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Normal form coordinates for the KdV equation having

expansions in terms of pseudodifferential operators
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Abstract. Near an arbitrary finite gap potential we construct real analytic, canonical coordinates for the
KdV equation on the torus having the following two main properties: (1) up to a remainder term, which is
smoothing to any given order, the coordinate transformation is a pseudodifferential operator of order 0 with
principal part given by the Fourier transform and (2) the pullback of the KdV Hamiltonian is in normal
form up to order three and the corresponding Hamiltonian vector field admits an expansion in terms of
a paradifferential operator. Such coordinates are a key ingredient for studying the stability of finite gap
solutions of the KdV equation under small, quasi-linear perturbations.
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1 Introduction

The goal of this paper is to construct canonical coordinates for the Korteweg-de Vries (KdV) equation on
the circle

∂tu = −∂3xu+ 6u∂xu, x ∈ T := R/Z , (1.1)
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†Supported in part by the Swiss National Science Foundation.
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taylored for studying the stability of finite gap solutions of (1.1), also referred to as periodic multisolitons,
under quasi-linear perturbations. To state our main results, we first need to make some preliminary con-
siderations and introduce some notations. It is well known that (1.1) is well-posed on the Sobolev spaces
Hs = {q ∈ Hs

C
: q real valued} with s ≥ −1 (cf [17] and references therein) where for any s ∈ R,

Hs
C ≡ Hs(T,C) :=

{
q =

∑

n∈Z

qne
2πinx : ‖q‖s <∞

}
, ‖q‖s =

(∑

n∈Z

〈n〉2s|qn|2
) 1

2 , 〈n〉 := max{1, |n|} . (1.2)

Note that
∫ 1

0
u(t, x) dx is a prime integral for equation (1.1). Without loss of generality, we restrict our

attention to the case where u has zero mean value (cf [13, Section 13]), i.e., we consider solutions u(t, x) of
(1.1) in Hs

0 with s ≥ −1 where for any s ∈ R,

Hs
0 =

{
q ∈ Hs :

∫ 1

0

q(x) dx = 0
}
. (1.3)

It is well known that equation (1.1) can be written as a Hamiltonian PDE, ∂tu = ∂x∇Hkdv(u) where ∂x is
the Gardner Poisson structure (with ∂−1

x being the corresponding symplectic structure) and ∇Hkdv denotes
the L2-gradient of the KdV Hamiltonian

Hkdv(q) :=
1

2

∫ 1

0

(∂xq)
2 dx+

∫ 1

0

q3 dx .

According to [13] (cf also [9]), there are canonical coordinates xn = xn(q), yn = yn(q), n ≥ 1, defined on
L2
0 ≡ H0

0 so that when expressed in these coordinates, the KdV equation takes the form

ẋn = ωkdvn yn, ẏn = −ωkdvn xn , ∀n ≥ 1 ,

where ωkdvn denote the KdV frequencies. To be more precise, introduce for any s ∈ R the sequence space

hs0,C ≡ hs(Z \ {0},C) =
{
w = (wn)n6=0 ⊂ C : ‖w‖s <∞

}
, ‖w‖s :=

(∑

n6=0

|n|2s|wn|2
) 1

2

and its real subspace hs0 :=
{
(wn)n6=0 ∈ hs0,C : w−n = wn ∀n ≥ 1

}
and define the weighted complex

coordinates z±n ≡ z±n(q),

zn :=
√
nπ(xn − iyn), z−n :=

√
nπ(xn + iyn), ∀n ≥ 1 , (1.4)

where
√· ≡ +

√· denotes the principal branch of the square root. The results in [13] imply that the transfor-
mation, referred to as Birkhoff map,

Φkdv : L2
0 ≡ H0

0 → h00, q 7→ (zn(q))n6=0 ,

is canonical in the sense that

{zn, z−n} =

∫ 1

0

∇zn∂x∇z−n dx = 2πin, ∀n ≥ 1 ,

whereas the brackets between all other coordinate functions vanish, and has the property that for any
s ∈ Z≥0, its restriction to Hs

0 is a real analytic diffeomorphism with range hs0, Φ
kdv : Hs

0 → hs0. In terms
of the coordinates zn(q), n 6= 0, referred to as complex Birkhoff coordinates, the action variables In(q) are
defined by

In(q) =
1

2πn
zn(q)z−n(q) ≥ 0 , ∀n ≥ 1 . (1.5)

The sequences I(q) = (In(q))n≥1 fill out the whole positive quadrant ℓ1,1+ of ℓ1,1 where for any r ≥ 0, the
weighted ℓ1−space ℓ1,r is defined by

ℓ1,r ≡ ℓ1,r(N,R) := {I = (In)n≥1 ⊂ R :

∞∑

n=1

nr|In| <∞} , N ≡ Z≥1. (1.6)

2



A key feature of the Birkhoff map is that the KdV Hamiltonian, expressed in the coordinates zn, n 6= 0,

Hkdv ◦Ψkdv : h10 → R , Ψkdv := (Φkdv)−1 ,

is in fact a function Hkdv of the actions I alone. More precisely, Hkdv : ℓ1,3+ → R is a real analytic map. The
KdV frequencies are then defined by ωkdvn := ∂InHkdv. Finally, the differential d0Φ

kdv : L2
0 → h00 of Φkdv

at q = 0 is the Fourier transform F (cf [13, Theorem 9.8]) and hence d0Ψ
kdv the inverse Fourier transform

F−1 where for any s ∈ Z,

F : Hs
0 → hs0, q 7→ (qn)n6=0, qn :=

∫ 1

0

q(x)e−2πinx dx . (1.7)

Let
S+ ⊆ N finite, S := S+ ∪ (−S+) and S⊥

+ := N \ S+ , S⊥ := S⊥
+ ∪ (−S⊥

+ ) . (1.8)

We denote by MS ⊂ L2
0 the manifold of S-gap potentials,

MS :=
{
q ∈ L2

0 : zn(q) = 0 ∀n ∈ S⊥},

and by Mo
S the open subset of MS, consisting of proper S-gap potentials,

Mo
S := {q ∈MS : zn(q) 6= 0 ∀n ∈ S} .

Note that MS is contained in ∩s≥0H
s
0 and hence consists of C∞-smooth potentials and that Mo

S can be
parametrized by the action-angle coordinates θS = (θk)k∈S+ , IS = (Ik)k∈S+ ,

Mo
S →Mo

S, (θS , IS) 7→ Ψkdv(z(θS , IS)) , Mo
S := T

S+ × R
S+

>0

where for any n 6= 0, zn = zn(θS , IS) is given by

z±n :=
√
2πnIne

∓iθn, ∀n ∈ S+, zn = 0, ∀n ∈ S⊥.

Introduce for any s ∈ R

hs⊥,C := hs(S⊥,C) , hs⊥ :=
{
z⊥ ∈ hs⊥,C : z−n = zn, ∀n ∈ S⊥},

as well as the maps, related to the Fourier transform,

F⊥ : Hs
0 → hs⊥, q 7→ (qn)n∈S⊥ , F−1

⊥ : hs⊥ → Hs
0 , (zn)n∈S⊥ 7→

∑

n∈S⊥

zne
2πinx .

By a slight abuse of notation, we view Mo
S × hs⊥, s ∈ R, as a subset of hs0 and denote its elements by

x := (θS , IS , z⊥), θS := (θn)n∈S+ , IS := (In)n∈S+ , z⊥ := (zn)n∈S⊥ .

It is endowed by the standard Poisson bracket, given by

{In, θn} = 1, ∀n ∈ S+, {zn, z−n} = 2πin, ∀n ∈ S⊥
+ ,

whereas the brackets between all other coordinate functions vanish. For any s ∈ R, we denote by x̂ =
(θ̂S , ÎS , ẑ⊥) elements in the tangent space Es of Mo

S×hs⊥ at any given point x ∈ Mo
S×hs⊥ where Es is given

by
Es = R

S+ × R
S+ × hs⊥.

Furthermore, for any k ≥ 1, ∂−kx : Hs
C
→ Hs+k

0,C is the bounded linear operator, defined by

∂−kx [e2πinx] =
1

(2πin)k
e2πinx , ∀n 6= 0 , and ∂−kx [1] = 0 .

3



Finally, the standard inner products on L2
0 and on h00 are defined by

〈f, g〉 ≡ 〈f, g〉L2
0
=

∫ 1

0

f(x)g(x)dx , ∀f, g ∈ L2
0 , 〈z, w〉 ≡ 〈z, w〉h0

0
=

∑

n6=0

znw−n , ∀z, w ∈ h00 .

Note that 〈·, ·〉L2
0
and 〈·, ·〉h0

0
extend as complex valued bilinear forms to L2

0,C and respectively, h00,C. In
the sequel, restrictions of these inner products to various subspaces and extensions as dual pairings will be
denoted in the same way and the gradient of a functional F corresponding to these inner products by ∇F .
In more detail, for a C1−functional F : h00 → C, one has dF [ẑ] =

∑
n6=0 ẑn∂znF = 〈∇F, ẑ〉 with the nth

component of ∇F given by (∇F )n = ∂z−n
F . Furthermore, for any given Banach spaces Y1, Y2, we denote

by B(Y1, Y2) the space of bounded linear operators from Y1 to Y2, endowed with the operator norm.

Theorem 1.1. Let S+ ⊆ N be finite and K be a subset of Mo
S of the form TS+ ×K1 where K1 is a compact

subset of R
S+

>0. Then there exists an open bounded neighbourhood V of K×{0} in Mo
S × h0⊥ and a canonical

real analytic diffeomorphism Ψ : V → Ψ(V) ⊆ L2
0 , x = (θS , IS , z⊥) 7→ q with the property that Ψ satisfies

Ψ(θS , IS , 0) = Ψkdv(θS , IS , 0), ∀(θS , IS , 0) ∈ V ,

and is compatible in the sense explained below with the scale of Sobolev spaces Hs
0 , s ∈ Z≥0, so that the

following holds:

(AE1) For any integer N ≥ 1, Ψ admits an asymptotic expansion on V of the form

Ψ(θS , IS , z⊥) = Ψkdv(θS , IS , 0) + F−1
⊥ [z⊥] +

N∑

k=1

ak(θS , IS , z⊥; Ψ) ∂−kx F−1
⊥ [z⊥] +RN (θS , IS , z⊥; Ψ)

where RN (θS , IS , 0;Ψ) = 0 and where for any s ∈ Z≥0 and 1 ≤ k ≤ N

aΨk : V → Hs, x 7→ aΨk (x) ≡ ak(x; Ψ), RΨ
N : V ∩

(
Mo

S × hs⊥
)
→ Hs+N+1, x 7→ RΨ

N (x) ≡ RN (x; Ψ),

are real analytic maps satisfying the tame estimates of Theorem 1.2 below.

