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Abstract In many real-world applications, the phenomena of interest are
continuous in nature and modeled through continuous probability distribu-
tions, but their observed values are actually discrete and hence it would be
more reasonable and convenient to choose an appropriate (multivariate) dis-
crete distribution generated from the underlying continuous model preserving
one or more important features. In this paper, two methods are discussed for
deriving a bivariate discrete probability distribution from a continuous one
by retaining some specific features of the original stochastic model, namely
1) the joint density function, or 2) the joint survival function. Examples of
applications are presented, which involve two types of bivariate exponential
distributions, in order to illustrate how the discretization procedures work and
show whether and to which extent they alter the dependence structure of the
original model. We also prove that some bivariate discrete distributions that
were recently proposed in the literature can be actually regarded as discrete
counterparts of well-known continuous models. A numerical study is presented
in order to illustrate how the procedures are practically implemented and to
present inferential aspects. Two real datasets, considering correlated discrete
recurrence times (the former) and counts (the latter) are eventually fitted
using two discrete analogues of a bivariate exponential distribution.
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1 Introduction

Deriving discrete analogues of continuous probability distributions has recently
drawn attention of researchers; this procedure is often referred to as “dis-
cretization”, even if the word may sound a bit ambiguous, being used also
in other broader or different contexts (just think about discretization of or-
dinary, partial or stochastic differential equations or continuous time/space
processes).

In many real-world applications, e.g., in reliability engineering (Bebbing-
ton et al., 2012), the random variables modeling the phenomena of interest
are continuous in nature, but their observed values are actually discrete and
hence it is reasonable and convenient to choose an appropriate (multivariate)
discrete distribution generated from the underlying continuous model preserv-
ing one or more important features. In the context of multivariate statistical
analysis, the researcher sometimes deals with observable variables that are
categorized into classes or measured as discrete, and can be regarded as the
result of coarse-grained measurement (discretization) of an underlying contin-
uous (unobservable or latent) variable (Loehlin, 2004).

Finding a discrete analogue to a continuous distribution can be also use-
ful in some applications where dealing with a continuous model is computa-
tionally cumbersome and properly substituting it with a discrete version can
produce an approximate but still acceptable solution with a much smaller
computational effort. In this sense, a relevant example in the engineering field
is the computation of the reliability parameter in complex stress-strength
models (Kotz et al., 2003). If the distributions of strength and stress are
known, then the reliability can be obtained by using ordinary transformation
techniques, but when the functional relationships of strength and stress are
complex, such analytical techniques are intractable and alternative techniques
must be adopted to arrive at a close approximation for the actual reliability.
One viable technique is represented by discretization: the stress and strength
continuous random components are discretized and an approximate value of
the reliability parameter of the original continuous set-up is computed on
the discretized set-up (Roy and Dasgupta, 2001). In stochastic programming,
the evaluation of the expected value of some continuous stochastic quantity
appearing in the objective function may require, among all, multivariate nu-
merical integration, which is a rather cumbersome task; this obstacle can be
overcome by approximating the continuous distribution via a finite number of
points, called “scenarios”, which allow to model the stochastic problem as a
deterministic optimization problem (see e.g. Ruszczyński and Shapiro, 2003).
In Tancrez et al. (2011), in the context of analysis of manufacturing systems
with finite capacity, the authors suggest discretization of continuous process-
ing time distributions with finite support into discrete probability distributions
with a finite number of points, which result more tractable for subsequent an-
alytical modeling through a Markov chain.

In recent decades, a large number of research papers dealing with a dis-
crete distribution derived by discretizing a continuous one, according to some
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criterion, have appeared in a scattered manner in statistical literature. There
are several ways to derive a discrete distribution from a continuous one and
no universally accepted criterion exists for producing a distribution that can
unequivocally be called the discrete version of a continuous one. In the current
literature, we can find three papers that deal with discrete analogues of con-
tinuous distributions in depth. Bracquemond and Gaudoin (2003) carried out
a survey on discrete lifetime distributions derived from continuous ones; Lai
(2013) described issues in the construction of such discrete lifetime distribu-
tions, and more recently, Chakraborty (2015) provided an exhaustive review of
different methods of generating discrete probability distributions as analogues
of continuous probability distributions.

Methods and issues related to the construction of bivariate discrete distri-
butions, which are disseminated in the literature, have been reviewed in Lai
(2006). Sixteen (clusters of) techniques have been there identified and de-
scribed; however, there is no explicit mention at any “discretization” tech-
nique, capable of recovering a bivariate discrete distribution from a bivariate
continuous distribution. In this paper, generalizing extant univariate tech-
niques, we illustrate two methods that can be usefully employed in order to
construct a discrete counterpart to a bivariate continuous distribution. The
work is structured as follows: in the next section, we recall two methods for
the discretization of univariate random variables; Section 3 introduces and
describes their extension to the bivariate case highlighting their properties;
Section 4 illustrates two examples of applications involving just as many bi-
variate continuous distributions; Section 5 provides a numerical example; in
Section 6, real datasets are fitted by two discrete analogues of a bivariate ex-
ponential distribution; Section 7 concludes the paper with some final remarks.

2 Discretization methods in the univariate context

In the univariate context, a continuous random variable (rv) may be charac-
terized either by its probability density function (pdf), cumulative distribution
function (cdf), survival function (sf), moment generating function, moments,
hazard rate function, etc. Basically, the construction of a discrete analogue
from a continuous distribution is based on the principle of preserving one or
more characteristic properties. Within this framework, two of the most popu-
lar and intuitive discretization methods are those preserving i) the pdf, ii) the
sf of the continuous rv; they will be now briefly recalled.

2.1 Discretization preserving the pdf

In this method (see Chakraborty, 2015, p.4, where it is referred to as “Method-
ology II”) a discrete rv X is derived as an analogue of the continuous rv W
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with pdf fW (w), −∞ < w < +∞, by defining its pmf as follows:

P (X = k) = fW (k)/
+∞
∑

j=−∞

fW (j) k ∈ Z. (1)

The pmf (1) may not always have a closed expression due to the infinite series
sum at the denominator, which acts as a normalizing constant.

Examples of discrete distributions derived following this method are the
discrete Laplace distribution by Inusah and Kozubowski (2006), the discrete
skew Laplace distribution by Kozubowski and Inusah (2006); and the discrete
Normal distribution proposed by Kemp (1997).

2.2 Discretization preserving the sf

This method (see Chakraborty, 2015, pp.9-10, where it is referred to as “Method-
ology IV”) considers a continuous rv W with sf SW (w) and derives a discrete
rv X whose pmf is given by:

P (X = k) = FW (k + 1)− FW (k) = SW (k)− SW (k + 1) k ∈ Z. (2)

This discrete analogue preserves the sf, since SX(k) = SW (k) for each integer
k. The resulting pmf is in a compact form if the continuous sf SW (w) is. It
can be shown that X is equal in distribution to ⌊W ⌋ (largest integer less than
or equal to W ).

