About the stability of the tangent bundle of \mathbb{P}^n restricted to a surface

Chiara Camere *

Abstract

Let X be a smooth projective surface over $\mathbb C$ and let L be a line bundle on X generated by its global sections. Let $\phi_L:X\longrightarrow \mathbb P^r$ be the morphism associated to L; we investigate the μ -stability of $\phi_L^*T_{\mathbb P^r}$ with respect to L when X is either a regular surface with $p_g=0$, a K3 surface or an abelian surface. In particular, we show that $\phi_L^*T_{\mathbb P^r}$ is μ -stable when X is K3 and L is ample and when X is abelian and $L^2\geq 14$.

1 Introduction

Given a line bundle L generated by its global sections on a smooth projective variety X, one can consider the kernel of the evaluation map

$$0 \longrightarrow M_L \longrightarrow H^0(X, L) \otimes \mathcal{O}_X \longrightarrow L \longrightarrow 0 \tag{1}$$

and its dual $E_L = M_L^*$.

The stability of this bundle is equivalent to that of $\phi_L^*T_{\mathbb{P}^r}$, where $\phi_L: X \longrightarrow \mathbb{P}^r$ is the morphism associated to L. It has been studied in the case of a curve by Paranjape in [9] with Ramanan and in his Ph.D. thesis [8]; in particular, the latter contains the statements on which rely all our results contained in a former paper [3] and in this one. Later Ein and Lazarsfeld showed in [4] that M_L is stable if $\deg L > 2g$ and Beauville investigated the case of degree 2g in [2].

The aim of this paper is to study this problem in the case of projective surfaces. Here we consider the μ -stability of a sheaf with respect to a chosen linear series H, which generalises the definition given in the case of curves: a vector bundle E is said to be μ -stable with respect to H if for each proper quotient sheaf F we have $\mu(F) > \mu(E)$, where $\mu(F) = \frac{c_1(F).H^{n-1}}{\operatorname{rk} F}$ is the slope of F (see [5]).

^{*}Laboratoire J.-A. Dieudonné, UMR CNRS 6621, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02 - *E-mail:* camere56@unice.fr

After studying these vector bundles in Section 2, we gather some results which hold on curves in Section 3 and then in Section 4 we obtain some results about regular surfaces, including the following

Theorem 1. Let X be a smooth projective K3 surface over \mathbb{C} and let L be an ample line bundle generated by its global sections on X; then the vector bundle E_L is μ -stable with respect to L.

Finally, in Section 5 we study the case of abelian surfaces, showing the following

Theorem 2. Let X be a smooth projective abelian surface over \mathbb{C} and let L be a line bundle on X generated by its global sections such that $L^2 \geq 14$. Then the vector bundle E_L is μ -stable with respect to L.

2 Simplicity and rigidity of E_L

Let us briefly recall the geometric interpretation of E_L : since L is generated by its global sections, the morphism $\phi_L: X \longrightarrow \mathbb{P}(H^0(L)) \simeq \mathbb{P}^r$ is well-defined and we have $L = \phi_L^* \mathcal{O}_{\mathbb{P}^r}(1)$; thus, from the dual sequence of (1) and from the well-known Euler exact sequence it follows that $E_L = \phi_L^* T_{\mathbb{P}^r} \otimes L^*$ and the stability of E_L is equivalent to the stability of $\phi_L^* T_{\mathbb{P}^r}$.

In the next sections we will deal with the problem of whether or not these bundles are μ -stable, but let us first of all underline that they satisfy in almost any case a less strong property, the simplicity.

Proposition 1. Let X be a smooth projective variety and L be a big line bundle generated by its global sections on X; if dim $X \ge 2$ then E_L is simple.

