 3 . . . P(X = x)

(a) D-type

0 0.0926 0.0885 0.0793 0.0681 . . . 0.6021

1 0.0681 0.0517 0.0376 0.0266 . . . 0.2399

2 0.0376 0.0236 0.0143 0.0085 . . . 0.0954

3 0.0184 0.0097 0.0049 0.0025 . . . 0.0378

. . . . . . . . . . . . . . . . . . . . .

P(Y = y) 0.2318 0.1794 0.1384 0.1066 . . . 1

(b) S-type

0 0.1387 0.1153 0.0923 0.0720 . . . 0.6321

1 0.0789 0.0540 0.0359 0.0234 . . . 0.2325

2 0.0377 0.0216 0.0120 0.0066 . . . 0.0855

3 0.0166 0.0080 0.0037 0.0017 . . . 0.0315

. . . . . . . . . . . . . . . . . . . . .

P(Y = y) 0.2835 0.2031 0.1455 0.1043 . . . 1

components. Note that in this case, the two discretization methodologies of Sects. 3.1 and
3.2 yield—as one could have expected—the same bivariate discrete distribution.

Table 1a, b partially reports the joint pmfs for the D-type and S-type analogues derived
from Gumbel’s type I bivariate exponential distribution with parameters λ1 = 1, λ2 = 1/3,
and λ = 1/2. For this choice of parameters of the parent distribution, the differences in the
joint probabilities of the two discrete analogues are not negligible; moreover, the marginal
distributions of X and Y for theD-type analogue are quite different from their counterparts for
the S-type (which we know are geometric). The linear correlation for the continuous model,
recalling (9), is equal to −0.2773; for the D-type analogue it can be computed numerically
and is equal to −0.2991; for the S-type, −0.2471.

4.2 FGM bivariate exponential distribution

Consider the bivariate cdf:

FWZ (w, z) = (1 − e−λ1w)(1 − e−λ2z)(1 + θe−λ1w−λ2z) w, z ∈ R
+ (15)

whose marginal distributions W and Z are exponential with parameter λ1 and λ2, respec-
tively, and whose copula is the Farlie-Gumbel-Morgenstern (FGM) copula (Farlie 1960) with
parameter θ ∈ [−1,+1]:

C(u, v) = uv[1 + θ(1 − u)(1 − v)].
This distribution is referred to asGumbel’s type II bivariate exponential distribution or simply
FGM bivariate exponential distribution. Letting θ = 0 yields two independent components;
positive (negative) values of θ yield positively (negatively) correlated components. The cor-
relation coefficient is in fact give by ρWZ = θ/4, so it does not depend on the marginal
parameters λ1 and λ2, and due to the bounds for θ we have that −1/4 ≤ ρWZ ≤ 1/4. The
joint pdf corresponding to (15) can be easily derived and is equal to:
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f (w, z) = λ1λ2e
−λ1w−λ2z[1 + θ(1 − 2e−λ1w)(1 − 2e−λ2z)], (16)

whereas the joint sf has the following expression:

SW Z (w, z) = e−λ1w−λ2z[1 + θ(1 − e−λ1w)(1 − e−λ2z)]. (17)

Applying the first discretization methodology to (16), we have that the normalizing con-
stant is given by:

C =
∞∑

i=0

∞∑

j=0

λ1λ2e
−λ1i−λ2 j [1 + θ(1 − 2e−λ1i )(1 − 2e−λ2 j )]

= (1 + θ)λ1λ2

(1 − e−λ1)(1 − e−λ2)
+ 4θλ1λ2

(1 − e−2λ1)(1 − e−2λ2)

− 2θλ1λ2

(1 − e−λ1)(1 − e−2λ2)
− 2θλ1λ2

(1 − e−2λ1)(1 − e−λ2)
. (18)

Letting θ1 = e−λ1 and θ2 = e−λ2 , we can rewrite C as

C = ln θ1 ln θ2

[
1 + θ

(1 − θ1)(1 − θ2)
+ 4θ

(1 − θ21 )(1 − θ22 )

− 2θ

(1 − θ1)(1 − θ22 )
− 2θ

(1 − θ21 )(1 − θ2)

]

= ln θ1 ln θ2
θ(1 − θ1)(1 − θ2) + (1 + θ1)(1 + θ2)