Two examples of discrete distributions derived following this criterion are
the discrete Weibull distribution introduced by Nakagawa and Osaki (1975)
and the discrete normal distribution by Roy (2003).

If applied to the same continuous distribution, the two methods above
generally give birth to two different discrete distributions. A very important
exception is represented by the exponential distribution, with pdf f(w) =
λe−λw, w > 0, λ > 0, and sf SW (w) = e−λw; in this case, the two methods
yield the same discrete distribution X , with pmf p(x) = e−λx(1−e−λ), x ∈ N,
i.e., a geometric rv with parameter θ = e−λ (providing the probability of
non-zero values).

These two methods are open to being extended to the bivariate context;
this will be discussed in the next section.

3 Extending discretization to the bivariate context

Henceforth, we will consider a bivariate continuous rv (W,Z), with joint pdf
f(w, z), cdf FWZ(w, z) := P (W ≤ w,Z ≤ z) and sf SWZ(w, z) := P (W ≥
w,Z ≥ z), which we want to discretize into a bivariate discrete rv (X,Y ), with
joint pmf p(x, y), cdf FXY (x, y), and sf SXY (x, y). For the sake of simplicity,
but without any loss of generality, we will always assume that the bivariate
continuous rv is defined over the support R

+ × R
+, i.e., outside this region

f(w, z) is zero; we also assume that f(w, z) is finite.
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3.1 Method I: Bivariate discretization preserving the joint pdf

Definition 1 (D-type bivariate discrete distribution) Given a bivari-
ate continuous rv (W,Z) with pdf fWZ(w, z), its D-type bivariate discrete
analogue is the rv (X,Y ) with pmf

p(x, y) = f(x, y)/
∑

i∈N

∑

j∈N

f(i, j), x ∈ N, y ∈ N. (3)

It is trivial to show that (3) is a correctly defined pmf. The discretization
method underlying Def.1 is the bivariate analogue of the univariate method
recalled in Section 2.1: it preserves, up to a multiplicative factor, the expression
of the joint pdf of the underlying continuous bivariate rv at any element of
the support of its discrete analogue. The distribution generated using this
technique may not always have a compact closed form due to the normalizing
constant at the denominator of (3). The marginal pmf of X is given by

pX(x) =

∑

j f(x, j)
∑

i

∑

j f(i, j)
=

g(x)
∑

i g(i)
,

with g(i) =
∑

j f(i, j). Note that pX(x) in general is not the univariate discrete
analogue of f(x) according to the method outlined in Section 2.1; this would
be

p∗X(x) =
f(x)

∑∞
i=0 f(i)

=

∫∞

0 f(x, z)dz
∑∞

i=0

∫∞

0 f(x, z)dz
.

Symmetrical arguments hold for Y .

An interesting property of this discretization technique is the following:
if the continuous bivariate distribution has independent components, then
the corresponding bivariate discrete distribution has independent components
too. In fact, if this hypothesis holds, we can write f(w, z) as the product
fW (w)fZ (z) of the two marginal pdfs, and then

p(x, y) =
fW (x)

∑

i∈N
fW (i)

· fZ(y)
∑

j∈N
fZ(j)

,

where the two factors on the right side are the pmfs of the componentsX and Y
of the discrete bivariate rv; these are actually the univariate discrete analogues
(according to the first univariate method of Section 2.1) of the continuous
univariate components W and Z.

3.2 Method II: Bivariate discretization preserving the joint sf

Definition 2 (S-type bivariate discrete distribution) Given a bivariate
continuous rv (W,Z) with sf SW,Z(w, z), its S-type bivariate discrete analogue
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is the rv (X,Y ) with pmf

p(x, y) = SWZ(x, y) + SWZ(x+ 1, y + 1)− SWZ(x, y + 1)− SWZ(x+ 1, y)

=
1
∑

i=0

1
∑

j=0

(−1)i+jS(x+ i, y + j), x, y ∈ N. (4)

It can be easily proved that the function (4) is a valid pmf, i.e., p(x, y) ≥ 0
∀(x, y) ∈ N× N and

∑∞
i=0

∑∞
j=0 p(i, j) = 1.

Proof The former property is trivial to prove, recalling and reformulating the
rectangle inequality for bivariate rvs: the right member of (4) is in fact equal
to FWZ(x, y) + FWZ(x + 1, y + 1)− FWZ(x, y + 1)− FWZ(x+ 1, y) = P (x <
W < x+ 1, y < Z < y + 1) ≥ 0 ∀(x, y) ∈ R

+ × R
+.

As to the latter, exploiting telescoping properties, we have

∞
∑

i=0

∞
∑

j=0

p(i, j) =

∞
∑

i=0

∞
∑

j=0

SWZ(i, j)− SWZ(i, j + 1) + SWZ(i+ 1, j + 1)− SWZ(i+ 1, j)

=

∞
∑

i=0

SWZ(i, 0)− SWZ(i + 1, 0) = SWZ(0, 0) = P (W ≥ 0, Z ≥ 0) = 1.

The discretization method underlying Def.2 is the bivariate analogue of the
univariate method recalled in Section 2.2. In fact, it can be proved the following
result.

Proposition 1 The S-type bivariate discrete rv (X,Y ) preserves the sf of the
parent bivariate continuous rv (W,Z) for any pair of non-negative integers,
i.e., SXY (h, k) = SWZ(h, k) for any (h, k) ∈ N× N.
The S-type distribution also preserves the expression of the sfs of the marginal
components: SX(h) = SW (h), ∀h ∈ N; SY (k) = SZ(k), ∀k ∈ N.

Proof For any non-negative integers h and k we have:

SXY (h, k) =

∞
∑

i=h

∞
∑

j=k

p(i, j)

=

∞
∑

i=h

∞
∑

j=k

SWZ(i, j)− SWZ(i, j + 1) + SWZ(i+ 1, j + 1)− SWZ(i+ 1, j)

=
∞
∑

i=h

SWZ(i, k)− SWZ(i+ 1, k) = SWZ(h, k).

Then, we also obtain, ∀h, k ∈ N,

SX(h) = SXY (h, 0) = SWZ(h, 0) = SW (h) (5a)

SY (k) = SXY (0, k) = SWZ(0, k) = SZ(k). (5b)

Exploiting the results of Proposition 1, we can state the following:
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Proposition 2 The marginal components X and Y of the S-type bivariate
discrete rv (X,Y ) are the discrete analogues (according to the method of Sec-
tion 2.2) of the marginal components W and Z of the parent bivariate contin-
uous rv (W,Z).

Proof By using (5a), we have that

pX(x) = SX(x)− SX(x+ 1) = SW (x) − SW (x+ 1) (6)

and

FX(x) = 1− P (X ≥ x+ 1) = 1− SX(x+ 1) = 1− SW (x+ 1) = FW (x+ 1);

and similarly for Y . (6) means that the marginal discrete distribution of X is
actually the discrete analogue of the marginal continuous distribution ofW ac-
cording to the univariate method of Section 2.2 synthesized by (2). Analogous
argument holds for Y .