(AE2) For any x ∈ V, the transpose dΨ(x)t (with respect to the standard inner products) of the differential
dΨ(x) : E1 → H1

0 is a bounded operator dΨ(x)t : H1
0 → E1. For any q̂ ∈ H1

0 and any integer N ≥ 1,
dΨ(x)t[q̂] admits an expansion of the form

dΨ(x)t[q̂] =
(
0, 0, F⊥[q̂]+F⊥◦

N∑

k=1

ak(x; dΨ
t)∂−kx q̂ +F⊥◦

N∑

k=1

Ak(x; dΨ
t)[q̂] ∂−kx F−1

⊥ [z⊥]
)
+RN (x; dΨt)[q̂]

where for any s ∈ N and 1 ≤ k ≤ N ,

adΨ
t

k : V → Hs , x 7→ adΨ
t

k (x) ≡ ak(x; dΨ
t) ,

AdΨt

k : V → B(H1
0 , H

s) , x 7→ AdΨt

k (x) ≡ Ak(x; dΨ
t) ,

RdΨt

N : V ∩ (Mo
S × hs⊥) → B(Hs

0 , Es+N+1), x 7→ RdΨt

N (x) ≡ RN (x; dΨt)

are real analytic maps, satisfying the tame estimates of Theorem 1.2 below. Furthermore, the coefficient
a1(x; dΨ

t) satisfies a1(x; dΨ
t) = −a1(x; Ψ).

(AE3) The Hamiltonian H := Hkdv ◦ Ψ : V ∩ (Mo
S × h1⊥) → R is in normal form up to order three. More

precisely,

H(θS , IS , z⊥) = Hkdv(IS , 0) +
∑

n∈S⊥
+

Ωkdvn (IS , 0)znz−n + P(θS , IS , z⊥)

where P : V ∩ (Mo
S × h1⊥) → R is real analytic and satisfies P(θS , IS , z⊥) = O(‖z⊥‖1‖z⊥‖20), Ωkdvn :=

1
2πnω

kdv
n , n ∈ S⊥

+ , and ωkdvn denote the KdV frequencies introduced above. Furthermore for any integer
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N ≥ 1, there exists an integer σN ≥ N (loss of regularity) so that the gradient ∇P(θS , IS , z⊥) of P
with components ∇θSP, ∇ISP, and ∇z⊥P admits an expansion of the form

∇P(θS , IS , z⊥) =
(
0, 0, F⊥ ◦

N∑

k=0

Ta∇P
k

∂−kx F−1
⊥ [z⊥]

)
+R∇P

N (θS , IS , z⊥)

where for any integers s ≥ 0 and 0 ≤ k ≤ N ,

a∇P
k : V ∩ (Mo

S × hs+σN

⊥ ) → Hs , R∇P
N : V ∩

(
Mo

S × hs∨σN

⊥
)
→ Es+N+1

are real analytic and satisfy the tame estimates of Theorem 1.2 below.

Here Ta∇P
k

denotes the operator of paramultiplication with a∇P
k (cf Appendix E) and the diffeomorphism

Ψ : V → Ψ(V) ⊂ L2
0 being compatible with the scale of Sobolev spaces Hs

0 , s ∈ Z≥0, means that for any
s ∈ Z≥0, Ψ

(
V ∩ (Mo

S × hs⊥)
)
⊆ Hs

0 and Ψ : V ∩ (Mo
S × hs⊥) → Hs

0 is a real analytic diffeomorphism onto its
image.

In applications, it is of interest to know whether the coordinate transformation Ψ preserves the reversible
structure, defined by the maps Srev : L2

0 → L2
0, (Srevq)(x) := q(−x), and Srev : Mo

S×h0⊥ → Mo
S×h0⊥ where

Srev(θS , IS , z⊥) := (θrevS , IrevS , zrev⊥ ) , θrevn = −θn, Irevn = In, ∀n ∈ S+ , zrevn = z−n, ∀n ∈ S⊥ . (1.9)

Note that for any s ∈ Z≥0, Srev : Hs
0 → Hs

0 and Srev : Mo
S × hs⊥ → Mo

S × hs⊥ are linear involutions and
that without loss of generality, the neighbourhood V of Theorem 1.1 can be chosen to be invariant under
the map Srev, i.e., Srev(V) = V .
Addendum to Theorem 1.1 The maps Ψ : V → L2

0, Ψkdv : h00 → L2
0, and F−1 : h00 → L2

0 preserve the
reversible structure, i.e.,

Ψ ◦ Srev = Srev ◦Ψ, Ψkdv ◦ Srev = Srev ◦Ψkdv , F−1 ◦ Srev = Srev ◦ F−1 .

and so do the maps in the asymptotic expansions (AE1) (x ∈ V),

aΨk (Srevx) = (−1)kSrev(a
Ψ
k (x)) , RΨ

N (Srevx) = Srev(RΨ
N (x)) ,

and the ones in the asymptotic expansions (AE2) (x ∈ V ∩ (Mo
S × h1⊥), q̂ ∈ H1

0 ),

ak(Srevx; dΨt) = (−1)kSrev(ak(x; dΨ
t)) , Ak(Srevx; dΨt)[Srev q̂] = (−1)kSrev(Ak(x; dΨ

t)[q̂])

RN (Srevx; dΨt)[Srev q̂] = Srev(RN (x; dΨt)[ q̂]) .

Furthermore, the Hamiltonians Hkdv, H = Hkdv ◦Ψ, and P are reversible, meaning that

Hkdv ◦ Srev = Hkdv , H ◦ Srev = H , P ◦ Srev = P

and the maps in the asymptotic expansion in (AE3) preserve the reversible structure,

a∇P
k (Srevx) = (−1)kSrev(a

∇P
k (x)) , ∀ x ∈ V ∩ (Mo

S × h1+σN

⊥ ) ,

R∇P
N (Srevx) = Srev(R∇P

N (x)) ∀ x ∈ V ∩ (Mo
S × h1∨σN

⊥ ) .

Theorem 1.2 below states tame estimates for the map Ψ and the gradient ∇P of the remainder term P
in the expansion of H. In the sequel, we denote elements in the tangent space Es := RS+ × RS+ × hs⊥ of

V ∩ (Mo
S × hs⊥) at any given point x = (θS , IS , z⊥) by x̂ = (θ̂S , ÎS , ẑ⊥). Throughout the paper, all the stated

estimates for maps hold locally uniformly with respect to their arguments.

Theorem 1.2. Let N, l ∈ N. Then under the same assumptions as in Theorem 1.1, the following estimates
hold:
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(Est1) For any x = (θS , IS , z⊥) ∈ V, 1 ≤ k ≤ N , x̂1, . . . , x̂l ∈ E0, s ∈ Z≥0,

‖aΨk (x)‖s .s,k 1 , ‖dlaΨk (x)[̂x1, . . . , x̂l]‖s .s,k,l
l∏

j=1

‖̂xj‖0 .

Simlarly, for any x ∈ V ∩
(
Mo

S × hs⊥
)
, x̂1, . . . , x̂l ∈ Es, s ∈ Z≥0,

‖RΨ
N (x)‖s+N+1 .s,N ‖z⊥‖s , ‖dlRΨ

N (x)[̂x1, . . . , x̂l]‖s+N+1 .s,N,l

l∑

j=1

‖̂xj‖s
∏

i6=j
‖̂xi‖0 + ‖z⊥‖s

l∏

j=1

‖̂xj‖0 .

(Est2) For any x = (θS , IS , z⊥) ∈ V ∩ (Mo
S × h1⊥), 1 ≤ k ≤ N , x̂1, . . . , x̂l ∈ E1, s ∈ N,

‖adΨt

k (x)‖s .s,k 1 + ‖z⊥‖1 , ‖dladΨt

k (x)[̂x1, . . . , x̂l]‖s .s,k,l
l∏

j=1

‖̂xj‖1 .

and

‖AdΨt

k (x)‖s .s,k 1 + ‖z⊥‖1 , ‖dlAdΨt

k (x)[̂x1, . . . , x̂l]‖s .s,k,l
l∏

j=1

‖̂xj‖1 .

Similarly, for any x ∈ V ∩
(
Mo

S × hs⊥
)
, x̂1, . . . , x̂l ∈ Es, q̂ ∈ Hs

0 , s ∈ N,

‖RdΨt

N (x)[q̂]‖s+N+1 .s,N ‖q̂‖s + ‖z⊥‖s‖q̂‖1 ,

‖dl
(
RdΨt

N (x)[q̂]
)
[̂x1, . . . , x̂l]‖s+N+1 .s,N,l ‖q̂‖s

l∏

j=1

‖̂xj‖1 + ‖q̂‖1
l∑

j=1

‖̂xj‖s
∏

i6=j
‖̂xi‖1 + ‖q̂‖1‖z⊥‖s

l∏

j=1

‖̂xj‖1 .

(Est3) For any s ∈ Z≥0, x = (θS , IS , z⊥) ∈ V∩
(
Mo

S×hs+σN

⊥
)
, ‖z⊥‖σN

≤ 1, 1 ≤ k ≤ N , x̂1, . . . , x̂l ∈ Es+σN
,

‖a∇P
k (x)‖s .s,k ‖z⊥‖s+σN

, ‖dla∇P
k (x)[̂x1, . . . , x̂l]‖s .s,k,l

l∑

j=1

‖̂xj‖s+σN

∏

n6=j
‖̂xn‖σN

+‖z⊥‖s+σN

l∏

j=1

‖̂xj‖σN
.

For any s ∈ Z≥0, x ∈ V ∩
(
Mo

S × hs∨σN

⊥
)
with ‖z⊥‖σN

≤ 1, x̂ ∈ Es∨σN
,

‖R∇P
N (x)‖s+N+1 .s,N ‖z⊥‖σN

‖z⊥‖s∨σN
, ‖dR∇P

N (x)[̂x]‖s+N+1 .s,N ‖z⊥‖σN
‖̂x‖s∨σN

+‖z⊥‖s∨σN
‖̂x‖σN

,

and if in addition x̂1, . . . , x̂l ∈ Es∨σN
, l ≥ 2,

‖dlR∇P
N (x)[̂x1, . . . , x̂l]‖s+N+1 .s,N,l

l∑

j=1

‖̂xj‖s∨σN

∏

n6=j
‖̂xn‖σN

+ ‖z⊥‖s∨σN

l∏

j=1

‖̂xj‖σN
.

Applications: The Birkhoff coordinates are well suited to study the initial value problem of (1.1) (cf e.g. [17],
[11] and references therein) and semilinear perturbations of (1.1) (cf e.g. [13], [19]). However, when equation
(1.1) is expressed in Birkhoff coordinates, various features of the KdV equation and its perturbations such
as being partial differential equations, get lost. On the other hand, due to the expansions (AE1)− (AE3),
the coordinates of Theorem 1.1 allow to preserve the essence of such features and in the form stated turn
out to be well suited to study quasi-linear perturbations of the KdV equation.

