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1. ABSTRACT: 

Endothelial dysfunction is one of the primary factors in the onset and progression of 

atherothrombosis resulting in acute myocardial infarction (AMI). However, the pathological 

and cellular mechanisms of endothelial dysfunction in AMI have not been systematically 

studied. Protein expression profiling in combination with a protein network analysis was 

employed using a mass spectrometry-based label-free quantification approach. This identified 

and quantified 2,246 proteins, of which 335 were differentially regulated in coronary arterial 

endothelial cells from patients with AMI compared to controls. The differentially regulated 

protein profiles reveal the alteration of a) metabolism of RNA, b) platelet activation, signalling 

and aggregation, c) neutrophil degranulation, d) metabolism of amino acids and derivatives, e) 

cellular responses to stress, and f) response to elevated platelet cytosolic Ca2+ pathways. 

Increased production of oxidants and decreased production of antioxidant biomarkers as well 

as down regulation of proteins with antioxidant properties suggests a role for oxidative stress 

in mediating endothelial dysfunction during AMI. In conclusion, this is the first quantitative 

proteomics study to evaluate the cellular mechanisms of endothelial dysfunction in patients 

with AMI. A better understanding of the endothelial proteome and pathophysiology of AMI 

may lead to the identification of new drug targets. 
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2. Introduction: 

The vascular endothelium plays a key role in the maintenance of homeostasis and it also acts 

as a multi-functional organ for vascular tone regulation. Endothelial dysfunction is more 

frequently observed in patients with cardiovascular risk factors and contributes to the 

development of atherogenesis, hypertension, peripheral vascular disease, chronic kidney 

failure, diabetes, viral infections, coronary artery disease, and myocardial ischemia1–5. It is 

characterized by several features including the association of increased production of reactive 

oxygen species (ROS), growth factors, adhesive molecules; impaired redox status and 

fibrinolytic ability; a discrepancy in the functions of endothelium-mediated vasodilation, 

prothrombic and proinflammatory responses6–8. Alterations in endothelial function contribute 

to the development, progression and clinical manifestations of atherosclerosis9. 

Acute myocardial infarction (AMI) is one of the leading causes of morbidity and mortality 

throughout the world and the prevalence of this disease is increasing rapidly in developing 

countries. Worldwide it is estimated that there were 15.9 million cases of AMI in 201510. AMI 

is the most common manifestation of the acute coronary syndrome, occurring as a consequence 

of coronary thrombosis and a reduction in myocardial perfusion. The rupture of an 

atherosclerotic plaque or erosion of the coronary endothelial monolayer exposes blood to 

thrombogenic lipids, which leads to the activation of clotting factors and platelets. 

Atherosclerotic plaque with a thin fibrous cap and lipid-rich core are more prone to rupture. 

Previous studies have shown that circulating microparticles are increased in patients with AMI 

and endothelial dysfunction occurs in young patients with AMI irrespective of whether they 

have conventional cardiovascular risk factors11,12. 

Emerging data specifies that pathological blood vessel responses and endothelial dysfunction 

are associated with metabolic alterations in endothelial cells (ECs)13.  However, the underlying 

mechanisms associated with endothelial dysfunction may be multidimensional and have not 
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been fully defined. Therefore, insights into the cellular mechanisms of endothelial dysfunction 

may aid our understanding of the acute coronary syndrome and lead to the development of new 

therapeutic tools. In this study, we aimed to identify the differentially regulated proteins 

associated with the endothelial dysfunction in patients with AMI. For this purpose, we isolated 

primary ECs from the thrombotic material aspirated from the coronary arteries of patients 

undergoing treatment for acute ST-segment elevation myocardial infarction. We applied a mass 

spectrometry-based label-free quantification approach to evaluate the molecular mechanisms, 

network and signalling pathways associated with endothelial dysfunction in AMI.  

3. Methods: 

Data available on request from the authors. Total protein was extracted from control and 

pathological ECs and subjected to reduction followed by alkylation. In-solution trypsin 

digested peptides were separated by nano LC-HRMS analysis. The resulting raw files were 

analysed by using various software for the protein identification, quantification. Statistically 

significantly differentially regulated proteins were used for gene ontology, network and 

pathway analysis. See supplemental materials and methods for the detailed procedures.  

4. Results:  

4.1 Identification and differential proteomic analysis of dysfunctional ECs 

The aim of this study was to identify the differentially regulated proteins associated with 

endothelial dysfunction in AMI. For this purpose, primary ECs were isolated from the 

atherothrombotic material aspirated from the occluded coronary artery in patients with AMI. A 

mass spectrometry-based label-free quantitation approach enables the evaluation of the 

complex network and signalling pathways associated with the endothelial dysfunction. The 

confluent HCAEC-AMI and normal HCAECs were collected to extract the protein content. 

Altered protein expression profiling in combination with gene ontology, network and pathway 

analysis was employed by using the mass spectrometry-based label-free quantification 
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approach to explore the molecular mechanisms. Multi scatter plot analysis of peptide intensities 

resulted in Pearson coefficients higher than 0.98, attesting the high grade of reproducibility of 

technical and biological replicates. 2246 protein and 17653 unique peptides were quantified, 

consulting the Uniprot_Homosapiens database; the settings of searches were 10 ppm tolerance 

on peptides, 0.8Da on fragments and less than 1% false discovery rate. The data analysis was 

performed as specified in our publication14. To discriminate the differentially expressed 

proteins a two-sided t test was applied to two category groups: HCAEC-AMI (disease) and 

HCAEC (control). The log2 of ratios of disease versus control (fold change) were plotted 

against the -log10 of p-value, resulting in the Volcano plot of Figure 1. All proteins with a fold 

change higher than 1.5 and p-value less than 0.05 were considered significant because these 

proteins differed from most quantified proteins (with fold change about 1) whose expression 

in patient samples did not change related to controls.  335 proteins were differentially regulated, 

of which 40 and 123 proteins were up- and down-regulated respectively, with a fold change 

higher than 1.5 in the HCAEC-AMI cells compared to control cells (Table 1a and 1b). 