From the two results above, another property descends.

Proposition 3 If the bivariate continuous rv (W,Z) has copula C, then its
S-type bivariate discrete analogue (X,Y ) has the same copula C on Ran(FX)×
Ran(FY ), with Ran(F ) := F (R̄) being the range of F and R̄ = [−∞,+∞].

First recall that we can write

FWZ (w, z) = C(FW (w), FZ (z))

for any (w, z) ∈ R̄× R̄ for some copula C (Sklar, 1959). This copula is unique,
being (W,Z) a continuous random vector. Then

FXY (h, k) = P (X ≤ h) + P (Y ≤ k)− 1 + P (X ≥ h+ 1, Y ≥ k + 1)

= 1− SX(h+ 1) + 1− SY (k + 1)− 1 + SXY (h+ 1, k + 1) =

= 1− SW (h+ 1) + 1− SZ(k + 1)− 1 + SWZ(h+ 1, k + 1) =

= FWZ(h+ 1, k + 1) = C(FW (h+ 1), FZ(k + 1)) = C(FX(h), FY (k))

∀(h, k) ∈ N×N; and this means that (X,Y ) has the same copula as (W,Z) for
all the points Ran(FX)×Ran(FY ) ⊂ [0, 1]2; please however note that C is not
the unique possible copula for (X,Y ) over [0, 1]2 (Sklar 1959, McNeil et al.
2005, pp.186-188). Thus, the S-type bivariate discrete analogue, by preserving
the joint sf of its continuous parent distribution, also preserves its dependence
structure, represented by the copula C.

We can also state, in analogy with the univariate case, that the distribution
of the S-type discrete analogue of (W,Z) coincides with that of (⌊W ⌋, ⌊Z⌋).

Proposition 4 The S-type bivariate discrete rv (X,Y ) corresponding to the
bivariate continuous rv (W,Z) has the same distribution as (⌊W ⌋, ⌊Z⌋).
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Proof (⌊W ⌋, ⌊Z⌋) clearly takes values over N×N and then, recalling Proposi-
tion 1,

P (⌊W ⌋ = h, ⌊Z⌋ = k) = P (h ≤ W < h+ 1, k ≤ Z < k + 1)

= SWZ(h, k) + SWZ(h+ 1, h+ 1)− SWZ(h, k + 1)− SWZ(h+ 1, k)

= pXY (h, k)

for any pair (h, k) of non-negative integers.

This result appears consistent with the findings of Proposition 3: since the floor
function is a monotone (non-strictly) increasing function, and since copulas are
invariant to (strictly) increasing transformations, it is predictable that (X,Y )
– or (⌊W ⌋, ⌊Z⌋) – has the same copula as (W,Z), at least on a subset of [0, 1]2.

The discretization technique yielding the S-type discrete analogue shares a
property with the method of Section 3.1: if the bivariate continuous distribu-
tion has independent components, then the corresponding bivariate discrete
distribution has independent components too. In fact, if the hypothesis holds,
we can write Swz(w, z) as the product SW (w)SZ(z) of the two marginal sfs,
and then, from (4),

p(x, y) = SW (x)SZ(y) + SW (x+ 1)SZ(y + 1)− SW (x)SZ(y + 1)− SW (x+ 1)SZ(y)

= [SW (x)− SW (x + 1)][SZ(y)− SZ(y + 1)] = pX(x) · pY (y) ∀(x, y) ∈ N× N.

4 Applications

In this section, we consider two bivariate continuous distributions and derive
their discrete analogues according to the two techniques presented in Sec-
tions 3.1, Def.1, and Section 3.2, Def.2, highlighting the theoretical aspects
there described and underlining their peculiarities and differences.

4.1 Gumbel’s type I bivariate exponential distribution

We consider the bivariate exponential distribution with joint pdf

f(w, z) = λ1λ2[(1+λλ1w)(1+λλ2z)−λ]e−(λ1w+λ2z+λλ1λ2wz) w, z ∈ R
+, (7)

with λ1, λ2 > 0 and 0 ≤ λ ≤ 1, usually referred to as Gumbel (type I) bivariate
exponential distribution (see Gumbel (1960); Barnett (1980); Rodrigues et al
(2011); and Balakrishnan and Lai (2009, pp.92-95)), whose joint cdf is given
by:

FWZ (w, z) = 1− e−λ1w − e−λ2z + e−(λ1w+λ2z+λλ1λ2wz)

and whose joint sf has the following expression:

SWZ(w, z) = e−λ1w−λ2z−λλ1wλ2z , (8)
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to which corresponds the Gumbel-Barnett survival copula (Balakrishnan and
Lai, 2009, p.95) Ĉ(u, v) = uve−λ lnu ln v. It is easy to show that the marginal
distributions of W and Z are exponential with parameter λ1 and λ2, respec-
tively. The linear correlation between W and Z is given by

ρWZ = −1 +

∫ +∞

0

e−x

1 + λx
dx, (9)

so it does not depend on either λ1 or λ2 and is a decreasing function of λ,
taking the maximum value 0 if λ = 0 and the minimum value −0.40365 if
λ = 1.

Applying the first discretization methodology to the joint pdf (7), we have
that the normalizing constant is given by

C =
∞
∑

i=0

∞
∑

j=0

λ1λ2[1− λ+ λλ1i+ λλ2j + λ2λ1λ2ij]e
−λ1i(e−λ2−λλ1λ2i)j

= (1− λ)λ1λ2

∞
∑

i=0

e−λ1i

1− e−λ2−λλ1λ2i
+ λ2λ2

1λ
2
2e

−λ2

∞
∑

i=0

ie−λ1ie−λλ1λ2i

(1− e−λ2−λλ1λ2i)2

+ λλ2
1λ2

∞
∑

i=0

ie−λ1i

1− e−λ2−λλ1λ2i
+ λλ2

2λ1e
−λ2

∞
∑

i=0

e−λ1ie−λλ1λ2i

(1− e−λ2−λλ1λ2i)2
, (10)

which cannot be reduced to an analytical closed form. The joint pmf of the
D-type bivariate discrete rv can be then written as

p(x, y) = C−1 {ln θ1 ln θ2θx1θy2θxy3 [(1 + x ln θ3/ ln θ2)(1 + y ln θ3/ ln θ1) + ln θ3/(ln θ1 ln θ2)]} ,
(11)

where θ1 = e−λ1 , θ2 = e−λ2 , θ3 = e−λλ1λ2 , or also as

p(x, y) = C∗−1 {(1− θ1)(1 − θ2)θ
x
1 θ

y
2θ

xy
3 [(1 + x ln θ3/ ln θ2)(1 + y ln θ3/ ln θ1) + ln θ3/(ln θ1 ln θ2)]} ,

(12)
being C∗ = C[(1 − θ1)(1 − θ2)]/(ln θ1 ln θ2). Note that the bivariate discrete
distribution defined by (11) or (12) reduces to the product of two geometric
pmfs with parameters θ1 and θ2 when θ3 = 1 (corresponding to λ = 0, i.e.,
independent components for the bivariate exponential distribution).