(1 − θ21 )(1 − θ22 )
= C∗ ln θ1 ln θ2 (19)

withC∗ = C/(ln θ1 ln θ2). Thus the joint pmf of the D-type discrete rv (X , Y ) can be written
as

p(x, y) = (ln θ1 ln θ2)θ
x
1 θ

y
2 [1 + θ(1 − 2θ x

1 )(1 − 2θ y
2 )]/C

= θ x
1 θ

y
2 [1 + θ(1 − 2θ x

1 )(1 − 2θ y
2 )]/C∗. (20)

The marginal pmf of X can be derived as:

pX (x) =
∞∑

y=0

p(x, y) =
[

θ x
1

1 − θ2
+ θθ x

1 (1 − 2θ x
1 )

(
1

1 − θ2
− 2

1 − θ22

)]
/C∗

=
[
θ x
1

(
1

1 − θ2
− θ

1 + θ2

)
+ θ2x1

2θ

1 + θ2

]
/C∗

and is thus geometric if and only if θ = 0 (independence case). If θ is larger than zero, than
the marginal distribution of X is a mixture of two geometric distributions G1 and G2, with
parameters θ1 and θ21 , and weights w1 = (1+ θ2 − θ + θθ2)/[(1− θ2)(1+ θ2)(1− θ1)] and
w2 = 2θ/[(1+ θ2)(1− θ1)(1+ θ1)], respectively. Note that the marginal pmf of X depends
not only on the parameter λ1 (θ1) of the marginal distribution of W , but also on the other
marginal parameter λ2 (θ2) and on the dependence parameter θ .
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We can easily derive the joint cdf of (X , Y ):

FXY (x, y) =
y∑

j=0

x∑

i=0

1/C∗[θ i1θ j
2 + θθ i1(1 − 2θ i1)θ

j
2 (1 − 2θ j

2 )]

= 1/C∗
y∑

j=0

1 − θ x+1
1

1 − θ1
θ
j
2 + θθ

j
2 (1 − 2θ j

2 )[ 1 − θ x+1
1

1 − θ1
− 2

1 − θ
2(x+1)
1

1 − θ21

]

= 1/C∗
{
1 − θ x+1

1
1 − θ1

1 − θ
y+1
2

1 − θ2
+ θ

[
1 − θ

y+1
2

1 − θ2
− 2

1 − θ
2(y+1)
2

(1 − θ22 )

]

[
1 − θ x+1

1
1 − θ1

− 2
1 − θ

2(x+1)
1

(1 − θ21 )

]}

= 1/C∗ · 1 − θ x+1
1

1 − θ1
· 1 − θ

y+1
2

1 − θ2

[
1 + θ

(
1 − 2(1 + θ

y+1
2 )

1 + θ2

)(
1 − 2(1 + θ x+1

1 )

1 + θ1

)]

and the marginal cdf of X , which is is equal to:

FX (x) = 1/C∗ · 1 − θ x+1
1

1 − θ1

1

1 − θ2

[
1 + θ

θ2 − 1

1 + θ2

(
1 − 2(1 + θ x+1

1 )

1 + θ1

)]

=
[
1 − θ x+1

1

1 − θ1

(
1

1 − θ2
− θ

1 + θ2

)
+ 1 − θ

2(x+1)
1

1 − θ21

2θ

1 + θ2

]
/C∗.

For a given 0 < u < 1, we can derive the u-quantile of X , by equating FX (x) to u and
solving this equation with respect to x , thus obtaining a root, say x∗

u , and then taking the
smallest integer larger than x∗

u , 
x∗
u�. The u-quantile is then given by xu = 
ln z/ ln θ1� − 1,

with

z = −b + √
(b + 2a)2 − 4ac

2a

where a = 2θ

(1 − θ21 )(1 + θ2)
, b = 1

1 − θ1

(
1

1 − θ2
− θ

1 + θ2

)
, c = C∗u.

