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About the stability of the tangent bundle of P"
restricted to a surface

Chiara Camere *

Abstract

Let X be a smooth projective surface over C and let L be a line
bundle on X generated by its global sections. Let ¢ : X — P" be
the morphism associated to L; we investigate the pu—stability of ¢7 Tpr
with respect to L when X is either a regular surface with p, = 0, a
K3 surface or an abelian surface. In particular, we show that ¢} Tpr
is p—stable when X is K3 and L is ample and when X is abelian and
L? > 14.

1 Introduction

Given a line bundle L generated by its global sections on a smooth projective
variety X, one can consider the kernel of the evaluation map

0—> M, — H%X,L) ® Ox —= L —>0 (1)

and its dual Er, = M7.

The stability of this bundle is equivalent to that of ¢} Tpr, where ¢y, :
X — P" is the morphism associated to L. It has been studied in the case
of a curve by Paranjape in [9] with Ramanan and in his Ph.D. thesis [§]; in
particular, the latter contains the statements on which rely all our results
contained in a former paper [3] and in this one. Later Ein and Lazarsfeld
showed in [4] that My, is stable if deg L > 2¢g and Beauville investigated the
case of degree 2¢ in [2].

The aim of this paper is to study this problem in the case of projective
surfaces. Here we consider the p—stability of a sheaf with respect to a chosen
linear series H, which generalises the definition given in the case of curves: a
vector bundle F is said to be u—stable with respect to H if for each proper
quotient sheaf F' we have p(F) > wp(E), where u(F) = % is the
slope of F' (see [3]).
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After studying these vector bundles in Section 2] we gather some results
which hold on curves in Section [B] and then in Section [4] we obtain some
results about regular surfaces, including the following

Theorem 1. Let X be a smooth projective K3 surface over C and let L be
an ample line bundle generated by its global sections on X ; then the vector
bundle Er, is p—stable with respect to L.

Finally, in Section [l we study the case of abelian surfaces, showing the
following

Theorem 2. Let X be a smooth projective abelian surface over C and let
L be a line bundle on X generated by its global sections such that L?> > 14.
Then the vector bundle Ey, is u—stable with respect to L.

2  Simplicity and rigidity of £},

Let us briefly recall the geometric interpretation of Er: since L is generated
by its global sections, the morphism ¢y : X — P(HY(L)) ~ P" is well-
defined and we have L = ¢} Opr(1); thus, from the dual sequence of ({l) and
from the well-known Euler exact sequence it follows that Ej, = ¢} Tpr @ L*
and the stability of Fy, is equivalent to the stability of ¢} Tp-.

In the next sections we will deal with the problem of whether or not
these bundles are p-stable, but let us first of all underline that they satisfy
in almost any case a less strong property, the simplicity.

Proposition 1. Let X be a smooth projective variety and L be a big line
bundle generated by its global sections on X; if dim X > 2 then Ep, is simple.

Proof. If we tensor with E7, the short exact sequence () in cohomology
we get

0— H(M; ® E) — H%(L) ® HY(E) *— H(L ® E) —

—_— HI(ML ® EL) —>H0(L) & HI(EL)

@)

Since H°(L*) = H'(L*) = 0 by Ramanujam-Kodaira vanishing theorem (see

[7]), we also have HY(L)* = H°(Ey). Now, by tensoring the dual sequence
of () with L we obtain in cohomology

0—= H°(Ox)—— H(L)® H'(L)* *—~ HY(L ® E;) —= H' (Ox) —= - -~

(3)
where the morphism « is the same morphism as in (). Hence H°(Mp ®
Er) 2 HY(Ox) 2 C,ie. Ey is simple. O



In the case of regular surfaces, under mild assumptions, which hold for
example if X is a K3 surface, they are also rigid, hence providing an example
of an exceptional vector bundle on such a surface.

Proposition 2. Let X be a smooth projective reqular surface and L as above;
if the multiplication map HO(Kx)®H°(L) — H°(Kx®L) is surjective, then
Ey is rigid.

Proof. The morphism « in sequence (3) is surjective because X is

regular. Let us show that H'(Er) = 0: indeed, by tensoring (1)) with K x
in cohomology we get

0— H(M; ® Kx) — H(L) ® H'(Kx) — H(L ® Kyx) —

— = H' (M, @ Kx)—= H°(L)® H'(Kx) =0

Since we assumed ¢ surjective, we have H'(Er) = H' (M, ® Kx) = 0
by the duality theorem. Then from the exact sequence (2)) it follows that
Ext'(Ep, Er) = H (M, ® Er) =0, ie. Ef is rigid. O

3 Some results on vector bundles on curves

Let us briefly recall some facts about vector bundles on curves. In a former
paper [3] we showed the following

Theorem 3. Let C be a smooth projective curve of genus g > 2 over an
algebraically closed field k and let L be a line bundle on C generated by its
global sections such that deg L > 2g — ¢(C'). Then:

1. Ey, is semi-stable;

2. Ep is stable except when deg L = 2g and either C is hyperelliptic or
L= K(p+q) withp,q e C.

In the case L = K¢ more was already known: in [9] Paranjape and
Ramanan showed the following

Theorem 4. Let C be a smooth projective curve of genus g > 2 over C;

Ek. is always semistable and it is also stable if C' is not hyperelliptic.

