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Abstract

In the past few years in-medium similarity renormalization group meth-

ods have been introduced and developed. In these methods the Hamiltonian

is evolved using a unitary transformation in order to decouple a reference

state from the rest of the Hilbert space. The evolution by itself will gener-

ate, even if we start from a two-body interaction, many-body forces which

are usually neglected. In this work we estimate the effect of these residual

many-body forces by comparing results obtained with the Hybrid Multi-

determinant method, which keeps the Hamiltonian within the two-body sec-

tor, with the corresponding ones obtained with the in-medium similarity

renormalization group. Although percentage-wise the effect of neglecting

these induced many-body forces is not too large, they can be appreciable
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depending on the nucleus, the shell model space and the harmonic oscillator

frequency.
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1 Introduction.

In the past years we have witnessed the development of powerful ab-initio many-

body techniques to solve the nuclear Schroedinger equation. Among these meth-

ods we mention the no-core shell model (NCSM) (refs. [1]-[4]), the coupled-

cluster method (refs.[5]-[8]) and the in-medium similarity renormalization group

(IM-SRG) (see refs.[9],[10] for comprehensive reviews and references in there).

As well known the limitation of the NCSM is the size of the Hilbert space. How-

ever, where applicable, the NCSM gives exact results. In the IM-SRG approach

the many-body Hamiltonian is transformed with a unitary many-body operator.

The discussion that follows is applied only to two-body forces and we shall con-

sider only closed shell nuclei.

The key idea of the IM-SRG is as follows. The original Hamiltonian is first

rewritten in normal form with respect to a reference state. In order to achieve this

the formalism of Kutzelnigg and Mukherjee (ref.[11]) is used by which the origi-

nal Hamiltonian, written with the particle vacuum as a reference state, is rewritten

with a different reference state as a vacuum. For closed shell nuclei, the sim-

plest choice is to use a single Slater determinant as a reference state, usually the

spherical Hartree-Fock solution. The Hamiltonian acquires a zero-body term, a

normally ordered one-body term and the normally ordered two-body interaction.

The next step is the definition of a unitary operator which transforms this new

Hamiltonian into a Hamiltonian such that the reference state is decoupled from

the rest of the Hilbert space. This is achieved via a flow equation. There are sev-

eral choices for this unitary operator (cf. refs.[9],[10]). This parameter-dependent

flow equation will give, at the end, the ground-state energy as the the zero-body

coefficient. Effectively the flow will transform the original Hamiltonian into a
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block diagonal form with the ground-state decoupled from the rest of the Hilbert

space. As well known, the flow will also generate induced many-body interactions

which are normally neglected (this is the so-called IM-SRG(2) truncation). Hence,

although we started with a two-body interaction only, the exact flow is approxi-

mated at the IM-SRG(2) level discarding all induced many-body interactions. It

is natural to address the question about the accuracy of this truncation. Ideally we

would like to compare IM-SRG(2) (which will call simply IM-SRG from now on)

results with methods that do not generate induced many-body forces. An ideal

method would be to compare the IM-SRG results with the shell model diagonal-

ization in the full Hilbert space using Lanczos methods. However this can be

done for light nuclei and not too large single-particle spaces. Here we use the

Hybrid Multi-Determinant method (HMD)(refs.[12],[13]) complemented by en-

ergy versus variance of energy extrapolation techniques (EVE) (refs.[14]-[20]).

Although computationally more demanding than the IM-SRG, it does not gener-

ate induced many-body forces, and in principle its applicability does not depend

on the size of the Hilbert space. The key idea of the HMD method is to expand

the nuclear wave function as a linear combination of many generic Slater deter-

minants (with exact or approximate restoration of good quantum numbers using

projectors) and to determine these Slater determinants using energy minimization

techniques. The final EVE step consists in the evaluation of the energy variance

(or related quantities) < (Ĥ− < Ĥ >)2 >, Ĥ being the two-body Hamiltonian,

once a set of approximate wave functions has been determined. The energy has a

linear or linear+quadratic behavior as a function of the above variance. Extrapo-

lation to zero variance will give the ground state energy. Although applicable, the

HMD method becomes more and more computationally intensive as we increase
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the single-particle space. Therefore we consider, in this work, Hamiltonians gen-

erated from the bare Hamiltonian for the nucleus of interest by the Lee-Suzuki

(LS) renormalization technique (refs.[21]-[24]). Alternatively one could evolve

first the two-body interaction with the similarity renormalization group in the vac-

uum, in order to soften the two-body interaction (refs.[25]-[28]). This preliminary

step defines the Hamiltonian in the two-body sector which we use to perform the

comparison.