Proof. If we tensor with E_L the short exact sequence (1) in cohomology we get

$$0 \longrightarrow H^0(M_L \otimes E_L) \longrightarrow H^0(L) \otimes H^0(E_L) \xrightarrow{\alpha} H^0(L \otimes E_L) \longrightarrow$$

$$\longrightarrow H^1(M_L \otimes E_L) \longrightarrow H^0(L) \otimes H^1(E_L) \longrightarrow \cdots$$
(2)

Since $H^0(L^*) \cong H^1(L^*) \cong 0$ by Ramanujam-Kodaira vanishing theorem (see [7]), we also have $H^0(L)^* \cong H^0(E_L)$. Now, by tensoring the dual sequence of (1) with L we obtain in cohomology

$$0 \longrightarrow H^0(\mathcal{O}_X) \longrightarrow H^0(L) \otimes H^0(L)^* \xrightarrow{\alpha} H^0(L \otimes E_L) \longrightarrow H^1(\mathcal{O}_X) \xrightarrow{} \cdots$$
(3)

where the morphism α is the same morphism as in (2). Hence $H^0(M_L \otimes E_L) \cong H^0(\mathcal{O}_X) \cong \mathbb{C}$, i.e. E_L is simple. \square

In the case of regular surfaces, under mild assumptions, which hold for example if X is a K3 surface, they are also rigid, hence providing an example of an exceptional vector bundle on such a surface.

Proposition 2. Let X be a smooth projective regular surface and L as above; if the multiplication map $H^0(K_X) \otimes H^0(L) \to H^0(K_X \otimes L)$ is surjective, then E_L is rigid.

Proof. The morphism α in sequence (3) is surjective because X is regular. Let us show that $H^1(E_L) \cong 0$: indeed, by tensoring (1) with K_X in cohomology we get

$$0 \longrightarrow H^0(M_L \otimes K_X) \longrightarrow H^0(L) \otimes H^0(K_X) \xrightarrow{\varphi} H^0(L \otimes K_X) \longrightarrow$$

$$\longrightarrow H^1(M_L \otimes K_X) \longrightarrow H^0(L) \otimes H^1(K_X) = 0$$

Since we assumed φ surjective, we have $H^1(E_L) \cong H^1(M_L \otimes K_X) \cong 0$ by the duality theorem. Then from the exact sequence (2) it follows that $\operatorname{Ext}^1(E_L, E_L) \cong H^1(M_L \otimes E_L) \cong 0$, i.e. E_L is rigid.

3 Some results on vector bundles on curves

Let us briefly recall some facts about vector bundles on curves. In a former paper [3] we showed the following

Theorem 3. Let C be a smooth projective curve of genus $g \geq 2$ over an algebraically closed field k and let L be a line bundle on C generated by its global sections such that $\deg L \geq 2g - c(C)$. Then:

- 1. E_L is semi-stable;
- 2. E_L is stable except when $\deg L = 2g$ and either C is hyperelliptic or $L \cong K(p+q)$ with $p, q \in C$.

In the case $L = K_C$ more was already known: in [9] Paranjape and Ramanan showed the following

Theorem 4. Let C be a smooth projective curve of genus $g \geq 2$ over \mathbb{C} ; E_{K_C} is always semistable and it is also stable if C is not hyperelliptic.

The proof of Theorem 3 was essentially based on the following lemma, shown by Paranjape in [8].

Lemma 1. Let F be a vector bundle on C generated by its global sections and such that $H^0(C, F^*) = 0$; then $\deg F \ge \operatorname{rk} F + g - h^1(C, \det F)$. Moreover, if $h^1(C, \det F) \ge 2$ then $\deg F \ge 2\operatorname{rk} F + c(\det F) \ge 2\operatorname{rk} F + c(C)$.

4 About regular surfaces

Before restricting to the case of regular surfaces, let us see a few statements which hold for every surface.