The proof of Theorem [3] was essentially based on the following lemma,
shown by Paranjape in [§].

Lemma 1. Let F be a vector bundle on C' generated by its global sections and
such that H°(C, F*) = 0; then deg F > 1k F + g — h*(C, det F). Moreover,
if hY(C,det F) > 2 then deg F > 2rk F + c(det F') > 2tk F + ¢(C).



4 About regular surfaces

Before restricting to the case of regular surfaces, let us see a few statements
which hold for every surface.

Lemma 2. Let F' be a vector bundle of rank 2 generated by its global sections
on a smooth projective surface X and assume moreover that h°(det F) = 2.
Then there is a short exact sequence

0 Ox —==F det F 0 (4)

Proof. We cannot have F' = 0% because h’(det F) = 2; then, since
F is of rank 2 generated by its global sections, we can suppose h’(F) > 3.
Then there is a section s € H(X, F) which is zero only in a finite number
of points and we have the following short exact sequence

s

0 Ox F Iydet F——=0 (5)

where Z is the zero locus of s. In cohomology we obtain
0— HY(X,0x) — H%X,F) — H(X,Zydet F) — - --

Since h(F) > 3, we get h%(Zz det F) > 2, but h°(Zz det F) < hO(det F) =
2. Since det F' is generated by its global sections, from h°(Zzdet F) =
hO(det F) = 2 it follows that Zz det F = det F' and Z = @. Therefore the
sequence (Bl becomes (). O

Proposition 3. Let X be a smooth projective surface over C and let L
be a line bundle on X generated by its global sections. Let C be a smooth
irreducible curve on X such that H'(L @ Ox(—=C)) = 0. Then (EL)|c =
E(L\c) &) 06, with r = hO(L X Ox(—C))

Proof. Tensoring the exact sequence

00— Ox(-0O) Ox Oc 0
with L, we get

0—L®O0x(-C) L Lic 0

and hence in cohomology we have

0—>HO(X’L®OX(_C)) —>HO(X’L) —>HO(X’L\C) —0



So we have the following diagram

0 Lic HO(X,L)* ® Oc —== (EL)jc —=0
0 0 O O 0
0 0 0

By the snake lemma, the third column is exact. Moreover, the sequence
splits and (Ep)ic = E(r, ) ® O¢. O

Corollary 1. Let X be a smooth projective reqular surface over C such
that pg = 0 and let C' be a smooth irreducible curve on X of genus g > 2
such that L = Ox(Kx + C) is generated by its global sections; then Ef, is
pu—semistable with respect to C' and it is also stable if ¢(C) > 0.

Proof. By Proposition Bl (Ep)c = E(L‘c% since r = p; = 0; on the
other hand, L|c = K¢, so the statement follows from Theorem [l O

When r # 0, the restriction to the curve is no longer semistable, but in
the case of K3 surfaces this is enough to gain the p—stability.

Proof of Theorem [l Let C € |L| be a smooth irreducible curve of
genus g > 2. By PropositionBlwe have (EL)|c = Ex.®0Oc, since Lic = Kc;
moreover u(Er) = 22 < 2. Let us suppose that g > 3: if g = 2 then C
is hyperelliptic and we will deal with the case ¢(C') = 0 later. Let F' be a
quotient sheaf of £y, of rank 0 <1k F' < g; then F|¢ is a quotient of (EL)c-
There is a diagram of the form

0—>OC—>(EL)\C—>EKC —0

]

0 W Fic Gar—=0
0 0 0



where G is a vector bundle generated by its global sections, W is either O¢

or 0 and 7 is a torsion sheaf on C, hence degW = 0 and deg7T > 0. So we
get () = SEGEeET,
o If tkG = 0, then rk (F) = 1 and we always have p(F) > 2. Indeed,
otherwise it would be F' = Ox (D) with D > 0 an effective base-point
free divisor such that D.C' = 0 or 1; we cannot have D.C = 0, since D
is nef, hence D? > 0, but by the Hodge index theorem we would have
D? < 0, which is a contradiction. If D.C' = 1, by the Hodge index
theorem we get D? = 0, hence D = kF with k > 1 and E an elliptic
curve; in fact, we have k = 1 because D.C =1, so h®(D) = 2 and |D)|
is a pencil; then, since C.D = 1, C would be a section and C? < 0,
impossible.

e If tkG > 0, then G is generated by its global sections such that
H°(C,G*) = 0; the hypothesis of Lemma [I then hold and, since

u(F) > ﬁch, we have:

1. if h(det G) < 2, since g > 3, then

g—2 g—2
F)>14+ ————>14+>—— = u(Er).
p(F) = +rkG+1> * g w(EL)

2. If h'(det G) > 2, then

c(det G) + degT — 2

)y >2 >2 E

p() 2 04 COLCILEBT 22 5 5 i)

if ¢(det G) > 2, in particular if ¢(C') > 2, but also if ¢(det G) = 1
and deg T > 0.