Outline of the construction: In his pioneering work [19], Kuksin presents a general scheme for proving
KAM-type theorems for integrable PDEs in one space dimension such as the KdV or the sine-Gordon (sG)
equations, which possess a Lax pair formulation and admit finite dimensional integrable subsystems foliated
by invariant tori. Expanding on work of Krichever [18], Kuksin considers bounded integrable subsystems of
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such a PDE which admit action-angle coordinates. They are complemented by infinitely many coordinates
whose construction is based on a set of time periodic solutions, referred to as Floquet solutions of the PDE,
obtained by linearizing the PDE under consideration along a solution evolving in the integrable subsystem.
It turns out that the resulting coordinate transformation is typically not symplectic. Extending arguments
of Moser and Weinstein to the given infinite dimensional setup (see [19], Lemma 1.4 and Section 1.7), he
constructs a second coordinate transformation so that the composition of the two transformations become
symplectic. We follow Kuksin’s scheme of the proof by constructing Ψ as the composition of ΨL ◦ΨC of two
transformations. The ΨL is given by the Taylor expansion of Ψkdv of order one in the normal direction z⊥
around (θS , IS , 0),

Ψkdv(θS , IS , 0) + dΨkdv(θS , IS , 0)[(0, 0, z⊥)] .

The neighbourhood V of K × {0} is chosen sufficiently small so that by the inverse function theorem, ΨL is
a real analytic diffeomorphism onto its image. Using that ΨL is given in terms of the Birkhoff map Ψkdv, we
prove in a first step that ΨL admits an asymptotic expansion and tame estimates corresponding to the ones
of Theorems 1.1, 1.2. In a second step we establish the corresponding results for the symplectic corrector
ΨC . The methods developed in this paper also apply to the defocusing NLS equation and can be used to
provide corresponding asymptotic expansions and estimates, thus complementing our previous work [12] on
this equation.

Comments: In view of the definition of ΨL, the map Ψ = ΨL ◦ΨC can be considered as a symplectic version
of the Taylor expansion of Ψkdv of order 1 in normal directions at points of Mo

S ×{0} and hence as a locally
defined symplectic approximation of Ψkdv. Theorem 1.1 in particular says that Ψ(θS , IS , z⊥) − F−1

⊥ [z⊥]
maps V ∩ (Mo

S × hs⊥) into H
s+1
0 for any s ≥ 0, i.e., that it is one-smoothing. Such a property has previously

been established for the Birkhoff map Ψkdv near 0 by Kuksin-Perelman [20], Theorem 0.2, and proved to
hold on the entire phase space by Kappeler-Schaad-Topalov [16]. Theorem 1.1 says that for the map Ψ,
a much stronger property holds: up to a remainder term which is (N + 1)-smoothing, Ψ is a (nonlinear)
pseudodifferential operator acting on F−1

⊥ (h0⊥).

Organization: The maps ΨL and ΨC are studied in Section 2 and respectively, Section 3. The expansion of
the KdV Hamiltonian in the new coordinates is treated in Section 4 and a summary of the proofs of Theorem
1.1 and Theorem 1.2 is given in Section 5. In Appendix A – Appendix D, we present results needed for the
analysis of the map ΨL in Section 2 and in Appendix E we review material from the pseudodifferential and
paradifferential calculus.

2 The map ΨL

In this section we define and study the map ΨL described in Section 1. First let us introduce some more
notation. For S ⊂ Z finite as in (1.8), denote by h0S ⊂ C

S the subspace given by

h0S :=
{
zS = (zn)n∈S ∈ C

S : z−n = zn ∀n ∈ S+

}
. (2.1)

By a slight abuse of terminology, for any s ∈ Z, we identify hs0 with h0S × hs⊥ and write (zS , z⊥) for z ∈ hs0.
According to the Addendum to Theorem A.1 at the end of Appendix A, the spaceMS of S−gap potentials is
viewed as a (real analytic) submanifold of the weighted Sobolev space Hw∗

0 and the restriction of Φkdv toMS

yields a real analytic diffeomorphism, Φkdv|MS
: MS → h0S . We endow h0S with the pull back of the standard

Poisson structure on h00 by the natural embedding h0S →֒ h00, where the standard Poisson structure is the
one for which {zn, z−n} = 2πin for any n ≥ 1 whereas the Poisson brackets among all the other coordinates
vanish.

Consider the partially linearized inverse Birkhoff map

ΨL : h0S × h0⊥ → L2
0 , (zS , z⊥) 7→ Ψkdv(zS , 0) + d⊥Ψ

kdv(zS , 0)[z⊥] (2.2)

where d⊥Ψkdv(zS , 0) denotes the Fréchet derivative of the map z⊥ 7→ Ψkdv(zS , z⊥), evaluated at the point
(zS , 0). By Theorem A.1, ΨL is a real analytic map.
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Proposition 2.1. The map ΨL has the following properties: (i) For any zS ∈ h0S ,

ΨL(zS , 0) = Ψkdv(zS , 0) and dΨL(zS , 0) = dΨkdv(zS , 0).

(ii) For any compact subset K ⊆ h0S there exists an open neighbourhood V of K × {0} in h00 ≡ h0S × h0⊥
so that for any integer s ≥ 0, the restriction ΨL|V∩hs

0
is a map V ∩ hs0 → Hs

0 which is a real analytic
diffeomorphism onto its image. The neighborhood V is chosen of the form VS × V⊥ where VS is an open,
bounded neighborhood of K in h0S and V⊥ is an open ball in h0⊥ of sufficiently small radius, centered at zero.
(iii) For any z = (zS , z⊥) ∈ V and ẑ = (ẑS , ẑ⊥) ∈ h0S × h0⊥,

dΨL(z)[ẑ] = dΨL(zS , 0)[ẑ] + dS
(
d⊥Ψ

kdv(zS , 0)[z⊥]
)
[ẑS ] (2.3)

where the linear map dΨL(zS , 0) = dΨkdv(zS , 0) is canonical and dS
(
d⊥Ψkdv(zS , 0)[z⊥]

)
denotes the Fréchet

derivative of the map
VS → L2

0, zS 7→ d⊥Ψ
kdv(zS , 0)[z⊥].

Proof. (i) The stated formulas follow from the definition of ΨL in a straightforward way. (ii) In view of
Theorem A.1, the claimed statements can be proved by using the same arguments as in the proof of the
corresponding results for the defocusing NLS equation in [12, Proposition 3.1]. Item (iii) is proved in a
straightforward way.

In a next step we want to analyze d⊥Ψkdv(zS , 0) further. Consider the Hamiltonian vector fields ∂x∇qz±n,
n ≥ 1, corresponding to the Hamiltonians given by the complex Birkhoff coordinates z±n. Since Φkdv is
canonical in the sense that {zn, z−n} = 2πin for any n 6= 0 whereas the brackets among all the other
coordinates vanish, it follows that for any q ∈ L2

0 and n ≥ 1,

dqΦ
kdv[∂x∇qz±n] = Xz±n

where Xz±n
are the constant vector fields on h00,C given by

Xzn = −2πine(−n) , Xz−n
= 2πine(n)

and e(n), e(−n) are the standard basis elements in the sequence space h00,C,

e(n) = (δn,k)k 6=0, e(−n) = (δ−n,k)k 6=0 .

(Here we extended dqΦ
kdv : L2

0 → h00 as a C-linear map L2
0,C → h00,C). Hence for any n ≥ 1,

(dqΦ
kdv)−1[e(n)] =

1

2πin
∂x∇qz−n, (dqΦ

kdv)−1[e(−n)] = − 1

2πin
∂x∇qzn . (2.4)

It then follows from [13, Theorem 9.5, 9.7] and the formulas (B.5), (B.6) for the functions Hn, Gn together
with their properties stated in Proposition B.1 that for any q ∈MS and n ∈ S⊥

+

∂x∇qzn =
√
nπ∂x∇q(xn − iyn) =

√
nπ

ξn
2
e−iβn∂x(Hn − iGn)

2 (2.5)

and similarly

∂x∇qz−n =
√
nπ∂x∇q(xn + iyn) =

√
nπ

ξn
2
eiβn∂x(Hn + iGn)

2 (2.6)

where βn =
∑

ℓ∈S+
βnℓ (cf [13, Theorem 8.5]) and ξn =

√
8In/γn (cf [13, Theorem 7.3]). Since q ∈ MS

and n ∈ S⊥
+ one has γn(q) = 0 and the factor ξn(q) is obtained by a limiting argument. By a slight abuse

of terminology, we denote this limit also by
√
8In(q)/γ2n(q). The formulas (2.5) - (2.6) allow to express

∂x∇qz±n in terms of the Floquet solutions fn(x) ≡ fn(x, q) as follows (cf Appendix B for notations).
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Proposition 2.2. For any q ∈MS and n ∈ S⊥
+ ,

∂x∇qzn =
√
nπ

ξn
2
e−iβn

(
− 2ṁ2(τn)

∆̈(τn)

)
∂xf

2
−n , ∂x∇qz−n =

√
nπ

ξn
2
eiβn

(
− 2ṁ2(τn)

∆̈(τn)

)
∂xf

2
n .

Hence by (2.4)

(dqΦ
kdv)−1[e(n)] =

√
nπ ξne

iβn
ṁ2(τn)

∆̈(τn)

−1

2πin
∂xf

2
n , (dqΦ

kdv)−1[e(−n)] =
√
nπ ξne

−iβn
ṁ2(τn)

∆̈(τn)

1

2πin
∂xf

2
−n .

Remark 2.1. At q = 0,
√
nπ ξn = 1, βn = 0, ṁ2(τn)

∆̈(τn)
= −1 and f±n(x) = e±πinx for any n ≥ 1, confirming

that (d0Φ
kdv)−1[e(±n)] = e±2πinx (cf [13]).

