
Open Access. © 2018 J. F. Haase et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 License.

Quantum Meas. Quantum Metrol. 2018; 5:13–39

Review Article Open Access

J. F. Haase*, A. Smirne, J. Kołodyński, R. Demkowicz-Dobrzański, and S. F. Huelga

Precision Limits in Quantum Metrology with Open
Quantum Systems
https://doi.org/10.1515/qmetro-2018-0002
Received August 15, 2018; accepted September 6, 2018

Abstract: The laws of quantum mechanics allow to per-
form measurements whose precision supersedes results
predicted by classical parameter estimation theory. That
is, the precision bound imposed by the central limit theo-
rem in the estimation of a broad class of parameters, like
atomic frequencies in spectroscopy or external magnetic
�eld inmagnetometry, can be overcomewhen using quan-
tum probes. Environmental noise, however, generally al-
ters the ultimate precision that can be achieved in the es-
timation of an unknown parameter. This tutorial reviews
recent theoretical work aimed at obtaining general preci-
sionbounds in thepresenceof an environment.Weadopt a
complementary approach,wherewe�rst analyze theprob-
lem within the general framework of describing the quan-
tum systems in terms of quantum dynamical maps and
then relate this abstract formalism to a microscopic de-
scriptionof the system’s dissipative time evolution.Wewill
show that although some forms of noise do render quan-
tum systems standard quantum limited, precision beyond
classical bounds is still possible in the presence of di�er-
ent forms of local environmental �uctuations.
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1 Introduction
Quantummetrology is a paradigmatic example of the pos-
sible advantage provided by the use of quantum features
as compared to a classical setting [1]. Given certain con-
straints, typically the number N of available probes and
the total experimental duration T, the best precision in the
estimation of a given parameter is governed by the Stan-
dard Quantum Limit (SQL), a result dictated by the cen-
tral limit theorem of classical statistics [2]. However, ex-
ploiting the very nature of quantum states and quantum
measurements allows for a di�erent metrological bound,
the so called Heisenberg limit (HL), surpassing the classi-
cally attainable precision when subject to the same con-
straints [3–6]. Recent experimental progress allows for a
wide spectrum of applications of this form of enhanced
metrology in magnetometry [7, 8], precision spectroscopy
and frequency standards [9, 10] and the stabilization of
atomic clocks [11]. One of the most spectacular achieve-
ments is the quantum enhancement of the detectors that
made the observation of gravitational waves possible [12].
By employing squeezed states of light [13–15] more sen-
sitive phase measurements have been demonstrated [16,
17], even despite the inevitable noise [18]. The recently
launched European Flagship in Quantum Technologies
has quantum metrology and sensing as one of its pillars
which clearly illustrates the potential scope of the ap-
proach of using quantum systems for enhancingmeasure-
ment precision [19, 20].
In this tutorial we will focus on one speci�c albeit rele-
vant aspect of quantummetrology, namely the theoretical
study of achievable precision bounds in frequency estima-
tion with open quantum systems [21–23]. This is a funda-
mental problem that underpins many situations of practi-
cal interest, ranging from precision spectroscopy to mag-
netic sensing [9, 24–27]. Our aim is to present in a con-
cise form recent theoretical work analyzing the ultimate
precision that can be achieved in the presence of di�er-
ent forms of noise and in the limit of a very large num-
ber of repetitions/number of probes (asymptotic scaling)
[28, 29]. Those provide theoretical lower bounds on the er-
ror of the estimation which can be saturated using some
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form of quantum resource, typically (albeit not necessar-
ily) entangled input states [30, 31]. We will show that the
nature of the quantum evolution, which is in�uenced by
unavoidable environmental �uctuations, has a direct im-
pact on the achievable precision. In the noiseless scenario,
the HL—corresponding to the 1/N2 scaling of the mean
squared error with the probe number N—dictates the ulti-
mate precision attainable in any problem in which the pa-
rameter is locally and unitarily encoded onto each of the
probes. Although the HL should be rede�ned when allow-
ing for non-local encodings [32–34] due to, e.g., non-linear
Hamiltonians or correlations mediated also by decoher-
ence [35–38], it is the uncorrelated noise [21], which typi-
cally forces the asymptotic precision to follow the SQL, i.e.,
the mean squared error to still scale as 1/N. However, we
will show that the SQL can be overcome even in the pres-
ence of uncorrelated noise and discuss the di�erent forms
of asymptotic scaling that arise depending on the noise ge-
ometry [29, 39]. To further scrutinize how the achievable
precision depends on the noise form, we consider a mi-
croscopicmodel that exempli�es how the sensitivity of the
quantum probe is diminished by the e�ect of environmen-
tal �uctuations.
Our aim is to provide a reasonably self-contained analysis
and with that scope in mind we have structured this tu-
torial as follows. Starting from a classical setup, section 2
presents a succinct discussion on fundamental concepts
in estimation theory. We want to �rst illustrate how er-
rors propagate when performing indirect measurements
and secondly show how evaluating the achievable preci-
sion in this type of measurements always involves an op-
timization. Fundamental limits to the precision of estima-
tion can then be obtained in a very general framework. We
further illustrate how the use of quantum resources facil-
itates the saturation of the ultimate precision bounds al-
lowed by quantum theory and provide a phenomenolog-
ical description of a noisy frequency estimation to show
that environmental decoherencehas adirect impact on the
problem at hand. Section 3 provides a primer on open sys-
tem dynamics for the unfamiliar reader so that we can dis-
cuss in section 4 a completely general scenario to derive
the ultimate precision bounds in frequency estimation in
the presence of noise. Section 5 complements this abstract
approach by linking the noisy evolution to concrete mi-
croscopicmodels. For completion, some additional results
beyond the independent noisemodel are presented in sec-
tion 6. We present a �nal summary of results in section 7.
A caution note on bibliography is necessary at this point.
Given the speci�c topic under consideration, the study of
asymptotic precision bounds in local parameter estima-
tion, we have unavoidably left out many interesting works

in the broad �eld of quantum metrology that concern ei-
ther experimental realizations with small number of parti-
cles or theoretical issues that do not refer to the asymptotic
limit. For those we refer the reader to the appropriate liter-
ature [3–7, 11, 15, 40–45].

2 Fundamentals of estimation
theory

Let us �rst present a simple estimation problem, which al-
lows us to illustrate how most basic notions and tools we
are going to discuss in the coming sections have their roots
in classical statistics and, in particular, in the quanti�-
cation of measurement errors. We want to exemplify this
along the lines of the following example.

Imagine, one has N identical coins, where a �ip of an
individual coin either gives heads with probability ph or
tails with pt. We stress that the only necessity to introduce
these probabilities is our lack of knowledge of the exact
initial conditions of the coin �ip. The introduction of these
probabilities is a way to describe the experiment statisti-
cally, while each �ip and the subsequent observation of
head or tail is completely deterministic andwill depend on
certain parameters of the coin which are too complicated
to access, hence we resort to the much simpler quanti�ca-
tion of the coin via its probabilities for heads and tails. To
that end, one way to proceed is to �ip each coin ν times
to estimate ph. Then, the probability variable X describing
the number of heads after νN tosses is distributed accord-
ing to binomial distribution

B(X = x|ph , νN) =
(
νN
x

)
pxh (1 − ph)νN−x , (1)

with x the number of heads found. Our best guess for ph is
then obviously ph = x/(νN): we simply take the ratio be-
tween the number of observed heads and the total number
of tosses. Indeed, ph coincides with the expectation value〈
X/(νN)

〉
. However due to the�nite quantitiesN and ν, our

guess will carry an error. A natural way to quantify this er-
ror is the variance

var [ph] = var
[
X
νN

]
= ph(1 − ph)

νN . (2)

Note that the variance is never equal to zero, besides the
two special cases ph = 0, 1, while the best strategy is to �ip
asmany coins as oftenaspossible.However, it is important
to stress that the probabilities used to calculate the vari-
ance are not known as they themselves are the parameters
to be estimated. As a consequence, the variance will never
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vanish in practice since the certain determination of the
probabilities would require an in�nite number of tosses.

To go a step further, we now assume that we are able
to determine a parameter which changes the result of a
coin toss, let’s say its roundness r. Therefore, using the
statistical model, it will change the probability of �nding
head and we assume that we know the deterministic de-
pendence ph(r). An estimate of r is then immediately given
by the inverse function [46] r(ph) = p−1

h (r) and we can use
error propagation to �nd the variance on our estimate of r,

var [r] =
var
[
ph(r)

]
[dph(r)/dr]2 = ph(r)[1 − ph(r)]

νN

[
dph(r)

dr

]−2
. (3)

In essence, it will turn out that this equation (or slight vari-
ations) is the working horse for estimation tasks we will
deal with in the following. While we will perform general-
izations to include the particularities of quantummechan-
ics in our theoretical descriptions, any quanti�cation in
sensing experiments can be linked to it [6].

Indeed we may compare the results above with an ex-
periment utilizing quantum coins, i.e. two level systems
(qubits).We replace the coins byN qubits, each in the state
|x+〉, an eigenstate of the Pauli spin matrix σx. Instead of
a toss, we perform a unitary operation U = exp

(
−iϕσz/2

)
and measure the survival probability ps of the state (note
that this is conceptually a Ramsey experiment [47]):

ps = |〈x+|U |x+〉|2 = cos2 ϕ
2 . (4)

Following the same ideas as above, we determine ps by
the number of qubits found in |x+〉 divided by νN, con-
sequently var [ps] and var [ϕ] are immediately given by
Eqs. (2) and (3) respectively.

We can directly use these relations to derive a well
known bound in frequency estimation following [21]. Here
the role of ϕ is taken by ω0t where ω0 is the frequency
to estimate (i.e. the role of r) while t represents the time
required to perform the unitary transformation. Because
this time limits the number of repetitions,we also rephrase
ν = T/t in terms of a total time T that we have at our dis-
posal to perform the measurement. Hence, we use Eq. (3)
and obtain

var [ω0] = 1
Nνt2 = 1

NtT . (5)

This equation manifests the so called shot noise limit [48]
or standard quantum limit (SQL). While this term is used
in the context of experiments involving quantummechan-
ics, its true origin lies, as we saw above, in the �nite sam-
ple size of the underlying probability distribution. In other
words, this e�ect is inevitable when dealing with ran-
domly distributed data. Crucially, in quantum mechanics

every experiment includes probability as an inherent fea-
ture. Thereby note that quantum mechanics is a proba-
bility theory itself, however, it is non-contextual [49, 50].
With the recent developments in quantum technologies,
promising sensors exploiting quantum mechanics have
been put into the near future, explaining the rising interest
in the �eld of quantummetrology.

2.1 The frequency estimation protocol -
analyzing a speci�c measurement
procedure

In this section, wewant to analyze a speci�cmeasurement
setup, in particular, we will use a Ramsey protocol [47]
that we utilize tomeasure the energy separation in a qubit.
Indeed, the Ramsey experiment is nothing else than the
quantum coins introduced in the section before.
Imagine we possess N atoms and each can be modeled
by two levels with a splitting of ω0 (we take ~ = 1
throughout the whole work). For any of those atoms,
we can assume the Hamiltonian H0 = ω0σz/2. Fol-
lowing the Ramsey scheme outlined in Fig.1(a), we ini-
tialize each qubit in its ground state |0〉 and apply a
Hadamard gate Ch which brings each of these qubits into
an equally weighted superposition (|0〉 + |1〉) /

√
2. Subse-

quently, these atoms evolve freely for a time t duringwhich
they will collect a phase ω0t such that the state is given by(
|0〉 + exp(−iω0t) |1〉

)
/
√

2. A second Hadamard gate will
transfer the phase onto a population di�erence, which we
measure via a suitable detector. The probability to �nd the
qubit in |0〉 is then

pω0 ,t (|0〉) =
∣∣∣〈0| Che−itω0σz/2Ch |0〉

∣∣∣2 = cos2 ω0t
2 . (6)

Indeed, we have Ch |0〉 = |x+〉 and thus everything is to-
tally equivalent to the quantum coin example made in the
introduction. However, the Ramsey experiment clearly il-
lustrates the three stages present in a quantum frequency
estimation protocol (FEP) which will be the topic of the
present tutorial. Other con�gurations are indeed possible
[51, 52]. The �rst step is the preparation of an input state for
the probe. Here, the probes are the qubits and the prepara-
tion is representedby the initialization and the application
of the �rst Hadamard gate. It is followed by the encoding
which lasts for a time t. The third step is then themeasure-
ment of the probe,wherewe include the secondHadamard
gate.
Crucially, any speci�cation of an achievable precision
needs to be on a common ground. For that matter, we
choose the number of probes N and the total time T as the
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Figure 1: The frequency estimation protocol. (a) Shows a single
probe Ramsey type protocol for the quantum coins described in
the main text. A Hadamard gate Ch creates a state sensitive to the
�eld during the free evolution U. After the second application of
the Hadamard gate, the state is measured and the sequence is re-
peated. In (b), the N probes are prepared in a GHZ state via the
Hadamard and CNOT gates. The free evolution acts independently
on each probe, which is the main characteristic of the FEP. Subse-
quently, the state is disentangled which allows to perform a mea-
surement on the �rst probe only. Note that for other setups than
the Ramsey scheme, the building blocks in the FEP may appear sub-
stantially di�erent. All elements of (b) are assigned to either the
preparation (blue), the encoding (green) or the measurement stage
(red). These stages are generalized in the cFEP in panel (c). For the
preparation, any state involving all N probes is considered, while
the product Λ(N)

ω0 ,t = Λ⊗N
ω0 ,t is allowed to describe any physical trans-

formation, while the POVM invoked to describe the measurement
has the only restriction to be independent of ω0.

resourceswehave at our disposal. In particular,we assume
the preparation andmeasurement process not to consume
any resources, meaning the time needed for preparation
and readout is negligibly small. An analysis relaxing this
assumption can be found in [53].