Lemma 2. Let F be a vector bundle of rank 2 generated by its global sections on a smooth projective surface X and assume moreover that $h^0(\det F) = 2$. Then there is a short exact sequence

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{s} F \longrightarrow \det F \longrightarrow 0 \tag{4}$$

Proof. We cannot have $F = \mathcal{O}_X^2$ because $h^0(\det F) = 2$; then, since F is of rank 2 generated by its global sections, we can suppose $h^0(F) \geq 3$. Then there is a section $s \in H^0(X, F)$ which is zero only in a finite number of points and we have the following short exact sequence

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{s} F \longrightarrow \mathcal{I}_Z \det F \longrightarrow 0 \tag{5}$$

where Z is the zero locus of s. In cohomology we obtain

$$0 \longrightarrow H^0(X, \mathcal{O}_X) \longrightarrow H^0(X, F) \longrightarrow H^0(X, \mathcal{I}_Z \det F) \longrightarrow \cdots$$

Since $h^0(F) \geq 3$, we get $h^0(\mathcal{I}_Z \det F) \geq 2$, but $h^0(\mathcal{I}_Z \det F) \leq h^0(\det F) = 2$. Since $\det F$ is generated by its global sections, from $h^0(\mathcal{I}_Z \det F) = h^0(\det F) = 2$ it follows that $\mathcal{I}_Z \det F = \det F$ and $Z = \emptyset$. Therefore the sequence (5) becomes (4).

Proposition 3. Let X be a smooth projective surface over \mathbb{C} and let L be a line bundle on X generated by its global sections. Let C be a smooth irreducible curve on X such that $H^1(L \otimes \mathcal{O}_X(-C)) = 0$. Then $(E_L)_{|C} = E_{(L_{|C})} \oplus \mathcal{O}_C^r$, with $r = h^0(L \otimes \mathcal{O}_X(-C))$.

Proof. Tensoring the exact sequence

$$0 \longrightarrow \mathcal{O}_X(-C) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_C \longrightarrow 0$$

with L, we get

$$0 \longrightarrow L \otimes \mathcal{O}_X(-C) \longrightarrow L \longrightarrow L|_C \longrightarrow 0$$

and hence in cohomology we have

$$0 \longrightarrow H^0(X, L \otimes \mathcal{O}_X(-C)) \longrightarrow H^0(X, L) \longrightarrow H^0(X, L_{|C}) \longrightarrow 0$$

So we have the following diagram

By the snake lemma, the third column is exact. Moreover, the sequence splits and $(E_L)_{|C} = E_{(L_{|C})} \oplus \mathcal{O}_C^r$.

Corollary 1. Let X be a smooth projective regular surface over \mathbb{C} such that $p_g = 0$ and let C be a smooth irreducible curve on X of genus $g \geq 2$ such that $L = \mathcal{O}_X(K_X + C)$ is generated by its global sections; then E_L is μ -semistable with respect to C and it is also stable if c(C) > 0.

Proof. By Proposition 3 $(E_L)_{|C} \cong E_{(L_{|C})}$, since $r = p_g = 0$; on the other hand, $L_{|C} = K_C$, so the statement follows from Theorem 4.

When $r \neq 0$, the restriction to the curve is no longer semistable, but in the case of K3 surfaces this is enough to gain the μ -stability.

Proof of Theorem 1. Let $C \in |L|$ be a smooth irreducible curve of genus $g \geq 2$. By Proposition 3 we have $(E_L)_{|C} = E_{K_C} \oplus \mathcal{O}_C$, since $L_{|C} \cong K_C$; moreover $\mu(E_L) = \frac{2g-2}{g} < 2$. Let us suppose that $g \geq 3$: if g = 2 then C is hyperelliptic and we will deal with the case c(C) = 0 later. Let F be a quotient sheaf of E_L of rank $0 < \operatorname{rk} F < g$; then $F_{|C}$ is a quotient of $(E_L)_{|C}$. There is a diagram of the form

where G is a vector bundle generated by its global sections, W is either \mathcal{O}_C or 0 and τ is a torsion sheaf on C, hence $\deg W = 0$ and $\deg \tau \geq 0$. So we get $\mu(F) = \frac{\deg G + \deg \tau}{\operatorname{rk} F}$.