The marginal pmf of X can be derived by marginalizing (11) and is given
by

pX(x) = C−1θx1 ln θ1 ln θ2·
[(

1 +
ln θ3

ln θ1 ln θ2

)

1

1− θ2θx3
+

ln θ23
ln θ1 ln θ2

xθ2θ
x
3

(1− θ2θx3 )
2
+

ln θ3
ln θ2

x

1− θ2θx3
+

ln θ3
ln θ1

θ2θ
x
3

(1− θ2θx3 )
2

]

,

and is geometric with parameter θ1 if and only if θ3 = 1.
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Applying the second discretization methodology to the sf in (8), we have

p(x, y) = e−λ1x−λ2y−λλ1xλ2y + e−λ1(x+1)−λ2(y+1)−λλ1(x+1)λ2(y+1)

− e−λ1x−λ2(y+1)−λλ1xλ2(y+1) − e−λ1(x+1)−λ2y−λλ1(x+1)λ2y

= θx1θ
y
2θ

xy
3 [1 + θ1θ2θ3θ

x+y
3 − θ2θ

x
3 − θ1θ

y
3 ], (13)

again with θ1 = e−λ1 , θ2 = e−λ2 , θ3 = e−λλ1λ2 . This pmf corresponds to
that of the bivariate geometric distribution introduced by Roy (1993), which
is the only bivariate discrete rv possessing locally constant bivariate failure
rates. We remark that this distribution actually has geometric margins with
parameter θ1 and θ2; and that the geometric distribution is the discrete coun-
terpart (according to both discretization methods of Sections 2.1 and 2.2) of
the exponential distribution. If λ = 0 (θ3 = 1), i.e., if the two components of
the bivariate continuous model are independent, the above joint pmf describes
a bivariate geometric rv with independent components. Note that in this case,
the two discretization methodologies of Sections 3.1 and 3.2 yield - as one
could have expected - the same bivariate discrete distribution.

Tables 1a and 1b partially report the joint pmfs for the D-type and S-type
analogues derived from Gumbel’s type I bivariate exponential distribution with
parameters λ1 = 1, λ2 = 1/3, and λ = 1/2. For this choice of parameters of
the parent distribution, the differences in the joint probabilities of the two
discrete analogues are not negligible; moreover, the marginal distributions of
X and Y for the D-type analogue are quite different from their counterparts
for the S-type (which we know are geometric). The linear correlation for the
continuous model, recalling (9), is equal to −0.2773; for the D-type analogue it
can be computed numerically and is equal to −0.2991; for the S-type, −0.2471.

4.2 FGM bivariate exponential distribution

Consider the bivariate cdf:

FWZ(w, z) = (1− e−λ1w)(1 − e−λ2z)(1 + θe−λ1w−λ2z) w, z ∈ R
+ (14)

whose marginal distributions W and Z are exponential with parameter λ1 and
λ2, respectively, and whose copula is the Farlie-Gumbel-Morgenstern (FGM)
copula (Farlie, 1960) with parameter θ ∈ [−1,+1]:

C(u, v) = uv[1 + θ(1− u)(1− v)].

This distribution is referred to as Gumbel’s type II bivariate exponential distri-
bution or simply FGM bivariate exponential distribution. Letting θ = 0 yields
two independent components; positive (negative) values of θ yield positively
(negatively) correlated components. The correlation coefficient is in fact give
by ρWZ = θ/4, so it does not depend on the marginal parameters λ1 and λ2,
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Table 1: Joint pmfs of the D- and S-type discrete analogues of Gumbel’s type
I bivariate exponential distribution (with λ1 = 1, λ2 = 1/3, λ = 1/2)

(a) D-type

x, y 0 1 2 3 · · · P (X = x)
0 0.0926 0.0885 0.0793 0.0681 . . . 0.6021
1 0.0681 0.0517 0.0376 0.0266 . . . 0.2399
2 0.0376 0.0236 0.0143 0.0085 . . . 0.0954
3 0.0184 0.0097 0.0049 0.0025 . . . 0.0378
· · · · · · · · · · · · · · · · · · · · ·

P (Y = y) 0.2318 0.1794 0.1384 0.1066 · · · 1

(b) S-type

x, y 0 1 2 3 · · · P (X = x)
0 0.1387 0.1153 0.0923 0.0720 · · · 0.6321
1 0.0789 0.0540 0.0359 0.0234 · · · 0.2325
2 0.0377 0.0216 0.0120 0.0066 · · · 0.0855
3 0.0166 0.0080 0.0037 0.0017 · · · 0.0315
· · · · · · · · · · · · · · · · · · · · ·

P (Y = y) 0.2835 0.2031 0.1455 0.1043 · · · 1

and due to the bounds for θ we have that −1/4 ≤ ρWZ ≤ 1/4. The joint pdf
corresponding to (14) can be easily derived and is equal to:

f(w, z) = λ1λ2e
−λ1w−λ2z[1 + θ(1 − 2e−λ1w)(1− 2e−λ2z)], (15)

whereas the joint sf has the following expression:

SWZ(w, z) = e−λ1w−λ2z[1 + θ(1 − e−λ1w)(1 − e−λ2z)]. (16)

Applying the first discretization methodology to (15), we have that the
normalizing constant is given by:

C =

∞
∑

i=0

∞
∑

j=0

λ1λ2e
−λ1i−λ2j [1 + θ(1− 2e−λ1i)(1− 2e−λ2j)] (17)

=
(1 + θ)λ1λ2

(1 − e−λ1)(1 − e−λ2)
+

4θλ1λ2

(1− e−2λ1)(1− e−2λ2)

− 2θλ1λ2

(1− e−λ1)(1 − e−2λ2)
− 2θλ1λ2

(1− e−2λ1)(1− e−λ2)
.