2.2 The Cramer-Rao bound

As for the Ramsey setup, we will restrict to frequencies
which are a linear parameter in the Hamiltonian H0.
Throughout this tutorial, ω0 always denotes the parame-
ter (or frequency) to be estimated. We already emphasize
that in this context a probe denotes the reduced quantum
system we utilize for the estimation. This will become im-
portant later when noise is introduced into the system.

In general, a completed cycle of the FEP can be re-
peated several times. Obviously, the number of repetitions
is �xed by the total time divided by the interrogation time,
ν = T/t. After each of these cycles, an outcome is de-
tected. We collect all of these outcomes in the vector ~x. To
deduce ω0 from the outcomes, an estimator ω̂(~x) is con-
structed. Depending on the measured outcomes, the esti-
mator yields an estimate ω̂(~x) = ω̃0 of the true value ω0.
Let’s emphasize here that the estimator itself is a random
variable, as the input (outcome of the measurement, i.e.
the observations) is a random variable itself, i.e. ~x is one
speci�c realization of ~X. Therefore, it is possible to calcu-
late di�erent moments of the estimator, e.g., the expecta-
tion value 〈•〉~x is taken with respect to the possible collec-
tions of outcomes ~x, i.e.

〈•〉~x =
∑
~x

pω0 (~x) • . (7)

The sum runs over all possible realizations of outcomes
with pω0 (~x) being the probability that ~x is the realization
obtained via the FEP. Note that we focus here and in the
following on the case where we have a discrete set of pos-
sible outcomes, nonetheless, the whole description can be
straightforwardly generalized to the case of a continuous
set of outcomes. We adopt the notation pω0 (~x) for the con-
ditional probability p(~x|ω0) to obtain the set ~x given the
parameter ω0. However, after the data collection we can
think of pω0 (~x) as the likelihood function forω0 because the
observations have already been made. Then, pω0 (~x) may
be interpreted as a function of ω0 quantifying how well
di�erent values would agree with the observed data set.

The explicit form of the estimator is not important for
the further calculations, but we will always focus on esti-
mators with the following properties [2, 54].
– Unbiasedness, which characterizes estimators that

ful�ll
〈
ω̂(~x)

〉
~x = ω0. Conversely, an estimator is biased

if
〈
ω̂(~x)

〉
~x = ω0 + β where we have the bias β ≠ 0.

– Consistency, that is, for all ν > ν′ there are ϵ(ν′), δ(ν′) >
0 such that the probability P(|ω̃0 − ω0| < ϵ) > 1 − δ. In
other words, in the case of an in�nitely large sample
size, i.e. dim(~x) = ξ → ∞, we have limξ→∞ ω̂(~x) = ω0
and the estimator gives the true parameter.
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Note that consistency implies asymptotic unbiasedness,
meaning that any bias β vanishes for a large sample size.
We stress that the converse is not true, see Fig.2 for an il-
lustration.

We de�ne the precision of an estimator in terms of its
mean squared error ∆2ω̂ (MSE),

∆2ω̂ =
〈(
ω̂(~x) − ω0

)2
〉
~x

(8)

which is a natural choice as it measures the expected
squared distance of the estimate ω̃0 from the true value
ω0. In particular, the MSE coincides with the vari-
ance of an unbiased estimator, de�ned as var

[
ω̂(~x)

]
=〈(

ω̂(~x) −
〈
ω̂
〉
~x
)2
〉
~x
. While we will focus on unbiased es-

timators in the following, we will keep the notion of MSE
instead of the variance.

For any unbiased estimator, its MSE can be bounded
from below by the Cramér-Rao bound (CRB) [2, 54]

∆2ω̂ ≥ 1
νFcl [pω0 ]

, where Fcl [pω0 ] =
∑
~x

[∂pω0 (~x)/∂ω0]2

pω0 (~x)
(9)

is the (classical) Fisher Information (FI). Here, the sum
runs over all possible collections of outcomes ~x and pω0 is
the same distribution as in Eq. (7). Any estimator achiev-
ing equality in the CRB is termed e�cient, but it is not a
priori given that one can always �nd and an estimator of
that kind [2].

The Fisher Information is a non-negative quantity
which is additive for independent events [4], i.e.

Fcl[p(1,2)
ω0 ] = Fcl[p(1)

ω0 ] + Fcl[p(2)
ω0 ], (10)

where p(1,2)
ω0 (~x1,~x2) = p(1)

ω0 (~x1)p(2)
ω0 (~x2) is the joint probabil-

ity distribution for the two events. This is of practical inter-
est, as we will consider subsequent repetitions of the FEP
which are uncorrelated by de�nition. Crucially, it is that
additivity which is responsible for the ν in denominator of
the CRB in Eq. (9). Hence we are also able to give a precise
meaning to~x in the context of the FEP,which now contains
the possible single run outcomes. Conversely, schemes
employing an adaptive strategy, e.g. successively chang-
ing the measurement apparatus according to some prior
acquired knowledge about ω0, are not captured in the for-
mulation by Eq. (9), i.e. for them one cannot employ the
sum given by Eq. (10). We will brie�y discuss these strate-
gies in Sec. 6.

Furthermore, the FI is a local quantity, as it only de-
pends on the value of the probability distribution at the
true value of the parameter and the �rst derivative.Wemay
expand theprobability distributiondetermining the obser-
vations,

pω0+δω(~x) = pω0 (~x) + ∂pω0 (~x)
∂ω0

δω + O(δω2), (11)

Figure 2: Properties of the estimator. Both panels show the proba-
bility density (blue, solid) for an arbitrary estimator, for an arbitrary
large data set~x. Likewise, the second curve represents the proba-
bility density for an enlarged data set. The estimator in (a) is consis-
tent: further data collection removes any bias, while the probability
to �nd |ω̃0 − ω0| < ϵ increases (shaded regions). Contrary, the esti-
mator in panel (b) is only asymptotically unbiased, as the shape of
the probability density does not change.

where all terms �xing the FI are contained. Therefore, all
distributions coinciding in zeroth and �rst order possess
the same FI.

To exemplify the formalism now introduced, we di-
rectly calculate Eq. (3) for the setup considered in the in-
troduction, without passing through the Bernoulli distri-
bution. We assume the FEP to be repeated ν times. After
each cycle, the possible outcome of each qubit is either
|0〉 or |1〉, hence ~x = (|0〉 , |1〉). Thereby keep in mind that
each qubit is independent from the other. Using the addi-
tive property we �rst obtain Fcl[ΠNn=1pnω0 ,t] = NFcl[pω0 ,t],
then we note that 1− pω0 ,t(|0〉) = pω0 ,t(|1〉) which plugged
into the CRB directly becomes Eq. (3) with ph 7→ pω0 ,t(|0〉).
Furthermore, utilization of Eq. (6) directly yields the SQL
Eq. (5).

Crucially, as the CRB (9) applies to any unbiased esti-
mator, this proves that by choosing the number of heads
(states |0〉) to be the random variable measured in N
rounds and simply from it inferring the parameter ω0 by
inverting Eq. (6)—so that the error propagation formula
(3) applies—constituted the best strategy that could have
been done.

In general, however, we have no guarantee that a
given unbiased estimator ω̂ will be e�cient—its MSE will
saturate the CRB (9) even in the asymptotic limit. Never-
theless, if ω̂ is built on a random variable (observable)
O(~x), which in turn relies on the outcomes ~x whose distri-
bution is ω-dependent, the error propagation formula (3)
still applies and generally reads:

∆2ω̂ = var
[
O(~x)

]
ω0

[
∂
〈
O(~x)

〉
ω

∂ω

∣∣∣∣∣
ω0

]−2

, (12)

with var
[
O(~x)

]]
ω =

〈
O(~x)2〉

ω −
〈
O(~x)

〉2
ω standing for the

variance as before, where now
〈
O(~x)

〉
ω =

∑
~x pω(~x)O(~x).

Nevertheless, let us note that one may always ar-
ti�cially construct Oω0 that yields an e�cient ω̂ sat-
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urating Eq. (9). Such an estimator, however, explicitly
depends on ω0, what makes the estimation procedure
useless, unless one is only interested in sensing small
parameter �uctuations around its known value. For a
�xed ω0 and outcome probability distribution pω0 (x)
(and its derivative ṗω0 (x) = ∂pω0 (x)/∂ω0), one may al-
ways construct a (single-outcome) observable Oω0 (x) =
ṗω0 (x)/pω0 (x), which satis�es var

[
Oω0 (x)

]
ω0

= Fcl[pω0 ]
and ∂

〈
Oω0 (x)

〉
ω /∂ω|ω0 = Fcl[pω0 ], so that at ω0 Eq. (12)

indeed coincides with Eq. (9).
For a further remark, performing a slight generaliza-

tion of the CRB derivation and considering the estimation
process of a smooth function of ω0, one arrives at Eq. (9)
that reads [54]:

∆2 ĝ ≥ 1
Fcl[pω0 ]

(
∂gω0

∂ω0

)2
, (13)

where ĝ denotes now an unbiased estimator of some
g(ω0). Importantly, the above expression proves that the
e�cient estimator saturating Eq. (13) can always be con-
structed from an e�cient estimator of ω0 by considering a
smooth function ĝ = g(ω̂). Applying the error propagation
to such an estimator with O ≡ ω̂ now in Eq. (12), we obtain

∆2 ĝ = ∆2ω̂
(
∂gω0

∂ω0

)2
, (14)

which after substituting for the e�cient ∆2ω̂ from Eq. (9)
indeed yields the generalized CRB (13).

2.3 Noiseless estimation with entangled
states - obtaining Heisenberg limited
precision

In this section, we will show that quantum features can
indeed improve the achievable precision below the SQL.
Therefore, we use all N probes together in amodi�ed Ram-
sey setup. We stress again that all N probes are absolutely
equal and each local Hamiltonian is of the form given in
terms ofω0σz/2. Themodi�ed setup, see Fig. 1 (b), applies
the Hadamard gate only on the �rst qubit, while there are
controlled-not gates C(1,n)

not on the n-th qubit,where the �rst
qubit acts as the control. Instead of preparing the equally
weighted superposition N times, this arrangement creates
an entangled GHZ-state [55] using the eigenstates of σz,

N∏
n=2

C(1,n)
not C

(1)
h

N⊗
m=1
|0〉m = |0〉

⊗N + |1〉⊗N√
2

= |GHZ〉 . (15)

After the encoding, the gates are applied in the reverse or-
der and the state of the �rst qubit is measured. The proba-
bility of �nding it in |0〉 is pω0 ,t(|0〉) = cos2(Nω0t/2) and a

direct combination with the CRB [or Eq. (3)] yields (for an
e�cient estimator)

∆2ω̂HL = 1
νt2N2 = 1

tTN2 . (16)

This scheme achieves a lower bound than the SQL, by
an astounding factor of 1/N, although we used the same
number N of probes and total time T as before. This limit,
scaling with N−2, was named the Heisenberg Limit (HL). It
was argued to be the best achievable precision [56] and in-
deed, this bound can be seen as an instance of the Heisen-
berg uncertainty relation [57, 58]. Later in Sec. 4.1, we will
see how this connection can be made.

The role of entanglement in the preparation of the in-
put state to obtain the HL has been extensively studied
[1, 59–61]. Indeed, the presence of entanglement is a strict
requirement in the context of qubit probes in the FEP as
considered here. However, we want to stress that it is not
true that entanglement is a necessary ingredient to beat
the SQL or even achieve the HL in isolated quantum sys-
tems, when di�erent estimation schemes are considered.
We will comment on the latter in Sec. 5.5.3 and exemplify
that a scaling similar to the HL can also be reached using
a single probe repetitively.

2.4 The impact of noise: Lindbladian
dephasing

In a real world experiment, the evolution of the probes is
unavoidably a�ected by noise. To give a �avor of theworks
presented later in this tutorial, we calculate an explicit ex-
ample of an evolution under the in�uence of noise. Each
probe is then an open quantum system [62, 63], whose evo-
lution is crucially shaped by the environment surrounding
theprobe. For the illustration of thepeculiarities due to the
presence of noise during the encoding stage, we restrict to
a very speci�c kind of noise, i.e. we demand the noise to
act independently but identically on eachprobe. Addition-
ally, it has to be in the Lindblad form [64]. For simplicity,
we restrict to pure dephasing, i.e. the probe’s Hamiltonian
commutes with the Hamiltonian introducing the noise, or
in other words, in the basis which �xes σz, pure dephasing
only damps the coherence elements of the probe’s density
matrix. This kind of noise can be seen, e.g., as a random
�uctuation of the frequency, i.e., the parameter to be esti-
mated. The evolution is then modeled by a master equa-
tion of Lindblad form,

dρ
dt = −i[H0, ρ] + γ (σzρσz − ρ) , (17)

where γ is a constant describing the decay strength of the
noise.
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We now repeat the calculations for the Ramsey
scheme. For the scheme using N probes in parallel, we
mark all quantities with the subscript “sep” (for separa-
ble), while the setup entangling the probes gets the sub-
script “ent”. We arrive at the probabilities

psep
ω0 ,t(|0〉) = 1 + e−γt cosω0t

2 , (18)

pent
ω0 ,t(|0〉) = 1 + e−Nγt cosNω0t

2 , (19)

respectively, where we recognize the N times higher os-
cillation frequency for the entangled state, however the
exponential decay term stemming from noise obtains the
same ampli�cation. A subsequent calculation of the CRB
yields

∆2ω̂sep ≥ 1 − e−2γt cos2 ω0t
NTte−2γt sin2 ω0t

, (20)

∆2ω̂ent ≥ 1 − e−2Nγt cos2 Nω0t
N2Tte−2Nγt sin2 Nω0t

. (21)

Indeed, these expressions are much more involved than
the corresponding results for the noiseless cases, Eqs. (5)
and (16), and intuitively it is clear that the precision ought
topossess anoptimal interrogation time topt. Note that for t
large enough, the derivatives of the probabilities in Eq. (21)
with respect to ω0 vanish, which in turn causes the FI to
vanish and hence the CRB diverges, see Eq. (9). This is also
the case for t = 0, hence there has to be an optimal time of
interrogation. To �nd this optimal point of operation, we
minimize the CRB over the interrogation time, yielding

tsep
opt = kπ

2ω0

!= 1
2γ ⇒ ∆2ωsep

0 ≥ 2γe
NT , (22)

tent
opt = kπ

2nω0

!= 1
2Nγ ⇒ ∆2ωent

0 ≥ 2γe
NT , (23)

where k is an integer number. The achievable precision
is exactly the same for both cases. This leads to the con-
clusion that product and entangled states (strategies) are
metrologically equivalent under local dephasing Lindbla-
dian noise. While this is certainly true for the scaling in
the number of particles, a constant improvement of a fac-
tor 1/e can be achieved by using di�erent entangled states
(instead of GHZ) and measurement strategies [21, 22, 65].