We also have

E(X) = 1

C∗

[
θ1

(1 − θ1)2

(
1

1 − θ2
− θ

1 + θ2

)
+ θ21

(1 − θ21 )2

2θ

1 + θ2

]
;

E(XY ) = 1

C∗

[
θ1

(1 − θ1)2

θ2

(1 − θ2)2
+ θ

(
θ1

(1 − θ1)2
− 2θ21

(1 − θ21 )2

)

(
θ2

(1 − θ2)2
− 2θ22

(1 − θ22 )2

)]
;

E(X2) = 1

C∗

[
θ1(1 + θ1)

(1 − θ1)3

(
1

1 − θ2
− θ

1 + θ2

)
+ 2θθ21 (1 + θ21 )

(1 − θ21 )3(1 + θ2)

]
;

analogous results hold for Y . The expression of the linear correlation can be then easily
derived; here we report it when X and Y are identically distributed, i.e., when θ1 = θ2:
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ρXY

= 4θθ1(1 + θ1)
2

[
(1 + θ1)

6 − 2θθ1(1 − θ1)
(
θ21 + 2θ1 − 1

)
(1 + θ1)

2 + θ2(1 − θ1)
2
(
θ41 + 2θ31 − 4θ21 − 2θ1 − 1

)] .

(21)

It can be proved that ρXY , for θ1 fixed in (0, 1), is an increasing function of θ in [−1, 1]. In
fact, if we compute the first order partial derivative of ρXY with respect to θ , we obtain:

∂ρXY

∂θ
= 4θ1(1 + θ1)

2 · g(θ1, θ) − θg′
θ (θ1, θ)

g(θ1, θ)2
,

with g(θ1, θ) being the denominator of (21) and g′
θ (θ1, θ) the partial derivative of g(θ1, θ)

with respect to θ . In order to study the sign of ∂ρXY /∂θ it is sufficient to study the sign of
g(θ1, θ) − θg′

θ (θ1, θ), for which we have

g(θ1, θ) − θg′
θ (θ1, θ) = θ61 (1 − θ2) + 6θ51 + θ41 (15 + 7θ2) + θ21 (20 − 8θ2)

+ θ21 (15 + θ2) + 1 + θ2,

which is clearly always positive for any choice of θ1 ∈ (0, 1) and θ ∈ [−1, 1]; so ρXY is an
increasing function of θ for any fixed value of θ1. Thus, although entering the expressions of
the marginal pmfs, θ is responsible for the direction and strength of the (linear) correlation
between X and Y , once θ1 and θ2 are held fixed.

In Fig. 1, the minimum and maximum attainable correlations are plotted for the D-type
discrete version of the FGM exponential distribution with identically distributed margins
(θ1 = θ2), by setting the value of the dependence parameter θ equal to −1 and +1, respec-
tively. It can be proved that the maximum value of ρXY is approximately equal to 0.5149
and is reached at θ = 1 and θ1 ≈ 0.1251; the infimum value is −1 and is attained when
θ = −1 and θ1 = θ2 → 0+; in this case, (X , Y ) tends to a bivariate discrete distribution
with possible values (0, 1) and (1, 0) and associated probability 1/2 each; the margins are
both Bernoulli with parameter p = 0.5 and the correlation is −1.

Applying the second discretization methodology to (17) we obtain the following joint pmf
for the discrete analogue (X , Y ):

θ1 = θ2

0.0 0.2 0.4 0.6 0.8 1.0

−1

−0.5

−0.25

0

0.25

0.5

ρXY

Fig. 1 Correlation bounds for the D-type discrete version of the FGM bivariate exponential distribution with
identically distributed margins (solid lines); dashed lines indicate the bounds for the parent distribution (−1/4
and 1/4)
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p(x, y) = e−λ1x−λ2 y[1 + θ(1 − e−λ1x )(1 − e−λ2 y)]
+ e−λ1(x+1)−λ2(y+1)[1 + θ(1 − e−λ1(x+1))(1 − e−λ2(y+1))]
− e−λ1x−λ2(y+1)[1 + θ(1 − e−λ1x )(1 − e−λ2(y+1))]
− e−λ1(x+1)−λ2 y[1 + θ(1 − e−λ1(x+1))(1 − e−λ2 y)],

and then, substituting θ1 = e−λ1 , θ2 = e−λ2 , and after some algebraic steps, we obtain:

p(x, y) = θ x
1 (1 − θ1)θ

y
2 (1 − θ2)

{
1 + θ [1 − θ x

1 (1 + θ1)][1 − θ
y
2 (1 + θ2)]