For any given q ∈MS and n ∈ S⊥
+ , introduce the functions W±n(x) ≡W±n(x, q) given by

Wn(x) :=
√
nπ ξn

ṁ2(τn)

∆̈(τn)
eiβn

−1

2πin
∂xf

2
n(x) , W−n(x) :=

√
nπ ξn

ṁ2(τn)

∆̈(τn)
e−iβn

1

2πin
∂xf

2
−n(x) . (2.7)

We record that for any n ∈ S⊥
+ , W−n =Wn since f−n = fn. Combining Proposition 2.1 and Proposition 2.2

one obtains the following formula for the map ΨL:

Corollary 2.1. For any z = (zS , z⊥) ∈ V, one has d⊥Ψkdv(zS , 0)[z⊥] = Ψ1(zS)[z⊥] where

Ψ1(zS)[z⊥](x) :=
∑

n∈S⊥

znWn(x, q) , q = Ψkdv(zS , 0) . (2.8)

Note that Ψ1(zS)[z⊥] = ΨL(z)−q is linear in z⊥. Since q ∈MS is a finite gap potential, it is C∞-smooth and
so is Wn(x, q). Next we want to show that ΨL(z) admits an expansion of the type stated in Theorem 1.1.
Recall from the Addendum to Theorem A.1 at the end of Appendix A that for any q ∈ MS , V

∗
q,S denotes

a neighborhood of q, consisting of complex valued S−gap potentials in the weighted Sobolev space Hw∗

0,C

so that the restriction of Φkdv to V ∗
q,S is a real analytic diffeomorphism onto its image Φkdv(V ∗

q,S) ⊂ h0S,C.
Combining Theorem C.1 and Lemma C.4 - Lemma C.6 of Appendix C and using that

∑

n∈S⊥

zn
1

(2πin)k
e2πinx = ∂−kx (

∑

n∈S⊥

zne
2πinx) = ∂−kx F−1

⊥ [z⊥]

one obtains the following

Theorem 2.1. (i) Let q ∈ MS and N ∈ N. Then for any p ∈ V ∗
q,S , Wn(x) ≡ Wn(x, p), n ∈ S⊥, has an

expansion as |n| → ∞ of the form

Wn(x, p) = e2πinx
(
1 +

N∑

k=1

W ae
k (x, p)

(2πin)k
+

RWn

N (x, p)

(2πin)N+1

)
(2.9)

where for any s ∈ Z≥0, W
ae
k : V ∗

q,S → Hs
C
, p 7→ W ae

k (·, p), k ≥ 1, are real analytic and RWn

N : V ∗
q,S →

Hs
C
, p 7→ RWn

N (·, p), n ∈ S⊥, are analytic and satisfy for any j ≥ 0,

sup0≤x≤1

n∈S⊥

|∂jxRWn

N (x, p)| ≤ CN,j .

The constants CN,j can be chosen locally uniformly for p ∈ V ∗
q,S. By a slight abuse of terminology, in the

sequel, we will view W ae
k (·, q) and RWn

N (·, q) as functions of zS,

W ae
k (·, zS) ≡W ae

k (·, Ψkdv(zS , 0)) , RWn

N (·, zS) ≡ RWn

N (·, Ψkdv(zS , 0)) .

9



(ii) For any zS ∈ h0S, the linear operator Ψ1(zS), given by

Ψ1(zS) : h
0
⊥ → L2

0, ẑ⊥ 7→ Ψ1(zS)[ẑ⊥] =
∑

n∈S⊥

ẑnWn(·, q) , q = Ψkdv(zS , 0) ,

has the property that for any s ∈ Z≥0, its restriction to hs⊥ is a bounded linear operator hs⊥ → Hs
0 . Further-

more, up to a remainder, the operator Ψ1(zS) : h
0
⊥ → L2

0 is a pseudodifferential operator of order 0. More
precisely, Ψ1(zS) has an expansion to any order N ≥ 1 of the form

Ψ1(zS) =
(
Id+

N∑

k=1

ak(zS ; Ψ1)∂
−k
x

)
◦ F−1

⊥ +RN (zS ; Ψ1) ,

where

ak(zS ; Ψ1) :=W ae
k (·, zS), k ≥ 1, RN (zS ; Ψ1)[ẑ⊥](x) :=

∑

n∈S⊥

ẑn
RWn

N (x, zS)

(2πin)N+1
e2πinx .

For any s ≥ 0, the restriction of RN (zS ; Ψ1) to hs⊥ defines a bounded linear operator hs⊥ → Hs+N+1 and
the map

h0S → B(hs⊥, Hs+N+1), zS 7→ RN (zS ; Ψ1) ,

is real analytic. Corresponding properties hold for the map ΨL : V → L2
0, defined in Proposition 2.1,

ΨL(zS , z⊥) = q +Ψ1(zS)[z⊥] = q + F−1
⊥ [z⊥] +

N∑

k=1

ak(zS ; ΨL)∂
−k
x F−1

⊥ [z⊥] +RN (zS ; ΨL)[z⊥] (2.10)

where
ak(zS ; ΨL) := ak(zS ; Ψ1), k ≥ 1 RN (zS ; ΨL) := RN (zS ; Ψ1)

Remark 2.2. (i) Note that the pseudodifferential operator
(
Id +

∑N
k=1 ak(zS ; Ψ1)∂

−k
x

)
◦ F−1

⊥ defines a
bounded linear operator hs⊥ → Hs for any s ∈ R whereas the remainder RN (zS ; Ψ1) defines a bounded linear
operator hs⊥ → Hs+N+1 for any s ≥ −N − 1.
(ii) Whenever possible, we will use similar notation for the coefficients of the expansion of the various
quantities such as Ψ1(zS). If the coefficients are operators, we use the upper case letter A and write Ak

for the kth coefficient, whereas when they are functions (or operators, defined as the multiplication by a
function), we use the lower case letter a and write ak for the k’th coefficient. The quantity, which is
expanded, is indicated as an argument of Ak and ak.
(iii) The fact that up to a remainder term, ΨL(zS , ·) is given by the pseudodifferential operator of order 0,

(Id +
∑N

k=1 ak(zS ; Ψ1)∂
−k
x ) ◦ F−1

⊥ , acting on the scale of Hilbert spaces hs⊥, s ∈ Z≥0, is at the heart of this
paper. The result shows that the differential of the Birkhoff map z 7→ Ψkdv(z) at a finite gap potential, has
distinctive features.

A straightforward application of Theorem 2.1(ii) yields an expansion of the transpose operator Ψ1(zS)
t

of Ψ1(zS). Since F−1
⊥ is the restriction of the inverse of the Fourier transform to h0⊥, the transpose F−t

⊥ :=
(F−1

⊥ )t of F−1
⊥ with respect to the standard inner products in L2

0 and h0⊥ is given by the Fourier transform,
i.e., for any q̂ ∈ L2

0,

〈F−1
⊥ [z⊥], q̂〉 =

∫ 1

0

∑

n∈S⊥

zne
2πinxq̂(x)dx =

∑

n∈S⊥

zn

∫ 1

0

q̂(x)e2πinxdx =
∑

n∈S⊥

znq̂−n = 〈z⊥,F⊥q̂〉 .

Corollary 2.2. For any zS ∈ h0S, q = Ψkdv(zS , 0), and N ∈ N, Ψ1(zS)
t : L2 → h0⊥, q̂ 7→ (〈W−n(·, q), q̂〉)n∈S⊥

has an expansion of the form

Ψ1(zS)
t = F⊥ ◦ (Id +

N∑

k=1

ak(zS ; Ψ
t
1)∂

−k
x ) +RN (zS ; Ψ

t
1) (2.11)

10



where for any s ≥ 0, the coefficients h0S → Hs, zS 7→ ak(zS ; Ψ
t
1), k ≥ 1, and the remainder h0S →

B(Hs, hs+N+1
⊥ ), zS 7→ RN (zS ; Ψ

t
1), are real analytic. Furthermore, ak(zS ; Ψ

t
1) = −ak(zS ; Ψ1). Corre-

sponding properties hold for the map

V → B(L2, h00), z 7→ dΨL(z)
t.

For any z ∈ V , N ∈ N, dΨL(z)
t has an expansion of the form

dΨL(z)
t =

(
0,F⊥ ◦ (Id+

N∑

k=1

ak(z; dΨ
t
L)∂

−k
x )

)
+RN (z; dΨtL) (2.12)

where ak(z; dΨ
t
L) = ak(zS ; Ψ

t
1) and where for any integer s ≥ 0, V ∩ hs0 → B(L2, hs+N+1

0 ), z 7→ RN (z; dΨtL)
is real analytic.

Remark 2.3. Again we record that the pseudodifferential operator F⊥ ◦
(
Id+

∑N
k=1 ak(zS ; Ψ

t
1)∂

−k
x

)
defines

a bounded linear operator Hs → hs⊥ for any s ∈ R whereas the remainder RN (zS ; Ψ
t
1) defines a bounded

linear operator Hs → hs+N+1
⊥ for any s ≥ −N − 1.

Proof. By Theorem 2.1(ii), Ψ1(zS) = F−1
⊥ +

∑N
k=1 ak(zS ; Ψ1)∂

−k
x F−1

⊥ +RN (zS ; Ψ1) where for any z⊥ ∈ h0⊥,

RN (zS ; Ψ1)[z⊥](x) :=
∑

n∈S⊥

zn
RWn

N (x, zS)

(2πin)N+1
e2πinx .

Note that the functions ak(zS ; Ψ1)(x), k ≥ 1, are real valued. Taking into account that F−t
⊥ = F⊥ and

(∂−kx )t = (−1)k∂−kx , the expansion of the transpose Ψ1(zS)
t of Ψ1(zS) then reads

Ψ1(zS)
t = F⊥ + F⊥ ◦

N∑

k=1

(−1)k∂−kx ◦ ak(zS ; Ψ1) + (RN (zS ; Ψ1))
t .

By Theorem 2.1(i), for any q̂ ∈ Hs,

(RN (zS ; Ψ1))
t[q̂] =

( 1

(2πin)N+1

∫ 1

0

q̂(x)RWn

N (x, zS)e
2πinx dx

)
n∈S⊥ ∈ hs+N+1

⊥ ,

(RN (zS ; Ψ1))
t : Hs → hs+N+1

⊥ is bounded, and the map h0S → B(Hs, hs+N+1
⊥ ), zS 7→ RN (zS ; Ψ

t
1), is real

analytic. Since by Lemma E.2 and the notation introduced there,

∂−kx ◦ ak(zS ; Ψ1) = ak(zS ; Ψ1) ∂
−k
x +

N−k∑

j=1

Cj(k) (∂
j
xak(zS ; Ψ1)) ∂

−k−j
x +Rψdo

N,k,0(ak(zS ; Ψ1))

one sees that Ψ1(zS)
t admits an expansion of the form,

Ψ1(zS)
t = F⊥ + F⊥ ◦

N∑

k=1

ak(zS ; Ψ
t
1)∂

−k
x +RN (zS ; Ψ

t
1) ,

where ak(zS ; Ψ
t
1), k ≥ 1, and RN (zS ; Ψ

t
1) satisfy the claimed properties. Since

dΨL(z)[ẑ] =
(
dSΨ

kdv(zS , 0) + dS(Ψ1(zS)[z⊥])
)
[ẑS] + Ψ1(zS)[ẑ⊥],

the claimed properties of dΨL(z)
t follow from the ones of Ψ1(zS)

t.

Using results of Appendix D and Appendix C, one obtains the following properties of the functions Wn,
n ∈ S⊥, and the map ΨL with regard to the reversible structure, introduced in Section 1.
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Addendum to Theorem 2.1 (i) For any zS ∈ h0S, q = Ψkdv(zS , 0) satisfies Srevq = Ψkdv(Srev(zS , 0)) and
for any n ∈ S⊥, x ∈ R, Wn(x, Srevq) =W−n(−x, q) as well as ( k ≥ 1, N ≥ 1)

W ae
k (x,SrevzS) = (−1)kW ae

k (−x, zS) , RWn

N (x,SrevzS) = (−1)N+1RW−n

N (−x, zS) . (2.13)

(ii) For any z = (zS , z⊥) ∈ h0S × h0⊥ and x ∈ R,

(
Ψ1(SrevzS)[Srevz⊥]

)
(x) =

(
Ψ1(zS)[z⊥]

)
(−x).