This shows that u(F') > u(EL) in the case ¢(C) > 2.

We now deal with the case ¢(C') = 1. We can repeat the above proof by
applying Lemma [ and it does not work only if h'(detG) > 2, deg7 = 0
and c(det G) = 1. If g = 3 then p(EL) = 3 and we always have u(F) > .

From now on we assume g > 4; then either the curve is trigonal or a

smooth plane quintic of genus g = 6 (see [6]).

1. If there is a g% on C, the only line bundles which compute the Clifford
index are O¢(g3) and Oc (K¢ — g3).

(a) If det G = O¢(gl), since hl(det G) > 2, by Lemma I we have
deg G > 2rk G + 1, hence in this case rkG = 1. Then rk F' =
2 and det Fjg = Oc(gl); it follows that det ¥ = Ox (D) with
D.C' = 3. By the Hodge index theorem then, since g > 4, we
haveD2§299—_2<2,SOD2:OandD:kEWithk21andE
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an elliptic curve; since D.C' = 3 and C.F > 2, this implies k = 1
and h°(Ox (D)) = 2; by Lemma [, it follows from h!(det F*) =
0 = Ext}(Ox,det F) that F = Ox @ det F, hence h°(F*) > 0,
which is impossible.

(b) If det G = Oc (K¢ —gi) we have deg G = 2g—5 and tk G < g—3
by Lemma [II, hence

29 -5 29—-5 1

F) > > =2—-— E

if g > 4. If g =4 we have degG = 3 and we fall in the former
case.

2. If there is a g2 on C, the genus is g = 6 and the only line bundle which
computes the Clifford index is O¢(g2) & Oc(Ke — ¢2).

If det G = O¢(g?), since h!(det G) > 2, by Lemmal[ldeg G > 2rk G+1,
hence rk G < 2 and rk F' < 3. Therefore we get

5

)
e R—
Hir) tkG+1 7~ 3 HEL)

Let us investigate whether equality can hold or not; suppose that
rk F' = 3. Since F is of rank > 2 generated by its global sections,
there is a short exact sequence

0 Ox F 1% 0 (7)

with V' of rank 2 generated by its global sections such that detV =
det F = Ox (D) with D.C = 5. By the Hodge index theorem then
D? < 2; however the case D? = 2 cannot occur, since otherwise (C' —
2D)? = —2 and by Riemann-Roch theorem at least one between C—2D
and 2D — C would be effective, contradicting (C' —2D).C' = 0 and the
ampleness of C. If D?> = 0, then D = kF with k£ > 1 and E an
elliptic curve; since D.C' = 5 and C.E > 2, this implies k = 1 and
h%(Ox (D)) = 2, so by Lemma [ there is a short exact sequence

0 Ox ==V detV —=0

and in cohomology we obtain h'(V*) = h!(V) = 0. As a consequence
we have Extl((’) x,V)=0and F = Ox @V, impossible since it would
imply h°(F*) > 0.

Then p(F) > p(Er) also if ¢(C) = 1.

Suppose now that C'is a hyperelliptic curve; in this case (see [1], pag.129),
the morphism ¢y, : X — PY induces a double covering 7w : X — F where



F C P9 is a rational surface of degree g — 1 which is either smooth or a
cone over a rational normal curve. If g = 2 then F = P? (see [I], pag.129)
and it is well-known that its tangent bundle is p—stable (see [5] Section 1.4)
with respect to Opz2(1). If ¢ > 3, let i : F < P9 be the embedding and
H = i*Opy(1) the ample hyperplane section of F' such that 7*H = L; we
have H? = g — 1.