(18)

Letting θ1 = e−λ1 and θ2 = e−λ2 , we can rewrite C as

C = ln θ1 ln θ2

[

1 + θ

(1− θ1)(1 − θ2)
+

4θ

(1− θ21)(1− θ22)
− 2θ

(1 − θ1)(1− θ22)
− 2θ

(1− θ21)(1 − θ2)

]

= ln θ1 ln θ2
θ(1 − θ1)(1 − θ2) + (1 + θ1)(1 + θ2)

(1− θ21)(1− θ22)
= C∗ ln θ1 ln θ2 (19)
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with C∗ = C/(ln θ1 ln θ2). Thus the joint pmf of the D-type discrete rv (X,Y )
can be written as

p(x, y) = (ln θ1 ln θ2)θ
x
1θ

y
2 [1 + θ(1 − 2θx1 )(1 − 2θy2)]/C = θx1 θ

y
2 [1 + θ(1− 2θx1 )(1− 2θy2)]/C

∗.
(20)

The marginal pmf of X can be derived as:

pX(x) =
∞
∑

y=0

p(x, y) =

[

θx1
1− θ2

+ θθx1 (1− 2θx1 )

(

1

1− θ2
− 2

1− θ22

)]

/C∗

=

[

θx1

(

1

1− θ2
− θ

1 + θ2

)

+ θ2x1
2θ

1 + θ2

]

/C∗

and is thus geometric if and only if θ = 0 (independence case). If θ is larger
than zero, than the marginal distribution of X is a mixture of two geometric
distributions G1 and G2, with parameters θ1 and θ21 , and weights w1 = (1 +
θ2 − θ + θθ2)/[(1 − θ2)(1 + θ2)(1 − θ1)] and w2 = 2θ/[(1 + θ2)(1 − θ1)(1 +
θ1)], respectively. Note that the marginal pmf of X depends not only on the
parameter λ1 (θ1) of the marginal distribution of W , but also on the other
marginal parameter λ2 (θ2) and on the dependence parameter θ.

We can easily derive the joint cdf of (X,Y ):

FXY (x, y) =

y
∑

j=0

x
∑

i=0

1/C∗[θi1θ
j
2 + θθi1(1− 2θi1)θ

j
2(1− 2θj2)]

= 1/C∗

y
∑

j=0

1− θx+1
1

1− θ1
θj2 + θθj2(1− 2θj2)[

1− θx+1
1

1− θ1
− 2

1− θ
2(x+1)
1

1− θ21
]

= 1/C∗

{

1− θx+1
1

1− θ1

1− θy+1
2

1− θ2
+ θ

[

1− θy+1
2

1− θ2
− 2

1− θ
2(y+1)
2

(1− θ22)

][

1− θx+1
1

1− θ1
− 2

1− θ
2(x+1)
1

(1− θ21)

]}

= 1/C∗ · 1− θx+1
1

1− θ1
· 1− θy+1

2

1− θ2

[

1 + θ

(

1− 2(1 + θy+1
2 )

1 + θ2

)

(

1− 2(1 + θx+1
1 )

1 + θ1

)

]

and the marginal cdf of X , which is is equal to:

FX(x) = 1/C∗ · 1− θx+1
1

1− θ1

1

1− θ2

[

1 + θ
θ2 − 1

1 + θ2

(

1− 2(1 + θx+1
1 )

1 + θ1

)]

=

[

1− θx+1
1

1− θ1

(

1

1− θ2
− θ

1 + θ2

)

+
1− θ

2(x+1)
1

1− θ21

2θ

1 + θ2

]

/C∗.

For a given 0 < u < 1, we can derive the u-quantile of X , by equating FX(x)
to u and solving this equation with respect to x, thus obtaining a root, say
x∗
u, and then taking the smallest integer larger than x∗

u, ⌈x∗
u⌉. The u-quantile

is then given by xu = ⌈ln z/ ln θ1⌉ − 1, with

z =
−b+

√

(b + 2a)2 − 4ac

2a
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where a =
2θ

(1− θ21)(1 + θ2)
, b =

1

1− θ1

(

1

1− θ2
− θ

1 + θ2

)

, c = C∗u.

We also have

E(X) =
1

C∗

[

θ1
(1− θ1)2

(

1

1− θ2
− θ

1 + θ2

)

+
θ21

(1− θ21)
2

2θ

1 + θ2

]

;

E(XY ) =
1

C∗

[

θ1
(1− θ1)2

θ2
(1 − θ2)2

+ θ

(

θ1
(1− θ1)2

− 2θ21
(1− θ21)

2

)(

θ2
(1− θ2)2

− 2θ22
(1 − θ22)

2

)]

;

E(X2) =
1

C∗

[

θ1(1 + θ1)

(1− θ1)3

(

1

1− θ2
− θ

1 + θ2

)

+
2θθ21(1 + θ21)

(1− θ21)
3(1 + θ2)

]

;

analogous results hold for Y . The expression of the linear correlation can be
then easily derived; here we report it whenX and Y are identically distributed,
i.e., when θ1 = θ2:

ρXY =
4θθ1(1 + θ1)

2

[(1 + θ1)6 − 2θθ1(1− θ1) (θ21 + 2θ1 − 1) (1 + θ1)2 + θ2(1 − θ1)2 (θ41 + 2θ31 − 4θ21 − 2θ1 − 1)]
.

(21)

It can be proved that ρXY , for θ1 fixed in (0, 1), is an increasing function of θ
in [−1, 1]. In fact, if we compute the first order partial derivative of ρXY with
respect to θ, we obtain:

∂ρXY

∂θ
= 4θ1(1 + θ1)

2 · g(θ1, θ)− θg′θ(θ1, θ)

g(θ1, θ)2
,

with g(θ1, θ) being the denominator of (21) and g′θ(θ1, θ) the partial derivative
of g(θ1, θ) with respect to θ. In order to study the sign of ∂ρXY /∂θ it is
sufficient to study the sign of g(θ1, θ)− θg′θ(θ1, θ), for which we have

g(θ1, θ)− θg′θ(θ1, θ) = θ61(1− θ2) + 6θ51 + θ41(15 + 7θ2) + θ21(20− 8θ2) + θ21(15 + θ2) + 1 + θ2,

which is clearly always positive for any choice of θ1 ∈ (0, 1) and θ ∈ [−1, 1];
so ρXY is an increasing function of θ for any fixed value of θ1. Thus, although
entering the expressions of the marginal pmfs, θ is responsible for the direction
and strength of the (linear) correlation between X and Y , once θ1 and θ2 are
held fixed.