As a consequence, for any z ∈ V, x ∈ R

(ΨL(Srevz))(x) = (ΨL(z))(−x) , (RN (SrevzS; Ψ1)[Srevz⊥])(x) =
(
RN (zS ; Ψ1)[z⊥]

)
(−x) . (2.14)

(iii) For any zS ∈ h0S and q̂ ∈ L2
0, one has Ψ1(SrevzS)t[Srev q̂] = Srev(Ψ1(zS)

t[q̂]). As a consequence, for
any k ≥ 1 and N ≥ 1,

ak(SrevzS ; Ψt1)(x) = (−1)kak(zS ; Ψ
t
1)(−x) , RN (SrevzS ; Ψt1)[Srev q̂] = Srev

(
RN (zS ; Ψ

t
1)[q̂]

)
.

Proof of Addendum to Theorem 2.1 (i) By the Addendum to Theorem C.1, we know that for any
q ∈ MS and n ∈ S⊥

+ , f±n(x, Srevq) = f∓n(−x, q). Furthermore, one has ξn(Srevq) = ξn(q), ∆(λ, Srevq) =
∆(λ, q), m2(λ, Srevq) = m2(λ, q) (Lemma D.1) and βn(Srevq) = −βn(q) (Corollary D.1). In view of the def-
inition (2.7) of W±n it then follows that W±n(x, Srevq) =W∓n(−x, q) and in turn, comparing the expansion
(2.9) of W±n(x, Srevq) with the one of W∓n(−x, q), one obtains the identities (2.13). (ii) By (i) one has for
any zS ∈ h0S and q = Ψkdv(zS , 0),

(
Ψ1(SrevzS)[Srevz⊥]

)
(x) =

∑

n∈S⊥

z−nWn(x, Srevq) =
∑

n∈S⊥

z−nW−n(−x, q) =
(
Ψ1(zS)[z⊥]

)
(−x)

as well as W ae
k (x,SrevzS) = (−1)kW ae

k (−x, zS) and (RN (SrevzS; Ψ1)[Srevz⊥])(x) =
(
RN (zS ; Ψ1)[z⊥]

)
(−x).

By (2.10), the claimed identities (2.14) then follow. (iii) Recall that for any zS ∈ h0S , q̂ ∈ L2
0, one has

Ψ1(zS)
t[q̂] = (〈W−n(·, q), q̂〉)n∈S⊥ . It then follows from item (i) that

Ψ1(SrevzS)t[Srev q̂] = Srev
(
Ψ1(zS)

t[q̂]
)
.

Comparing the expansion (2.11) for Srev
(
Ψ1(SrevzS)t[q̂]

)
with the one for Ψ1(zS)

t[Srev q̂] and taking into
account that Srev ◦ F⊥ = F⊥ ◦ Srev and ∂x ◦ Srev = −Srev ◦ ∂x one sees that for any k ≥ 1,

ak(SrevzS ; Ψt1)(x) = (−1)kak(zS ; Ψ
t
1)(−x) , RN (SrevzS; Ψt1)[Srev q̂] = Srev(RN (zS ; Ψ

t
1)[q̂]) . �

In the remaining part of this section we describe the pull back Ψ∗
LΛG of the symplectic form ΛG by the

map ΨL, defined in Proposition 2.1, where ΛG, defined by the Gardner Poisson structure, is given by

ΛG[û, v̂] = 〈∂−1
x û, v̂〉 =

∫ 1

0

(∂−1
x û)(x)v̂(x)dx , ∀û, v̂ ∈ L2

0 .

Note that ΛG = dλG where the one form λG, defined on L2
0, is given by

λG(u)[v̂] = 〈∂−1
x u, v̂〉 =

∫ 1

0

(∂−1
x u)(x)v̂(x)dx , ∀u, v̂ ∈ L2

0 . (2.15)

To compute the pull back of ΛG by ΨL, note that for any z = (zS , z⊥) ∈ V = VS×V⊥, the derivative dΨL(z),
when written in 1× 2 matrix form, is given by (cf (2.8))

dΨL(z) = dΨL(zS , 0) +
(
dS(Ψ1(zS)[z⊥]) 0

)
=

(
dSΨ

kdv(zS , 0) Ψ1(zS)
)
+
(
dS(Ψ1(zS)[z⊥]) 0

)
. (2.16)
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For any ẑ = (ẑS , ẑ⊥), ŵ = (ŵS , ŵ⊥) ∈ h00 one has

(Ψ∗
LΛG)(z)[ẑ, ŵ] = ΛG

[
dΨL(z)[ẑ], dΨL(z)[ŵ]

]
=

〈
∂−1
x dΨL(z)[ẑ], dΨL(z)[ŵ]

〉

=
〈
∂−1
x

(
dΨL(zS , 0)[ẑ]

)
+ ∂−1

x

(
dS(Ψ1(zS)[z⊥]

)
[ẑS ]), dΨL(zS , 0)[ŵ] + dS

(
Ψ1(zS)[z⊥]

)
[ŵS ]

〉
.

Since by construction, dΨL(zS , 0) : h
0
0 → L2

0 is symplectic, one has

(Ψ∗
LΛG)(zS , 0) = Λ

where Λ is the symplectic form on h00,

Λ[ẑ, ŵ] := 〈J−1ẑ, ŵ〉 =
∑

n6=0

1

2πin
ẑnŵ−n , ∀ẑ, ŵ ∈ h00 (2.17)

and J−1 denotes the inverse of the diagonal operator, acting on the scale of Hilbert spaces hs0, s ∈ R,

J : hs+1
0 → hs0 : (zn)n6=0 7→ (2πinzn)n6=0 . (2.18)

Note that Λ = dλ where λ is the one form on h00,

λ(z)[ŵ] := 〈J−1z, ŵ〉 =
∑

n6=0

1

2πin
znŵ−n , ∀z, ŵ ∈ h00 . (2.19)

Altogether we have that

(Ψ∗
LΛG)(z)[ẑ, ŵ] = Λ[ẑ, ŵ] + ΛL(z)[ẑ, ŵ] , ΛL(z)[ẑ, ŵ] =

〈
L(z)[ẑ], ŵ

〉
(2.20)

where the operator L(z) : h0S × h0⊥ → h0S × h0⊥ has the form

L(z) =
(
LSS(z) L⊥

S (z)
LS⊥(z) 0

)
(2.21)

with LSS(z) : h0S → h0S, L⊥
S (z) : h

0
⊥ → h0S, and LS⊥ : h0S → h0⊥ given by

LSS(z) :=
(
dSΨ1(zS)[z⊥]

)t
∂−1
x

(
dSΨ1(zS)[z⊥]

)
+ (dSΨ

kdv(zS , 0))
t∂−1
x

(
dSΨ1(zS)[z⊥]

)

+
(
dSΨ1(zS)[z⊥]

)t
∂−1
x dSΨ

kdv(zS , 0) ,

L⊥
S (z) :=

(
dSΨ1(zS)[z⊥]

)t
∂−1
x Ψ1(zS) , LS⊥(z) := Ψ1(zS)

t ∂−1
x

(
dSΨ1(zS)[z⊥]

)
.

(2.22)

For any z = (zS , z⊥) ∈ V , the operators L(z), LSS(z), L⊥
S (z), and LS⊥(z) are bounded. In the sequel, we will

often write the operators (2.22) in the following way

LSS(z)[ẑS ] =
(〈
∂−1
x dS

(
Ψ1(zS)[z⊥]

)
[ẑS ] , ∂znΨ1(zS)[z⊥]

〉)
n∈S

+
(〈
∂−1
x dS

(
Ψ1(zS)[z⊥]

)
[ẑS ] , ∂znΨ

kdv(zS , 0)
〉)

n∈S

+
(〈
∂−1
x dS(Ψ

kdv(zS , 0))[ẑS] , ∂znΨ1(zS)[z⊥]
〉)

n∈S
,

L⊥
S (z)[ẑ⊥] =

(〈
∂−1
x Ψ1(zS)[ẑ⊥] , ∂znΨ1(zS)[z⊥]

〉)
n∈S

,

LS⊥(z)[ẑS ] = Ψ1(zS)
t∂−1
x dS(Ψ1(zS)[z⊥])[ẑS ] =

(〈
W−n(·, q), ∂−1

x dS(Ψ1(zS)[z⊥])[ẑS ]
〉)

n∈S⊥

(2.23)
where q = Ψkdv(zS , 0). The operators LSS(z), L⊥

S (z), and LS⊥(z) satisfy the following properties.

Lemma 2.1. (i) The maps

V → B(h0S, h0S), z 7→ LSS(z) , V → B
(
h0⊥, h

0
S

)
, z 7→ L⊥

S (z)
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are real analytic. Furthermore, the following estimates hold: for any z = (zS , z⊥) ∈ V, ẑS ∈ h0S, and
ẑ1, . . . , ẑl ∈ h00, l ≥ 1 ,

‖LSS(z)[ẑS ]‖ . ‖ẑS‖‖z⊥‖0 , ‖dl
(
LSS(z)[ẑS ]

)
[ẑ1, . . . , ẑl]‖ .l ‖ẑS‖

l∏

j=1

‖ẑj‖0 ,

and if in addition, ẑ⊥ ∈ h0⊥,

‖L⊥
S (z)[ẑ⊥]‖ . ‖z⊥‖0‖ẑ⊥‖0 , ‖dl

(
L⊥
S (z)[ẑ⊥]

)
[ẑ1, . . . , ẑl]‖ .l ‖ẑ⊥‖0

l∏

j=1

‖ẑj‖0 .

(ii) For any z = (zS , z⊥) ∈ V, LS⊥(z) has an expansion of arbitrary order N ≥ 2,

LS⊥(z) = F⊥ ◦
N∑

k=2

Ak(zS ;LS⊥) ∂−kx F−1
⊥ [z⊥] +RN (z;LS⊥) (2.24)

where for any s ≥ 0, k ≥ 1, the maps

VS 7→ B(h0S , Hs), zS 7→ Ak(zS ;LS⊥) , V ∩ hs0 → B
(
h0S , h

s+N+1
⊥

)
, z 7→ RN (z;LS⊥)

are real analytic. In particular, the operator LS⊥(z) is two smooothing. More precisely, for any s ≥ 0,

V ∩ hs0 → B(h0S, hs+2
⊥ ), z 7→ LS⊥(z)

is real analytic. The coefficients Ak(zS ;LS⊥) are independent of z⊥ and satisfy for any s ≥ 0, zS ∈ VS ,
ẑS ∈ h0S , ẑ1, . . . , ẑl ∈ h00, l ≥ 1, the following estimates

‖Ak(zS ;LS⊥)[ẑS ]‖s .s,k ‖ẑS‖ , ‖dl
(
Ak(zS ;LS⊥)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s .s,k,l ‖ẑS‖

l∏

j=1

‖ẑj‖0 .