At this point, let us stress a subtlety related with
Eqs. (22) and (23) which involve a cyclic dependence of
ω0, γ and the optimal time, while ω0 is actually unknown.
Importantly, these, and the following limits derived on
∆2ω̂ are always understood as the best possible precision
achievable. Onemay always interpret these limits as a sec-
ond step estimation process, where ω0 is known roughly
and the rest of the strategy is adapted according to the cur-
rent knowledge. This may even be done via the choice of a

suitable coordinate frame, see for example [29]. For amore
detailed discussion of this issue, see also Sec. 4.3.

Remark.— Note that the just derived bounds for a sin-
gle probe (N = 1) can be associated with the T2 limit in
quantum sensing [6, 8]. Here it is used that γ = 1/T2,
which results in an optimal time topt = T2/2, and there-
fore the precision is said to be T2 limited.

3 A primer on open quantum
system evolutions

This section is aimed at readers not familiar with the the-
ory of open quantum systems, while experienced readers
may skip this section as we will also introduce all required
notation at its �rst appearance after this section. For a
closer study of the topic, the reader is referred to the ref-
erences [62–64, 66, 67].

The initial state ρ0 of a closed system evolves accord-
ing to the group of unitary operators U(t) generated by the
associatedHermitianHamiltonianH, which for the sake of
simplicity is to be assumed time independent for this sec-
tion. The solution for the Schrödinger equation of motion
is then immediately given by

ρ(t) = U(t)ρ0U†(t) = e−itHρ0eiHt . (24)

Crucially, this structure preserves the purity of the system,
i.e., tr

[
ρ(t)2] is conserved and equal to one for pure states.

However, often the system of interest is in contact with an
environment and hence the state of the now open system
is obtained via the partial trace over the environmental de-
grees of freedom, i.e.

ρ(t) = trE
[
Utotal(t) ρ0,totalU†total(t)

]
. (25)

The total evolution operators Utotal(t) are �xed by the form
of the environment and the accompanied interaction with
the open system. Usually the explicit form of these opera-
tors escapes our access due to the size of the environment
or other technical restrictionswhich forbid its observation.
Often, the structure of the speci�c environment isn’t even
known exactly and one employs amodelwhich introduces
thedynamics observed in experiments, e.g. the spin-boson
model [68] as we will do later in this work. As a result of
the partial trace, the evolution of the open system state is
given by a Hamiltonian term H′(t), not necessarily equal
to H, plus a dissipatorDt, which captures the in�uence of
the environment on the open system and assembles a so
called quantummaster equation,

d
dt ρ(t) = −i[ρ(t), H′(t)] + Dt

[
ρ(t)
]
. (26)
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Note that we already focused on the case where the equa-
tion is time-local, i.e. the evolution of ρ(t) only depends on
the current time point speci�ed by t and is independent of
the previous history. This form can be obtained explicitly
with the Born approximation (justi�ed by the weak cou-
pling between the open system and the environment) [62],
however, a derivation using the time-convolutionless tech-
nique also yields that result without invoking such an as-
sumption.

A practical formof themaster equation is the standard
form, where the dissipator can be written as [63]

Dt
[
ρ(t)
]

=
d2−1∑
r=1

γr(t)
[
Vrρ(t)V†r −

1
2{V

†
rVr , ρ(t)}

]
(27)

with d = dim(ρ), possibly time dependent decay rates
γr(t), the operators Vr and the anti-commutator {A, B} =
AB + BA.

For an open system evolution, we de�ne an analogous
relation to Eq. (24),

ρ(t) = Λt←0 [ρ0] =
R∑
r=1

Kr(t)ρ0K†r (t), (28)

where Λt←0 is a so called dynamical map [63] or quan-
tum channel [66] evolving the state from time 0 to t and
R is the rank of the evolution with R ≤ d2. For the second
equality we used the Kraus-representation of Λt←0, invok-
ing the Kraus operators Kr(t) ful�lling

∑R
r=1 K

†
r (t)Kr(t) = 1

which guarantees the preservation of the trace of ρ. It is
important to stress that this representation only exists, i�
the dynamical map Λt is completely positive (CP) [66], i.e.
(Λt2←t1 ⊗ I) [ρ ⊗ 1dim ρ] ≥ 0 for any ρ ≥ 0 and 1d the iden-
tity of dimension d and I the identity map.

The standard form allows for an easy characterization
of the induced dynamics of the open system via the decay
rates γr(t). First of all, if γr(t) ≥ 0 ∀t, r the induced evolu-
tion is always completely positive [64] and the solution of
the Lindblad equation can always be written via the Kraus
operators. For rates γr(t) < 0 the complete positivity has to
be validated via the positivity of the Choi matrix [69].

The case when all rates γr are constant implies that
the dynamical maps form a semigroup whose elements
only depend on the length of the evolved time intervall,
Λt2←t1 = Λt2−t1 , and the semigroup composition law is ful-
�lled [63, 64], i.e.

Λt2+t1 = Λt2 ◦ Λt1 ∀t1, t2. (29)

Such an evolution is called time-homogeneous (due to the
constant rates) and was originally de�ned as the crite-
ria for a Markovian evolution [64]. More recently, di�er-
ent de�nitions of non-Markovianity have been introduced

[63, 67], de�ned by either the violation of CP-divisibility
[70] or the non-monotonicity of the trace distance [71]. The
former states that any dynamical map which can be com-
posed via

Λt3←t1 = Λt3←t2 ◦ Λt2←t1 ∀t3 ≥ t2 ≥ t1, (30)

where Λt3←t2 is a completely positive and trace preserving
map, describes a Markovian evolution. The latter de�ni-
tion states that i� the evolution is Markovian, it holds that
for any two states ρ and σ

||ρ(t2) − σ(t2)||1 ≤ ||ρ(t1) − σ(t1)||1 ∀t2 ≥ t1, (31)

where ||A||1 = tr
[√
AA†

]
is the trace norm. This notion

of non-Markovianity is often associated with a back�ow of
information from the environment to the open system. We
stress that these de�nitions are not equivalent. However,
in both cases, the so called time-inhomogeneous evolution
de�ned by always positive but time dependent rates in the
master equation, is counted as Markovian. Consequently,
non-Markovianity corresponds to rates γr(t) which are al-
lowed to be negative, at least for some t. Crucially, this will
violate both criteria. To this endwewant to emphasize that
the speci�c de�nition of non-Markovianity, apart from the
semigroup composition law, does not play any role for the
interpretation of the results presented in this tutorial.

4 Ultimate precision limits -
analyzing arbitrary quantum
channels, initial states and
measurements

To evaluate the highest achievable precision of a mea-
surement device operating in the quantum regime it is
necessary to specify additional boundary conditions. At
�rst, let usmention the possibility of di�erent initial states
which can be prepared. As we have already seen, the em-
ployment of entanglement yields a higher scaling of the
achievable precision in the number of probes. Second,
during the encoding period, the noise a�ects the system.
While this may also be the case for a classical measure-
ment device, here the noise can be purely quantum, e.g., a
quantized radiation �eld [62]. And third, one can consider
di�erent possible measurement procedures. Realistically
however, experimental realizations often limit this pool to
a �nite set.

Consequently, we consider a framework where these
possibilities are taken into account. Therefore we gener-
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alize the FEP to the frequency estimation protocol for ar-
bitrary quantum channels (cFEP) within the independent
noise model and arbitrary initial states as well as arbitrary
measurements. It is sketched in Fig. 1 (c). In a �rst step,
the N probes are prepared in an arbitrary but chosen state.
The speci�c properties of this state, i.e., whether it car-
ries coherence or correlation, are transferred to an opti-
mization involving all possible input states. Subsequently,
the probes evolve for the encoding time t. The evolution
of each single probe’s reduced state is described via a
completely positive and trace preserving (CPTP) dynami-
cal map [63] or equivalently a CPTP quantum channel [66].
We denote this channel by Λω0 ,t which acts on the total
input state ρ(N)

0 of all N probes as

ρ(N)
ω0 ,t = Λ⊗Nω0 ,t

[
ρ(N)

0

]
. (32)

The de�nition of the total map as the product of each sin-
gle qubit channel, i.e. Λ⊗Nω0 ,t =

⊗N
n=1 Λ

(n)
ω0 ,t is a necessity of

the independent noisemodel. It ensures that all probesun-
dergo the same evolution, i.e. the impact of noise on each
probe is individual but identical,while it forbids direct and
environmentally mediated interactions of the probes dur-
ing the interrogation time. The index ω0 reminds that the
channel possesses a dependence on the parameter to be
estimated.

The last step in the protocol is the measurement.
Again, this is kept completely general in terms of the al-
lowed measurements, i.e., they may be local on a single
probe or global measurements on an arbitrary number of
the probes. Needless to say, the choice of themeasurement
will �x the probability distribution of outcomes, which in
turn �xes the Fisher Information and therefore the CRB. In
this section, we will see how in the quantum framework it
is possible to get an explicit form for the best possible pre-
cision, maximized over all the measurement procedures.

4.1 Quantum Fisher Information and
Quantum-CRB

Indeed, a chosen measurement immediately transfers a
statistical operator (quantum state) to a (classical) prob-
ability distribution. A generic quantum measurement is
described by a positive operator valued measure (POVM),
{Mx}x whose elements are positive-semide�nite operators
associated with outcome x for which it holds

∑
x Mx = 1.

Choosing a POVM �xes the probability distribution p(N)
ω0 ,t,

i.e. the probability to obtain outcome x is p(N)
ω0 ,t(x) =

tr
[
Mxρ(N)

ω0 ,t

]
. Following [57, 72], the maximization of the

FI over all POVMs yields the Quantum-Fisher-Information

(QFI)

FQ
[
ρ(N)
ω0 ,t

]
:= max
{Mx}x

Fcl[p(N)
ω0 ,t(x)] = tr

[
ρ(N)
ω0 ,tL

2
ω0 ,t
]
. (33)

Here, Lω0 ,t is the symmetric logarithmic derivate (SLD) of
the state ρ(N)

ω0 ,t, which itself completely determines the QFI.
Note that here we restrict to POVMs independent of ω0,
otherwise additional contributions appear [73]. The SLD is
implicitly de�ned as

∂ρ(N)
ω0 ,t

∂ω0
= 1

2

(
Lω0 ,tρ

(N)
ω0 ,t + ρ(N)

ω0 ,tLω0 ,t
)
, (34)

which is an instance of the Lyapunov equation [74] and
merely states one of the core problems in quantummetrol-
ogy. There exist an explicit solution to this equation,
namely in the basis that diagonalizes ρ(N)

ω0 ,t, Lω0 ,t can be
expressed as

Lω0 ,t =
∑

{j,k|pjj+pkk= ̸0}

2
pjj + pkk

〈j|
∂ρ(N)

ω0 ,t
∂ω0

|k〉 |j〉 〈k| , (35)

where pjk = 〈j| ρ(N)
ω0 ,t |k〉. However, the involved diago-

nalization renders this problem numerically infeasible for
systems of large dimension. If the state ρ(N)

ω0 ,t is pure, i.e.
ρ(N)
ω0 ,t = |ψω0 ,t〉 〈ψω0 ,t| the QFI immediately reduces to (we

suppress the index ω0, t for readability)

FQ [|ψ〉] = 4
(
〈∂ω0ψ |∂ω0ψ〉 − |〈ψ |∂ω0ψ〉|2

)
. (36)

Using this equation, it is straightforward to calculate the
QFI in case of a noiseless, i.e. a unitary evolution. Assum-
ing we can write the encoding Hamiltonian in the form
H = ω0Hred, with some suitable ω0-independent Hermi-
tian operator Hred, the quantum channel is directly given
by Λω0 ,t[•] = U • U† with U = exp (−itω0Hred) and one
arrives at

FQ[U |ψ〉] = 4t2∆2 H
∣∣
|ψ〉. (37)

Crucially, ∆2H
∣∣
|ψ〉 is nothing else but the variance of the

Hamiltonian generating the dynamics taken with respect
to the initial state |ψ〉 [75]. Note that for H = ω0Hred the
QFI is always independent of ω0 itself [76].