The outline of this paper is as follows. In section 2 we briefly discuss the

Hamiltonian we consider. In section 3 we recall briefly the HMD method, in sec-

tion 4 we outline the spherical IM-SRG flow equations (see also ref.[10]) using the

Brillouin generator (ref.[9]). In section 5 we compare the results in an harmonic

oscillator basis for 4He and for 16O, and in section 6 we give some conclusions.

2 The Hamiltonian.

We start from the two-body Hamiltonian

Ĥ =
A
∑

i=1

p2i
2m

+
∑

i<j

Vij (1)

where m is the nucleon mass and Vij is the interaction between nucleons i and j.

Here we consider the chiral N3LO interaction of Entem and Machleidt (ref.[29]).

Much in the same way it is done in the NCSM (ref. [2]) we add a confining

harmonic oscillator potential for the center of mass and obtain an A-dependent

Hamiltonian. If ω is the frequency of this potential, the Hamiltonian can be recast

in the following form

Ĥω = Ĥ +
1

2
mAω2R2

c.m. =
A
∑

i=1

hi +
∑

i<j

V
(A)
ij (2)
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with

V
(A)
ij = Vij −

mω2

2A
(~ri − ~rj)

2 (3)

and

hi =
p2i
2m

+
1

2
mω2r2i (4)

At the level of the 2-cluster approximation (ref.[2]), the 2-particle Hamiltonian

which is the input of the LS method, is the intrinsic part of

Ĥ12 = h1 + h2 + V
(A)
12 = hrel + hcm (5)

The intrinsic A-dependent two-particle Hamiltonian hrel in eq.(5) is renormalized.

First all matrix elements of hrel are evaluated in the center of mass frame using

no less than 200 major shells. The radial integrals were evaluated using 3000

integration points. We then renormalize this Hamiltonian using, as the P space,

all relative-momentum HO states having pair quantum numbers n, l satisfying

2n + l ≤ 2Nlab. The Q space is comprised of all HO states not included in the P

space. For numerical stability we use the method due to Kvaal (ref.[30]).

We augment the degrees of freedom by including the center of mass degrees

of freedom and then translate this Hamiltonian to the lab frame using the Talmi-

Moshinski brackets (cf. ref. [31] for a numerically efficient method and available

subroutines). The single-particle space in the lab frame is limited to 2n+l ≤ Nlab.

We consider here only an harmonic oscillator basis. For the details of the imple-

mentation see ref. [32] (especially the appendix). In principle, if carried out

exactly, the renormalization prescription should generate multiparticle effective

potentials. We discard all induced many-body interactions and define our model

Hamiltonian solely in the two-body sector. We do not pretend that this Hamilto-

nian to accurately describe the nucleus under consideration, we simply stress that

6



we use the above prescription as a definition of the two-body Hamiltonian for the

nucleus. This Hamiltonian may or may not include the harmonic oscillator center

of mass term β(Ĥcm− 3h̄ω/2). In order to simplify as much as possible the com-

parison with the IM-SRG method we consider Nlab as low as possible. Although

large Nlab values can be handled by the IM-SRG method, it would be problematic

to compare IM-SRG results with those which work strictly within the two-body

sector, since we wish to assess the importance of the many-body forces omitted in

the IM-SRG flow.

3 A brief recap of the HMD method.

The Hybrid-Multi-Determinant (HMD) method consists in generating more and

more accurate wave-functions with linear combinations of many particle-number

conserving Slater determinants which are determined with quasi-Newtonian en-

ergy minimization techniques (cf. ref. [33]). We use a rank-3 update technique

described in details in ref.[34]. The wave-function of the nucleus is written as

|ψ >=
ND
∑

S=1

gSP̂ |US > (6)

where P̂ is a projector to good quantum numbers (e.g. good angular momentum

and parity) ND is the number of Slater determinants |US > expressed as

|US >= c1(S)c2(S)...cA(S)|0 > . (7)

The generalized creation operators cα(S) for α = 1, 2, .., A are a linear combina-

tion of the creation operators a†i

cα(S) =
Ns
∑

i=1

Ui,α(S)a
†
i α = 1, ...A (8)

7



Here Ns is the number of the single-particle states. The complex coefficients

Ui,α(S) represent the single-particle wave-function of the particle α = 1, 2, .., A.