4.2 Endothelial dysfunction and upregulation  

The majority of upregulated proteins in HCAEC-AMI cells originated from the proteasome 

complex, nucleosome, nuclear nucleosome, or large ribosomal subunit and cytosolic ribosome 

(Table S1). The actin-binding protein TMSB10 was upregulated in dysfunctional ECs with a 

log2 fold change of 2.68. This protein is involved in actin filament organization and plays an 

important role in the cytoskeleton. Similarly, we identified vonWilibrand Factor (vWF), an 

important adhesion protein, was upregulated with a 2.06 log2 fold change. vWF is a key protein 

in vascular hemostasis, blood coagulation, platelet degranulation and activation, and in 

extracellular matrix organization. Studies have shown that vWF promotes the formation of a 

molecular bridge between platelet-surface receptor complex GPIb-IX-V and sub-endothelial 

collagen matrix, which further increases the binding of platelets to the site of vascular injury. 
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The plasminogen activator (PLAT) protein involved in tissue remodelling and degradation was 

also upregulated in dysfunctional ECs. Along with these proteins, based on our results, a 

platelet-expressed protein HSD17B12 might play a role in the pathogenesis of coronary artery 

disease. This protein has 3-ketoacyl-CoA reductase activity, suggesting a role in lipid 

metabolism and fatty acid biosynthesis. Other differentially regulated proteins and their  

associated biological processes are reported in Figure 2a. 

4.3 Endothelial dysfunction and down-regulation 

Cytosolic small and large ribosomal subunits and proteasome complex were the major sources 

of down-regulated proteins (Table S2). These proteins are involved in ribosome biosynthesis, 

small and large subunit assembly, the regulation of cardiac muscle contraction by the release 

of sequestered calcium ions, regulation of oxidative stress-induced cell death, cellular 

responses to reactive oxygen species, and cellular aldehyde metabolic processes (Figure 2b, 

Table S3). UBE2I, SYNE1, and MGST1 showed extensive downregulation among all the 

identified proteins. The MAPEG family (Membrane-Associated Proteins in Eicosanoid and 

Glutathione metabolism) protein MGST1, is involved in the protection of the endoplasmic 

reticulum and outer mitochondrial membrane from oxidative stress. Therefore, the 

downregulation of this protein in dysfunctional ECs might indicate increased oxidative stress 

in endothelial cells during AMI. 

4.4 Network and pathway analysis: To better understand the nature of differentially regulated 

proteins, they were further classified in terms of reactome pathways. Data from this analysis 

showed the association of a) metabolism of RNA, b) platelet activation, signaling and 

aggregation, c) neutrophil degranulation, d) metabolism of amino acids and derivatives, e) 

platelet degranulation, f) cellular responses to stress, and g) response to elevated platelet 

cytosolic Ca2+ pathways in endothelial dysfunction of AMI (Figure 3). 

4.5 Validation of protein by western blot:  
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To validate the expression of vWF, we used western blot analysis. The peak intensity area of 

each protein band was calculated using ImageJ software and the data illustrated as histograms 

after analyzing against the ß- actin as housekeeping protein. As shown in Figure 4, the relative 

abundance of vWF protein in the dysfunctional ECs was analogous to the results from label-

free quantification study.  

5. Discussion: 

A deep understanding of the molecular mechanisms of disease is crucial in the discovery of 

novel therapeutic strategies for the treatment of endothelial dysfunction and its associated 

vascular diseases. Mass spectrometry-based proteomics is one of the advanced tools to identify 

new biomarkers and therapeutic targets. In the present study, for the first time, we describe the 

change in proteome profile of coronary arty endothelial cells in patients with AMI. 

The endothelium which exists between the circulatory system and surrounding tissues plays an 

important role in protecting the vascular from injury. Based on local sheer stress and tissue 

requirements, ECs can create a prothrombotic or antithrombotic environment. Usually, healthy 

ECs express anticoagulant and antiplatelet proteins that prevent fibrin formation and platelet 

aggregation. Whereas dysfunctional ECs stimulate platelet aggregation and adhesion, and 

fibrin formation. ECs are also able to produce pro-fibrinolytic proteins, such as tissue 

plasminogen activate to enhance the fibrinolysis and promote degradation of local thrombus. 

In this study TMSB10 and vWF proteins were highly upregulated. TMSB10 has a role in the 

organization of the cytoskeleton, while the increased expression of vWF would be expected to 

enhance thrombus formation in the coronary artery. vWF also binds to collagen which plays a 

key role in the maintenance of the integrity and elasticity of the vasculature as well and when 

the vessel is injured and the prothrombotic collagen matrix exposed this interaction could 

precipitate AMI15. Interestingly, mass spectrometry based iTRAQ analysis with vascular 
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smooth muscle cells (VSMCs) isolated from the aortic wall of MI patients also revealed the 

overexpression of VWF protein16. 

Over expression of vWF, RAP1A, and RAP1B proteins would also promote platelet 

aggregation via the integrin alpha IIb beta3 signaling and MAP2K and MAPK activation 

pathways. MAPKs are implicated in multiple important cellular processes such as apoptosis, 

cellular proliferation, motility, differentiation, stress response, and survival. In this study, 

MAPK3 was down regulated, suggesting that endothelial cells from patients with AMI may 

have lower proliferation capability. Recent studies have shown that the interferon-induced 

GTP-binding protein MX1 is involved in AMI17,18. In this study, MX1 was upregulated with a 

2.4-fold change, supporting a role for this protein in endothelial dysfunction. Rap1, which 

controls EC function, is one of the critical mediators of FGF-induced ERK activation in 

angiogenesis19. In this study, RAP1a and RAP1b were upregulated in patient-derived ECs 

perhaps to facilitate angiogenesis and promote myocardial salvage following AMI. RAP1a and 

1b may also play a role in the protection of vascular ECs, based on the results of knockdown 

studies20. 