We emphasize that the statistical operator ρ(N)
ω0 ,t is the

quantum state of all N particles at once and may con-
tain correlations between the di�erent subsystems. This
reduces the additivity of the QFI to the case of uncorre-
lated states, i.e. FQ[ρ⊗Nω0 ,t] = NFQ[ρω0 ,t], since this is the
only case where the measurements are indeed indepen-
dent [65]. Analogously to the classical case, this could be
thought of as either a parallel measurement on N probes
or anN times repetition of the samemeasurement on a sin-
gle probe. Furthermore, the QFI is convex under incoher-
ent mixtures of quantum states [77, 78], i.e. for valid states
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ρ, σ, τ with ρ = λ σ + (1 − λ) τ and 0 ≤ λ ≤ 1 we have

FQ[ρ] ≤ λ FQ[σ] + (1 − λ) FQ[τ]. (38)

Hence, any mixing of states cannot increase the QFI.
An equivalent de�nition of the QFI can be given in

terms of the puri�cation |Ψω0 ,t〉 of the state ρ(N)
ω0 ,t. By lift-

ing the state into an Hilbert space extended by HE, the
common state can expressed via the pure state vector
|Ψω0 ,t〉, where ρ(N)

ω0 ,t = trE [|Ψω0 ,t〉 〈Ψω0 ,t|]. Then, the QFI
can be expressed as the minimum over these puri�cations
[22, 65, 79]

FQ[ρ(N)
ω0 ,t] = 4 min

Ψω0 ,t
〈∂ω0Ψω0 ,t |∂ω0Ψω0 ,t〉 . (39)

Indeed, the crucial role of the QFI is due to the fact that it
bounds the achievable precision for any possiblemeasure-
ment. Recalling the CRB in Eq. (9) and the de�nition of the
QFI in Eq. (33), we arrive in fact at the Quantum Cramér-
Rao Bound (QCRB), stating that the estimation error, mini-
mized over any possible measurement for any initial state
ρ(N)

0 is lower bounded by

∆2ω̂ ≥ min
t∈[0,T]

t
T FQ

{
Λ⊗Nω0 ,t

[
ρ(N)

0

]} . (40)

Note thatwe explicitlymention theminimization to beper-
formed over the interrogation time to obtain the optimal
performance for the particular input state ρ(N)

0 .
To simplify the notation, from now on we will denote

a derivation with respect to ω0 with a simple overdot, i.e.
∂ω0• = •̇.

4.2 Achieving maximal precision - bounding
the QFI

For the aim of �nding the maximal achievable precision
for an arbitrary quantumchannel, themaximization of the
QFI with respect to the initial state is inevitable. While we
already removed the necessity of specifying a measure-
ment (POVM) in section 4.1, here we will explore how the
optimization of the QFI with respect to the input state can
be performed e�ciently. The only “free” parameters left
are then the encoding time t and the quantum channel it-
self. In any case, the result of the input state optimization
will indeed depend on the channel, hence it is meaningful
to de�ne the channel−QFI (cQFI), which is themaximum
FI at a time t achievable when input state and readout are
optimal. We de�ne the cQFI as in [23, 65],

F[Λ⊗Nω0 ,t] := max
ρ(N)

0

FQ
{
Λ⊗Nω0 ,t[ρ

(N)
0 ]
}
. (41)

The task of maximization quickly becomes involved, al-
though due to the convexity of the QFI, Eq. (38), the set of
states over which the optimization in Eq. 41 is performed
can be con�ned to pure states. For an increasing probe
number, it is not a priori given that the optimal input
state grows trivially with N, e.g., like the GHZ states in
Sec. 2.3, but non-trivial correlations may become impor-
tant for some channels when N is increased. Since the di-
mension of the state grows exponentially with N, numeri-
cal computation becomes infeasible even for small N ren-
dering the cQFI out of reach for examinations of an asymp-
totic scaling law. However, the cQFI can be bounded in
terms of the Kraus operators representing the channel on
the single probe level. Therefore,wewill give an idea of the
procedure in the single probe cQFI and state the result for
the arbitrary N case.

To avoid the calculation of the SLD, one utilizes the
puri�cation-based de�nition of the QFI, Eq. (39). The
channel at any �xed time t, Λω0 ,t(t)[ρ0], can be regarded
as a unitary evolution of the system in an extended Hilbert
space, i.e.Hext = HS⊗HE, and subsequent tracing of this
extension, using the Stinespring dilation theorem [66].
Speci�cally we have

Λω0 ,t[ρ0] = trE
[
Uω0 (t) ρ0 ⊗ ρE U†ω0 (t)

]
=

R∑
j
Kj(t, ω0) ρ0 K†j (t, ω0) (42)

where Kj(ω0, t) are the Kraus operators representing Λω0 ,t
and ρE is a state of the extending subspace, which can
always be assumed to be pure in terms of a puri�cation
performed on the extending subspace. Since the convex-
ity of the QFI restricts ρ0 to be pure, ρ0 ⊗ ρE is pure and
hence we can invoke Eq. (39). All puri�cations can then
be reached by rotating the �xed ρE with a unitary act-
ing only on the extending subspace, Vω0ρEV†ω0 . Note that
these unitaries will in general depend on the frequencyω0
itself. Thanks to the locality of the QFI, we are allowed to
write this unitary in terms of a Hermitian matrix h inde-
pendent from ω0, Vω0 = exp (−ihω0). Note that after per-
forming the partial trace using the rotated environmental
state, the whole transformation boils down to a rotation
of the channel’s Kraus operators, i.e. we have K̃i(ω0, t) =∑R

j (Vω0 )ijKj(ω0, t) with R the rank of the channel (note
that this conversely implies that the dimension of HE is
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R). Taking the trace yields the cQFI as

F[Λω0 ,t] = 4 max
ρ0

min
h

tr
[ R∑
i=1

˙̃Ki(t, ω0) ρ0
˙̃K†i (t, ω0)

]
,

where

˙̃Ki(t, ω0) = K̇i(t, ω0) − i
R∑
j=1

hijKj(t, ω0), (43)

while higher order terms in ω0 in ˙̃Ki(t, ω0) do not con-
tribute due to the mentioned locality of the QFI. We want
to emphasize, that the environment used to employ Stine-
spring’s theorem and, at the same time, the puri�cation to
obtain the cQFI is not necessarily a physical environment
but merely a theoretical construct to avoid calculations in-
volving the SLD.

The remaining maximization over (pure) input states
ρ0 is still a tedious task, especially for complicated chan-
nels or high dimensional systems. Importantly, the or-
der of min and max cannot be exchanged. Nevertheless
it turned out that an upper bound to the cQFI, based on
the representation just calculated, can be e�ciently de-
termined, as it allows to exchange the order of the opti-
mizations and hence the maximizations over input states
can be performed. This approach has been named channel
extension and the idea is the following [79]: One extends
the channel by an equally large Hilbert space, in particu-
lar, one assumes an arbitrary number of ancilla systems,
which are not a�ected by the application of the quantum
channel. However, ifmeasurements on the new total space
are considered, the information content measured by the
cQFI can only grow, i.e., it is F[Λω0 ,t] ≤ F[Λω0 ,t ⊗ 1]. The
total state of the system and the ancillas |ΨSA〉may be en-
tangled, but can be assumed to be pure. After performing
the partial trace over the (arti�cial) ancillas, one obtains
[see Eq. (39)]

F[Λω0 (t)⊗ 1] = 4 max
ρS

min
h

trS

[
ρS

R∑
i=1

˙̃K†i (t, ω0) ˙̃Ki(t, ω0)
]

= 4 min
h

∣∣∣∣∣
∣∣∣∣∣
R∑
i=1

˙̃K†i (t, ω0) ˙̃Ki(t, ω0)

∣∣∣∣∣
∣∣∣∣∣ (44)

with || • || the operator norm [80]. In the second equal-
ity, we used that ρS = trA [|ΨSA〉 〈ΨSA|] is now mixed and
thus both optimization domains are convex. Hence we are
able to exchange the order of min and max by virtue of the
minmax theorem [81] and, subsequently, the maximum
over the states can be calculated by means of the Cauchy-
Schwarz inequality. In particular, maxρS tr [ρsA] = ||A|| for
any operator A since ρS is positive with tr [ρS] = 1.

In principle, for the case of N probes building up
the cFEP the single probe result could be derived di-

rectly, however, the problematic exponential increase of
Hilbert space’s dimension remains. Luckily, one can fur-
ther bound the channel extended cQFI for N probes in
terms of the single channel Kraus operators. When the
global channel for the common state of the probes is given
by Λ⊗Nω0 ,t, it can be shown that [65, 79]

F[Λ⊗Nω0 ,t] ≤ F[(Λω0 ,t ⊗ 1)⊗N ]

≤ 4Nmin
h(N)

[
||αK̃ || + (N − 1) ||βK̃ ||

2
]

≡ F↑[Λ⊗Nω0 ,t], (45)
with

αK̃ =
R∑
i=1

˙̃K†i (t, ω0) ˙̃Ki(t, ω0),

βK̃ = i
R∑
i=1

˙̃K†i (t, ω0) K̃i(t, ω0).

We stress the dependence of the optimal h on the num-
ber of probes, i.e., the minimization has to be performed
for every N. It has been discussed, that indeed this bound
provides useful estimates of the QFI for all N, even in the
asymptotic regime N → ∞ [23, 65] and, in fact, this will
be the basis for the results presented in the next sections.
Indeed the cQFI in Eq. (44) and the bound in Eq. (45) co-
incide for N = 1, as well as when considering any Kraus
representation, i.e., h, such that ||βK̃ || = 0 (in this case one
can show [65] that the second inequality in Eq. (45) is sat-
urated). In the latter case, it might still be convenient to
consider Kraus representations such that ||βK̃ || ≠ 0 and
the optimal h in Eq. (45) for each �nite value of N. This
provides the so-called �nite-N channel extension method,
which plays a crucial role in frequency estimation, in order
to determine how the optimal evaluation time depends on
N and, hence, the best possible scaling of the precision ob-
tained by optimizing also over t [28, 65]. In any case, the
bound requires intensive numerical e�ort, but can be cast
into a semide�nite program to perform the minimization
e�ciently [23, 65]. Note that, besides this channel exten-
sion method, also other methods have been proposed and
developed in the literature [22, 23, 82].

4.3 Saturation of the (Quantum-)CRB

Let us nowdiscuss the attainability of the (Q)CRB. The �rst
thing one has to keep in mind is that one is free to choose
t � T which increases the number of repetitions ν = T/t.
This provides more measurement data gathered over the
total time T, and hence can lead to better precision which
then improves at a classical rate∼ 1/ν.
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The chain of inequalities for the (Q)CRBmentioned so
far is given by

∆2ω̂ · T
(1)
≥ min

t
t
Fcl

(2)
≥ min

t
t
FQ

(3)
≥ min

t
t
F

(4)
≥ min

t
t
F↑

, (46)

which has been bounded by several optimization proce-
dures.

Inequality (1). — In fact, one should keep in mind that
the saturability of inequality (1) is a non-trivial issue and
strongly depends on the properties of the estimator and
therefore classical data processing [76]. We already men-
tioned that any e�cient estimator which is unbiased will
achieve the CRB, however, such an estimatormay not even
exist globally, i.e. for any arbitrary value of ω0.

An often constructed estimator is the maximum like-
lihood estimator (MLE) which pro�ts from the collection
of a large data set (Consider for example the estimator for
a sample mean x̄ =

∑ν
i=1 xi/ν). Speci�cally, it is the esti-

mator maximizing the likelihood pω0 (~x) from Sec. 2.2. One
can show that the asymptotic probability distribution of
the MLE is a normal distribution with mean ω0 and vari-
ance Fcl, i.e. saturating the CRB [2]. While always being
consistent, one also has to keep on mind that an MLEmay
only be asymptotically unbiased, i.e., the bias β vanishes
asymptotically for a large sample size.

On the other hand, in the regime of a �nite data set,
saturation is as mentioned not guaranteed in general.
More speci�cally, this is true at least on a global level, i.e.,
irrespectively of the true value ω0. In particular, a glob-
ally e�cient estimator can only be found if the underlying
probability density belongs the so called exponential fam-
ily [2]. Crucially, the normal distribution belongs to that
family andhence the asymptotic saturability canbeunder-
stood as an instance of the central-limit-theorem [2, 83].

However, one can always follow a local approach to
saturate theCRB locally at apointω0 = ωL,where one con-
structs a locally unbiased estimator which satis�es a local
unbiasedness condition [4, 84],

∂
∂ω0
〈ω̂(~x)〉~x

∣∣∣∣
ω0=ωL

= 1. (47)

Indeed, when this condition is imposed during the deriva-
tion of the CRB, one exactly obtains Eq. (9) with the only
restriction that it is only valid (i.e. equality can be reached)
for an interval ω0 = ωL ± δω, as one also restricts the FI
to this interval, which on the other hand is a local quan-
tity anyways, see Eq. (11). One is tempted to believe, that
such a constraint renders the whole formalism impracti-
cal, as this restriction is very much present in nearly every
estimation scheme since agloballyunbiased estimator can

almost never be constructed in a useful manner, or can’t
even be found for the problem at hand [2]. The usefulness
of the local approach traces back to the fact that one often
possesses preliminary information about the parameter,
such that the scheme becomes applicable to the measure-
ment of small �uctuations in the parameter as it is done
in atomic clocks [11], gravitational wave detectors [16, 17]
or as in a quantum sensing scenario named “slope detec-
tion” [6] employing for example nitrogen-vacency centers
in diamond [8] for magnetometry. Furthermore, one can
think of the protocol as a “second step estimation”, where
one roughly determines the parameter �rst and applies the
presented protocol for further re�nement. Indeed, the lo-
cal approachmay be considered as the one giving the low-
est bound hence its analysis may be regarded as the most
optimistic one, therefore the derived limits can be consid-
ered fundamental. Additionally, the call for locality may
be relaxed by allowing adaptive measurements, that is a
sequence of MLE estimators based on locally unbiased es-
timates is consistent and asymptotically e�cient [84].