- If $\operatorname{rk} G = 0$, then $\operatorname{rk}(F) = 1$ and we always have $\mu(F) \geq 2$. Indeed, otherwise it would be $F = \mathcal{O}_X(D)$ with D > 0 an effective base-point free divisor such that D.C = 0 or 1; we cannot have D.C = 0, since D is nef, hence $D^2 \geq 0$, but by the Hodge index theorem we would have $D^2 < 0$, which is a contradiction. If D.C = 1, by the Hodge index theorem we get $D^2 = 0$, hence D = kE with $k \geq 1$ and E an elliptic curve; in fact, we have k = 1 because D.C = 1, so $h^0(D) = 2$ and |D| is a pencil; then, since C.D = 1, C would be a section and $C^2 < 0$, impossible.
- If $\operatorname{rk} G > 0$, then G is generated by its global sections such that $H^0(C, G^*) = 0$; the hypothesis of Lemma 1 then hold and, since $\mu(F) \geq \frac{\deg G}{\operatorname{rk} F}$, we have:
 - 1. if $h^1(\det G) < 2$, since $g \ge 3$, then

$$\mu(F) \ge 1 + \frac{g-2}{\operatorname{rk} G + 1} > 1 + \frac{g-2}{g} = \mu(E_L).$$

2. If $h^1(\det G) \geq 2$, then

$$\mu(F) \ge 2 + \frac{c(\det G) + \deg \tau - 2}{\operatorname{rk} G + 1} \ge 2 > \mu(E_L)$$

if $c(\det G) \ge 2$, in particular if $c(C) \ge 2$, but also if $c(\det G) = 1$ and $\deg \tau > 0$.

This shows that $\mu(F) > \mu(E_L)$ in the case $c(C) \geq 2$.

We now deal with the case c(C) = 1. We can repeat the above proof by applying Lemma 1 and it does not work only if $h^1(\det G) \geq 2$, $\deg \tau = 0$ and $c(\det G) = 1$. If g = 3 then $\mu(E_L) = \frac{4}{3}$ and we always have $\mu(F) > \frac{4}{3}$.

From now on we assume $g \ge 4$; then either the curve is trigonal or a smooth plane quintic of genus g = 6 (see [6]).

- 1. If there is a \mathfrak{g}_3^1 on C, the only line bundles which compute the Clifford index are $\mathcal{O}_C(\mathfrak{g}_3^1)$ and $\mathcal{O}_C(K_C \mathfrak{g}_3^1)$.
 - (a) If $\det G = \mathcal{O}_C(\mathfrak{g}_3^1)$, since $h^1(\det G) \geq 2$, by Lemma 1 we have $\deg G \geq 2\operatorname{rk} G + 1$, hence in this case $\operatorname{rk} G = 1$. Then $\operatorname{rk} F = 2$ and $\det F_{|C|} = \mathcal{O}_C(\mathfrak{g}_3^1)$; it follows that $\det F = \mathcal{O}_X(D)$ with D.C = 3. By the Hodge index theorem then, since $g \geq 4$, we have $D^2 \leq \frac{9}{2g-2} < 2$, so $D^2 = 0$ and D = kE with $k \geq 1$ and E

an elliptic curve; since D.C = 3 and $C.E \ge 2$, this implies k = 1 and $h^0(\mathcal{O}_X(D)) = 2$; by Lemma 2, it follows from $h^1(\det F^*) = 0 = \operatorname{Ext}^1(\mathcal{O}_X, \det F)$ that $F = \mathcal{O}_X \oplus \det F$, hence $h^0(F^*) > 0$, which is impossible.