The identified differentially regulated proteins in our patient-derived endothelial cells, such as 

VWF21, CRYAB22, MX123, CNN224,25, PSME226, CIAPIN127, TAGLN28, and EDIL329 have 

previously been reported to be implicated in AMI, vascular injury, morphogenesis, and 

angiogenesis in experimental models of disease. Furthermore, previous studies have shown the 

increased synthesis of type VIII collagen in the development of atherosclerosis in both humans 

and animal models30,31. The over expressed HSD17B12 protein is a reductase involved in 

collagen binding activity and long fatty acid chain metabolism. However, in the case of 

dysfunctional ECs of disease, HSD17B12 was down regulated, suggesting a different role in 

these diseases. MMRN1, belonging to EMILIN family32, is usually found in platelets, and has 
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an adhesive ligand property in synergy with vWF in platelet adhesion to collagen at the sites 

of vascular injury33,34. 

EC apoptosis has a fundamental role in the angiogenesis process and pathological vascular 

remodelling and regression35–37. In this study proteins related to apoptosis pathway were 

differentially regulated. In particular, CYCS, DNM1L, HMGB1, LMNB1, PSMA4, PSMA7, 

PSMB5, PSMC5, PSMD13, PSME1, YWHAB, YWHAE showed decreased expression and 

PSMA2, PSMB3 (1.08-fold change) and PSME2 showed increased expression, attesting their 

prominent role during endothelial reorganization in AMI. 

Metabolic alterations and oxidative stress are important inducers of endothelial dysfunction in  

cardiovascular diseases and diabetes mellitus38–40. Normal ECs constantly produce endothelial 

nitric oxide synthase (eNOS). Impairment of the eNOS–NO system causes oxidative stress and 

endothelial dysfunction that accelerates atherogenesis. In this investigation, a reduced 

expression of eNOS activation pathway, evidenced by the downregulation of CALM1, 

CALM2, and CALM3 proteins, and the activation of NF-kappaB were observed. PARK7, 

PAWR, PSAP, TXN and UBQLN1 proteins, involved in the regulation of oxidative stress-

induced cell death, and MGST1 protein, involved in the cell protection against oxidative stress, 

were also down regulated. Moreover, the overexpression of superoxide dismutase (SOD1) was 

involved in hypoxia response and superoxide radical degradation pathways in VSMCs of 

patients with MI41. This confirms the involvement of oxidative stress in endothelial 

dysfunction. The inhibition of vascular oxidative stress and enhancement of endothelial NO 

production could be a potential therapeutic strategy along with the treatments of established 

risk factors. 

Ribosome (including RNA and proteins) is an essential component in the machinery of protein 

synthesis and ribosomal proteins (RPs) plays a critical role in the cell proliferation, 

differentiation, apoptosis, DNA repair, and other cellular processes42. Studies have shown that 
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the dysfunction of ribosomal biosynthesis may result in abnormal cell proliferation in 

metabolic disorders and cancer43,44. Moreover, various RPs have been reported to be associated 

with the progression of cardiovascular diseases45,46. However, we observed the downregulation 

of several RPs in dysfunctional ECs which are corresponding to the ribosome biogenesis, small 

and large subunit assembly processes. 

6. Perspectives: 

In this study, the main involved pathways and related proteins have been extensively described 

and they will be further investigated in clinical prospective. This protein atlas in underlying 

mechanism of endothelial dysfunction can provide new perspectives in drug discovery for the 

treatment of cardiovascular diseases.  
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spectrometry analyses. 

8. Disclosures: 

None. 

9. References: 



10 
 

1  Celermajer DS. Endothelial Dysfunction: Does It Matter? Is It Reversible? J Am Coll 

Cardiol 1997; 30:325–333. 

2  Vilahur G, Padró T, Casaní L, Mendieta G, López JA, Streitenberger S, et al. 

Polyphenol-enriched Diet Prevents Coronary Endothelial Dysfunction by Activating 

the Akt/eNOS Pathway. Rev Española Cardiol (English Ed 2015; 68:216–225. 

3  Hasdai D, Gibbons RJ, Holmes DR, Higano ST, Lerman A. Coronary endothelial 

dysfunction in humans is associated with myocardial perfusion defects. Circulation 

1997; 96:3390–3395. 

4  Zeiher AM, Krause T, Schächinger V, Minners J, Moser E. Impaired endothelium-

dependent vasodilation of coronary resistance vessels is associated with exercise-

induced myocardial ischemia. Circulation 1995; 91:2345–52. 

5  Zeiher AM, Drexler H, Wollschläger H, Just H. Modulation of coronary vasomotor 

tone in humans. Progressive endothelial dysfunction with different early stages of 

coronary atherosclerosis. Circulation 1991; 83:391–401. 

6  Sena CM, Pereira AM, Seiça R. Endothelial dysfunction — A major mediator of 

diabetic vascular disease. Biochim Biophys Acta - Mol Basis Dis 2013; 1832:2216–

2231. 

7  Addabbo F, Montagnani M, Goligorsky MS. Mitochondria and reactive oxygen 

species. Hypertens (Dallas, Tex  1979) 2009; 53:885–92. 

8  Taddei S, Ghiadoni L, Virdis A, Versari D, Salvetti A. Mechanisms of Endothelial 

Dysfunction: Clinical Significance and Preventive Non-Pharmacological Therapeutic 

Strategies. Curr Pharm Des 2003; 9:2385–2402. 