}
. (22)

The above joint pmf corresponds to that of the bivariate geometric distribution described
in Barbiero (2017, 2018a), after substituting θi with 1 − θi , i = 1, 2; we recall that it
actually corresponds to the joint pmf of two geometric margins (with parameters θ1 and θ2)
linked together through the FGM copula with parameter θ , i.e., the same copula of (W , Z),
confirming the remark we made in Sect. 2.2. The correlation between X and Y is then given
by

ρXY = θ

√
θ1θ2

(1 + θ1)(1 + θ2)
,

and, differently fromρWZ , its value depends not only on θ , but also on themarginal parameters
θ1 and θ2; once the latter are fixed, ρXY is directly proportional to θ . Note that for this
discrete distribution, the parameter θ can range over a larger interval than that allowed for the
parent continuous distribution, namely [−1,min(1/θ1, 1/θ2)] (Piperigou 2009). In Fig. 2, the
minimum and maximum attainable correlations are plotted for the S-type discrete version of
the FGM exponential distribution with identically distributed margins (θ1 = θ2), by setting
the value of the dependence parameter θ equal to −1 and +1/θ1.

Please note the similarity between the pmfs (20) and (22): they are both of the form
k · θ x

1 θ
y
2 [1 + θg1(x, θ1)g2(y, θ2)], with k being a real constant and g1 and g2 functions

depending only on x and θ1, y and θ2, respectively. However, only if θ = 0, i.e., if the
continuous model (15) have independent exponentially distributed components, then also
the discrete analogues (20) and (22) (which now coincide) have independent (geometric)
components.

θ1=θ2
0.0 0.2 0.4 0.6 0.8 1.0

−0.25

0

0.25

1

ρ X
Y

Fig. 2 Correlation bounds for the S-type discrete version of the FGM bivariate exponential distribution with
identically distributed margins (solid lines); dashed lines indicate the bounds for the parent distribution (−1/4
and 1/4). The θ parameter here ranges from −1 to 1/θ1
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Table 2 Joint pmfs of the D- and S-type discrete analogues of the FGM bivariate exponential distribution
(with λ1 = 1, λ2 = 1/3, θ = 1/2)

x, y 0 1 2 3 . . . P(X = x)

(a) D-type

0 0.2589 0.1505 0.0898 0.0551 . . . 0.6592

1 0.0551 0.0429 0.0325 0.0242 . . . 0.2191

2 0.0148 0.0141 0.0119 0.0094 . . . 0.0774

3 0.0047 0.0050 0.0044 0.0035 . . . 0.0281

. . . . . . . . . . . . . . . . . . . . .

P(Y = y) 0.3361 0.2152 0.1411 0.0943 . . . 1

(b) S-type

0 0.2028 0.1338 0.0900 0.0615 . . . 0.6321

1 0.0542 0.0445 0.0348 0.0265 . . . 0.2325

2 0.0172 0.0157 0.0131 0.0103 . . . 0.0855

3 0.0059 0.0057 0.0048 0.0038 . . . 0.0315

. . . . . . . . . . . . . . . . . . . . .

P(Y = y) 0.2835 0.2031 0.1455 0.1043 . . . 1

Just to have an idea of the difference between the discrete analogues (20) and (22) derived
from the same continuous distribution, let us consider the distribution (15) with parameters
λ1 = 1, λ2 = 1/3, and θ = 1/2 (and then θ1 = 0.3679, θ2 = 0.7165). For the pmf
in (20), the value of the normalizing constant C of (19) is approximately equal to 1.931243.
In Table 2a, b, the joint pmfs of the two discrete analogues are (partially) reported (only the
values x, y = 0, 1, 2, 3 are considered for the sake of brevity).One can compare the two tables
cell by cell in order to ascertain differences between the two joint distributions; please note
that significant deviations exist also comparing homologous marginal distributions pX (x)
and pY (y) (remember that only in the second case the two margins are geometric).

5 A numerical example

In this section, we provide a practical simulation experiment, which refers to the Gumbel’s
type I bivariate exponential distribution discussed in Sect. 4.1. This simulation experiment
illustrates how the bivariate discretization provided through the second method of Sect. 3.2
can be practically implemented. It is conducted under the R programming environment;
relevant code is available as supplementary material.