(b) If det $G = \mathcal{O}_C(K_C - \mathfrak{g}_3^1)$ we have deg G = 2g - 5 and rk $G \leq g - 3$ by Lemma 1, hence

$$\mu(F) \ge \frac{2g-5}{\operatorname{rk} G + 1} \ge \frac{2g-5}{g-2} = 2 - \frac{1}{g-2} > \mu(E_L)$$

if g > 4. If g = 4 we have $\deg G = 3$ and we fall in the former case

2. If there is a \mathfrak{g}_5^2 on C, the genus is g=6 and the only line bundle which computes the Clifford index is $\mathcal{O}_C(\mathfrak{g}_5^2) \cong \mathcal{O}_C(K_C - \mathfrak{g}_5^2)$.

If $\det G = \mathcal{O}_C(\mathfrak{g}_5^2)$, since $h^1(\det G) \geq 2$, by Lemma 1 $\deg G \geq 2\operatorname{rk} G + 1$, hence $\operatorname{rk} G \leq 2$ and $\operatorname{rk} F \leq 3$. Therefore we get

$$\mu(F) = \frac{5}{\operatorname{rk} G + 1} \ge \frac{5}{3} = \mu(E_L)$$

Let us investigate whether equality can hold or not; suppose that rk F = 3. Since F is of rank > 2 generated by its global sections, there is a short exact sequence

$$0 \longrightarrow \mathcal{O}_X \longrightarrow F \longrightarrow V \longrightarrow 0 \tag{7}$$

with V of rank 2 generated by its global sections such that $\det V = \det F = \mathcal{O}_X(D)$ with D.C = 5. By the Hodge index theorem then $D^2 \leq 2$; however the case $D^2 = 2$ cannot occur, since otherwise $(C - 2D)^2 = -2$ and by Riemann-Roch theorem at least one between C-2D and 2D - C would be effective, contradicting (C - 2D).C = 0 and the ampleness of C. If $D^2 = 0$, then D = kE with $k \geq 1$ and E and elliptic curve; since D.C = 5 and $C.E \geq 2$, this implies k = 1 and $h^0(\mathcal{O}_X(D)) = 2$, so by Lemma 2 there is a short exact sequence

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{s} V \longrightarrow \det V \longrightarrow 0$$

and in cohomology we obtain $h^1(V^*) = h^1(V) = 0$. As a consequence we have $\operatorname{Ext}^1(\mathcal{O}_X, V) = 0$ and $F = \mathcal{O}_X \oplus V$, impossible since it would imply $h^0(F^*) > 0$.

Then $\mu(F) > \mu(E_L)$ also if c(C) = 1.

Suppose now that C is a hyperelliptic curve; in this case (see [1], pag.129), the morphism $\phi_L: X \longrightarrow \mathbb{P}^g$ induces a double covering $\pi: X \longrightarrow F$ where

 $F \subset \mathbb{P}^g$ is a rational surface of degree g-1 which is either smooth or a cone over a rational normal curve. If g=2 then $F=\mathbb{P}^2$ (see [1], pag.129) and it is well-known that its tangent bundle is μ -stable (see [5] Section 1.4) with respect to $\mathcal{O}_{\mathbb{P}^2}(1)$. If $g \geq 3$, let $i: F \hookrightarrow \mathbb{P}^g$ be the embedding and $H=i^*\mathcal{O}_{\mathbb{P}^g}(1)$ the ample hyperplane section of F such that $\pi^*H=L$; we have $H^2=g-1$.

On the surface F we have the short exact sequence

$$0 \longrightarrow H^* \longrightarrow H^0(F, H)^* \otimes \mathcal{O}_F \longrightarrow E_H \longrightarrow 0 \tag{8}$$

We know that the curve H is rational, so $p_a(H) = 0$; we consider a smooth curve $\Gamma \in |2H|$. By the adjunction formula we have $0 = p_a(H) = 1 + \frac{1}{2}(H^2 + H.K_F)$, so we get $H.K_F = -H^2 - 2 = -g - 1$; using the adjunction formula once more we then obtain

$$p_a(\Gamma) = 1 + \frac{1}{2}(\Gamma^2 + \Gamma \cdot K_F) = 1 + 2H^2 + H \cdot K_F = g - 2$$