For anapproach employing an estimationof thewhole
parameter range, one has to resort to Bayesian inference
techniques to frequency estimation [85]. Here, one re-
quires a new notion of the Heisenberg limit, which is now
∼ π2/N2 [86] and can be saturated employing adaptive
schemes as examined in [87, 88].

Inequality (2). — The second inequality turns into an
equality by choosing the POVM which maximizes the FI
Fcl. In particular, this POVM is given in terms of the pro-
jectors into the eigenbasis of the SLD operator [72], which
in most cases turns out not to be a practical, realizable
choice. In the speci�c case of a unitary evolution we know
that Eq. (37) holds, and then the optimal measurement
(and input state!) are given by an equally weighted super-
position of eigenstates belonging to the Hamiltonian H, as
this state maximizes the variance [51], compare Eq. (37).
More precisely, for the Hamiltonian H =

∑N
n=1 ω0H(n)

red
(where all H(n)

red are identical), the SQL is achieved by the
product state |ψ〉⊗N where

|ψ〉 = argmax
|ϕ〉

∆2Hred||ϕ〉, (48)

while the HL is achieved by∣∣∣ψ(N)
〉

= |µmax〉⊗N + |µmin〉⊗N√
2

, (49)

with
∣∣µmax/min

〉
the eigenvectors belonging to themaximal

(minimal) eigenvalues of Hred. These states are trivially
also the ones maximizing the cQFI and are therefore able
to saturate all bounds given in Eq. (46).
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Inequality (3). — The saturation of the bound given by
the cQFI F is given if all the conditions set by the maxi-
mization procedures of the FI are ful�lled. This requires
the knowledge of an optimal input state for the QFI. In the
case of a unitary evolution, these can be found by max-
imizing the variance of the Hamiltonian, as mentioned
in the previous paragraph. For a general open-system
dynamics, i.e. an arbitrary quantum channel, the state
maximizing the cQFI cannot be generally found explicitly.
However, note that if one �nds a state and a measurement
procedure such that t/Fcl has the same scaling as t/F, one
can also argue that the optimal strategy will have such a
scaling, as long as the classical CRB (1) is saturated aswell.

Inequality (4). — This inequality may never be satu-
rated, as the cQFI F is an upper bound on the QFI FQ it-
self. However, its scaling with the probe number may be
reached asymptotically (N → ∞), apart from a possible
constant. Analogously to the arguing for inequality (3), if
one �nds a state and a measurement procedure such that
t/Fcl has the same scaling as t/F↑, given the saturation of
the classical CRB (1), the optimal strategy will possess the
same scaling.

5 Realistic bounds on the precision
The cFEP has been under heavy investigation to deter-
mine the best precision achievable under di�erent circum-
stances and, in particular, the di�erent kinds of noise dur-
ing the encoding time. The main question is whether the
ultimate limit is given by the SQL, or how close one can
reach the HL. Thereby one has to keep in mind that these
limits have to be understood in an asymptotic sense, i.e.
the number of available probes N is large and tends to in-
�nity. As we will see in this section, for a �nite number of
probes these asymptotic scalings may not yet hold and are
usually worse.

Throughout this section, we will use the model from
Ref.[29] as a reference for realistic noise. It is capable of
reproducing all the scalings we are going to present here,
provided the parameters are chosen as such that the cor-
rect approximations to reach these regimes are justi�ed.
We model each probe via a qubit, which interacts with an
in�nite number of harmonic oscillators which in turn are
independent from each other. This is the regularly invoked
spin bosonmodel for quantum dissipation [68], where the

Hamiltonian is speci�ed as

H =ω0σz
2 +

∑
n
ωna†nan

+
(

cos ϑ σx2 + sin ϑ σz2

)
⊗
∑
n

(
gnan + g*na†n

)
. (50)

The transition frequency of the qubit, ω0, represents the
parameter to be estimated. For the bath, we invoke the
operators an and a†n, which are the bosonic annihilation
and creation operators corresponding to mode n with fre-
quency ωn. The second line contains the coupling part of
the Hamiltonian. Each environmental mode is coupled to
the two-level system with strength gn, while the parame-
ter ϑ de�nes the coupling angle between the x-axis and the
direction of the coupling operator. This allows the identi-
�cation of di�erent scenarios: For ϑ = π/2 we have pure
dephasing (or parallel noise with respect to z-direction)
interaction, while for ϑ = 0 we observe a purely transver-
sal (or perpendicular) interaction. Under a weak coupling
assumption between the qubit and the bath oscillators,
one employs the second order time-convolutionless mas-
ter equation for the reduced density matrix of the qubit
alone [62, 89] and obtains

dρ(t)
dt = −i

[ω0
2 σz , ρ(t)

]
+ γ(t)

(
σ̄ρ(t)σ̄† − ρ(t)

)
, (51)

where we have abbreviated the quantities

γ(t) = λ
β arctan (ωc t)

σ̄ = cos ϑσx + sin ϑσz . (52)

In particular, the following assumptions are included in
the derivation of Eq. (51): First, the spectral density used to
describe the continuumof bathmodes has theOhmic form
J(ω) =

∑
n g

2
nδ(ω − ωn) → λω exp

(
−ω/ωc

)
, where “→”

describes the continuum limit. Here, λ de�nes an over-
all coupling strength and ωc is a cut o� frequency, much
larger than ω0. Second, the total initial state of the bath is
a thermal state with a low inverse temperature β. We want
to stress further, that in general the direction of the noise
in themaster equation (here �xed by ϑ in σ̄) is a direct con-
sequence of the direction �xed by the interaction Hamilto-
nian, but the preservation of the same functional depen-
dence is a special case of the regime considered.

Performing the secular approximation [62, 89–91] dur-
ing the derivation of the master equation corresponds to
neglecting fast oscillating terms modifying the evolution
[92]. This is always justi�ed in the scenarios where the free
dynamics is much faster than the dissipative one. In par-
ticular, one separates the timescale τ0 ∼ ω−1

0 from the re-
laxation time of the system, τR. As long as τ0 � τR, terms
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Figure 3: Geometrical picture of NPC and PC channels. In panel (a)
and (b) the grey shaded volume represents the available part of the
Bloch sphere after the application of an arbitrary quantum channel,
i.e. every valid Bloch vector has to point to a state within this vol-
ume. While for the NPC case in (a) the volume can take any shape
and position, for a PC channel the volume has to be distributed
around the z axis such that it always possesses a rotational sym-
metry around that axis. This limits the allowed transformations of
the volume to the ones mentioned in the main text. Intuitively, a
rotation by an arbitrary angle around the z axis at any point, before
or after the application of the channel will change the picture in (a)
while it does not in (b).

oscillating with ω0 are averaged out, which in turn decou-
ples the populations and coherences of the qubit. Starting
from Eq.(51), one is left with the master equation

dρ(t)
dt = − i

[ω0
2 σz , ρ(t)

]
+ γ(t)

∑
j=±,z

dj
(
σjρ(t)σ†j −

1
2

{
σ†j σj , ρ(t)

})
(53)

with d+ = d− = cos2 ϑ, while dz = sin2 ϑ.
We stress that both these master equations are CPTP,

due to the positivity of γ(t)∀t ≥ 0 [64], which also cat-
egorizes them as time-inhomogeneous Markovian. Note
that this is a consequence of the speci�c choice of the
Ohmic spectral density, while no Markov-approximation
has been performed. We will comment on the role of non-
Markovianity later in this section. Furthermore, thismodel
allows for a natural transition to master equations which
are indeed Lindblad equations (i.e. their solution is a dy-
namical semigroup [62, 63]), where the decay rate γ(t) is
replaced by a constant. This can be achieved by taking the
limit ωC → ∞ [29], which corresponds to an in�nite nar-
rowing of the bath correlation functions (which decay as
∼ ω−1

C ), which is basically the necessary condition for the
Markov approximation to hold.

As already explained in Sec. 4.3, the attainability of
the QCRB employing the cQFI F as a lower bound to the
achievable precision can be shown (at least up to a con-
stant factor) by evaluating the precision, as quanti�ed by
the FI, for a speci�c measurement and initial state. For
the cases taken into account here, it is enough to con-

sider GHZ-states as the input and the parity operator, Px =⊗N
n=1 σ

(n)
x [43] as the subsequent measurement. Using er-

ror propagation, Eq. (12), the error can be written as

∆2ω̂P · T = t 1 − 〈Px(t)〉2∣∣〈Ṗx(t)〉
∣∣2 (54)

where further calculations can be found in [29, 93]. Simu-
lating that bound, provides us with a chain of inequalities

∆2ω̂P · T ≥ ∆2ω̂ · T ≥ t
F[Λ⊗Nω0 ,t]

⇒ ∆2ω̂ · T ∼ 1
Nκ , (55)

where we justify the implication from the fact that when
both sides approach 0 in the limit N →∞ as N−κ, the same
will be true for ∆2ω̂ · T.

Remark.— It is important to keep in mind that in gen-
eral the decay rates contained in the dissipator depend on
the frequency ω to be estimated. Intuitively, this can be
understood as a di�erent part of the environmental spec-
tral density is probed. These contributions are usually ne-
glected, although they can change the magnitude of the
QFI [29] and they have also been considered in the con-
text of Gaussian noise [94]. However, in the model chosen
in this work, this dependence is naturally removed by the
choice of theOhmic spectrumcombinedwith the large cut-
o� frequency.

5.1 The Zeno-limit under phase-covariant
noise

Let us start with noise which can be described using the
master equation in Eq. (53). The secular approximation
ensures that the noise induced during the evolution is
phase-covariant (PC) [95–98]. This requirement is de�ned
through the condition that the channel generating the evo-
lution commutes with any rotation Rz[•] = exp (−iϕσz) •
exp (iϕσz) of the qubit’s state around the z axis, i.e.,

[Λω0 ,t , Rz] = Λω0 ,t ◦ Rz − Rz ◦ Λω0 ,t = 0 (56)

for any arbitrary angle ϕ. In other words, the free evo-
lution and the action of the noise commute. When the
qubit’s state is described in terms of its Bloch vector,
phase-covariance results in a particular geometry of the
available transformations made through the channel. The
volume of available states always contracts isotropically
in x and y direction, preserving the rotational symmetry
around the z axis. Furthermore, contractions and shifts
along the z-axis are allowed, compare also Fig. 3. Indeed,
one can show that anydynamics ful�lling these conditions
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possesses a generator of the form
dρ(t)

dt = − i
[
ω0 + h0(t)

2 σz , ρ(t)
]

+
∑
j=±,z

γj(t)
(
σjρ(t)σ†j −

1
2

{
σ†j σj , ρ(t)

})
(57)

with suitable rates γj(t) and a possibly time dependent
Lamb-shift h0(t) [28].

It has been shown that for any FEP where the channel
can be described according to Eq. (57), i.e., the channel is
phase-covariant, the ultimate precision is always bounded
from below [28] by the asymptotic scaling

∆2ω̂Zeno,PC · T ≥
C
N3/2 , (58)

for a suitable (N-independent) constant C. Furthermore, it
was shown that such a limit can always be achieved (at
most up to the constant factor) by means of a GHZ state.
First encounters with this scaling have been presented in
[99, 100], where it has been linked to the quadratic de-
cay of transition probabilities in the environment on short
time scales andwas hence called the Zeno-Limit. A general
derivation for the case of pure dephasing can also be found
in [101]. Indeed, as shown in [28], the Zeno scaling emerges
for all evolutions whose dynamics deviate from a Lindbla-
dian (semigroup [63]) evolution at short time scales, while
the precision collapses immediately to the SQL when the
rates γj(t) in Eq. (57) are replaced by constants [21]. In par-
ticular, the optimal interrogation time has been proved to
scale as

tZeno,PC
opt ∝ 1

N1/2 , (59)

for any evolution (apart from the unrealistic case of a
full revival), thus showing explicitly how the optimal es-
timation strategy relies on measurements on shorter and
shorter time scales.

Note that a Lindbladian (semigroup) evolution corre-
sponding to constant rates in Eq. (57) is generally an ap-
proximation to the real dynamics, as it relies on a coarse
grained time resolution [62], which neglects times where
the environmental correlation functions aren’t decayed
yet. However, the total evolution of the system and the
bath is always governed by a unitary evolution of a pos-
sibly time dependent Hamiltonian H(t). Hence given an
initial pure state of the system |ψS〉 and the total state
|ψ〉 = |ψS〉 ⊗ |ψE〉, the short time survival probability of
the reduced state can be written as [28]

〈ψS|Λt [|ψS〉 〈ψS|] |ψS〉 = 1 − αS t2 + O(t3), (60)

which is always of the order O(t2) and αS = 〈ψ|H(0)2 |ψ〉−
〈ψS| trE

[
H(0) |ψ〉 〈ψ|H(0)

]
|ψS〉. Hence we can under-

stand a dynamics which is accurately described by a Lind-
blad master equation as a type of dynamics where the

Figure 4: Geometric picture for the precision for a single probe
(N = 1). The distance of two quantum states, i.e., the distance
between two neighboring probability distributions can be visual-
ized by two Bloch vectors of same length who only di�er in a small
phase angle dϕ. Note that rigorously one should understand these
as the projection of some Bloch vectors into the xy plane. Deco-
herence processes decrease the length of these vectors (and their
projections), hence the states are approaching each other, see the
transition from green to red.