Furthermore, for any s ∈ Z≥0, z = (zS , z⊥) ∈ V ∩ hs0, ẑS ∈ h0S, and ẑ1, . . . , ẑl ∈ hs0, l ≥ 1, RN (z;LS⊥)[ẑS ]
satisfies ‖RN (z;LS⊥)[ẑS ]‖s+N+1 .s,N ‖ẑS‖‖z⊥‖s and

‖dl
(
RN (z;LS⊥)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l ‖ẑS‖

( l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0
)
.

(iii) As a consequence, for any integer s ≥ 0, the map V ∩ hs0 → B(h00, hs+2
0 ), z 7→ L(z) is real analytic.

Furthermore, for any z = (zS , z⊥) ∈ V ∩ hs0 and ẑ ∈ h00, it satisfies the estimates

‖L(z)[ẑ]‖s+2 ≤ C(s;L)‖ẑ‖0‖z⊥‖s (2.25)

and if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 1, one has

‖dl(L(z)[ẑ])[ẑ1, . . . , ẑl]‖s+2 ≤ C(s, l;L)‖ẑ‖0
( l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0
)

(2.26)

for some constants C(s;L) ≥ 1, C(s, l;L) ≥ 1.

Remark 2.4. Recall that by Remark 2.2(i), ∂−1
x Ψ1(zS) : h−1

⊥ → H0
0 is a bounded linear operator for any

z ∈ V. Since ∂znΨ1(zS)[z⊥] ∈ H0
0 for any n ∈ S, it then follows that L⊥

S (z) : h−1
⊥ → h0S and in turn

L(z) : h−1
0 → h00 are bounded linear operators. Estimates, corresponding to the ones for L⊥

S (z) and L(z) of
Lemma 2.1, continue to hold, when these operators are extended to h−1

⊥ and, respectively, h−1
0 .

14



Proof. The lemma follows in a straightforward way by using the properties of the maps Ψ1(zS) and Ψ1(zS)
t

(cf Lemma 2.2) and the expansion of the composition ∂−nx ◦ a ∂−kx (cf Lemma E.2 in Appendix E).

Finally, we discuss the properties of the symplectic forms ΛG, Λ, and Ψ∗
LΛG with respect to the reversible

structures introduced in Section 1. First note that for any û, v̂ ∈ L2
0,

(S∗
revΛG)[û, v̂] = ΛG[Srevû, Srevv̂] =

∫ 1

0

∂−1
x (û(−x))v̂(−x)dx = −ΛG[û, v̂]

and similarly, for any ẑ, ŵ ∈ h00,

(S∗
revΛ)[ẑ, ŵ] = Λ[Srev ẑ,Srevŵ] =

∑

n6=0

1

2πin
ẑ−nŵn = −Λ[ẑ, ŵ] .

By the Addendum to Theorem 2.1, the pullback S∗
revΨ

∗
LΛG can then be computed as

(S∗
revΨ

∗
L)ΛG = Ψ∗

L(S
∗
revΛG) = −Ψ∗

LΛG

implying together with (2.20) that
S∗
revΛL = −ΛL .

It then follows that the operators LSS(z), L⊥
S (z), and LS⊥(z) have the following symmetry properties.

Addendum to Lemma 2.1 For any z = (zS , z⊥) ∈ h0S × h0⊥ and any ẑS ∈ h0S, ẑ⊥ ∈ h0⊥,

LSS(Srevz)[Srev ẑS ] = −Srev
(
LSS(z)[ẑS]

)
,

L⊥
S (Srevz)[Srev ẑ⊥] = −Srev

(
L⊥
S (z)[ẑ⊥]

)
, LS⊥(Srevz)[Srev ẑS ]

)
= −Srev

(
LS⊥(z)[ẑS ]

)
.

By (2.24) it then follows that

Ak(SrevzS;LS⊥)[Srev ẑS](x) = −(−1)kAk(zS ;LS⊥)[ẑS ](−x) ,

RN (Srevz;LS⊥)[Srev ẑS ] = −Srev
(
RN (z;LS⊥)[ẑS ]

)
.

3 The map ΨC

In this section we construct the symplectic corrector ΨC . Our approach is based on a well known method
of Moser and Weinstein, implemented for an infinite dimensional setup in [19] (cf also [12]). We begin by
briefly outlining the construction. At the end of Section 2, we introduce the symplectic forms Λ and Ψ∗

LΛG.
They are defined on V = VS × V⊥ and are related as follows (z ∈ V , ẑ, ŵ ∈ h00)

Ψ∗
LΛG(z)[ẑ, ŵ] = Λ[ẑ, ŵ] + ΛL(z)[ẑ, ŵ] , ΛL(z)[ẑ, ŵ] = 〈L(z)[ẑ], ŵ〉 ,

where L(z) is the operator defined by (2.21). Our candidate for ΨC is Ψ0,1
X where X ≡ X(τ, z) is a non-

autonomous vector field, defined for z ∈ V and 0 ≤ τ ≤ 1, so that (Ψ0,1
X )∗(Ψ∗

LΛG) = Λ. The flow Ψτ0,τX ,
corresponding to the vector field X , is required to be well defined on a neighborhood V ′ (cf Lemma 3.4)
for 0 ≤ τ0, τ ≤ 1 and to satisfy the standard normalization conditions Ψτ0,τ0X (z) = z for any z ∈ V ′ and
0 ≤ τ0 ≤ 1. To find X with the desired properties, introduce the one parameter family of two forms,

Λτ (z) = Λ + τΛL(z) , 0 ≤ τ ≤ 1 .

Note that Λ0 = Λ, Λ1 = Ψ∗
LΛG, and (Ψ0,0

X )∗Λ0 = Λ0. The desired identity (Ψ0,1
X )∗Λ1 = Λ0 then follows if

one can show that (Ψ0,τ
X )∗Λτ is independent of τ , that is, ∂τ

(
(Ψ0,τ

X )∗Λτ
)
= 0. By Cartan’s identity,

∂τ
(
(Ψ0,τ

X )∗Λτ
)
= (Ψ0,τ

X )∗
(
∂τΛτ + d(Λτ [X(τ, ·), ·])

)
= (Ψ0,τ

X )∗
(
ΛL + d(Λτ [X(τ, ·), ·])

)
.
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Hence we need to choose the vector field X(τ, z) in such a way that

ΛL(z) + d
(
Λτ (z)[X(τ, z), ·]

)
= 0 , Λτ (z)[X(τ, z), ·] = 〈J−1Lτ (z)[X(τ, z)], ·〉 (3.1)

where for any 0 ≤ τ ≤ 1 and z ∈ V , the operator Lτ (z) : h00 → h00 is defined by

Lτ (z) := Id + τJL(z) (3.2)

and where J−1 is the inverse of the diagonal operator J , defined by (2.18). In a next step we want to
rewrite ΛL(z) as the differential of a properly chosen one form. First note that since ΛG = dλG (cf (2.15))
and Λ = dλ (cf (2.19)), the two form ΛL is closed, ΛL = d(λ1 − λ0) where λ1 := Ψ∗

LλG and λ0 := λ.
Furthermore, by Lemma 2.1, L(zS , 0) = 0 and hence ΛL(zS , 0) = 0 for any zS ∈ VS . It then follows by the
Poincaré Lemma (cf e.g. [12, Appendix 1]) that dλL = ΛL where

λL(z)[ẑ] :=

∫ 1

0

〈L(zS , tz⊥)[0, z⊥], (ẑS , tẑ⊥)〉dt
(2.21)
=

∫ 1

0

〈L⊥
S (zS , tz⊥)[z⊥], ẑS〉dt .

Since L⊥
S (zS , tz⊥) = tL⊥

S (zS , z⊥) (cf (2.23)) one is then led to

λL(z)[ẑ] = 〈E(z) , ẑ〉 , E(z) := (ES(z), 0) ∈ h0S × h0⊥ , z ∈ V , ẑ ∈ h00 (3.3)

where

ES : V → h0S , z 7→ ES(z) :=
1

2
L⊥
S (z)[z⊥] . (3.4)

In view of (3.1), we will choose X so that

E(z) + J−1Lτ (z)[X(τ, z)] = 0 , ∀z ∈ V , 0 ≤ τ ≤ 1 . (3.5)

Arguing as in the proof of [12, Lemma 4.1] one can show that after shrinking the ball V⊥, if needed, Lτ (z)
is invertible for any 0 ≤ τ ≤ 1 and z ∈ V . In view of Lemma 2.1, the following version of [12, Lemma 4.1]
holds:

Lemma 3.1. After shrinking the ball V⊥ ⊂ h0⊥ in V = VS × V⊥, if needed, for any s ≥ 0, z ∈ V ∩ hs0, and
τ ∈ [0, 1], the operator Lτ (z) : hs0 → hs0 is invertible with inverse Lτ (z)−1 : hs0 → hs0 given by the Neumann
series,

Lτ (z)−1 = Id+
∑

n≥1

(−1)n(τJL(z))n. (3.6)

Furthermore, for any s ≥ 0, the map

[0, 1]× (V ∩ hs0) → B(hs0, hs+1
0 ), (τ, z) 7→ Lτ (z)−1 − Id = −τJL(z)Lτ (z)−1

is real analytic and the following estimates hold: for any z ∈ V ∩ hs0, 0 ≤ τ ≤ 1, ẑ, ẑ1, . . . , ẑl ∈ hs0, l ≥ 1,

‖(Lτ (z)−1 − Id)[ẑ]‖s+1 .s ‖z⊥‖s‖ẑ‖0 ,

‖dl
(
(Lτ (z)−1 − Id)[ẑ]

)
[ẑ1, . . . , ẑl]‖s+1 .s,l ‖ẑ‖0

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖ẑ‖0‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Note that by (3.4) and (2.23), E(z) and hence λL(z) are quadratic expressions in z⊥. Applying Lemma
2.1 to E(z), one obtains the following estimates:

Lemma 3.2. The map V → h0S × h0⊥, z 7→ E(z) = (ES(z), 0) is real analytic. Furthermore, for any z ∈ V,
ẑ1, . . . , ẑl ∈ h00, l ≥ 1, one has

‖ES(z)‖ . ‖z⊥‖20 , ‖dES(z)[ẑ1]‖ . ‖z⊥‖0‖ẑ1‖0 , ‖dlES(z)[ẑ1, . . . , ẑl]‖ .l

l∏

j=1

‖ẑj‖0 , l ≥ 2 .
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Since Lτ (z) is invertible (cf Lemma 3.1), equation (3.5) can be solved for X(τ, z),

X(τ, z) := −Lτ (z)−1[JE(z)] , ∀z ∈ V , τ ∈ [0, 1]. (3.7)

Note that by Lemma 3.2, JE(z) is C∞−smooth. Hence it follows from Lemma 3.1 that for any integer s ≥ 0,
z ∈ V ∩ hs0

X(τ, z) = −JE(z)−
(
Lτ (z)−1 − Id

)
[JE(z)] = −JE(z) + τJL(z)[X(τ, z)] .