We do not impose any symmetry on the Slater determinants (axial or other) since

the Ui,α are variational parameters. These complex coefficients are obtained by

minimizing the energy expectation values

E[U ] =
< ψ|Ĥ|ψ >
< ψ|ψ > (9)

The coefficients gS are obtained by solving the generalized eigenvalue problem

∑

S

< US′ |P̂ Ĥ|US > gS = E
∑

S

< US′|P̂ |US > gS (10)

for the lowest eigenvalue E. We normally consider projectors to good z− compo-

nent of the angular momentum and parity, rather than projectors to good angular

momentum and parity. The number of Slater determinants necessary for con-

vergence can be quite large. Hence as a final step we use EVE techniques (we

implement the variant of ref.[19]). These techniques consist in the evaluation of

the energy variance

σ2 =< Ĥ2 > − < Ĥ >2 (11)

as a function of the energy < Ĥ >. On general grounds < Ĥ > is a linear or

linear+quadratic function of σ2 provided we are sufficiently close to the ground-

state (here we are primarily concerned about ground-state energies). The clause

”sufficiently close” is basic. In fact, we extrapolate the plot < Ĥ > as a function

of σ2 to σ2 = 0. Even small uncertainties in the coefficients of the expansion can

cause sizable error in the extrapolated ground-state energies if we are not suffi-

ciently close to σ2 = 0. Differently stated, the linear+quadratic fit must be of high

quality. In practice, we generated a few hundreds Slater determinants as sketched

above, we then evaluate σ2 and < Ĥ > for a partial linear combination until we
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include them all. As a final step we employ the linearization method introduced in

ref. [18] to optimize the order of the Slater determinants, More precisely, we con-

struct a set of point (σ2, < Ĥ >) using wave-functions |ψ >=
∑N

S=1 gSP̂ |US >

for all N ≤ ND after these Slater determinants have been reordered so that the

points (σ2, < Ĥ >) can be fitted with a linear+quadratic curve.

4 A brief description of the IM-SRG method.

Self-contained and detailed descriptions of the IM-SRG method and its applica-

tions can be found in the review papers of refs. [9],[10]. Here we simply describe

how it has been implemented in this work. The basic idea is to evolve the many-

body Hamiltonian with a continuous set of unitary operators Û(s)

Ĥ(s) = Û(s)ĤÛ(s)† (12)

The flow equation is then given by

dĤ(s)

ds
= [η̂(s), Ĥ(s)] (13)

where the generator η̂(s) is given by η̂(s) = dÛ(s)
ds

Û(s)†. An approximate ground-

state wave-function |φ > is selected and the initial Hamiltonian is rewritten in

normal form with respect to |φ > as a vacuum. Both the generator and the evolved

Hamiltonian are truncated at the two-body level as

η̂(s) =
∑

ij

ηij(s) : Â
i
j : +(1/4)

∑

ijkl

ηijkl(s) : Â
ij
kl : (14)

Ĥ(s) = E(s) +
∑

ij

f i
j(s) : Â

i
j : +(1/4)

∑

ijkl

Γij
kl(s) : Â

ij
kl : (15)
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Here we use the tensor notation commonly employed in the IM-SRG method, that

is Âi
j = a†iaj and Âij

kl = a†ia
†
jalak. As usual, the colons denote normal ordering

to the reference state |φ >. We use the Brillouin generator since
dE(s)
ds

assumes

a particularly appealing form. Since we study only closed shell systems we use

a single reference |φ >, as usually done for closed (sub)shells. In order to save

computer memory we work in the angular momentum coupled representation. We

solve the flow equations
dE(s)
ds

, df(s)
ds

and
dΓ(s)
ds

using the Runge-Kutta method of

rank 3 (cf. ref.[35])) with ∆s = 0.000025 until the energy no longer changes.

The relevant flow equations in the coupled representations are described in the

Appendix, using as a basis the natural orbit representation that diagonalized the

expectation values of the one-body density. Three-body and higher rank terms

arise from the commutator in eq.(13) and they are unavoidable in this method. In

principle these depend of the choice of the reference state. As discussed in the next

section, we in particular want to study the eventual discrepancy between the HMD

method in which the whole Hamiltonian remains in the two-body sector and the

IM-SRG results. We expect a dependence on the reference state, on the harmonic

oscillator frequency h̄ω and on the size of the single particle space defined by

Nlab. We will use two single-reference states. The spherical Hartree-Fock solution

and a naive filling of the lower harmonic oscillator orbits. Note that in section

5 of ref.[10] for 4He a discrepancy between IM-SRG binding energy and the

one obtained with the Fadeev-Jakubowski method has already been found a bit

large, pointing out to a sizable effect of the neglected induced many-body forces

in the evolution. Presumably these discrepancies can be reduced using the more

involved multi-reference states as done recently in ref.[36].
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5 Numerical results.