“Zeno regime” (i.e. the regime where terms quadratic in
time are relevant) is not accessible. Moreover, since the in-
formation about ω0 is encoded in the phase of the qubit’s
state, for the special single probe case (i.e. N = 1) it was
possible to show that the length of the Bloch vector’s pro-
jection into the xy plane determines the achievable preci-
sion. In this respect onemayobserve geometrically thebal-
ance between a long evolution time and the decoherence
processes diminishing the achievable precision, for that
compare also Fig. 4. Both a�ect the distance between the
projections of the two states ρω0 ,t and ρω0+dω0 ,t, which is
given by the line element r(t) dϕ(t) = r(t) t dω0 where r(t)
is the length of the projection and dϕ(t) = t dω0 the phase
di�erence. Obviously, the function r(t) and t counteract
each other. While t increases the phase di�erence and
hence provides as better distinguishability of the states,
r(t) pulls the projections towards the origin and thereby
decreasing the precision.

We want to emphasize again, that this limit is asymp-
totic, i.e., it is reached for a larger number of probes which
in turn shifts the optimal interrogation time into the short
time regime. This shifting can bemotivated by the fact that
entangled states do not only share their phase evolution,
but also collectively gather �uctuations induced by the
noise. Hence, the noise is “naively ∼ N-times stronger”,
i.e., the phase evolution is lost quicker. In the short time
regime, the only time order left to contribute is the sec-
ond one as shown above, which then yields thementioned
scaling.

As an example, we show here that the microscopic
model given by the Hamiltonian (50) induces the Zeno
scaling, when we choose dephasing noise that is parallel
to the signal encoding, i.e., ϑ = π/2. For a Ramsey mea-
surement, we can calculate the CRB analogously to [100].
We remark that for that choice of ϑ, Eq.(57) and Eq.(53) co-
incide since the case of pure dephasing is always PC. Em-
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ploying GHZ states (compare also Sec.2.4) we determine
the survival probability

pω0 ,t = 1
2

{
1+ exp

[
−Nλβ

(
t arctan(tωc) −

log(1 + t2ω2
c )

2ωc

)]

× cos (Ntω0)

}
. (61)

Since the short time expansion yields pω0 ,t ≈ 1−t2(N2ω2
0−

λNωC/β)/4 + O(t3), we expect the precision to be bound
by the Zeno limit. Calculating the CRB employing the sur-
vival probability in Eq. (61), the subsequent derivations of
the CRB with respect to ω0 and t yield the optimality con-
ditions,

topt = kπ
2Nω0

and

β = 2Nλ topt arctan(ωC topt), (62)

where the second one is a transcendental equation. Ex-
panding it to second order in t, which is justi�ed by the
results of [28], we �nd topt ≈

√
β/2λωCN which results in

the optimal precision as

∆2ω̂ · T &

√
2λωC
βN3 e

√
2λN
βωC

arctan
(√

βωC
2λN

)(
1 + βωC

2λN

)− λN
βωC

→

√
2λωCe
β

1
N3/2 (N →∞), (63)

and is indeed scaling according to the Zeno limit. Addi-
tionally, it is possible to show that an in�nitely short Zeno
regime immediately yields the SQL. Therefore, remember
that the model is described by a Lindblad equation when
taking the limit ωC → ∞, which reduces the correlation
time of the environment to zero. Estimating these limits
in Eq. (61) and (62), we obtain topt = β/πλN and the op-
timal precision is scaling according to the SQL, ∆2ω̂ · T ≥
πeλ/βN.

Remark.— Note that the Zeno scaling can also emerge
non-asymptotically, when the function dictating the
transversal contraction of the Bloch sphere is always of
second order in time. Then the scaling is immediately
Zeno-like, e.g. for Gaussian envelopes, as they are encoun-
tered in nitrogen-vacancy centers [102].

5.2 Transversal noise

A special case is set by noise which is perpendicular to the
direction of the frequency encoding (normally chosen as
z). Indeed, for themodel presented this corresponds to ϑ =
0, but more general one speaks about perpendicular noise

at the level of theME, i.e., whenever the dissipator is of the
form

Dt[ρ] = γ(t) (αxσxρσx + αyσyρσy − ρ) , (64)

with αx + αy = 1, it induces transversal (or perpendicular)
noise. Speci�cally, for a constant rate γ(t), this dissipator
was analyzed in [39] and itwas found that the ultimate pre-
cision is improved beyond the Zeno limit, yielding

∆2ω̂⊥,SG · T &
1
N5/3 ,

t⊥,SG
opt ∼ N−1/3. (65)

Crucially, perpendicular noise is not phase covariant, i.e.,
the condition in Eq. (56) does not hold. In particular, the
inclusion of PC breaking terms (which are exactly the ones
neglected by the secular approximation [29, 98]), allows
for non-isotropic contractions of the Bloch sphere in x
and y direction [see Fig. 3]. Non-phase-covariant (NPC) dy-
namics then become sensitive to the initial phase of input
states of the cFEP [29], which is �xed by the relation of αx
and αy. Indeed, a dependence of the initial phase was also
predicted in [93], where the noise model was applied to a
speci�c setup in atomic magnetometry [103].

Recently, using the upper bound on the cQFI in
Eq. (45) it was shown numerically, that under the dynam-
ics induced by the ME in Eq. (53) with ϑ = 0 the precision
is ultimatively bounded by [29]

∆2ω̂⊥ · T &
1
N7/4 ,

t⊥opt ∼ N−1/4. (66)

Analogously to the Zeno limit, this scaling emerges under
the deviation from pure Lindblad dynamics. Importantly,
both scalings, Eq. (66) and (65), are reached by a parity
measurement of GHZ states, see Figs. 5 (a) and (b). The lat-
ter scaling, N−7/4 is the best one so far achieved using the
cFEP employing the independent noise model.

5.3 Arbitrary, non-phase-covariant noise

The dynamics under non-phase-covariant, non-
transversal noise are a mostly unexplored category so
far when regarded in the context of frequency estimation.
It is not too long, that these types of dynamics became
important, as the secular approximation performed in the
master equation has been a rather standard procedure.
Recent technological advances however presented meth-
ods to access timescales of the system’s dynamics where
the contribution of the non-secular terms is not averaged
out.
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Figure 5: Scaling of the QCRB in the microscopic noise model. Panel
(a) illustrates the numerically determined scalings of the QCRB in
the case of transversal noise [employing Eq. (45)]. The asymptotic
scaling in the semigroup case, given by Eq. (65) (∼ N−5/3), is shown
in green, the non-semigroup scaling given by Eq. (66) (∼ N−7/4) in
red. The solid black line marks the HL (∼ N−2), the dashed black
line the SQL (∼ N−1), hence the white cone represents the region
not accessible by classical strategies. The ZL (∼ N−3/2) is shown in
blue and supports the claim made in Eq. (67), showing the precision
for a noise angle of ϑ = π/100. Furthermore, it sets the lower bound
for PC noise [see Eq. (58)]. Note that indeed the limits need to be
understood in an asymptotic sense, as the initial increase is slower
when additional probes are used. All plots are normalized by their
value at N = 1 such that possible constants are neglected. Panel
(b) represents an excerpt from panel (a) and contains also the scal-
ings of the CRB for a parity measurement according to Eq. (54). The
curves are plotted with dashed lines while the colors are chosen
equivalently to (a). Observe here how the small dephasing compo-
nent in the blue curves dominates the asymptotic behavior, but for
less probes the scaling is closer to the perpendicular cases.

Since an NPC generator does not possess a speci�c
form [conversely they are de�ned by not being PC, i.e., not
of the form in Eq. (57)], it is involved to derive analytic re-

sults for the QCRB. Indeed, so far only numerical evidence
has been presented, namely bounding the dynamics in-
duced by Eq. (53) in terms of the inequality (45). It was
found that, the ultimate scaling for any π

2 ≥ ϑ > 0 may
also be given by the Zeno limit i� the decay rate γ(t) is time
dependent [29], i.e.

∆2ω̂Zeno,NPC · T &
1
N3/2 . (67)

We emphasize, that any in�nitesimal deviation from ϑ = 0
immediately yields the latter scaling, see also Fig. 5 (b).
One observes that in such a case there is always a contri-
bution of the noise in the direction of the parameter im-
printing, i.e., a dephasing contribution. Indeed, pure de-
phasing is always PC, hence it should limit the precision
as explained in Sec. 5.1 and derived in [28]. Indeed, there
it was also shown that the information content in the FI
is directly proportional to the length of the Bloch vector’s
projection into the xy plane, and it was argued that pure
dephasing is indeed the most detrimental noise in the es-
timation scheme. In other words, pure dephasing contri-
butions are the limiting noise factors and when additional
noise is added to the (even arbitrary small but not negli-
gible dephasing) dynamics, the precision cannot increase.
While this seems intuitive, wewant to stress that this must
not be the casewhen the asymptotic limit is not reached or
whenonehas aprobe-independent constant improvement
in mind. In particular, it was shown [29] that NPC contri-
butions can increase the single probe QFI on short times
when the considered model is kept slightly more general.

5.4 Motivating toy model

To motivate the presented limits pictorially, we dedicate
this section to a simple toy model. More precisely, the aim
is to illustrate why transversal noise yields an improved
scaling and any pure dephasing contribution automati-
cally �xes the precision to be Zeno limited.

Therefore recall that the Ramsey sequence e�ectively
measures the evolved phase of a coherent input state and
the precision is �xed by the variance of a correspond-
ing observable which is measured afterwards. For qubit
probes, the variance of Pauli operators is completely deter-
minedby their expectation value. Let’s assume that the dy-
namics during the free evolution is governed by theHamil-
tonian

H = ω0
2 σz + η

[
σx cos(θ) + σz sin(θ)

]
, (68)

where η is the amplitude of a noise process. If an experi-
ment is performed, an amplitude is chosen at random, but
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Figure 6: Toy model for the di�erent directions of the noise. After
10000 repetitions of the protocol described in the main text (after
the second π/2 rotation), the di�erent outcomes of 〈σz〉 are marked
with blue triangles (θ = π/2), red squares (θ = 0) and green circles
(θ = π/4). Every x component of the noise is along the positive
x axis. The right panel shows a histogram of the appearances of
the expectation value. Note the much narrower distribution for the
transversal case.

it is �xed for the di�erent runs of the experiment (corre-
sponding to ν in Eq. (9)). We assume that the drawn am-
plitudes have zero mean and are distributed according to
a Gaussian distribution. We interpret the measured expec-
tation as a single realization drawn from the distribution
of possible outcomes. In the experiment, for each run we
prepare an equallyweighted superposition of the σz eigen-
states analogously to Sec.2.1. Let us now consider 3 cases:
(i) For pure dephasing we have θ = π/2, (ii) for transversal
noise we have θ = 0 and for a third case (iii) we assume
θ = π/4. We simulate the evolution via the unitary gen-
erated by the Hamiltonian (68) such that we have a total
evolution of ω0t = π/2. Every result plotted on the Bloch
sphere shown in Fig.6 corresponds to the outcome of a dif-
ferent experiment. A π/2 rotation around the x axis trans-
forms the phase information of the states onto a popula-
tion di�erence, where we can extract the distribution of
〈σz〉, see Fig. 6, which show a drastically reduced variance
for case (ii) when compared to the cases (i) and (iii), which
themselves yield pretty similar results. Note that for case
(i), the non-negative expectation value is a result of the
particular geometry in combination with small values of
η.

To that end, this gives amotivation forwhy transversal
noise is a special case, while any longitudinal component
will reduce the scaling to the ZL.

Figure 7: Role of non-Markovianity in pure dephasing. Each optimal
point (red circles) of a non-Markovian decay process (dashed and
dotted blue lines) can be reached by Markovian process (blue solid
lines), therefore demonstrating that the non-Markovianity of the
dynamics cannot provide an advantage over Markovian dynamics.
The only exception is the case of a full revival as shown by the green
curve and marked by the red square. This point cannot be reached
via a Markovian dynamics and decay rates γr > 0.

5.5 Remarks

5.5.1 The role of non-Markovianity

The role of non-Markovianity in topics referring to quan-
tum metrology is, by far, not sorted out yet. However,
we stress that for the con�guration of the cFEP non-
Markovianity does not play any role when it comes to the
ultimate limits in the asymptotic regime. A detailed analy-
sis and the proof for phase covariant noise is given in [28],
but we give an intuition in the following.

As shown in [28] and argued in Sec. 5.1, performing
measurements at shorter and shorter time scales is cru-
cial in order to overcome the SQL. This not only implies
that, as said, the key property is the violation of the semi-
group composition law on short time scales (rather than a
speci�c form of non-Markovianity), but one can also show
that, apart from the unrealistic case of a full revival, per-
forming a measurement on longer time scales (e.g., wait-
ing for a back-�ow of information) would be in any case
detrimental and furthermore reducing the scaling of the
error to the SQL. Now, such a strong result is certainly a
consequence of the asymptotic regime N → ∞ taken into
account in [28]. However, one can easily argue that non-
Markovianity is not really a necessary resource for the FEP,
even in the �nite-N regime.