9  Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 

362:801–809. 

10  GBD 2015 Disease and Injury Incidence and Prevalence Collaborators T, Allen C, 



11 
 

Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national 

incidence, prevalence, and years lived with disability for 310 diseases and injuries, 

1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 

(London, England) 2016; 388:1545–1602. 

11  Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, et al. 

Circulating microparticles from patients with myocardial infarction cause endothelial 

dysfunction. Circulation 2001; 104:2649–52. 

12  Chen S-M, Tsai T-H, Hang C-L, Yip H-K, Fang C-Y, Wu C-J, et al. Endothelial 

dysfunction in young patients with acute ST-elevation myocardial infarction. Heart 

Vessels 2011; 26:2–9. 

13  Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to 

treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med 2014; 

6:1105–20. 

14  Nukala SB, Baron G, Aldini G, Carini M, D’Amato A. Mass Spectrometry-based 

Label-free Quantitative Proteomics To Study the Effect of 3PO Drug at Cellular Level. 

ACS Med Chem Lett 2019; :acsmedchemlett.8b00593. 

15  Peuhkurinen K, Risteli L, Jounela A, Risteli J. Changes in interstitial collagen 

metabolism during acute myocardial infarction treated with streptokinase or tissue 

plasminogen activator. Am Heart J 1996; 131:7–13. 

16  Wongsurawat T, Woo CC, Giannakakis A, Lin XY, Cheow ESH, Lee CN, et al. 

Transcriptome alterations of vascular smooth muscle cells in aortic wall of myocardial 

infarction patients. Data Br 2018; 17:1112–1135. 

17  Chen Y-F, Pottala J V., Weltman NY, Ge X, Savinova O V., Gerdes AM. Regulation 

of Gene Expression with Thyroid Hormone in Rats with Myocardial Infarction. PLoS 

One 2012; 7:e40161. 



12 
 

18  Zhao Q, Wu K, Li N, Li Z, Jin F. Identification of potentially relevant genes for 

myocardial infarction using RNA sequencing data analysis. Exp Ther Med 2018; 

15:1456–1464. 

19  Yan J, Li F, Ingram DA, Quilliam LA. Rap1a is a key regulator of fibroblast growth 

factor 2-induced angiogenesis and together with Rap1b controls human endothelial cell 

functions. Mol Cell Biol 2008; 28:5803–10. 

20  Birukova AA, Meng F, Tian Y, Meliton A, Sarich N, Quilliam LA, et al. Prostacyclin 

post-treatment improves LPS-induced acute lung injury and endothelial barrier 

recovery via Rap1. Biochim Biophys Acta 2015; 1852:778–91. 

21  Wang X, Zhao J, Zhang Y, Xue X, Yin J, Liao L, et al. Kinetics of plasma von 

Willebrand factor in acute myocardial infarction patients: a meta-analysis. Oncotarget 

2017; 8:90371–90379. 

22  Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S. Role of α-crystallin B as a 

regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or 

endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell 

Death Dis 2013; 4:e582–e582. 

23  Zhao Q, Wu K, Li N, Li Z, Jin F. Identification of potentially relevant genes for 

myocardial infarction using RNA sequencing data analysis. Exp Ther Med 2018; 

15:1456–1464. 

24  Chen J, Yu L, Zhang S, Chen X. Network Analysis-Based Approach for Exploring the 

Potential Diagnostic Biomarkers of Acute Myocardial Infarction. Front Physiol 2016; 

7:615. 

25  Ahammad I. Identification of Key Proteins Associated with Myocardial Infarction 

using Bioinformatics and Systems Biology. doi:10.1101/308544 

26  Wang Y, Huang Y, Zhang M, Zhang X, Tang X, Kang Y. Bioinformatic Analysis of 



13 
 

the Possible Regulative Network of miR-30a/e in Cardiomyocytes 2 Days Post 

Myocardial Infarction. Acta Cardiol Sin 2018; 34:175–188. 

27  Zhang Y, Fang J, Ma H. Inhibition of miR-182-5p protects cardiomyocytes from 

hypoxia-induced apoptosis by targeting CIAPIN1. Biochem Cell Biol 2018; 96:646–

654. 

28  Derda AA, Woo CC, Wongsurawat T, Richards M, Lee CN, Kofidis T, et al. Gene 

expression profile analysis of aortic vascular smooth muscle cells reveals upregulation 

of cadherin genes in myocardial infarction patients. Physiol Genomics 2018; 50:648–

657. 

29  Jiang S-H, Wang Y, Yang J-Y, Li J, Feng M-X, Wang Y-H, et al. Overexpressed 

EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in 

human pancreatic cancer. Oncotarget 2016; 7:4226–40. 

30  Sibinga NE, Foster LC, Hsieh CM, Perrella MA, Lee WS, Endege WO, et al. Collagen 

VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ 

Res 1997; 80:532–41. 

31  Sinha S, Kielty CM, Heagerty AM, Canfield AE, Shuttleworth CA. Upregulation of 

collagen VIII following porcine coronary artery angioplasty is related to smooth 

muscle cell migration not angiogenesis. Int J Exp Pathol 2001; 82:295–302. 

32  Jeimy SB, Tasneem S, Cramer EM, Hayward CPM. Multimerin 1. Platelets 2008; 

19:83–95. 

33  Reheman A, Tasneem S, Ni H, Hayward CPM. Mice with deleted multimerin 1 and 

alpha-synuclein genes have impaired platelet adhesion and impaired thrombus 

formation that is corrected by multimerin 1. Thromb Res 2010; 125:e177-83. 