We considered the cases of 4He and 16O. For 4He we considered the following

cases. The harmonic oscillator frequencies (in MeV’s) are h̄ω = 24, 38 for

Nlab = 3, 4, 5. For 16O, h̄ω = 14 with Nlab = 3, 4, 5, for h̄ω = 24 Nlab = 2, 3, 4

and for h̄ω = 32 with Nlab = 2, 3. It should be pointed out that changing Nlab

the Hamiltonian changes. It does not correspond to a different truncation. Hence

we do not expect a monotonic behavior of the energies as we increase Nlab. The

largest size of the Hilbert space for Jπ
z = 0+ is about 1022 for 16O with Nlab =

5, while for Nlab = 3 and Nlab = 4 the size of the Hilbert space is 4 × 1014

and 5 × 1018 respectively. For 4He with Nlab = 5 the corresponding number is

3.529.304. In the 16O cases we added to the Hamiltonian a center of mass term

with β = 1MeV . The results are summarized in the tables. Let us discuss first the

4He. The HMD results for 4He are rather accurate. An estimate of the uncertainty

for Nlab = 3, 4, 5 is about a dozen KeV ’s. We considered two reference states for

the IM-SRG calculations. One is the naive Fermi filling (FF) of the lowest single-

particle states and the other is the spherical HF. Notice that for the lowest value

of h̄ω = 24MeV the discrepancies between the various methods increases with

Nlab. This discrepancy increases for the largest value of h̄ω. This discrepancy is

substantial and is qualitatively in agreement with the findings of ref. [10] where

the IM-SRG results for large single-particle spaces have been compared with the

exact binding energy for this interaction. It is instructive to plot the results for

E(s) at large s obtained with the IM-SRG with the corresponding ones obtained

with the HMD. In figs. (1)-(6) we show this comparison. For the 4He cases, the

uncertainties of the HMD method are best quantified by plotting E(σ2) vs. σ2

together with the linear+quadratic fit. This is done in figs. (7)-(8) for Nlab = 5.
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h̄ω(MeV ) Nlab HMD FF(MeV) HF(MeV)

24 3 -25.798 -25.933 -25.932

4 -24.670 -24.676 -24.975

5 -24.127 -24.261 -24.888

38 3 -22.047 -21.145 -22.539

4 -23.027 -21.989 -24.268

5 -23.544 -22.264 -24.907

Table 1: Ground-state energies for 4He obtained with the HMD method, with the

IM-SRG with the Fermi filling (FF) and HF as a reference state. The experimental

value is −28.295 MeV (ref.[37])

h̄ω(MeV ) Nlab HMD FF(MeV) HF(MeV)

14 3 -149.634 -153.646 -148.680

4 -139.826 -142.858 -138.301

5 -133.397 -135.467 -130.081

24 2 -139.706 -139.699 -139.704

3 -113.057 -110.416 -111.424

4 -97.855 -93.243 -95.664

32 2 -53.921 -54.138 -54.185

3 -62.823 -58.461 -61.097

Table 2: Ground-state energies for 16O obtained with the HMD method, with the

IM-SRG with the Fermi filling (FF) and HF as a reference state. The experimental

value is −127.619MeV (ref.[37])
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Figure 1: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 24MeV and Nlab = 3. The horizontal line is the HMD result.

Notice that we considered only the end part (i.e. the one closer to the vertical

axis) of the data points. The data points are close to the energy axis, and in such

cases the extrapolated values are accurate. The case of 16O is less certain. In

principle we can get close to the energy axis in the EVE plot, but we would have

to consider a large number of Slater determinants. In these cases we can estimate

the uncertainty in the HMD method by performing several fits to different sets

of (σ2, E(σ2)) data points. For some of the best fits the extrapolated values are

shown in table 2.