Crucially, note that all the FIs de�ned above are local
quantities in time, i.e., they can not capture any temporal
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Figure 8: Precision and accuracy. Imagine throws onto a dartboard,
each consecutive hit is marked with a circle. The player of board (a)
is accurate and precise, as his throws have a small spread and are
distributed around the center. The player on (b) is very precise but
lacks accuracy. His throws also possess a narrow distribution, how-
ever around a point which is displaced from the center of the target.
The throws of the last player on (c) are evenly but widely distributed
around the center, therefore he is accurate without possessing
any precision. To connect this illustration with the estimation task
treated in this work, every throw onto the dartboard has to be asso-
ciated with a whole experiment which is conducted.

correlation in the evolution of the state. In other words,
they only take the instantaneous state of the system into
account. E.g., as mentioned already in Sec. 5.3, the achiev-
able precision depends on the available coherence orthog-
onal to the imprinting of ω0. Any dynamics, whose value
of coherence coincide at a given point yield the same cQFI,
whichmeans that even if the cQFI increases in time during
one evolution due to non-Markovianity, one will always
�nd a di�erent Markovian dynamics reaching the same
QFI at the same time and thus providing the same preci-
sion. This argument is illustrated in Fig. 7. Nevertheless,
we stress that non-Markovianity can be of course of prac-
tical advantage, given a speci�c setting and hence a re-
stricted set of available dynamics.

Moreover, note that the temporal derivative of the QFI
has been proposed as a measure of non-Markovianity as
it quanti�es the information �ow between the system and
the environment [104].

5.5.2 Precision, accuracy and sensitivity

In this paragraphwewould like to clarify some terms com-
monly encountered in the literature and often used inter-
changeably. The notions of an accurate and precise mea-
surement can be linked to properties of the estimator [54].
Any unbiased estimator is accurate. Therefore, asymptotic
unbiasedness also guarantees an accurate measurement
in the asymptotic regime. The notion of precision is surely
connected to the variance of the estimator and for unbi-
ased estimators it is equal to the MSE. Importantly, preci-
sion is a term describing the closeness of results obtained
by repeated performances of the experiment (as long as

the true value does not change), the results may still be bi-
ased away from the true value, see the illustration in Fig. 8.
Note that, any e�cient estimator is accurate and precise as
it is consistent. In particular, any MLE is precise and accu-
rate in the asymptotic regime.

A further termoftenusedwhenquantifying the perfor-
mance of quantumsensing experiments is sensitivity [6, 8].
Note that this term may be misleading in a broader con-
text, since other communities use the term noise equiva-
lent power (NEP) η [105, 106], while sensitivity is then re-
ferred to the slope of the response curve [107, 108]. NEP is
a measure of the signal-to-noise ratio (SNR), speci�cally it
is de�ned as the signal yielding the SNR = 1. Since this
depends on the resources at hand, one usually chooses a
�xed total time of T = 1 s. For a response curve or signal
ST(ω0) and the noise σT(ω0) we have the SNR

SNR = ST(ω0)
σT(ω0) . (69)

Here we include the possibility to repeat measurements
and denote the a�liation to the speci�c total time in the
index T. This may change the response itself but crucially
the repetitions reduce the noise, typically by a factor

√
T/t

where t is the duration of a single run, compare the dis-
cussion in Sec. 2. We emphasize that in practical applica-
tions σT(ω0) is a sum of noise contributions from di�erent
sources, e.g. electrical noise, counting errors of quantized
signals like photons or precisely the quantum shot noise
(or projection noise) [48].

In principal the NEP is given by ST(ω0) = σT(ω0) for
T = 1s, however it is convenient to express it in terms of
the quantity to estimate. Since the sensor needs to be cal-
ibrated to a known reference point ωL, we express the re-
sponse as (recall ω0 = ωL + δω)

ST(ω0) ≈ ST(ωL) + ∂ST(ω0)
∂ω0

∣∣∣∣
ω0=ωL

δω, (70)

and therefore we arrive at the NEP (note that the
√

Hz is
required to obtain the desired units of η)

δω = σT(ω0)
[∣∣∣∣∣ ∂ST(ω0)

∂ω0

∣∣∣∣
ω0=ωL

∣∣∣∣∣
]−1 ∣∣∣∣∣

T=1 s

= η
√

Hz. (71)

Thereby the value of ST(ωL) is a bias which is known via
the calibration and we set it to zero without any loss of
generality and we prefer δω to be positive, hence we take
the absolute value of the derivative. The NEP shares simi-
larities with the error propagation Eq. (12) and we may in-
deed interpret δω as the upper limit in precision when we
understand the sensing experiment as a task of frequency
matching, where we aim to tune ωL as close as possible to
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ω0. Particularly, ST(ω0) is then the expectation value of a
quantum mechanical observable and σT(ω0) its standard
deviation. Furthermore, the requirement of local estima-
tion is implied by Eq. (70) where the derivative is the sensi-
tivity of the sensor. However, as mentioned, be aware that
some communities refer to the concept of NEP as sensitiv-
ity of the sensor and with that terminology, responsivity is
used for the local slope [106].

For illustration purposes, let us again derive the NEP
(i.e. the sensitivity) of a single probe Ramsey experiment
as used for magnetometry of a magnetic �eld, i.e., ω0 =
γaB is determined by the Zeeman interaction of the atomic
probe (gyromagnetic ratio γa) with a magnetic �eld with
amplitude B. Here, ST(ω0) is given by the survival proba-
bility of the initial state, Eq. (18) and σT(ω0) represents the
shot noise. As already mentioned, the shot noise is given
by σT(ω0) =

√
ST(ω0)[1 − ST(ω0)]/ν with ν = T/t. Plug-

ging these expressions into Eq. (71) yields

δω =
√
e−2γt − cos2(ωt)√
tT
∣∣sin(ωt)

∣∣
∣∣∣∣∣
T=1 s

, (72)

which is minimized for t = π/(2ω). Further minimizing
over t yields the optimal time topt = 1/(2γ) and translat-
ing this into the NEP for the �eld amplitude yields

δB =
√

2e
γa/γ

1
1 s =

√
2e
γaT*2

√
Hz

⇒ η =
√

2e
γaT*2

and [η] = [B]
√

Hz
−1

(73)

In the last step we used that the coherence time of the
probe is given by T*2 = 1/γ. Note that the NEP η is given
in terms of the units of the parameter (here B) divided by√

Hz giving a reference to the integration time of T = 1 s.

5.5.3 Ultimate precision without entanglement

As we have seen, in parallel estimation strategies a nec-
essary condition to overcome the SQL with respect to the
number N of probes is the entanglement among the lat-
ter. However, it has been shown that the same precision
can be achieved in a sequential strategy where, instead
of N initially entangled probes, one has an N-step proto-
col with one single probe [109, 110]. For the case of a uni-
tary operator exp

(
−itω0σz/2

)
which is applied N times to

an initially equally weighted superposition of |0〉 and |1〉,
one obtains the state of the probe after the interrogation
time as (|0〉 + e−iNω0 t |1〉)/

√
2 and the survival probability

is hence given by

pω0 ,t = 1 + cos(Nω0t)
2 , (74)

yielding the scaling 1/N2 of the precision. However, note
that in practice such a protocol is also challenging to im-
plement, as the setup has to stabilized, also against noise,
during the total duration Nt of the experiment.

On the other hand, in case of a bosonic systemswhose
indistinguishable particles constitute the probe, it is more
natural to treat them all together as an isolated quantum
system. Then, from such a perspective, one may interpret
the HL to be attainable with N bosonic particles, i.e., N ex-
citations of a single bosonic mode (given a perfect phase
reference) [30, 111]. However, one has to note that such
states still carry particle entanglement which is, contrary
tomode entanglement, necessary to obtain a quantum ad-
vantage in non-sequential schemes. Nevertheless, these
details goes far beyond the scope of this tutorial but can
be found in [4, 112].

5.5.4 Geometrical distance of quantum states

Let us brie�y note the connection between the (quantum)
Fisher-Information and the distinguishability of di�erent
quantum states. Therefore note that, besides in this work
we are focusing on frequency estimation, the achievable
precision for any other parameter λ can be analyzed using
the formalism presented here bymaking the identi�cation
ω0 7→ λ in the Eqs. (9) and (40) [113].

Aswe alreadynoted during the introduction, the prob-
lem of a �nite estimation precision is emerging from the
fact that probability theory is involved in the performance
ofmeasurements. Based on classical probability theory, in
[114] a notion of statistical distance between two proba-
bility distributions was introduced. If one parameterizes
these distributions as pλ, the distance between pλ1 and pλ2

can be de�ned as the shortest path between the two, cal-
culated in the space of all pλ. An intuitive measure of the
length is given in terms of the probabilities which can be
distinguished along the path. In the case that pλ is referred
toN possible outcomes, the length (note the appearance of
the FI)

l = 1
2

λ1∫
λ1

dλ
{ N∑
n=1

1
pλ(n)

[
dpλ(n)

dλ

]2
} 1

2

(75)

is minimized to yield the statistical distance

d(pλ1 , pλ2 ) = arccos
( N∑
n=1

√
pλ1 (n) pλ2 (n)

)
. (76)

This result has then been transferred to the quantum
regime where an N dimensional pure state |ψλ〉 is mea-
sured. Crucially, here the probabilities pλ(n) will depend
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on the chosen measurement basis and hence a further op-
timization can be performed. In particular, the optimal
measurement basis includes one of the states itself, which
yields

d
(∣∣ψλ1

〉
,
∣∣ψλ2

〉)
= arccos

∣∣〈ψλ1

∣∣ψλ2

〉∣∣ . (77)

Therefore, the distinguishability directly relates to the an-
gle enclosed by two states in the Hilbert space. This re-
sult can be transformed into a metric for neighboring pure
states |ψλ〉 and |ψλ+δλ〉 giving the Fubini-Studymetric [115]
and in [72] a generalization for mixed states is presented.
The statistical distance for two states is then given by the
Bures distance [116]

dB(ρλ1 , ρλ2 ) = arccos F(ρλ1 , ρλ2 )

= arccos tr
[√√

ρλ1ρλ2

√
ρλ2

]
(78)

where F denotes the Fidelity [66]. Interestingly, for neigh-
boring states this equation can be expanded yielding

dB(ρλ1 , ρλ2 ) = 1
2

√
FQ[ρλ] δλ + O(δλ2), (79)

which shows the connection between the QFI and the no-
tion of statistical distance between quantum states.

6 Outlook beyond the independent
noise model: Correlations and
control

By now it should be clear that the cFEP employing the
independent noise model is an idealization. In addition,
the bounds mentioned in this tutorial may be the ultimate
bounds in an asymptotic regime, however, current realiza-
tions of the protocol in experimental setups struggles to
achieve this regime. On top, there can be initial correla-
tions in the noise a�ecting the individual probes and the
probes may also interact with each other in principle. Fur-
thermore one can think of control methods during the in-
terrogation time, which may suppress noise, perform er-
ror correction or increase the sensitivity to the frequency
to be estimated. The details of these techniques go beyond
the scope of this work, however we want to complete it by
mentioning the recent progress in the �eld.

6.1 Correlated noise, and interacting probes

The cFEP sets �xed requirements onto the setup to be an-
alyzed. Indeed, the boundary conditions of independent

and identical noise are rather an idealization. Despite the
fact that this provides an accurate description of the noise
inmany circumstances, there are certainly situations of in-
terest where correlations of the noise are actually relevant.
On top, the di�erent probes are prohibited to interact dur-
ing the interrogation time, also a necessity which is not al-
ways given. Especially in the context of probes which are
desired to be prepared in an entangled state, where corre-
sponding methods relying on the inter-probe interaction
exist.

However, it is not a priori given that these �aws in a re-
alization of the cFEP are a disadvantage. Considering pure
dephasing, it was shown that noise which is spacially cor-
related along the used probes can beat the SQL with Lind-
bladian [35–37] and non-Lindbladian noise [38]. In par-
ticular, it was shown that for some antisymmetric entan-
gled preparations of the input state, the correlations in the
noise allow for the identi�cation of decoherence free sub-
spaces (DFS) which in turn even allow for the restoration
of the HL. In [36] it was calculated that the spacial length
over which the correlations decay is crucial for the achiev-
able scaling and the HL manifests for correlation lengths
longer than the chain of probes. This in�nite correlation
length was implicitly assumed in [35] where a linear chain
of trapped ions was investigated. To exemplify the latter,
consider a master equation describing the total even N-
probe state under correlated dephasing which may take
the form

d
dt ρ

(N)
ω0 ,t = −i

[
H, ρ(N)

ω0 ,t

]
+ γ
(
Vρ(N)

ω0 ,tV −
1
2

{
V2, ρ(N)

ω0 ,t

})
,

(80)

when, e.g.,

H = ω1
2

N/2∑
n=1

σ(n)
z + ω2

2

N∑
n=N/2+1

σ(n)
z + ξ (t)√γ

N∑
n=1

σ(n)
z

where V =
∑N

n=1 σ
(n)
z and ξ (t) is a delta correlated, zero

mean stochastic process, i.e., white noise. Note, that a
state which is part of the DFS has to satisfy V

∣∣ψDFS(t)
〉

= 0
at all times. One way to construct such a subspace is the
following. Therefore, note that the �rst two terms in the
Hamiltonian can be rearranged as

H0 = ω1 − ω2
4

N/2∑
n=1

σ(n)
z −

N∑
n=N/2+1

σ(n)
z

 + ω1 + ω2
4 V .