Since $g \geq 3$ we have $p_a(\Gamma) \geq 1$. Since H is ample, we deduce $H^0(F, \mathcal{O}_F(-H)) = H^1(F, \mathcal{O}_F(-H)) = 0$ (see [7]). Then from the short exact sequence

$$0 \longrightarrow \mathcal{O}_F(H - \Gamma) \longrightarrow \mathcal{O}_F(H) \longrightarrow \mathcal{O}_{\Gamma}(H) \longrightarrow 0$$

and from the associated cohomology sequence it follows that $H^0(F, \mathcal{O}_F(H)) \cong H^0(F, \mathcal{O}_{\Gamma}(H))$, hence $(E_H)_{|\Gamma} = E_{\mathcal{O}_{\Gamma}(H)}$.

Moreover, deg $\mathcal{O}_{\Gamma}(H) = H.\Gamma = 2g - 2 > 2p_a(\Gamma) = 2g - 4$. Since $\mathcal{O}_{\Gamma}(H)$ is a line bundle on a smooth projective curve Γ of genus ≥ 1 of degree $> 2p_a(\Gamma)$, $(E_H)_{|\Gamma}$ is stable (see [4]).

Since E_H is μ -stable with respect to 2H, it is also μ -stable with respect to H and this yields the μ -stability of E_L with respect to L, because π is a double covering (see [5], Lemma 3.2.2).

Remark. Throughout the proof the ampleness of L is used only when C is a smooth plane quintic of genus g=6 to show that we cannot have equality between slopes. Indeed, if we only assume that L is generated by its global sections and $L^2 \geq 2$ then E_L is still μ -semistable with respect to L and also μ -stable unless C is a smooth plane quintic of genus g=6.

5 About abelian surfaces

In this section we study the same problem when X is an abelian surface over \mathbb{C} and we give the proof of Theorem 2.

Proposition 4. Let X be an abelian surface over \mathbb{C} ; then there is no irreducible hyperelliptic curve of genus $g \geq 6$ and no irreducible trigonal curve of genus $g \geq 8$ on X.

Proof. Take d=2 or 3 and suppose that there is a d-gonal irreducible curve C of genus $g \geq 2d+2$ on X. Then there is an exact sequence of sheaves on X

$$0 \longrightarrow F^* \longrightarrow H^0(g_d^1) \otimes \mathcal{O}_X \longrightarrow \mathcal{O}_C(g_d^1) \longrightarrow 0$$

where F is a vector bundle of rank 2 such that $c_1(F) = C$ and $c_2(F) = d$. Dualising the above exact sequence we get

$$0 \longrightarrow \mathcal{O}_X^2 \longrightarrow F \longrightarrow \mathcal{O}_C(K_C - g_d^1) \longrightarrow 0$$

It follows from the assumption on the genus that $c_1(F)^2 - 4c_2(F) = 2g - 2 - 4d > 0$, so F is Bogomolov unstable (see [10]). Therefore, there exists a line bundle $\mathcal{O}_X(A)$ on X such that $\mu(\mathcal{O}_X(A)) > \mu(F)$, i.e. $2A.C > C^2$, and we have an exact sequence

$$0 \longrightarrow \mathcal{O}_X(A) \longrightarrow F \longrightarrow \mathcal{I}_Z \otimes \mathcal{O}_X(B) \longrightarrow 0$$

with A + B = C, $A.B + \deg \mathcal{I}_Z = d$ and $(A - B)^2 > 0$ (see [10]). Hence we can construct the following diagram

Since i is an isomorphism outside C, $h^0(\mathcal{I}_Z \otimes \mathcal{O}_X(B)) > 0$ and B is effective. By the Hodge index theorem $A^2B^2 \leq (A.B)^2 \leq d^2$. Since $K_X = 0$, A^2 and B^2 are even numbers and $A^2 > B^2$ because $2A.C > C^2$, hence we must have $B^2 \leq 2$.