In figs.(9)-(11) we plot the end part of the IM-SRG calculations for 16O at

h̄ω = 14MeV and Nlab = 3, 4, 5 respectively together with the corresponding

HMD results. The horizontal lines represent the HMD results. In some cases we
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Figure 2: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 24MeV and Nlab = 4. The horizontal line is the HMD result.
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Figure 3: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 24MeV and Nlab = 5. The horizontal line is the HMD result.
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Figure 4: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 38MeV and Nlab = 3. The horizontal line is the HMD result.
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Figure 5: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 38MeV and Nlab = 4. The horizontal line is the HMD result.
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Figure 6: 4He IM-SRG E(s)for large s for the two reference states discussed in

the text, for h̄ω = 38MeV and Nlab = 5. The horizontal line is the HMD result.
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Figure 7: EVE plot for 4He for h̄ω = 24MeV and Nlab = 5.
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Figure 8: EVE plot for 4He for h̄ω = 38MeV and Nlab = 5.
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Figure 9: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 14MeV
and Nlab = 3 together with the corresponding HMD results.
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Figure 10: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 14MeV
and Nlab = 4 together with the corresponding HMD results.
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Figure 11: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 14MeV
and Nlab = 5 together with the corresponding HMD results.
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Figure 12: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 24MeV
and Nlab = 2 together with the corresponding HMD results.
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Figure 13: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 24MeV
and Nlab = 3 together with the corresponding HMD results.
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Figure 14: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 24MeV
and Nlab = 4 together with the corresponding HMD results.
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Figure 15: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 32MeV
and Nlab = 2 together with the corresponding HMD results.
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Figure 16: IM-SRG results for HF and FF(Fermi filling) for 16O at h̄ω = 32MeV
and Nlab = 3 together with the corresponding HMD results.
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Figure 17: EVE results for 16O, h̄ω = 32MeV and Nlab = 3.
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display different fits. In figs.(12)-(14) we display the results for h̄ω = 24MeV and

Nlab = 2, 3, 4, and in figs.(15)-(16) the results for h̄ω = 32MeV and Nlab = 2, 3.

Notice, as in the case of 4He, that discrepancies increase with h̄ω and Nlab. The

IM-SRG becomes more and more sensitive to the reference state. In order to

judge the quality of the EVE extrapolation of the HMD calculations, in fig. (17)

we show a typical EVE plot (σ2, E(σ2) and two linear+quadratic fits for 16O with

h̄ω = 32MeV and Nlab = 3. Notice that the uncertainty of the fits is determined

by the distance of the data from the energy axis. Needless to say by increasing the

number of Slater determinants we decrease the energy and the variance and, as a

consequence, the uncertainty. In all plots of the IM-SRG results we decimated the

data points in order to avoid clutter. In the cases of the EVE extrapolations we

select those linear+quadratic fits which have the the smallest average discrepancy

from the actual calculations.

Before leaving this section, we stress that single-reference IM-SRG is usu-

ally applied only to closed shell nuclei. For open shell nuclei the more involved

multi-reference version is preferred. the multi-reference IM-SRG version contains

however all irreducible rank-2 and rank-3 densities (cf. refs.[9],[38] for more de-

tails). The importance-truncated NCSM (ref.[39]) can also be used to assess the

net effect of the many-body forces induced by the IM-SRG flow. We limited

ourselves to small single-particle spaces, since the comparison between single-

reference IM-SRG results and exact or quasi-exact results is simple. Needless to

say, for a comparison with experimental data much larger single-particle spaces

are needed in order to soften the h̄ω and Nlab dependence.

30



6 Conclusions.

In this work we have performed HMD with EVE extrapolation techniques in order

to ascertain the overall contribution of the many-body forces induced by the IM-

SRG evolution. They depend on the reference state, on the harmonic oscillator

frequency and on the size of the single-particle space. Although percentage-wise

these missing many-body forces give a contribution of the order of few per cent,

their importance seems to increase for increasing harmonic oscillator frequency

and with the size of the single-particle space. Most likely they become less rele-

vant in the more general multi-reference IM-SRG.

7 Appendix.

We work in the representation that diagonalized the one-body density matrix, i.e.