(81)
Then, an input state of the form [35]

|ψ〉 = 1√
2

N/2⊗
n=1
|1〉

N⊗
n=N/2+1

|0〉 +
N/2⊗
n=1
|0〉

N⊗
n=N/2+1

|1〉

 (82)
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ful�lls the DFS criteria and can be used tomeasure the fre-
quency ω0 = ω1 − ω2. Interestingly, if one does not ex-
ploit the existence of theses DFS, under the conditions of
correlated noise GHZ states dephase on a timescale∝ N−2

compared to an uncorrelated preparation when employed
on conventional Ramsey spectroscopy, i.e., all ions pos-
sess an equal splitting. This e�ect was called superdeco-
herence [117], implying that GHZ states are strongly dis-
advantageous. Indeed, it was found that the precision us-
ing GHZ states is then independent of N, and furthermore,
for optimized input states it was demonstrated that a con-
stant, N independent part prevails in the precision, i.e.,

∆2ω̂ ≈ γC1
T + γC2

TN1.8 , (83)

where C1 and C2 are some constants determined numeri-
cally [35]. To that end, the example presented may suggest
that the assumption of local noise in the cFEP is an opti-
mistic one, yielding a better precision than for correlated
noise. On the other hand, this is no longer true in the spe-
cial case of an appearing DFS where �nally the HL can be
reached. In any case, the precise comparison between the
two scenarios is under investigation.

Another, until now only brie�y investigated scenario
are probes interacting among each other. Whether the
parameter independent interaction of the probes can in-
crease the precision is yet to be fully explored. It was
shown that the estimation of a transverse �eld in an Ising-
Hamiltonian can be performed with Heisenberg limited
precision [118] and similar results have been derived for es-
timation procedures close to phase transitions [119]. Fur-
thermore, there are investigations for the case when the
frequency to be estimated is given by the coupling con-
stant of k-body interactions. Precisely, the total encoding
Hamiltonian has the form

H = ω0

( N∑
n=1

h(n)
0

)k
(84)

where h(n)
0 is the same operator for each probe. Such a case

is clearly operating outside the framework of the cFEP de-
scribed until here, as the best precision achievable under
such evolution scales as N−2k [32, 34, 120]. Remarkably, for
initial product states this scaling is only slightly altered
to N−(2k−1) and in speci�c cases it is enough to consider
separable measurements to achieve the optimal scaling,
while the scaling is also maintained under Lindbladian
dephasing [121]. An experiment involving Bose-Einstein-
Condensates was proposed [122] and performed [123]. De-
spite the simpli�ed preparation of the initial input prod-
uct state, the experimental di�culty is shifted to the gen-
eration of a k-body Hamiltonian (in this case k = 2 was

realized). It is worth stressing, that such a scheme also
uses exclusive quantum resources as entanglement is gen-
erated during the interrogation time. This is in contrast to
the cFEP introduced here, where the entanglement is in-
jected during the input state preparation and interaction
during the interrogation time is not considered.

6.2 External control

A natural approach to an increase of precision is the sup-
pression of noise acting on the probes [124, 125]. Within
the cFEP, this corresponds to multiple applications of
the channel during the interrogation time, but between
the channels it is allowed to perform unitary operations.
Assuming time-homogeneous Lindbladian noise, bounds
under in�nitely fast control have been found. In particular
for qubit probes, it was shown that rank one Pauli noise
can be eliminated completely, as long as it is not paral-
lel to the imprinting of the parameter [126]. Therefore, as-
sume that a probe which evolves according to the semi-
group limit (ωC → ∞) of Eq. (51), while it is initially in
an entangled GHZ state with a noiseless ancilla. We de�ne
a logical qubit (the so called “code space”) via the the sub-
space {|↑ 1〉 , |↓ 0〉} with σ̄

∣∣↑ (↓)
〉

=
∣∣↓ (↑)

〉
and some arbi-

trary reference basis {|0〉 , |1〉} for the ancilla. Integrating
the master equation over a small time step dt and project-
ing into the code space via Pc = |↑ 1〉 〈↑ 1| + |↓ 0〉 〈↓ 0| and
the error space (Pe = 1 − Pc) yields

ρC(dt) = ρ(1 − γ dt) − i ω0
2 [κ, ρ] dt + O(dt2),

ρE(dt) = γ σ̄ρσ̄ dt + O(dt2), (85)

respectively. Note that we implicitly assume the tensor
product ⊗1A for the ancilla space. In case an error
emerges, σ̄ is applied to ρE(dt), otherwise the system re-
mains unmodi�ed. After the correction, the system is in
a mixed state ρ(dt) = ρC(dt) + σ̄ρE(dt)σ̄. Rearranging the
terms, yields the di�erential equation

d
dt ρ = −i ω0

2 [κ, ρ] (86)

in the limitdt → 0. This corresponds to a unitary evolution
with the e�ective Hamiltonian κ = cos2 ϑ σz − sin 2ϑ σx/2,
hence the error correction rotates the encodingbasis.How-
ever, now the analysis of Sec. 2.3 applies. The eigenvalues
of κ are given by ± cos ϑ, representing the only penalty of
the scheme, which is a slower encoding of the parameter.
Importantly, as soon as ϑ = π/2, the noise and the encod-
ing are parallel and the error correction also removes all
information of ω0 encoded during dt.
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Importantly, this result has been generalized recently
to any �nite-dimensional probe [34, 127], showing that one
can always restore the HL, if the encoding Hamiltonian
is not contained in the linear span of the identity 1 and
the Lindblad operators Vk , V†k , V

†
kVj , ∀k, j. In particular,

if there is a dephasing termH = αVdephasing with some con-
stant α the HL can not be reached, con�rming the detri-
mental role of pure dephasing (see Sec. 5.3 and the related
discussion).

Relaxing the requirement of a time-homogeneous
noise process, it was shown that dynamcial decoupling re-
stores the ZL [128]. However, since dynamical decoupling
is limited by the correlation time of the environment [129],
one resorts to error correction schemes, which in general
can be applied on the time scales of the e�ects of the noise
[66, 130, 131]. While these bases on the idea to prolong
the coherence time [132, 133] (with experimental imple-
mentation [134]), limiting processes as spontaneous emis-
sion may be corrected by observation of the environment
[135, 136]. Furthermore, away to utilize open quantum sys-
tems is the engineering of noise processes which drive the
probes back into the code space [137, 138]. A di�erent ap-
proach was aimed to preserve the QFI itself, rather than
the input state [139]. Recently, it was also observed that
for time-homogeneous processes a continuous measure-
ment [140, 141] of the environment [142] can restore the
1/N2 scaling of the error. Interestingly, while in a parallel-
noise scenario the full noiseless HL can be reached, if the
noise is transversal, the noiseless optimal error can be ob-
tained up to a constant factor, showing that in this case
the estimation precision is unavoidably lowered by the in-
teraction with the environment, even if all the degrees of
freedom of the latter can be accessed. On the other hand, a
very recent proposal suggests the implementation of fault
tolerant strategies, which could provide a di�erent avenue
for counteracting the e�ects of noise [143].

6.3 Time dependent encoding

Recently, interesting progress has been made for the case
of time dependent encoding Hamiltonians. Before exam-
ining the setting we should stress that in that context the
term “frequency estimation” is often referred to the fre-
quency of an ac-signal [6] and thus di�ers from the def-
inition we adapted in this work. Furthermore, instead of
estimating the precision for the best scaling in N one is
rather interested in the scaling with the available time T
which for time independent encodings is usually given as
∆2ω ∼ T−2, compare Sec. 2,2.4 and 2.3. However,with time
dependent encodings this scaling can be overcome. A triv-

ial example is the Hamiltonian

Hf (t) = f (ω0, t)G (87)

where G is a time independent hermitian operator and
f (ω0, t) a real valued function. Employing Eq. (37), the QFI
yields

FQ[U |ψ〉] = 4
(
∂
∫ t

0 f (ω0, τ) dτ
∂ω0

)2

∆2G
∣∣∣
|ψ〉

. (88)

Obviously, depending on the form of f (ω0, t) the precision
∆2ω ≥ F−1

Q can take a di�erent scalings in t or equivalently
in T. As exploited in [144], the application of a suitable
control Hamiltonian to some time dependent encoding
may transform the Hamiltonian to the one in Eq. (87). An
elegantway to construct a suitable controlHamiltonian for
any time dependent encodingwas presented in [145], start-
ing from the observation that FQ[U |ψ〉] = 4var[H(ω0, t)],
where H(ω0, t) = −iU(ω0, t) ∂U(ω0, t)/∂ω0 and U(ω0, t)
is the unitary operator generating the evolution governed
by an arbitrary time dependentHamiltonian. It was shown
that the applied control Hamiltonian should be con-
structed such that it steers the input state on the path on
optimal sensing states as the system evolves. Analogously
to the time independent case examined in [51], this state
is always given by an equally weighted superposition of
the instantaneous eigenstates of H(ω0, t) with the instan-
taneousmaximum (µmax(t)) andminimum (µmin(t)) eigen-
values. Hence at each time t we have |ψt〉 ∝

∣∣µmax(t)
〉

+∣∣µmin(t)
〉
with H(ω0, t)

∣∣µjt)
〉

= µj(t)
∣∣µj(t)

〉
and the QFI

yields [145]

FQ [|ψt〉] =

 t∫
0

µmax(τ) − µmin(τ) dτ

2

. (89)

To consider an explicit example, it was shown that the
precision in estimating ω0 when encoded by H(t) =
−B
[
σx cos(ω0t) + σz sin(ω0t)

]
scales as ∆2ω ≥ 1/B2T4,

which is then also the best precision achievable for that
setting. Contrary, it is worth mentioning that estimating
the amplitude B, i.e., the frequencywewere focusing on in
all other chapters of this tutorial, scales as ∆2B ≥ 1/4T2.
The analytic form of the control Hamiltonian can be found
in [145], but one should mention that in general this con-
trol depends on the frequency to be estimated. While this
seems contradictive, it is enough to recall that the esti-
mation is performed locally. Hence, using a close esti-
mate for the frequency in the control Hamiltonian also im-
proves the precision, as can be seen in [144]. Furthermore,
[145] showed that one can use an adaptive scheme, where
estimations of the parameter are used as a feedback for
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the control and the quartic scaling is then reached in an
asymptotic regime of repetitions. A further example of the
application of a control Hamiltonian can be found in [146],
where the estimationof the speedof aLandau-Zener sweep
also shows the quartic scaling in the total time.

A time dependent encoding of the form H(t) =
A sin(ω0t)σz has been studied experimentally, exploiting
a nitrogen-vacancy center in diamond [147, 148] or in-
volving a superconducting transmon circuit coupled to a
waveguide cavity [149]. The latter used a control Hamilto-
nian constructed via themethods in [145], indeed showing
a scaling ∼ T−4 for times shorter than the coherence time
of the probe. Regarding the scheme employing nitrogen-
vacancy centers, a di�erent control was employed where
the limiting factor was set by the coherence time of the sig-
nal itself. Dividing the total time into small blocks where
a dynamical decoupling sequence and a subsequent mea-
surement was performed, the total FI is the sum of the FI
of the di�erent measurements, which resulted in a scaling
of

∆2ω ∼ 1
T3T2

(90)

which holds as long as T is smaller than the coherence
time of the signal and T2 the coherence time of the probe.

7 Conclusion
The precision limits typical to classical statistics can be
overcome by using quantum metrology protocols. In the
absence of environmental noise, so that quantum probes
evolve unitarily, the so-called Heisenberg limit can be
achieved, i.e., the mean squared error can decrease as
fast 1/N2 with the number of probes employed — rather
than as 1/N characteristic to the standard quantum limit
which is dictated by classical statistics. In the presence of
noise, quantum probes are subject to environmental �uc-
tuations that will typically hinder the achievable resolu-
tion. In the most unfavourable case, uncorrelated noise
can constrain thequantumenhancement to a constant fac-
tor, and therefore bound the error to the standard asymp-
totic scaling [21–23]. That is the case of all types of semi-
group (time-homogeneous) dynamics that include phase
covariant terms, which commutewith the systemHamilto-
nian. Uncorrelated dephasing noise that can be described
by a Linbladian master equation is a relevant example of
this situation. Remarkably, the standard scaling can be
surpassedwhen the dynamics is no longer ruled by a semi-
group and becomes time-inhomogeneous. In this case, the
ultimate precision in frequency estimation is determined
by the system’s short-time behaviour, whichwhen exhibit-

ing the natural Zeno regime leads to an asymptotic resolu-
tion beyond the SQL, with a standard deviation scaling as
1/N3/2. It is important to emphasize that the relevant noise
feature dictating the precision is the violation of the semi-
group composition law at short timescales, while speci�c
non-Markovianity does not play any speci�c role as far as
the asymptotic scaling is concerned [28].
The consideration of speci�c microscopic models allows
for the investigation of the physical mechanisms that lead
to a reduction of the attainable precision in a metrology
protocol. Using the spin-boson model with weak coupling
of arbitrary geometry we can show how imposing the sec-
ular approximation leads to a phase-covariant dynamics,
while the inclusion of non-secular terms breaks the phase-
covariance. In the case of baths with an Ohmic spectral
density we can provide an exhaustive characterization of
the metrological performance and demonstrate the gener-
ality of the Zeno bound beyond phase covariance. Zeno
scaling holds unless probes are coupled to the baths in
the direction perfectly transversal to the encoding, where
a novel scaling proportional to 1/N7/4 arises [29].
Many open questions remain to be addressed in the con-
text of open systemmetrology.We expect that themethods
presented in this tutorial can be also useful for the analy-
sis of precision bounds in the small N domain where most
practical applications will be developed and where the in-
tricacy of the combination of coherent and incoherent dy-
namics is expected to be e�ciently exploited for achieving
super-classical performance.
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