34  TASNEEM S, ADAM F, MINULLINA I, PAWLIKOWSKA M, HUI SK, ZHENG S, 

et al. Platelet adhesion to multimerin 1 in vitro : influences of platelet membrane 



14 
 

receptors, von Willebrand factor and shear. J Thromb Haemost 2009; 7:685–692. 

35  Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during 

angiogenesis. Arterioscler Thromb Vasc Biol 2002; 22:887–93. 

36  Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003; 13:159–167. 

37  Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9:653–660. 

38  Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to 

treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med 2014; 

6:1105–20. 

39  Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of 

oxidant stress. Circ Res 2000; 87:840–4. 

40  Ceriello A, Assaloni R, Da Ros R, Maier A, Piconi L, Quagliaro L, et al. Effect of 

atorvastatin and irbesartan, alone and in combination, on postprandial endothelial 

dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation 

2005; 111:2518–24. 

41  Wongsurawat T, Woo CC, Giannakakis A, Lin XY, Cheow ESH, Lee CN, et al. 

Distinctive molecular signature and activated signaling pathways in aortic smooth 

muscle cells of patients with myocardial infarction. Atherosclerosis 2018; 271:237–

244. 

42  Wang W, Nag S, Zhang X, Wang M-H, Wang H, Zhou J, et al. Ribosomal proteins 

and human diseases: pathogenesis, molecular mechanisms, and therapeutic 

implications. Med Res Rev 2015; 35:225–85. 

43  Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer 2003; 

3:179–192. 

44  Wang W, Nag S, Zhang X, Wang M-H, Wang H, Zhou J, et al. Ribosomal proteins 

and human diseases: pathogenesis, molecular mechanisms, and therapeutic 



15 
 

implications. Med Res Rev 2015; 35:225–85. 

45  Di R, Wu X, Chang Z, Zhao X, Feng Q, Lu S, et al. S6K inhibition renders cardiac 

protection against myocardial infarction through PDK1 phosphorylation of Akt. 

Biochem J 2012; 441:199–207. 

46  Casad ME, Abraham D, Kim I-M, Frangakis S, Dong B, Lin N, et al. Cardiomyopathy 

is associated with ribosomal protein gene haplo-insufficiency in Drosophila 

melanogaster. Genetics 2011; 189:861–70. 



10. Novelty and significance of the work:  

What is new?  

In this study we define the proteomic signature of endothelial cells derived from patients with 

acute myocardial infarction and identify plausible pathophysiological mechanisms of 

endothelial dysfunction.  

What is relevant?  

Quantitative proteomic profiling in endothelial dysfunction revealed the biomarker signature 

of thrombosis, metabolism and oxidative stress. The overexpression of VWF strongly 

associated with thrombus formation, platelet aggregation and angiogenesis that might play a 

key role endothelial dysfunction of AMI. Increased production of oxidants and decreased 

production of antioxidant biomarkers, as well as down regulation of proteins which had an 

antioxidant property, strongly suggest a role for oxidative stress in the endothelial dysfunction 

of AMI.  

Summary 

Our mass spectrometry-based label-free quantitative proteomics approach revealed several 

cardiovascular related biomarkers in AMI. Thrombus formation, collagen deposition, vascular 

remodeling, platelet aggregation, metabolic alterations, oxidative stress related events have a 

potential unfavorable impact on the endothelial dysfunction. 

11. Figure and Table Legends: 

Figure 1: Distribution of differentially regulated proteins in HCAEC-AMI cells. Volcano Plot 

obtained by two-sided t test of the groups: HCAEC-AMI (disease) versus HCAEC (control). 

Dots on the left indicates the down-regulated proteins, dots on the right represents the 

upregulated ones. 
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Figure 2: Biological processes associated with up (a) and down (b) regulated proteins found 

in dysfunctional HCAEC-AMI cells. The significance of the clustering is shown by the size of 

nodes. 

Figure 3: Main pathways and involved genes found in dysfunctional HACEC-AMI cells. 

ClueGo analyses enriched and clustered Reactome pathway terms. The significance of the 

clustering is shown by the size of nodes. 

Figure 4: : Protein expression levels of selected proteins. Bar graph was plotted with mean ± 

SEM, the x-axis represents the HCAEC-AMI and HCAEC groups and the y-axis represents the 

relative expression of a respective protein to control. Differences were considered significant 

when p < 0.05 (*), 0.001 < p < 0.01 (**), p < 0.001 (***). β-actin was used as a housekeeping 

protein. 

Table 1a: List of upregulated proteins associated with endothelial dysfunction in AMI. 

Table 1b: List of down-regulated proteins associated with endothelial dysfunctionality in AMI. 

12. Tables:  

Table 1a: 

Protein ID Protein names 

Gene 

names 

Log2 

(HCAE

C-AMI 

vs 

HCAE

C) 

-LOG(P-

value) 