We first draw a bivariate i.i.d. sample (wi , zi ), i = 1, . . . , n, of size n = 100 from
the Gumbel’s type I bivariate exponential distribution (W , Z), with the following choice of
parameters: λ1 = 1/3, λ2 = 1/4, λ = 1/2. Based on this sample, we numerically compute
the MLEs of the three parameters: λ̂1, λ̂2, λ̂. Then we discretize the original sample taking
the integer part of each component, obtaining (xi = �wi�, yi = �zi�), i = 1, . . . , n. On this
new series of paired values, which can be regarded as a sample from the bivariate geometric
distribution by Roy (1993) with parameters θ1 = e−λ1 , θ2 = e−λ2 , θ = e−λλ1λ2 (see again
Sect. 4.1), we compute the MLEs θ̂1, θ̂2, and θ̂ . MLEs for the original and discretized sample
distributions are reported in Table 3; Fig. 3a displays the scatter-plot for the original sample;
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Table 3 Descriptive statistics and MLEs for the bivariate Gumbel exponential and Geometric distributions
fitted to the bivariate samples displayed in Fig. 3a, b

Continuous distribution Discretized (S-type) distribution

Parameter λ1 λ2 λ θ1 θ2 θ3

True value 1/4 1/3 1/2 0.7788 0.7165 0.9592

MLE 0.2209 0.3621 0.6082 0.8009 0.6982 0.9462

Component W Z X Y

Mean 4 3 3.521 2.528

SD 4 3 3.990 2.986

Corr. −0.2773 −0.2722

Sample mean 4.631 2.685 4.08 2.24

Sample SD 3.985 3.026 3.992 2.985

Sample corr. −0.3153 −0.3178

0 5 10 15
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z

(a) Scatter plot of the original sample
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y
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(b) Bubble plot of the discretized sam-
ple: each “bubble” has an area proportional
to the frequency of the corresponding pair
(x, y)

Fig. 3 Graphical representation for the distribution of a random sample from the bivariate Gumbel’s type I
distribution with parameters λ1 = 1/3, λ2 = 1/4, and λ = 1/2 (a) and its S-type discretized version (b)

Fig. 3b displays the bubble-plot for the “discretized” sample (in a bubble-plot, each “bubble”
has an area proportional to the corresponding joint frequency of the bivariate observation).

The simulation procedure used for drawing a sample from the continuous bivariate dis-
tribution (7) is now illustrated. If we compute the conditional pdf of Z given W = w, we
obtain

fZ |W (z|w) = fW Z (w, z)/ fW (w) = pβλ2e
−βλ2z + (1 − p)zβ2λ22e

−βλ2z

with p = (β −λ)/β and β = 1+λλ1w, and we can easily recognize that the conditional pdf
fZ |W is indeed a finite mixture between an exponential distribution with parameter βλ2 and a
Gamma distribution with parameters 2 and βλ2, and weights p and 1− p, respectively. Then,
the following algorithm (which is a generalization of the algorithmdescribed in Johnson1987,
pp. 197–198), for the case of exponential margins of unitary mean) can be used to generate
samples from a rv (W , Z) distributed as (7):
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1. Generate U1, U2, U3 independent uniform rvs in (0, 1)
2. Set W = − logU1/λ1
3. Compute β = 1 + λλ1W and p = (β − λ)/λ

4. Set Y = − logU2

5. If U3 < p then set Z = Y/(βλ2),
else generate U4 uniform in (0, 1) and set Z = [Y − log(U4)]/(βλ2)

According to the algorithm, we first draw a realization w from the marginal distribution W ,
which is exponentially distributed with parameter λ1, and then we draw a realization z from
the conditional distribution of Z given W = w.