Lemma 3.1 and Lemma 3.2 then lead to the following results (cf Lemma [12, 4.3]).

Lemma 3.3. For any s ≥ 0, the non-autonomous vector field

X : [0, 1]× (V ∩ hs0) → hs+1
0

is real analytic and the following estimates hold: for any z ∈ V ∩ hs0, 0 ≤ τ ≤ 1, ẑ ∈ hs0,

‖X(τ, z)‖s+1 .s ‖z⊥‖s‖z‖0 , ‖dX(τ, z))[ẑ1]‖s+1 .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s ,

and for any ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dlX(τ, z)[ẑ1, . . . , ẑl]‖s+1 .s,l

l∑

j=1

‖ẑj‖s
l∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

By a standard contraction argument, there exists an open neighborhood V ′
S ⊂ VS of K ⊂ h0S and a ball

V ′
⊥ ⊂ V⊥, centered at 0, so that for any τ, τ0 ∈ [0, 1], the flow map Ψτ0,τX of the non-autonomous differential

equation ∂τz = X(τ, z) is well defined on V ′ := V ′
S × V ′

⊥ and

Ψτ0,τX : V ′ → V (3.8)

is real analytic. Arguing as in the proof of [12, Lemma 4.4] one shows that Ψτ0,τX − id is one smoothing.
More precisely, the following holds.

Lemma 3.4. Shrinking the ball V ′
⊥ ⊂ h0⊥ in V ′ = V ′

S × V ′
⊥, if needed, it follows that for any s ≥ 0,

τ0, τ ∈ [0, 1], the map Ψτ0,τX − id : V ′ ∩ hs0 → hs+1
0 is real analytic and for any z ∈ V ′ ∩ hs0, 0 ≤ τ0, τ ≤ 1,

ẑ ∈ hs0,

‖Ψτ0,τX (z)− z‖s+1 .s ‖z⊥‖s‖z⊥‖0 , ‖(dΨτ0,τX (z)− Id)[ẑ]‖s+1 .s ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s

and for any ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dlΨτ0,τX (z)[ẑ1, . . . , ẑl]‖s+1 .s

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0

Our aim is to derive expansions for the flow maps Ψτ0,τX (z). To this end we derive such expansions
for Lτ (z)−1 and in turn for the vector field X(τ, z). Recall that Lτ (z)−1 is given by the Neumann series
(3.6) and hence we first derive an expansion for the operators (JL(z))n. It is convenient to introduce the
projections

ΠS : h0S × h0⊥ → h0S × h0⊥ , (ẑS , ẑ⊥) 7→ (ẑS , 0) , Π⊥ : h0S × h0⊥ → h0S × h0⊥ , (ẑS , ẑ⊥) 7→ (0, ẑ⊥) (3.9)

and the maps

πS : h0S × h0⊥ → h0S , z = (zS , z⊥) 7→ zS , π⊥ : h0S × h0⊥ → h0⊥ , z = (zS , z⊥) 7→ z⊥ . (3.10)

Furthermore, let JS := πSJπS , J⊥ := π⊥Jπ⊥. Then J
−1
S = πSJ

−1πS , J
−1
⊥ = π⊥J−1π⊥, or, more explicitly,

〈
J−1
S ẑS , ŵS

〉
=

∑

n∈S

1

i2πn
ẑnŵ−n , ∀ẑS , ŵS ∈ h0S ,

〈
J−1
⊥ ẑ⊥, ŵ⊥

〉
=

∑

n∈S⊥

1

i2πn
ẑnŵ−n , ∀ẑ⊥, ŵ⊥ ∈ h0⊥ .
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Lemma 3.5. For any n ≥ 1, z = (zS , z⊥) ∈ V, (JL(z))n has an expansion of arbitrary order N ≥ 1,

(
0 0

F⊥ ◦∑N
k=1 AS

k (z; (JL)n) ∂−kx F−1
⊥ [z⊥] F⊥ ◦∑N

k=1 A⊥
k (z; (JL)n) ∂−kx F−1

⊥ [z⊥]

)
+RN (z; (JL)n)

where for any integers s ≥ 0, 1 ≤ k ≤ N, the maps

V → B(h0S, Hs), z 7→ AS
k (z; (JL)n) , V → B(h0⊥, Hs), z 7→ A⊥

k (z; (JL)n) ,

V ∩ hs0 → B
(
h00, h

s+N+1
0

)
, z 7→ RN (z; (JL)n)

are real analytic. For any z = (zS , z⊥) ∈ V, ẑ = (ẑS , ẑ⊥) ∈ h00, AS
k (z; (JL)n)[ẑS ] and A⊥

k (z; (JL)n)[ẑ⊥]
satisfy the estimates

‖AS
k (z; (JL)n)[ẑS ]‖s .s,k ‖ẑS‖ (C(k)‖z⊥‖0)n−1 ,

‖A⊥
k (z; (JL)n)[ẑ⊥]‖s .s,k ‖ẑ⊥‖0(C(k)‖z⊥‖0)n−1

(3.11)

whereas for any integer s ≥ 0, z = (zS , z⊥) ∈ V ∩ hs0, ẑ ∈ h00

‖RN(z; (JL)n)[ẑ]‖s+N+1 .s,N ‖z⊥‖s‖ẑ‖0(C0(N)‖z⊥‖0)n−1 , (3.12)

for some constants C(k), C0(N) ≥ 1. Furthermore, the following estimates hold for the derivatives of these
maps: for k, l ≥ 1, there exists a constant C(k, l) ≥ 1, so that for any zS ∈ VS, ẑS ∈ h0S, ẑ⊥ ∈ h0⊥,
ẑ1, . . . , ẑl ∈ h00,

‖dl
(
AS
k (z; (JL)n)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s .s,l,k ‖ẑS‖ (

l∏

j=1

‖ẑj‖0) (C(k, l)‖z⊥‖0)0∨(n−1−l) ,

‖dl
(
A⊥
k (z; (JL)n)[ẑ⊥]

)
[ẑ1, . . . , ẑl]‖s .s,l,k ‖ẑ⊥‖0 (

l∏

j=1

‖ẑj‖0) (C(k, l)‖z⊥‖0)0∨(n−1−l) .

Finally, there exist constants C0(N, l) ≥ 1, l ≥ 1, so that for any z ∈ V ∩ hs0, ẑ ∈ h00, ẑ1, . . . , ẑl ∈ hs0,

‖dl(RN (z; (JL)n)[ẑ])[ẑ1, . . . , ẑl]‖s+N+1

.s,l,N ‖ẑ‖0
( l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0
)
(C0(N, l)‖z⊥‖0)0∨(n−l) .

We refer to Remark 2.2 where we comment on the notation introduced for the coefficients in such expansions.
Furthermore, we recall that V⊥ denotes the open ball in h0⊥, centered at 0, whose radius is smaller than one
and downscaled according to our needs.

Proof. We begin by proving the claimed statements for n = 1. By (2.21), the operator L(z), z ∈ V , can be
written as

L(z) =
(

0 0
LS⊥(z) 0

)
+

(
LSS(z) L⊥

S (z)
0 0

)
.

Using that J⊥ ◦ F⊥ = F⊥ ◦ ∂x, it then follows from Lemma 2.1 that

JL(z) =
(

0 0

F⊥ ◦∑N
k=1 AS

k (zS ; JL) ∂−kx F−1
⊥ [z⊥] 0

)
+RN (z; JL) (3.13)

where AS
k (zS ; JL) and RN (z; JL) are obtained from Ak(zS ;LS⊥) and RN (z;LS⊥), given by Lemma 2.1, in a

straightforward way. It then follows that for any s ≥ 0 and 1 ≤ k ≤ N , the maps

VS → B(h0S, Hs), zS 7→ AS
k (zS ; JL) , V ∩ hs0 → B

(
h00, h

s+N+1
0

)
, z 7→ RN (z; JL)
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are real analytic and that RN (z; JL) is of the form

RN (z; JL) =
(
RN (z; JL)SS RN (z; JL)⊥S
RN (z; JL)S⊥ 0

)
.

For any integer s ≥ 0, zS ∈ VS , ẑS ∈ h0S , ẑ1, . . . , ẑl ∈ h00, l ≥ 1, one has

‖AS
k (zS ; JL)[ẑS ]‖s .s,k ‖ẑS‖ , ‖dl

(
AS
k (zS ; JL)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s .s,k,l ‖ẑS‖

l∏

j=1

‖ẑj‖0 . (3.14)

Furthermore, for any integer s ≥ 0, z = (zS , z⊥) ∈ V ∩ hs0, ẑ ∈ h00, ẑ1, . . . , ẑl ∈ hs0, l ≥ 1, the remainder term
satisfies ‖RN (z; JL)[ẑ]‖s+N+1 .s,N ‖z⊥‖s‖ẑ‖0 and

‖dl
(
RN (z; JL)[ẑ]

)
[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l ‖ẑ‖0

( l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0
)
. (3.15)

To prove the claimed statements for n + 1, n ≥ 1, write (JL(z))n+1 = JL(z)(JL(z))n. By the expansion
(3.13) it follows that (JL(z))n+1 is of the form

(
0 0

F⊥ ◦∑N
k=1 AS

k (z) ∂
−k
x F−1

⊥ [z⊥] F⊥ ◦∑N
k=1 A⊥

k (z) ∂
−k
x F−1

⊥ [z⊥]

)
+RN (z) (3.16)

where AS
k (z) ≡ AS

k (z; (JL)n+1), A⊥
k (z) ≡ A⊥

k (z; (JL)n+1), and RN (z) ≡ RN (z; (JL)n+1) are given by

AS
k (z; (JL)n+1) := AS

k (zS ; JL) ◦ (JL(z))n)SS , A⊥
k (z; (JL)n+1) := AS

k (zS ; JL) ◦
(
(JL(z))n

)⊥
S
,

RN (z; (JL)n+1) := RN (z; JL) ◦ (JL(z))n .

It then follows that these maps are real analytic as claimed in the statement of the lemma. Furthermore,
for any s ≥ 0, z = (zS , z⊥) ∈ V , ẑS ∈ h0S one has by (3.14)

‖AS
k (z; (JL)n+1)[ẑS ]‖s .s,k ‖((JL(z))n)SS [ẑS ]‖ .s,k (C0‖z⊥‖0)n‖ẑS‖

where C0 := C(0;L) is given by (2.25). Similarly, again by (3.14), for any z = (zS , z⊥) ∈ V , ẑ⊥ ∈ h0⊥ one
has

‖A⊥
k (z; (JL)n+1)[ẑ⊥]‖s .s,k ‖((JL(z))n)⊥S [ẑ⊥]‖ .s,k (C0‖z⊥‖0)n‖ẑ⊥‖0 ,

whereas for any s ≥ 0, z = (zS , z⊥) ∈ V ∩ hs0, ẑ = (ẑS , ẑ⊥) ∈ h00

‖RN (z; (JL)n+1)[ẑ]‖s+N+1 .s,N ‖z⊥‖s‖(JL(z))n[ẑ]‖0 .s,N ‖z⊥‖s(C0‖z⊥‖0)n‖ẑ‖0 .