P63313 Thymosin beta-10 TMSB10 2.68 4.97 

P04275 

von Willebrand factor;von Willebrand 

antigen 2 

VWF 2.06 1.41 
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B4DWS6 

Very-long-chain 3-oxoacyl-CoA 

reductase 

HSD17B

12 

1.47 5.70 

E9PR44 Alpha-crystallin B chain CRYAB 1.43 3.29 

B4DRD3 

Tissue-type plasminogen 

activator;Tissue-type plasminogen 

activator chain A;Tissue-type 

plasminogen activator chain B 

PLAT 1.37 13.16 

A0A140VJL6 

Isoamyl acetate-hydrolyzing esterase 

1 homolog 

IAH1 1.33 5.87 

P20591 

Interferon-induced GTP-binding 

protein Mx1;Interferon-induced GTP-

binding protein Mx1, N-terminally 

processed 

MX1 1.25 3.67 

O95433 

Activator of 90 kDa heat shock 

protein ATPase homolog 1 

AHSA1 1.20 3.35 

B4DDF4 Calponin;Calponin-2 CNN2 1.06 4.70 

Q86SZ7 

Proteasome activator complex subunit 

2 

PSME2 1.03 2.36 

B4E2S7 

Lysosome-associated membrane 

glycoprotein 2 

LAMP2 1.03 3.60 

Q6FI81 Anamorsin CIAPIN1 0.99 6.26 

A0A0S2Z4G7 Nucleophosmin NPM1 0.93 3.75 

A0A024R6I3 

Transmembrane emp24 domain-

containing protein 10 

TMED10 0.91 5.50 
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Q6IBN4 

Enoyl-CoA delta isomerase 2, 

mitochondrial 

PECI 0.86 5.85 

O94874 E3 UFM1-protein ligase 1 UFL1 0.85 3.59 

O15511 

Actin-related protein 2/3 complex 

subunit 5 

ARPC5 0.84 2.69 

A0A024R3C4 KDEL motif-containing protein 2 KDELC2 0.84 3.28 

Q5RLJ0 UPF0568 protein C14orf166 

C14orf16

6 

0.83 8.21 

Q9UPN1 

Serine/threonine-protein 

phosphatase;Serine/threonine-protein 

phosphatase PP1-gamma catalytic 

subunit 

PPP1CC 0.83 3.05 

A0A024RA52 

Proteasome subunit alpha 

type;Proteasome subunit alpha type-2 

PSMA2 0.81 2.55 

X5D2T3 60S ribosomal protein L10 RPL10 0.80 4.07 

P61026 Ras-related protein Rab-10 RAB10 0.79 2.57 

B7ZAY2 

Ras-related protein Rap-1b;Ras-

related protein Rap-1b-like 

protein;Ras-related protein Rap-1A 

RAP1B 0.77 4.39 

Q5U0D2 Transgelin TAGLN 0.77 2.63 

Q6IPH7  RPL14 0.76 4.33 

O15231 Zinc finger protein 185 ZNF185 0.76 4.13 

P51571 

Translocon-associated protein subunit 

delta 

SSR4 0.75 5.64 

J3KQ32 Obg-like ATPase 1 OLA1 0.74 4.78 
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A0A024RB14 

40S ribosomal protein S26;Putative 

40S ribosomal protein S26-like 1 

RPS26 0.74 3.59 

Q13509 Tubulin beta-3 chain TUBB3 0.74 4.60 

A0A024R7B7 

Hsp90 co-chaperone Cdc37;Hsp90 

co-chaperone Cdc37, N-terminally 

processed 

CDC37 0.72 5.11 

B7Z3K3 Inositol-3-phosphate synthase 1 ISYNA1 0.71 3.68 

B3KT06 Tubulin alpha-1B chain TUBA1B 0.71 6.93 

A0A024R1M8 Apolipoprotein L2 APOL2 0.71 1.95 

O43854 

EGF-like repeat and discoidin I-like 

domain-containing protein 3 

EDIL3 0.69 1.98 

P37802 Transgelin-2 TAGLN2 0.63 4.79 

P63172 Dynein light chain Tctex-type 1 DYNLT1 0.63 2.39 

B4DFL1 

Dihydrolipoyl 

dehydrogenase;Dihydrolipoyl 

dehydrogenase, mitochondrial 

DLD 0.61 2.36 

V9HW44 

Platelet-activating factor 

acetylhydrolase IB subunit beta 

HEL-S-

303 

0.60 3.84 

 

Table 1b: 

Protein ID Protein names 

Gene 

names 

Log2 

(HCAEC-

AMI vs 

HCAEC) 

-

LO

G(P

-
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valu

e) 