Simulating a random sample from Roy’s bivariate geometric distribution can be thus
carried out indirectly by first simulating a sample from Gumbel’s bivariate exponential dis-
tribution (resorting to the algorithm above) and then discretizing it. This procedure will work
for any consistent choice of the three parameters of the original distribution. However, Roy’s
distribution allows the dependence parameter θ3 to range within a larger interval than that
would be implicitly dictated by the range of λ; in fact, we have that θ3 must satisfy the two
constraints: 0 < θ3 ≤ 1 and θ3 ≥ (θ1+θ2−1)/(θ1θ2) [see Roy (1993) for details]. For exam-
ple, in our case, θ3 = e−λλ1λ2 would be bounded between e−λ1λ2 = 0.9200 (when λ = 1)
and 1 (λ = 0); whereas for Roy’s distribution the dependence parameter θ3 falls between
0.8928 and 1. Thus, if we want to simulate samples from a discretized version of Gumbel’s
bivariate exponential distribution, which results into Roy’s bivariate geometric distribution
with e−λ1λ2 ≤ θ3 ≤ 1, we can resort to the procedure above (simulation of a “continuous”
sample and then discretization); if we want to simulate samples from Roy’s bivariate geo-
metric for any possible consistent value of θ3, we need an ad-hoc procedure, based again on
a conditional approach, but now referred to the discrete random components (see Barbiero
2018b, 2019).

This example shows how it is easy to obtain a sample from the S-type discrete analogue
once a sample from the continuous distribution is available; on the contrary, this does not hold
for the D-type discrete analogue, where a direct and distinct simulation procedure, possibly
still based on conditional sampling, has to be implemented.

6 Data analysis

In this section, we fit bivariate discrete models obtained as discrete analogues from a bivariate
continuous distribution to two datasets taken from the literature. The first dataset concerns
correlated lifetimes, which are however measured on a discrete scale; the second one consists
of authentic discrete data.

6.1 Discrete recurrence times

We analyze a dataset resulting from a study of 38 kidney dialysis patients. Originally con-
sidered in McGilchrist and Aisbett (1991), this study is concerned with the prevalence of
infection at the catheter insertion point. Two recurrence times are measured for each patient.
A catheter is inserted, and the first time to infection (X , in days) is measured. If the catheter
is removed for reasons other than infection, then the first recurrence time is censored. If
infection occurs, the catheter is removed, the infection cleared, and then after some prede-
termined period the catheter is reinserted. The second time to infection, Y , is measured as
time elapsed between the second insertion and the second infection or censoring. The second
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Fig. 4 Scatter-plot of times to
first and second infection for the
kidney data set in McGilchrist
and Aisbett (1991)
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recurrence time is censored if either the catheter is removed for reasons other than infection
or the follow-up period for the patient ends before infection occurs.

Several bivariate exponential and generalized exponential distributions have been applied
in the literature to model these data (see, e.g., Mirhosseini et al. 2015). However, since both
X and Y are recorded in days, a bivariate discrete model can be more appropriate. For our
scope, we limit the attention only on the patients (n = 23) whose times to infection X and Y
are both uncensored. The scatter-plot of these data is displayed in Fig. 4. Summary statistics
for this reduced dataset are:

x̄ = 107.39, sX = 139.22, ȳ = 116.13, sY = 138.92, ρ̂ = 0.1910.

Due to the moderate level of correlation, we can first try and fit the FGM bivariate expo-
nential distribution of Eq. (16) to the dataset; then, we can fit its two discrete analogues (20)
and (22). Since the observed values of X and Y are quite large, we expect negligible differ-
ences in the goodness-of-fit moving from the continuous to the discrete models. We perform
maximization of the log-likelihood function for the three models above and find the MLEs
reported in Table 4, along with the maximum value of the log-likelihood functions (�max),
and the Akaike Information Criterion (AIC), given by 2k − 2�max, where k is the number
of parameters (3 for all cases). It can be noted that the MLEs of the distribution parameters
λ1, λ2 and θ are very close across the three models; the original continuous model presents
a slightly smaller value of the AIC, indicating a better fit. The explanation, as anticipated, is
quite simple: in this case, where most observed values for both correlated variables are large,
using a bivariate discrete model obtained as an analogue from a continuous one, does not
introduce a considerable improvement in goodness-of-fit with respect to the original model.
It is worth noting that the two discrete analogues themselves, fitted to these data, provide
very close values for homologous parameters; indeed, large observed values for x and y are
likely to produce estimates of θ1 and θ2 close to the boundary value 1, at least for the S-type
distribution, whose margins are geometric; and for values of θ1 and θ2 close to 1, whatever
the value of θ is, the expressions of the two pmfs (20) and (22) tend to coincide.
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Table 4 MLEs, values of log-likelihood and AIC for the bivariate FGM bivariate exponential distribution and
its discrete analogues applied to kidney data in McGilchrist and Aisbett (1991)