In Figure 1, the minimum and maximum attainable correlations are plot-
ted for the D-type discrete version of the FGM exponential distribution with
identically distributed margins (θ1 = θ2), by setting the value of the depen-
dence parameter θ equal to −1 and +1, respectively. It can be proved that
the maximum value of ρXY is approximately equal to 0.5149 and is reached at
θ = 1 and θ1 ≈ 0.1251; the infimum value is −1 and is attained when θ = −1
and θ1 = θ2 → 0+; in this case, (X,Y ) tends to a bivariate discrete distribu-
tion with possible values (0, 1) and (1, 0) and associated probability 1/2 each;
the margins are both Bernoulli with parameter p = 0.5 and the correlation is
−1.
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Applying the second discretization methodology to (16) we obtain the fol-
lowing joint pmf for the discrete analogue (X,Y ):

p(x, y) = e−λ1x−λ2y[1 + θ(1 − e−λ1x)(1− e−λ2y)]

+ e−λ1(x+1)−λ2(y+1)[1 + θ(1− e−λ1(x+1))(1− e−λ2(y+1))]

− e−λ1x−λ2(y+1)[1 + θ(1− e−λ1x)(1− e−λ2(y+1))]

− e−λ1(x+1)−λ2y[1 + θ(1− e−λ1(x+1))(1− e−λ2y)],

and then, substituting θ1 = e−λ1 , θ2 = e−λ2 , and after some algebraic steps,
we obtain:

p(x, y) = θx1 (1− θ1)θ
y
2 (1− θ2) {1 + θ[1− θx1 (1 + θ1)][1− θy2(1 + θ2)]} . (22)

The above joint pmf corresponds to that of the bivariate geometric distribution
described in Barbiero (2017, 2018a), after substituting θi with 1− θi, i = 1, 2;
we recall that it actually corresponds to the joint pmf of two geometric margins
(with parameters θ1 and θ2) linked together through the FGM copula with
parameter θ, i.e., the same copula of (W,Z), confirming the remark we made
in Section 2.2. The correlation between X and Y is then given by

ρXY = θ

√
θ1θ2

(1 + θ1)(1 + θ2)
,

and, differently from ρWZ , its value depends not only on θ, but also on the
marginal parameters θ1 and θ2; once the latter are fixed, ρXY is directly pro-
portional to θ. Note that for this discrete distribution, the parameter θ can
range over a larger interval than that allowed for the parent continuous distri-
bution, namely [−1,min(1/θ1, 1/θ2)] (Piperigou, 2009). In Figure 2, the mini-
mum and maximum attainable correlations are plotted for the S-type discrete
version of the FGM exponential distribution with identically distributed mar-
gins (θ1 = θ2), by setting the value of the dependence parameter θ equal to
−1 and +1/θ1.

Please note the similarity between the pmfs (20) and (22): they are both
of the form k ·θx1θy2 [1+θg1(x, θ1)g2(y, θ2)], with k being a real constant and g1
and g2 functions depending only on x and θ1, y and θ2, respectively. However,
only if θ = 0, i.e., if the continuous model (14) have independent exponentially
distributed components, then also the discrete analogues (20) and (22) (which
now coincide) have independent (geometric) components.

Just to have an idea of the difference between the discrete analogues (20)
and (22) derived from the same continuous distribution, let us consider the
distribution (14) with parameters λ1 = 1, λ2 = 1/3, and θ = 1/2 (and then
θ1 = 0.3679, θ2 = 0.7165). For the pmf in (20), the value of the normalizing
constant C of (19) is approximately equal to 1.931243. In Tables 2a and 2b,
the joint pmfs of the two discrete analogues are (partially) reported (only the
values x, y = 0, 1, 2, 3 are considered for the sake of brevity). One can compare
the two tables cell by cell in order to ascertain differences between the two
joint distributions; please note that significant deviations exist also comparing
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Fig. 1: Correlation bounds for the D-type discrete version of the FGM bivari-
ate exponential distribution with identically distributed margins (solid lines);
dashed lines indicate the bounds for the parent distribution (−1/4 and 1/4)
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Fig. 2: Correlation bounds for the S-type discrete version of the FGM bivari-
ate exponential distribution with identically distributed margins (solid lines);
dashed lines indicate the bounds for the parent distribution (−1/4 and 1/4).
The θ parameter here ranges from −1 to 1/θ1
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homologous marginal distributions pX(x) and pY (y) (remember that only in
the second case the two margins are geometric).

5 A numerical example

In this section, we provide a practical simulation experiment, which refers
to the Gumbel’s type I bivariate exponential distribution discussed in Sec-
tion 4.1. This simulation experiment illustrates how the bivariate discretiza-
tion provided through the second method of Section 3.2 can be practically
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Table 2: Joint pmfs of the D- and S-type discrete analogues of the FGM bi-
variate exponential distribution (with λ1 = 1, λ2 = 1/3, θ = 1/2)

(a) D-type

x, y 0 1 2 3 · · · P (X = x)
0 0.2589 0.1505 0.0898 0.0551 · · · 0.6592
1 0.0551 0.0429 0.0325 0.0242 · · · 0.2191
2 0.0148 0.0141 0.0119 0.0094 · · · 0.0774
3 0.0047 0.0050 0.0044 0.0035 · · · 0.0281
· · · · · · · · · · · · · · · · · · · · ·

P (Y = y) 0.3361 0.2152 0.1411 0.0943 · · · 1

(b) S-type

x, y 0 1 2 3 · · · P (X = x)
0 0.2028 0.1338 0.0900 0.0615 · · · 0.6321
1 0.0542 0.0445 0.0348 0.0265 · · · 0.2325
2 0.0172 0.0157 0.0131 0.0103 · · · 0.0855
3 0.0059 0.0057 0.0048 0.0038 · · · 0.0315
· · · · · · · · · · · · · · · · · · · · ·

P (Y = y) 0.2835 0.2031 0.1455 0.1043 · · · 1

implemented. It is conducted under the R programming environment; relevant
code is available as supplementary material.

We first draw a bivariate i.i.d. sample (wi, zi), i = 1, . . . , n, of size n =
100 from the Gumbel’s type I bivariate exponential distribution (W,Z), with
the following choice of parameters: λ1 = 1/3, λ2 = 1/4, λ = 1/2. Based on

this sample, we numerically compute the MLEs of the three parameters: λ̂1,
λ̂2, λ̂. Then we discretize the original sample taking the integer part of each
component, obtaining (xi = ⌊wi⌋, yi = ⌊zi⌋), i = 1, . . . , n. On this new series of
paired values, which can be regarded as a sample from the bivariate geometric
distribution by Roy (1993) with parameters θ1 = e−λ1 , θ2 = e−λ2 , θ = e−λλ1λ2

(see again Section 4.1), we compute the MLEs θ̂1, θ̂2, and θ̂. MLEs for the
original and discretized sample distributions are reported in Table 3; Figure 3a
displays the scatter-plot for the original sample; Figure 3b displays the bubble-
plot for the “discretized” sample (in a bubble-plot, each “bubble” has an area
proportional to the corresponding joint frequency of the bivariate observation).

The simulation procedure used for drawing a sample from the continuous
bivariate distribution (7) is now illustrated. If we compute the conditional pdf
of Z given W = w, we obtain

fZ|W (z|w) = fWZ(w, z)/fW (w) = pβλ2e
−βλ2z + (1− p)zβ2λ2

2e
−βλ2z

with p = (β − λ)/β and β = 1 + λλ1w, and we can easily recognize that
the conditional pdf fZ|W is indeed a finite mixture between an exponential
distribution with parameter βλ2 and a Gamma distribution with parameters
2 and βλ2, and weights p and 1−p, respectively. Then, the following algorithm
(which is a generalization of the algorithm described in Johnson 1987, pp.197-
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(b) Bubble plot of the discretized sam-
ple: each “bubble” has an area proportional
to the frequency of the corresponding pair
(x, y)

Fig. 3: Graphical representation for the distribution of a random sample from
the bivariate Gumbel’s type I distribution with parameters λ1 = 1/3, λ2 = 1/4,
and λ = 1/2 (a) and its S-type discretized version (b).