If $B^2=2$, then d=3 and $A^2=4$ and we would have 6-2A.B>0, so $A.B\leq 2$ in contradiction with $A^2B^2=8$. Therefore $B^2=0$, which means that B=kE where E is an elliptic curve and $k\geq 1$; on the other hand we know that $0\leq A.B\leq d$. In fact A.B>0, otherwise by the Hodge index theorem it would follow B=0 against the fact that $h^0(\mathcal{I}_Z\otimes\mathcal{O}_X(B))>0$; hence $1\leq kA.E\leq d$. Since A.E=1 would imply that A itself is elliptic,

the only possibility is k = 1 and A.B > 1. In this case we have $h^0(B) = 1$, hence by the snake lemma we have the following diagram

where τ and τ' are two torsion sheaves with support respectively on the zero-locus of s and σ . Hence the exactness of the third line implies that C is reducible, against our assumptions.

Proof of Theorem 2. Since L is generated by its global sections such that $L^2 \geq 14$, the general member of |L| is a smooth irreducible curve of genus $g \geq 8$. Hence, given a non-zero $\alpha \in \operatorname{Pic}^0(X)$, we can find $C \in |L \otimes \alpha^{-1}|$ smooth irreducible of genus $g \geq 8$. The μ -stability of E_L with respect to L is equivalent to the μ -stability of E_L with respect to L. Since we have $H^0(\alpha) = H^1(\alpha) = 0$, it follows from Proposition 3 that $(E_L)_{|C|} \cong E_{(L_{|C|})}$. Moreover, $L_{|C|} \cong K_C \otimes \alpha_{|C|}$, so by Theorem 3 E_L is μ -stable with respect to C if $c(C) \geq 2$. By the hypothesis on the genus of C and by Proposition 4 the cases c(C) = 0, 1 cannot occur, so there is nothing more to prove. \square

Remark. In the case $g(C) \leq 7$ the same proof shows the μ -stability of E_L if $c(C) \geq 2$. Moreover, it is possible to show that E_L is μ -stable with respect to L also if either C is a smooth plane quintic of genus g = 6 or if C is a trigonal curve of genus g = 4.

Acknowledgements

I am very grateful to my advisor Prof. Arnaud Beauville for the help he gave me throughout this year and for patiently reading all the drafts of this paper.

References

- [1] A. Beauville, Surfaces algébriques complexes, Astérisque 54, 1978.
- [2] A. Beauville, Some stable vector bundles with reducible theta divisors, Manuscripta Math. **110**, pp.343–349, 2003.
- [3] C. Camere, About the stability of the tangent bundle restricted to a curve, C. R. Math. Acad. Sci. Paris **346** (2008), no. 7-8, 421–426.
- [4] L. Ein and R. Lazarsfeld, Stability and Restrictions of Picard Bundles, with an Application to the Normal Bundles of Elliptic Curves, London Math. Soc. Lecture Note Ser., 179, pp. 149-156, Cambridge Univ. Press, Cambridge, 1992.
- [5] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves*, Aspects of Math. E31. Vieweg, Braunschweig, 1997.
- [6] H. H. Martens, Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233, pp. 89-100, 1968.
- [7] D. Mumford, Pathologies III, Amer. J. Math. 89 (1967), 94–104.
- [8] K. Paranjape, Ph.D. Thesis, available on http://www.imsc.res.in/~kapil/papers/chap1djvu/index.djvu.
- [9] K. Paranjape, S. Ramanan, On the Canonical Ring of a Curve, Algebraic geometry and commutative algebra, Vol. II, 503-516, Kinokuniya, Tokyo, 1988.
- [10] M. Raynaud, Fibrés vectoriels instables—applications aux surfaces (d'après Bogomolov), *Algebraic surfaces (Orsay, 1976–78)*, pp. 293–314, Lecture Notes in Math. **868**, Springer, Berlin-New York, 1981.