< Âi
j >= niδij . We consider only real quantities. For completeness we also

give the M−scheme flow equations (cf.ref.[9] for the more general case of multi-

reference state and other generators), restricting ourselves to the Brillouin gener-

ator given by (we omit for simplicity the s dependence)

ηij = f j
i (nj − ni) (A1)

ηijkl = Γkl
ij (nknlninj − nknlninj) (A2)

The gradients of the energy, of the one-body and of the two-body term are respec-

tively

dE

ds
= −

∑

ab

(ηab )
2 − 1

4

∑

abcd

(ηabcd)
2 (A3)

df i
j

ds
=

∑

a

(ηiaf
a
j − f i

aη
a
j ) +

∑

ab

(na − nb)(η
a
bΓ

bi
aj − fa

b η
bi
aj)
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+
1

2

∑

abc

(nanbnc + nanbnc)(η
ia
bcΓ

bc
ja − Γia

bcη
bc
ja) (A4)

dΓij
kl

ds
=

∑

a

[(ηiaΓ
aj
kl + ηjaΓ

ia
kl − ηakΓ

ij
al − ηal Γ

ij
ka)

−(f i
aη

aj
kl + f j

aη
ia
kl − fa

k η
ij
al − fa

l η
ij
ka)]

+
1

2

∑

ab

(1− na − nb)(η
ij
abΓ

ab
kl − Γij

abη
ab
kl )

+
∑

ab

(na − nb)[(η
ia
kbΓ

jb
la − Γia

kbη
jb
la )− (ηjakbΓ

ib
la − Γja

kbη
ib
la)] (A5)

In the above equations all single-particle indices comprise the m quantum num-

bers and n = 1− n. The last term in eq.(A5) is referred to as the cross-term, and

it is the most troublesome in going to the angular momentum coupled representa-

tion. The variational character of the Brillouin generator is apparent in this form

of the energy gradient.

In the coupled representation (the J−flow) and for closed shells the single-

particle labels comprise the radial, the angular momentum and the isospin quan-

tum numbers only, e.g. i = (ki, li, ji, τi). All one-body quantities are diagonal in

the l, j, τ quantum numbers. The Brillouin generators become

ηij = f j
i (nj − ni) (A6)

ηijkl(J) = Γkl
ij (J)(nknlninj − nknlninj) (A7)

for the one-body and two-body parts respectively. J is the total two-body angular

momentum in which two-body matrix elements are diagonal and M independent.

We use the notation ĵ =
√
2j + 1. The energy gradient dE

ds
is given by

dE

ds
= −

∑

ab

δja,jbδla,lbδτa,τb ĵ
2
a(η

a
b )

2 − 1

4

∑

abcdJ

Ĵ2[ηabcd(J)]
2 (A8)

The δ’s are Kronecker deltas. The gradient of the one-body term is given by

df i
j

ds
=

∑

a

δji,ja(η
i
af

a
j − f i

aη
a
j ) +

1

ĵ2i

∑

abJ

Ĵ2(na − nb)[η
a
bΓ

bi
aj(J)− fa

b η
bi
aj(J)]
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+
1

2ĵ2i

∑

abcJ

Ĵ2(nanbnc + nanbnc)[η
ia
bc(J)Γ

bc
ja(J)− Γia

bc(J)η
bc
ja(J)] (A9)

The flow equation for Γ is more involved. For readability, we separate contribu-

tions to the gradient of Γ in three terms

dΓij
kl(J)

ds
= C ij

kl(J) +Dij
kl(J) + Eij

kl(J) (A10)

where

C ij
kl(J) =

∑

a

{[ηiaΓaj
kl (J)− f i

aη
aj
kl (J)] + [ηjaΓ

ia
kl(J)− f j

aη
ia
kl(J)]−

[ηakΓ
ij
al(J)− fa

k η
ij
al(J)]− [ηal Γ

ij
ka(J)− fa

l η
ij
ka(J)]} (A11)

and

Dij
kl(J) =

1

2

∑

ab

(1− na − nb)[η
ij
ab(J)Γ

ab
ij (J)− Γij

ab(J)η
ab
ij (J)] (A12)

The cross-coupled term E is more involved. Define first

W ij
kl (J) = (−1)J+jj+jl

∑

ab

(na − nb)
∑

K

K̂2
{ ji jj J

jl jk K

}

×

[η̃K(ki, ba)Γ̃K(lj, ab)− Γ̃K(ki, ba)η̃K(lj, ab)] (A13)

where the tilde matrices are defined as

ÕK(lj, ab) =
∑

J

(−1)J Ĵ2Ojb
la(J)

{ jj jl K

ja jb J

}

(A14)

The last contribution to dΓij
kl(J)/ds is then given by

Eij
kl(J) =W ij

kl (J)− (−1)ji+jj+JW ji
kl (J) (A15)

Apart a phase factor, the tilde operators are the Pandya transform of the corre-

sponding ones without the tilde.
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