Distribution, MLEs λ̂1 θ̂1 = e−λ̂1 λ̂2 θ̂2 = e−λ̂2 θ̂ �max AIC

Biv. FGM exp. 0.00916 – 0.00838 – 0.5800 −262.17 530.34

D-type 0.00912 0.9909 0.00834 0.9917 0.5823 −262.37 530.74

S-type 0.00907 0.9910 0.00830 0.9917 0.5867 −262.38 530.76

Table 5 Results of the estimation for the FGM-type bivariate discrete distributions of Sect. 4.2 on the data
taken from Mitchell and Paulson (1981)

Distribution, estimates θ̂1 θ̂2 θ̂ �max AIC

D-type 0.3566 0.3935 −0.2441 −244.6191 495.2382

S-type 0.3824 0.4250 −0.6174 −244.6304 495.2608

6.2 Count data

The data, considered in Mitchell and Paulson (1981), consist of the number of aborts by
109 aircrafts in two (first = x , second = y) consecutive 6 months of 1-year period. Summary
statistics for the dataset are x̄ = 0.624, ȳ = 0.725, s2X = 1.024, s2Y = 1.062. The sample
correlation coefficient between x and y is ρ̂xy = −0.1609, which denotes a slight negative
dependence.

The geometric distribution could be a plausible model for both margins x and y; since we
know that the FGM copula can model slight negative or positive dependence, we can resort
to the two discrete analogues of the FGM bivariate exponential rv, whose pmfs are expressed
by Eqs. (20) and (22), and fit them to the dataset at study.

By using the maximum likelihood method, for both bivariate distributions we derive the
parameters’ estimates, along with the values of the maximized log-likelihood function �max

and AIC. These results are reported in Table 5 and indicate that the twomodels present a very
close goodness-of-fit (the D-type model is preferable, but the two AIC are equal at the first
decimal digit) although the parameter estimates (in particular for the θ parameter) and then
the pmfs are quite different. We recall that while the S-type bivariate discrete distribution
in this case assures that the univariate margins are geometrically distributed, this is not true
for the D-type homologue. The theoretical frequencies for both bivariate discrete models,
reconstructed by using the MLEs of Table 5, are displayed in Table 6 and compared with the
corresponding observed values. At a glance, discrepancies are acceptable and the twomodels
seem to be adequate. Absolute goodness-of-fit measures, such as the customary chi-square
statistic, can be computed along with the associated p-value; however, the problem arises
of how to aggregate cells in the theoretical contingency table in order to ensure a minimum
value for each frequency (usually, a threshold of 5 is used). A possible aggregation of cells
is highlighted in Table 6, which leads to g = 8 groupings. The chi-square statistic computed
on this cell aggregation takes the value 6.8841 (p-value 0.1421) for the D-type distribution
and 5.2251 (p-value 0.2650) for the S-type distribution, indicating an acceptable fit for both
models, slightly better for the latter.
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Table 6 Bivariate frequency distribution of the data taken fromMitchell and Paulson (1981): number of flight
aborts by 109 aircrafts in the first and second consecutive 6 months of a one-year period

x \ y 0 1 2 3 ≥ 4 tot
0 34 20 4 6 4 68

(33.86) (18.54) (8.10) (3.31) (2.19) (66.01)
[34.82] [17.98] [8.22] [3.60] [2.70] [67.32]

1 17 7 0 0 0 24
(17.09) (6.19) (2.35) (0.91) (0.59) (27.14)
[16.63] [5.57] [2.10] [0.84] [0.60] [25.74]

2 6 4 1 0 0 11
(6.73) (2.15) (0.77) (0.29) (0.19) (10.13)
[6.84] [1.94] [0.65] [0.24] [0.17] [9.84]

3 0 4 0 0 0 4
(2.48) (0.76) (0.27) (0.10) (0.06) (3.67)
[2.69] [0.71] [0.23] [0.08] [0.06] [3.76]

4 0 0 0 0 0 0
(0.90) (0.27) (0.09) (0.03) (0.02) (1.32)
[1.04] [0.27] [0.08] [0.03] [0.02] [1.44]