H3BPC4 SUMO-conjugating enzyme UBC9 UBE2I -1.68 1.38 

E7ENN3 Nesprin-1 SYNE1 -1.45 6.12 

F5H7F6 Microsomal glutathione S-transferase 1 MGST1 -1.45 5.54 

A0A1W2PR

F6 

Lysosome membrane protein 2 SCARB2 -1.43 4.16 

B3KPC7 

Actin-related protein 2/3 complex subunit 

5;Actin-related protein 2/3 complex 

subunit 5-like protein 

ARPC5L -1.43 3.29 

A8K651 

Complement component 1 Q 

subcomponent-binding protein, 

mitochondrial 

C1QBP -1.39 5.53 

Q9BQQ5 60S ribosomal protein L27a L27a -1.39 8.30 

P62851 40S ribosomal protein S25 RPS25 -1.38 6.19 

Q13201 

Multimerin-1;Platelet glycoprotein 

Ia*;155 kDa platelet multimerin 

MMRN1 -1.33 3.14 

Q9Y5B9 FACT complex subunit SPT16 SUPT16H -1.31 4.57 

Q96FQ6 Protein S100-A16 S100A16 -1.29 6.83 

Q6IBA2 

Activated RNA polymerase II 

transcriptional coactivator p15 

PC4 -1.25 7.05 

Q13151 

Heterogeneous nuclear ribonucleoprotein 

A0 

HNRNPA

0 

-1.21 4.49 

B4DWN1 

Vesicular integral-membrane protein 

VIP36 

LMAN2 -1.20 2.20 
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C9J3L8 

Translocon-associated protein subunit 

alpha 

SSR1 -1.20 5.57 

Q2TAM5 Transcription factor p65 RELA -1.17 6.14 

P29966 

Myristoylated alanine-rich C-kinase 

substrate 

MARCKS -1.15 6.06 

H0YN26 

Acidic leucine-rich nuclear 

phosphoprotein 32 family member A 

ANP32A -1.12 6.03 

Q53FJ5 

Prosaposin;Saposin-A;Saposin-B-

Val;Saposin-B;Saposin-C;Saposin-D 

PSAP -1.09 8.79 

Q13404 

Ubiquitin-conjugating enzyme E2 variant 

1 

UBE2V1 -1.09 3.47 

A0A140VJK

1 

Glutaredoxin-3 GLRX3 -1.06 4.43 

F8W6I7 

Heterogeneous nuclear ribonucleoprotein 

A1;Heterogeneous nuclear 

ribonucleoprotein A1, N-terminally 

processed;Heterogeneous nuclear 

ribonucleoprotein A1-like 2 

HNRNPA

1 

-1.05 5.46 

A0A024R3J7 

Dolichyl-diphosphooligosaccharide--

protein glycosyltransferase subunit 

STT3A 

hCG_2032

701 

-1.03 5.00 

Q9Y3U8 60S ribosomal protein L36 RPL36 -1.01 5.47 

P51858 Hepatoma-derived growth factor HDGF -1.00 4.74 



23 
 

F5GXX5 

Dolichyl-diphosphooligosaccharide--

protein glycosyltransferase subunit 

DAD1 

DAD1 -0.99 2.82 

Q5T7C4 

High mobility group protein B1;Putative 

high mobility group protein B1-like 1 

HMGB1 -0.99 7.17 

B4DTT0 N-acetylglucosamine-6-sulfatase 

DKFZp68

6E12166 

-0.97 8.94 

O14907 Tax1-binding protein 3 TAX1BP3 -0.97 3.69 

A0A024R4X

0 

NADH-cytochrome b5 reductase;NADH-

cytochrome b5 reductase 3;NADH-

cytochrome b5 reductase 3 membrane-

bound form;NADH-cytochrome b5 

reductase 3 soluble form 

CYB5R3 -0.97 7.22 

H9ZYJ2 Thioredoxin TXN -0.96 5.01 

B5BU25 Splicing factor U2AF 65 kDa subunit U2AF2 -0.96 8.00 

Q86U79 Adenosine kinase ADK -0.95 2.58 

L7RT18 Adapter molecule crk CRK -0.94 4.18 

V9HW48 

SH3 domain-binding glutamic acid-rich-

like protein 

HEL-S-

115 

-0.93 2.73 

A0A140VJF

4 

Biliverdin reductase A BLVRA -0.93 5.15 

E9PI87 Oxidoreductase HTATIP2 HTATIP2 -0.92 2.13 

J3KNF4 

Copper chaperone for superoxide 

dismutase 

CCS -0.92 4.48 

Q6FGV9 Phosphomevalonate kinase PMVK -0.92 2.92 
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P20700 Lamin-B1 LMNB1 -0.91 9.48 

Q6FGY1 Hippocalcin-like protein 1 HPCAL1 -0.91 3.83 

A0A024R25

8 

Ubiquilin-1;Ubiquilin-4 UBQLN1 -0.90 5.55 

Q53XX5 Cold-inducible RNA-binding protein CIRBP -0.90 3.80 

Q59H57 RNA-binding protein FUS FUS -0.90 3.77 

B4E324 

Carboxypeptidase;Lysosomal protective 

protein;Lysosomal protective protein 32 

kDa chain;Lysosomal protective protein 

20 kDa chain 

CTSA -0.89 4.30 

K7ESE8 Bleomycin hydrolase BLMH -0.89 3.32 

P46926 

Glucosamine-6-phosphate isomerase 

1;Glucosamine-6-phosphate isomerase 

GNPDA1 -0.88 4.45 

B7Z4K8 

Basic leucine zipper and W2 domain-

containing protein 2 

BZW2 -0.87 4.26 

B7Z2Z1 Scaffold attachment factor B1 SAFB -0.87 5.93 

Q6IRT1 

S-(hydroxymethyl)glutathione 

dehydrogenase;Alcohol dehydrogenase 

class-3 

ADH5 -0.87 4.62 

P15531 Nucleoside diphosphate kinase A NME1 -0.86 1.85 

A2A2D0 Stathmin STMN1 -0.86 8.87 

C9JFR7 Cytochrome c CYCS -0.84 6.18 

A8K2W3 Serum deprivation-response protein SDPR -0.83 

11.4

3 

F5GYN4 Ubiquitin thioesterase OTUB1 OTUB1 -0.81 5.20 
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O75436 

Vacuolar protein sorting-associated 

protein 26A 

VPS26A -0.81 2.38 

V9HW74 

Ubiquitin carboxyl-terminal 

hydrolase;Ubiquitin carboxyl-terminal 

hydrolase isozyme L1 

HEL-117 -0.79 1.94 

A0A0S2Z41

0 

3-hydroxyacyl-CoA dehydrogenase type-

2 

HSD17B1

0 

-0.79 4.64 

H3BPQ3 Protein NDRG4 NDRG4 -0.78 3.46 

Q5T9B9 Endoglin ENG -0.77 3.90 

A0A087X29

6 

Prostaglandin G/H synthase 1 PTGS1 -0.77 4.28 

J3K000 Xaa-Pro dipeptidase PEPD -0.76 3.38 

A0A024RA

V2 

ATP-dependent DNA helicase Q1 RECQL -0.76 5.90 

A0A024R3Z

6 

Basic leucine zipper and W2 domain-

containing protein 1 

BZW1 -0.75 5.44 

P18077 60S ribosomal protein L35a RPL35A -0.75 2.68 

Q6FH49 Nicotinamide N-methyltransferase NNMT -0.74 4.02 

V9HWI0 Alcohol dehydrogenase [NADP(+)] 

HEL-S-

165mP 

-0.74 7.43 

B3KMZ6 SUMO-activating enzyme subunit 2 UBA2 -0.74 3.60 

E9PJ81 UBX domain-containing protein 1 UBXN1 -0.74 2.45 

B4DIZ2 Ubiquitin-conjugating enzyme E2 K UBE2K -0.74 3.24 

A5PLK7 Protein RCC2 RCC2 -0.73 4.02 

B0YJ88 Radixin RDX -0.73 3.67 
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A0A024R88