Table 3: Descriptive statistics and MLEs for the bivariate Gumbel exponen-
tial and Geometric distributions fitted to the bivariate samples displayed in
Figures 3a and 3b

continuous distribution discretized (S-type) distribution
parameter λ1 λ2 λ θ1 θ2 θ3
true value 1/4 1/3 1/2 0.7788 0.7165 0.9592

MLE 0.2209 0.3621 0.6082 0.8009 0.6982 0.9462
component W Z X Y

mean 4 3 3.521 2.528
sd 4 3 3.990 2.986

corr. −0.2773 −0.2722
sample mean 4.631 2.685 4.08 2.24
sample sd 3.985 3.026 3.992 2.985

sample corr. −0.3153 −0.3178

198, for the case of exponential margins of unitary mean) can be used to
generate samples from a rv (W,Z) distributed as (7):

1. Generate U1, U2, U3 independent uniform rvs in (0, 1)
2. Set W = − logU1/λ1

3. Compute β = 1 + λλ1W and p = (β − λ)/λ
4. Set Y = − logU2

5. If U3 < p then set Z = Y/(βλ2),
else generate U4 uniform in (0, 1) and set Z = [Y − log(U4)]/(βλ2)
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According to the algorithm, we first draw a realization w from the marginal
distribution W , which is exponentially distributed with parameter λ1, and
then we draw a realization z from the conditional distribution of Z given
W = w.

Simulating a random sample from Roy’s bivariate geometric distribution
can be thus carried out indirectly by first simulating a sample from Gumbel’s
bivariate exponential distribution (resorting to the algorithm above) and then
discretizing it. This procedure will work for any consistent choice of the three
parameters of the original distribution. However, Roy’s distribution allows the
dependence parameter θ3 to range within a larger interval than that would be
implicitly dictated by the range of λ; in fact, we have that θ3 must satisfy the
two constraints: 0 < θ3 ≤ 1 and θ3 ≥ (θ1 + θ2 − 1)/(θ1θ2) (see Roy (1993) for
details). For example, in our case, θ3 = e−λλ1λ2 would be bounded between
e−λ1λ2 = 0.9200 (when λ = 1) and 1 (λ = 0); whereas for Roy’s distribution
the dependence parameter θ3 falls between 0.8928 and 1. Thus, if we want
to simulate samples from a discretized version of Gumbel’s bivariate expo-
nential distribution, which results into Roy’s bivariate geometric distribution
with e−λ1λ2 ≤ θ3 ≤ 1, we can resort to the procedure above (simulation of a
“continuous” sample and then discretization); if we want to simulate samples
from Roy’s bivariate geometric for any possible consistent value of θ3, we need
an ad-hoc procedure, based again on a conditional approach, but now referred
to the discrete random components (see Barbiero, 2018b, 2019).

This example shows how it is easy to obtain a sample from the S-type
discrete analogue once a sample from the continuous distribution is available;
on the contrary, this does not hold for the D-type discrete analogue, where
a direct and distinct simulation procedure, possibly still based on conditional
sampling, has to be implemented.

6 Data analysis

In this section, we fit bivariate discrete models obtained as discrete analogues
from a bivariate continuous distribution to two datasets taken from the lit-
erature. The first dataset concerns correlated lifetimes, which are however
measured on a discrete scale; the second one consists of authentic discrete
data.

6.1 Discrete recurrence times

We analyze a dataset resulting from a study of 38 kidney dialysis patients.
Originally considered in McGilchrist and Aisbett (1991), this study is con-
cerned with the prevalence of infection at the catheter insertion point. Two
recurrence times are measured for each patient. A catheter is inserted, and
the first time to infection (X , in days) is measured. If the catheter is removed
for reasons other than infection, then the first recurrence time is censored.
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If infection occurs, the catheter is removed, the infection cleared, and then
after some predetermined period the catheter is reinserted. The second time
to infection, Y , is measured as time elapsed between the second insertion and
the second infection or censoring. The second recurrence time is censored if
either the catheter is removed for reasons other than infection or the follow-up
period for the patient ends before infection occurs.

Several bivariate exponential and generalized exponential distributions have
been applied in the literature to model these data (see, e.g., Mirhosseini et al.,
2015). However, since both X and Y are recorded in days, a bivariate discrete
model can be more appropriate. For our scope, we limit the attention only on
the patients (n = 23) whose times to infection X and Y are both uncensored.
The scatter-plot of these data is displayed in Figure 4. Summary statistics for
this reduced dataset are:

x̄ = 107.39, sX = 139.22, ȳ = 116.13, sY = 138.92, ρ̂ = 0.1910.

Fig. 4: Scatter-plot of times to first and second infection for the kidney data
set in McGilchrist and Aisbett (1991)
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Due to the moderate level of correlation, we can first try and fit the FGM
bivariate exponential distribution of Eq.(15) to the dataset; then, we can fit its
two discrete analogues (20) and (22). Since the observed values of X and Y are
quite large, we expect negligible differences in the goodness-of-fit moving from
the continuous to the discrete models. We perform maximization of the log-
likelihood function for the three models above and find the MLEs reported in
Table 4, along with the maximum value of the log-likelihood functions (ℓmax),
and the Akaike Information Criterion (AIC), given by 2k − 2ℓmax, where k is
the number of parameters (3 for all cases). It can be noted that the MLEs of the
distribution parameters λ1, λ2 and θ are very close across the three models;
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the original continuous model presents a slightly smaller value of the AIC,
indicating a better fit. The explanation, as anticipated, is quite simple: in this
case, where most observed values for both correlated variables are large, using
a bivariate discrete model obtained as an analogue from a continuous one, does
not introduce a considerable improvement in goodness-of-fit with respect to the
original model. It is worth noting that the two discrete analogues themselves,
fitted to these data, provide very close values for homologous parameters;
indeed, large observed values for x and y are likely to produce estimates of
θ1 and θ2 close to the boundary value 1, at least for the S-type distribution,
whose margins are geometric; and for values of θ1 and θ2 close to 1, whatever
the value of θ is, the expressions of the two pmfs (20) and (22) tend to coincide.

Table 4: MLEs, values of log-likelihood and AIC for the bivariate FGM bivari-
ate exponential distribution and its discrete analogues applied to kidney data
in McGilchrist and Aisbett (1991)

distribution, MLEs λ̂1 θ̂1 = e−λ̂1 λ̂2 θ̂2 = e−λ̂2 θ̂ ℓmax AIC
Biv. FGM exp. .00916 - .00838 - .5800 -262.17 530.34

D-type .00912 .9909 .00834 .9917 .5823 -262.37 530.74
S-type .00907 .9910 .00830 .9917 .5867 -262.38 530.76

6.2 Count data

The data, considered in Mitchell and Paulson (1981), consist of the number
of aborts by 109 aircrafts in two (first = x, second = y) consecutive 6 months
of 1-year period. Summary statistics for the dataset are x̄ = 0.624, ȳ = 0.725,
s2X = 1.024, s2Y = 1.062. The sample correlation coefficient between x and y
is ρ̂xy = −0.1609, which denotes a slight negative dependence.