≥ 5 2 0 0 0 0 2
(0.50) (0.15) (0.05) (0.02) (0.01) (0.73)
[0.65] [0.17] [0.05] [0.02] [0.01] [0.89]

tot 59 35 5 6 4 109
(61.56) (28.07) (11.64) (4.67) (3.06) (109)
[62.67] [26.64] [11.32] [4.81] [3.56] [109]

Observed frequencies are reported on the first row of each three-row group; theoretical joint frequencies fitted
by the D-type and S-type discrete distributions derived from the FGM exponential distribution are reported
on each second row between round brackets and third row between square brackets, respectively. The solid
borders identify the cell groups that are used for the computation of the χ2 statistic

7 Conclusions

Two methods have been illustrated that allow to derive a bivariate discrete probability dis-
tribution from a continuous distribution, preserving the expression of the joint probability
density function (first method) or the joint survival function (second method) of the original
stochastic model. While the first method may not ensure a closed analytical form for the
expression of the joint probability mass function of the discrete stochastic model, the second
method always leads to an analytical expression, provided that the original joint survival
function has one. Moreover, the second method is shown to enjoy some nice properties,
for example maintaining also the marginal survival functions and the dependence structure
(represented by the copula) between the two random components. This has a strong implica-
tion: both discrete marginal distributions depend only on the parameter of the corresponding
continuous random component; this is not true for the first method, where the two marginal
components generally turn out to depend on both marginal and dependence parameters of
their parent bivariate continuous distribution. Apart from these general considerations, which
let us to have a propensity for the second one, which of the two discretization technique per-
forms better strongly depends on the real problem at study and on the criterion adopted for
performance comparison.
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Note that both discretization techniques have been designed in order to produce bivariate
discrete distributions defined over N × N, i.e., bivariate count variables. However, nothing
prevents a more general design with a different countable support. For example, if we impose
that X takes values in X = {0, a, 2a, 3a, . . .} and Y in Y = {0, b, 2b, 3b, . . .}, with a and b
positive real values, we have just to change Eqs. (3) and (4) as

p(x, y) = f (x, y)/
∑

u∈X

∑

v∈Y
f (u, v), x ∈ X , y ∈ Y,

and

p(x, y) = SW Z (x, y) + SW Z (x + a, y + b) − SW Z (x, y + b)

−SW Z (x + a, y), x ∈ X , y ∈ Y,

respectively.
Future research will investigate further methods of discretization in two dimensions that

preserve other characteristics of the continuous stochasticmodel and their extension to higher
dimension. We believe that given the increasing interest in the analysis of multivariate dis-
crete data in many fields of the applied sciences, these techniques can be a useful tool for
generating new stochastic models able to capture the features of real-world data. Moreover,
they represent a theoretical and practical answer to the problem of approximating a (bivariate)
continuous model by an appropriate discrete version, when the latter may strongly reduce
the computational effort that the former would require.

Supplementary

R code used in the numerical example (Section 5) and in the applications to real data (Sec-
tion 6) is avalaible at https://tinyurl.com/ANOR-D-18-01277.
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Handbook in OR & MS (Vol. 10, pp. 1–64). Amsterdam: North-Holland Publishing Company.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statis-
tique de l’Université de Paris, 8, 229–231.

Tancrez, J. S., Chevalier, P., & Sema, P. (2011). Probability masses fitting in the analysis of manufacturing
flow lines. Annals of Operations Research, 182, 163–191.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1186/s40488-015-0028-6
https://doi.org/10.1186/s40488-015-0028-6

	Discrete analogues of continuous bivariate probability distributions
	Abstract
	1 Introduction
	2 Discretization methods in the univariate context
	2.1 Discretization preserving the pdf
	2.2 Discretization preserving the sf

	3 Extending discretization to the bivariate context
	3.1 Method I: Bivariate discretization preserving the joint pdf
	3.2 Method II: Bivariate discretization preserving the joint sf

	4 Applications
	4.1 Gumbel's type I bivariate exponential distribution
	4.2 FGM bivariate exponential distribution

	5 A numerical example
	6 Data analysis
	6.1 Discrete recurrence times
	6.2 Count data

	7 Conclusions
	Supplementary
	Acknowledgements
	References