3 

V-type proton ATPase subunit G 1 

ATP6V1G

1 

-0.73 3.30 

A0A024R3

W7 

Elongation factor 1-beta EEF1B2 -0.73 3.44 

Q5IST1 Serine/arginine-rich splicing factor 5 SFRS5 -0.71 2.49 

A0A024R8

W0 

Eukaryotic initiation factor 4A-

III;Eukaryotic initiation factor 4A-III, N-

terminally processed 

DDX48 -0.71 4.98 

Q6FHX6 Flap endonuclease 1 FEN1 -0.70 2.56 

Q53HS0 Glutamine--tRNA ligase QARS -0.70 5.15 

O95831 

Apoptosis-inducing factor 1, 

mitochondrial 

AIFM1 -0.70 2.02 

O15400 Syntaxin-7 STX7 -0.70 4.56 

Q5T123 

SH3 domain-binding glutamic acid-rich-

like protein 3 

SH3BGR

L3 

-0.69 4.48 

Q9HDC9 

Adipocyte plasma membrane-associated 

protein 

APMAP -0.69 2.58 

Q05BM8 

Polypeptide N-

acetylgalactosaminyltransferase;Polypept

ide N-acetylgalactosaminyltransferase 

1;Polypeptide N-

acetylgalactosaminyltransferase 1 soluble 

form 

GALNT1 -0.69 3.82 

Q9BRL5  CALM3 -0.69 2.73 

J3QRT5 Intercellular adhesion molecule 2 ICAM2 -0.69 2.31 
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F8WCF6 

Actin-related protein 2/3 complex subunit 

4 

ARPC4-

TTLL3 

-0.68 6.06 

I3L2L5 Protein FAM195B FAM195B -0.68 3.19 

B3KN57 Sorting nexin-2 SNX2 -0.68 5.10 

F8VQE1 LIM domain and actin-binding protein 1 LIMA1 -0.68 2.45 

D3DP46 Signal peptidase complex subunit 3 SPCS3 -0.68 2.27 

A0A024R9D

2 

Protein LYRIC MTDH -0.67 3.46 

P35580 Myosin-10 MYH10 -0.67 7.58 

K7ES31 

Eukaryotic translation initiation factor 3 

subunit K 

EIF3K -0.67 3.30 

J3KT73 60S ribosomal protein L38 RPL38 -0.66 6.00 

P62263 40S ribosomal protein S14 RPS14 -0.66 7.96 

P62495 

Eukaryotic peptide chain release factor 

subunit 1 

ETF1 -0.66 5.27 

Q53XC0 

Eukaryotic translation initiation factor 2 

subunit 1 

EIF2S1 -0.66 5.24 

Q96C90 

Protein phosphatase 1 regulatory subunit 

14B 

PPP1R14

B 

-0.65 2.71 

F5H2R5 Rho GDP-dissociation inhibitor 2 

ARHGDI

B 

-0.65 2.80 

A4D275 

Actin-related protein 2/3 complex subunit 

1B 

ARPC1B -0.64 2.92 
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Q14240 

Eukaryotic initiation factor 4A-

II;Eukaryotic initiation factor 4A-II, N-

terminally processed 

EIF4A2 -0.64 3.21 

B4E3A8 Leukocyte elastase inhibitor HEL57 -0.64 2.22 

A0A024R1K

8 

Splicing factor 3A subunit 1 SF3A1 -0.64 2.65 

H7BY10 60S ribosomal protein L23a RPL23A -0.64 3.71 

Q96IZ0 PRKC apoptosis WT1 regulator protein PAWR -0.64 4.69 

A8K719 Core-binding factor subunit beta CBFB -0.64 2.71 

A0A024RDB

0 

Ubiquitin-like modifier-activating 

enzyme 6 

UBE1L2 -0.64 7.12 

A0A0A6YYJ

8 

Putative RNA-binding protein Luc7-like 

2 

LUC7L2 -0.64 3.62 

A0A140VJP

5 

S-adenosylmethionine synthase isoform 

type-2;S-adenosylmethionine synthase 

MAT2A -0.64 4.18 

Q53R19 

Actin-related protein 2/3 complex subunit 

2 

ARPC2 -0.62 3.86 

A0A1X7SBZ

2 

Probable ATP-dependent RNA helicase 

DDX17 

DDX17 -0.62 9.54 

A9UK01 Rho GTPase-activating protein 18 

ARHGAP

18 

-0.61 5.11 

A0A024RB8

5 

Proliferation-associated protein 2G4 PA2G4 -0.61 6.66 

V9HW41 Ubiquitin-conjugating enzyme E2 N HEL-S-71 -0.61 3.01 

Q5VVD0 60S ribosomal protein L11 RPL11 -0.61 4.27 
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P51991 

Heterogeneous nuclear ribonucleoprotein 

A3 

HNRNPA

3 

-0.61 9.09 

A0A024R5Q

7 

Adenylosuccinate synthetase isozyme 2 ADSS -0.61 6.02 

Q59GU6 Sorting nexin-1 SNX1 -0.61 3.93 

P13010 

X-ray repair cross-complementing 

protein 5 

XRCC5 -0.60 6.59 

C9J9K3 40S ribosomal protein SA RPSA -0.60 7.71 

A0A0A0MR

M8 

Unconventional myosin-VI MYO6 -0.60 3.14 

L7RXH5 

Mitogen-activated protein 

kinase;Mitogen-activated protein kinase 

3 

MAPK3 -0.60 6.02 

V9HWC2 Protein deglycase DJ-1 

HEL-S-

67p 

-0.60 6.11 

 

13. Figures: 
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Figure 1: 
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Figure 2: 
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