The geometric distribution could be a plausible model for both margins
x and y; since we know that the FGM copula can model slight negative or
positive dependence, we can resort to the two discrete analogues of the FGM
bivariate exponential rv, whose pmfs are expressed by Eqs.(20) and (22), and
fit them to the dataset at study.

By using the maximum likelihood method, for both bivariate distributions
we derive the parameters’ estimates, along with the values of the maximized
log-likelihood function ℓmax and AIC. These results are reported in Table 5
and indicate that the two models present a very close goodness-of-fit (the D-
type model is preferable, but the two AIC are equal at the first decimal digit)
although the parameter estimates (in particular for the θ parameter) and then
the pmfs are quite different. We recall that while the S-type bivariate discrete
distribution in this case assures that the univariate margins are geometrically
distributed, this is not true for the D-type homologue. The theoretical fre-
quencies for both bivariate discrete models, reconstructed by using the MLEs
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Table 5: Results of the estimation for the FGM-type bivariate discrete distri-
butions of Section 4.2 on the data taken from Mitchell and Paulson (1981)

distribution, estimates θ̂1 θ̂2 θ̂ ℓmax AIC
D-type 0.3566 0.3935 -0.2441 -244.6191 495.2382
S-type 0.3824 0.4250 -0.6174 -244.6304 495.2608

Table 6: Bivariate frequency distribution of the data taken from Mitchell and
Paulson (1981): number of flight aborts by 109 aircrafts in the first and second
consecutive six months of a one-year period. Observed frequencies are reported
on the first row of each three-row group; theoretical joint frequencies fitted by
the D-type and S-type discrete distributions derived from the FGM exponen-
tial distribution are reported on each second row between round brackets and
third row between square brackets, respectively. The solid borders identify the
cell groups that are used for the computation of the χ2 statistic

x \ y 0 1 2 3 ≥ 4 tot
0 34 20 4 6 4 68

(33.86) (18.54) (8.10) (3.31) (2.19) (66.01)
[34.82] [17.98] [8.22] [3.60] [2.70] [67.32]

1 17 7 0 0 0 24
(17.09) (6.19) (2.35) (0.91) (0.59) (27.14)
[16.63] [5.57] [2.10] [0.84] [0.60] [25.74]

2 6 4 1 0 0 11
(6.73) (2.15) (0.77) (0.29) (0.19) (10.13)
[6.84] [1.94] [0.65] [0.24] [0.17] [9.84]

3 0 4 0 0 0 4
(2.48) (0.76) (0.27) (0.10) (0.06) (3.67)
[2.69] [0.71] [0.23] [0.08] [0.06] [3.76]

4 0 0 0 0 0 0
(0.90) (0.27) (0.09) (0.03) (0.02) (1.32)
[1.04] [0.27] [0.08] [0.03] [0.02] [1.44]

≥ 5 2 0 0 0 0 2
(0.50) (0.15) (0.05) (0.02) (0.01) (0.73)
[0.65] [0.17] [0.05] [0.02] [0.01] [0.89]

tot 59 35 5 6 4 109
(61.56) (28.07) (11.64) (4.67) (3.06) (109)
[62.67] [26.64] [11.32] [4.81] [3.56] [109]

of Table 5, are displayed in Table 6 and compared with the corresponding
observed values. At a glance, discrepancies are acceptable and the two models
seem to be adequate. Absolute goodness-of-fit measures, such as the custom-
ary chi-square statistic, can be computed along with the associated p-value;
however, the problem arises of how to aggregate cells in the theoretical contin-
gency table in order to ensure a minimum value for each frequency (usually,
a threshold of 5 is used). A possible aggregation of cells is highlighted in Ta-
ble 6, which leads to g = 8 groupings. The chi-square statistic computed on
this cell aggregation takes the value 6.8841 (p-value 0.1421) for the D-type
distribution and 5.2251 (p-value 0.2650) for the S-type distribution, indicating
an acceptable fit for both models, slightly better for the latter.
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7 Conclusions

Two methods have been illustrated that allow to derive a bivariate discrete
probability distribution from a continuous distribution, preserving the expres-
sion of the joint probability density function (first method) or the joint sur-
vival function (second method) of the original stochastic model. While the
first method may not ensure a closed analytical form for the expression of the
joint probability mass function of the discrete stochastic model, the second
method always leads to an analytical expression, provided that the original
joint survival function has one. Moreover, the second method is shown to en-
joy some nice properties, for example maintaining also the marginal survival
functions and the dependence structure (represented by the copula) between
the two random components. This has a strong implication: both discrete
marginal distributions depend only on the parameter of the corresponding
continuous random component; this is not true for the first method, where
the two marginal components generally turn out to depend on both marginal
and dependence parameters of their parent bivariate continuous distribution.
Apart from these general considerations, which let us to have a propensity
for the second one, which of the two discretization technique performs better
strongly depends on the real problem at study and on the criterion adopted
for performance comparison.

Note that both discretization techniques have been designed in order to
produce bivariate discrete distributions defined over N×N, i.e., bivariate count
variables. However, nothing prevents a more general design with a different
countable support. For example, if we impose that X takes values in X =
{0, a, 2a, 3a, . . .} and Y in Y = {0, b, 2b, 3b, . . .}, with a and b positive real
values, we have just to change Eqs. (3) and (4) as

p(x, y) = f(x, y)/
∑

u∈X

∑

v∈Y

f(u, v), x ∈ X , y ∈ Y,

and

p(x, y) = SWZ(x, y)+SWZ(x+a, y+b)−SWZ(x, y+b)−SWZ(x+a, y), x ∈ X , y ∈ Y,

respectively.

Future research will investigate further methods of discretization in two
dimensions that preserve other characteristics of the continuous stochastic
model and their extension to higher dimension. We believe that given the in-
creasing interest in the analysis of multivariate discrete data in many fields of
the applied sciences, these techniques can be a useful tool for generating new
stochastic models able to capture the features of real-world data. Moreover,
they represent a theoretical and practical answer to the problem of approx-
imating a (bivariate) continuous model by an appropriate discrete version,
when the latter may strongly reduce the computational effort that the former
would require.
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Supplementary

R code used in the numerical example (Section 5) and in the applications to
real data (Section 6) is avalaible at https://tinyurl.com/ANOR-D-18-01277.
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Ruszczyński A, Shapiro A (2003). Stochastic Programming In: Ruszczyński A,
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