On the surface F' we have the short exact sequence

0—=H*— HYF,H)* ® Op —>Eg —>0 (8)

We know that the curve H is rational, so p,(H) = 0; we consider a smooth
curve I € |2H|. By the adjunction formula we have 0 = p,(H) = 1+1(H?*+
H.Kr), sowe get HKp = —H?—2= —g— 1; using the adjunction formula
once more we then obtain

1
pa(l) =14 5(P* + T.Kp) =1+ 2H* + HKp =g —2

Since g > 3 we have p,(I') > 1. Since H is ample, we deduce H(F, Op(—H)) =
HY(F,0Op(—H)) =0 (see [7]). Then from the short exact sequence

0——=O0p(H-T)—0Op(H) —= Op(H) —=0
and from the associated cohomology sequence it follows that H°(F, Op(H)) =
H°(F,Or(H)), hence (En)ir = Eop(m)-

Moreover, deg Or(H) = HI' = 29 — 2 > 2p,(T") = 2g — 4. Since Or(H)
is a line bundle on a smooth projective curve I' of genus > 1 of degree
> 2pa(T), (Eg)r is stable (see [4]).

Since Ep is u—stable with respect to 2H , it is also u—stable with respect
to H and this yields the p—stability of Ep, with respect to L, because 7 is
a double covering (see [5], Lemma 3.2.2). O

Remark. Throughout the proof the ampleness of L is used only when
C' is a smooth plane quintic of genus g = 6 to show that we cannot have
equality between slopes. Indeed, if we only assume that L is generated by
its global sections and L? > 2 then Ej, is still —semistable with respect to
L and also p—stable unless C' is a smooth plane quintic of genus g = 6.

5 About abelian surfaces

In this section we study the same problem when X is an abelian surface
over C and we give the proof of Theorem 2

Proposition 4. Let X be an abelian surface over C; then there is no irre-
ducible hyperelliptic curve of genus g > 6 and no irreducible trigonal curve
of genus g > 8 on X.



Proof. Take d = 2 or 3 and suppose that there is a d—gonal irreducible
curve C' of genus g > 2d + 2 on X. Then there is an exact sequence of
sheaves on X

0— F*—— Hg}) ® Ox —= Oc¢(g4) —=0

where F' is a vector bundle of rank 2 such that ¢;(F) = C and co(F) = d.
Dualising the above exact sequence we get

0 Og( F Oc(Kc — gcll) —0

It follows from the assumption on the genus that ¢ (F)? — 4cy(F) = 2g —
2 —4d > 0, so F is Bogomolov unstable (see [I0]). Therefore, there exists a
line bundle Ox (A) on X such that u(Ox(A)) > u(F), i.e. 2A.C > C?, and

we have an exact sequence
0—=0Ox(A)—F —7;,®0x(B)—=0

with A+ B =C, A.B+degZz =d and (A — B)? > 0 (see [10]). Hence
we can construct the following diagram

0
0%
00— Ox(A) F 17 ®Ox(B)—=0
Oc(Kc — g})
0

Since i is an isomorphism outside C, h°(Zz ® Ox(B)) > 0 and B is effective.
By the Hodge index theorem A?B? < (A.B)2 < d?. Since Kx =0, A% and
B? are even numbers and A? > B? because 2A.C > C?, hence we must have
B2<2.

If B2 =2, then d = 3 and A% = 4 and we would have 6 — 24.B > 0, so
A.B < 2 in contradiction with A2B? = 8. Therefore B? = 0, which means
that B = kE where E is an elliptic curve and k& > 1; on the other hand we
know that 0 < A.B < d. In fact A.B > 0, otherwise by the Hodge index
theorem it would follow B = 0 against the fact that h°(Zz ® Ox(B)) > 0;
hence 1 < kA.E < d. Since A.E = 1 would imply that A itself is elliptic,



the only possibility is ¥ = 1 and A.B > 1. In this case we have h°(B) = 1,
hence by the snake lemma we have the following diagram

0 0 0

0 Ox 0% Ox 0

o—>ox(sA) F IZ®O;(B)—>0

0 T Oc(Kc — g}) i 0
0 0 0

where 7 and 7/ are two torsion sheaves with support respectively on the
zero-locus of s and 0. Hence the exactness of the third line implies that C
is reducible, against our assumptions. ]

Proof of Theorem 2L Since L is generated by its global sections such
that L? > 14, the general member of |L| is a smooth irreducible curve of
genus g > 8. Hence, given a non-zero a € Pic?(X), we can find C € |L®a™!|
smooth irreducible of genus g > 8. The u—stability of Fr with respect to
L is equivalent to the p—stability of Ep with respect to C. Since we have
H°%(a) = H'(a) = 0, it follows from Proposition Bl that (EL)c = Er,0)-
Moreover, Lic = K¢ ® a)c, so by Theorem [3 Ey, is p—stable with respect
to C if ¢(C) > 2. By the hypothesis on the genus of C' and by Proposition
[ the cases ¢(C) = 0,1 cannot occur, so there is nothing more to prove. [

Remark. In the case g(C) < 7 the same proof shows the u—stability of
Ey if ¢(C) > 2. Moreover, it is possible to show that Ej, is yu—stable with
respect to L also if either C is a smooth plane quintic of genus g = 6 or if
C is a trigonal curve of genus g = 4.
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