Next we estimate the derivatives of AS
k (z; (JL)n+1)[ẑS ]. For any s ≥ 0, zS ∈ VS , ẑS ∈ h0S , ẑ1, . . . , ẑl ∈ h00,

l ≥ 1, the estimate of ‖dl
(
AS
k (z; (JL)n+1)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s is obtained from the estimates of

‖dm
(
AS
k (z; JL)[ŵl−m]

)
[ẑ1, . . . , ẑm]‖s , ŵl−m := dl−m

(
((JL(z))n)SS [ẑS ]

)
[ẑm+1, . . . , ẑl] ∈ h0S ,

and ‖ŵl−m‖ where 0 ≤ m ≤ l. By (3.14), one has

‖dm
(
AS
k (z; JL)[ŵl−m]

)
[ẑ1, . . . , ẑm]‖s .s,m ‖ŵl−m‖

m∏

j=1

‖ẑj‖0 .

Note that we introduced the element ŵl−m to indicate that in ‖dm
(
AS
k (z; JL)[ŵl−m]

)
[ẑ1, . . . , ẑm]‖s the

derivative dm does not act on ŵl−m. Increasing the constant C0 and/or decreasing the radius of the ball V⊥
depending on the size of l it follows from (2.25) - (2.26) that

‖ŵl−m‖ .s,l−m ‖ẑS‖ (
l∏

j=m+1

‖ẑj‖0) (C0‖z⊥‖0)0∨(n−l+m) .
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Combining these estimates implies that

‖dl
(
AS
k (z; (JL)n+1)[ẑS ]

)
[ẑ1, . . . , ẑl]‖s .s,l,k ‖ẑS‖ (

l∏

j=1

‖ẑj‖0) (C0‖z⊥‖0)0∨(n−l) .

In the same way one shows that for any s ≥ 0, zS ∈ VS , ẑ⊥ ∈ h0⊥, ẑ1, . . . , ẑl ∈ h00, l ≥ 1,

‖dl
(
A⊥
k (z; (JL)n+1)[ẑ⊥]

)
[ẑ1, . . . , ẑl]‖s .s,l,k ‖ẑ⊥‖0 (

l∏

j=1

‖ẑj‖0) (C0‖z⊥‖0)0∨(n−l) .

Finally, the claimed estimate for ‖dl(RN (z; (JL)n)[ẑ])[ẑ1, . . . , ẑl]‖s+N+1 where s ≥ 0, z ∈ V ∩ hs0, ẑ ∈ h00,
ẑ1, . . . , ẑl ∈ hs0, l ≥ 1, follows from the estimates of

‖dm(RN (z; JL)[v̂l−m])[ẑ1, . . . , ẑm]‖s+N+1 , v̂l−m := dl−m
(
(JL(z))n[ẑ]

)
[ẑm+1, . . . , ẑl]

and ‖v̂l−m‖0 where 0 ≤ m ≤ l. Indeed, by (3.15),

‖dm
(
RN (z; JL)[v̂l−m]

)
[ẑ1, . . . , ẑm]‖s+N+1 .s,N,m ‖v̂l−m‖0

( m∑

j=1

‖ẑj‖s
∏

i6=j,1≤i≤m
‖ẑi‖0 + ‖z⊥‖s

m∏

j=1

‖ẑj‖0
)
.

Increasing the constant C0 and/or decreasing the radius of the ball V⊥ depending on the size of l, it follows
from (2.25) - (2.26) that

‖v̂l−m‖0 ≤ ‖dl−m
(
(JL(z))n[ẑ]

)
[ẑm+1, . . . , ẑl]‖0 .s,l−m ‖ẑ‖0 (

l∏

j=m+1

‖ẑj‖0) (C0‖z⊥‖0)0∨(n−l+m) .

Combining these estimates yields the claimed estimate for ‖dl(RN (z; (JL)n)[ẑ])[ẑ1, . . . , ẑl]‖s+N+1, with con-
stants chosen appropriately.

Recall that V⊥ denotes the open ball in h0⊥, centered at 0, whose radius is smaller than one and downscaled
at several instances in the course of our analysis.

Lemma 3.6. For any N ≥ 1, X(τ, z) = −Lτ (z)−1[JE(z)] (0 ≤ τ ≤ 1, z ∈ V) has an expansion of the form

X(τ, z) =
(
0, F⊥ ◦

N∑

k=1

ak(τ, z;X) ∂−kx F−1
⊥ [z⊥]

)
+RN (τ, z;X) (3.17)

where for any s ≥ 0 and k ≥ 1, the maps

[0, 1]× V → Hs , (τ, z) 7→ ak(τ, z;X) , [0, 1]× (V ∩ hs0) → hs+N+1
0 , (τ, z) 7→ RN (τ, z;X)

are real analytic. Furthermore, for any 0 ≤ τ ≤ 1, z ∈ V, ẑ ∈ h00,

‖ak(τ, z;X)‖s .s,k ‖z⊥‖20 , ‖dak(τ, z;X)[ẑ]‖s .s,k ‖z⊥‖0‖ẑ‖0
and for any ẑ1, . . . , ẑl ∈ h00, l ≥ 2,

‖dlak(τ, z;X)[ẑ1, . . . , ẑl]‖s .s,k,l
l∏

j=1

‖ẑj‖0 .

For any z ∈ V ∩ hs0, 0 ≤ τ ≤ 1, ẑ ∈ hs0, the remainder term RN (τ, z;X) satisfies

‖RN (τ, z;X)‖s+N+1 .s,N ‖z⊥‖20 + ‖z⊥‖20‖z⊥‖s .s,N ‖z⊥‖0‖z⊥‖s ,
‖dRN (τ, z;X)[ẑ]‖s+N+1 .s,N ‖z⊥‖20‖ẑ‖s + ‖z⊥‖0‖ẑ‖0(1 + ‖z⊥‖s) .s,N ‖z⊥‖0(‖ẑ‖s + ‖z⊥‖s‖ẑ‖0) ,

whereas for any ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dlRN (τ, z;X)[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .
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Proof. By the Neumann series expansion, one has for any z ∈ V , 0 ≤ τ ≤ 1,

−Lτ (z)−1[JE(z)] = −JE(z) +
∑

n≥1

(−1)n+1τn(JL(z))n[JE(z)] . (3.18)

Since JE(z) = (JSES(z), 0), Lemma 3.5 yields that for any n ≥ 1,

(−1)n+1τn(JL(z))n[JE(z)] =
(
0, F⊥ ◦

N∑

k=1

ak(τ, z; (JL)n[JE ]) ∂−kx F−1
⊥ [z⊥]

)
+RN (τ, z; (JL)n[JE ])

where
ak(τ, z; (JL)n[JE ]) := (−1)n+1τnAS

k (z; (JL)n)[JSES(z)] ,
RN (τ, z; (JL)n[JE ]) := (−1)n+1τnRN (z; (JL)n)[JE(z)] .

By applying the estimates of Lemma 3.2 and Lemma 3.5, one gets for any s ≥ 0, z ∈ V , 0 ≤ τ ≤ 1,

‖ak(τ, z; (JL)n[JE ])‖s .s,k ‖z⊥‖20
(
C(k)‖z⊥‖0

)n−1
(3.19)

and for any s ≥ 0, z ∈ V ∩ hs0, 0 ≤ τ ≤ 1,

‖RN (τ, z; (JL)n[JE ])‖s+N+1 .s,N ‖z⊥‖20‖z⊥‖s
(
C0(N)‖z⊥‖0)n−1 . (3.20)

In view of (3.18) we define for any 1 ≤ k ≤ N,

ak(τ, z;X) :=
∑

n≥1

ak(τ, z; (JL)n[JE ]) , RN (τ, z;X) := −JE(z) +
∑

n≥1

RN (τ, z; (JL)n[JE ]) . (3.21)

Shrinking the radius of the ball V⊥, if needed, one can assume that C(k)‖z⊥‖0 < 1, C0(N)‖z⊥‖0 < 1 for
any 1 ≤ k ≤ N , z⊥ ∈ V⊥. The expansion (3.17), the analyticity statement, and the claimed estimates
for ‖ak(τ, z;X)‖s and ‖RN (τ, z;X)‖s+N+1 then follow from the estimates (3.19), (3.20), and Lemma 3.2,
Lemma 3.5. The estimates for the derivatives of ak(τ, z;X) and RN (τ, z;X) follow by similar arguments.
Indeed, it follows from Lemma 3.5 that for any for 1 ≤ k ≤ N , z ∈ V , 0 ≤ τ ≤ 1, ẑ ∈ h00,

‖dak(τ, z; (JL)n[JE ]))[ẑ]‖s .s,k ‖d
(
AS
k (z; (JL)n)[ŵ]

)
[ẑ]‖s|ŵ=JSES(z) + ‖AS

k (z; (JL)n)[ d(JSES(z))[ẑ] ]‖s

Using that by Lemma 3.2, ‖JSES(z)‖ . ‖z⊥‖20 and ‖d(JSES(z))[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0 one then concludes from
Lemma 3.5

‖d
(
AS
k (z; (JL)n)[ŵ]

)
[ẑ]‖s|ŵ=JSES(z) .s,k ‖z⊥‖20‖ẑ‖0(C(k, 1)‖z⊥‖0)0∨(n−2)

and
‖AS

k (z; (JL)n)[ d(JSES(z))[ẑ] ]‖s .s,k ‖z⊥‖0‖ẑ‖0(C(k, 1)‖z⊥‖0)n−1 .

In view of the definition (3.21) of ak(τ, z;X) one then obtains the claimed estimate ‖dak(τ, z;X)[ẑ]‖s .s,k
‖z⊥‖0‖ẑ‖0. The estimates for ‖dlak(τ, z;X)[ẑ1, . . . , ẑl]‖s with l ≥ 2 are derived in a similar fashion. Finally
let us consider the estimates of the derivatives of the remainder term. For any n ≥ 1, z ∈ V ∩ hs0, 0 ≤ τ ≤ 1,
ẑ ∈ hs0, it follows from Lemma 3.5 and the product rule that

‖d(RN (z; (JL)n)[JE(z)])[ẑ]‖s+N+1 .s,N‖JE(z)‖0
(
‖ẑ‖s + ‖z⊥‖s‖ẑ‖0

)(
C0(N)‖z⊥‖0)n−1

+ ‖dJE(z)[ẑ]‖0|‖z‖s
(
C0(N)‖z⊥‖0)n−1

Using again that by Lemma 3.2, ‖JE(z)‖0 . ‖z⊥‖20 and ‖dJE(z)[ẑ]‖0 . ‖z⊥‖0‖ẑ‖0 and taking into account
the definition (3.21) of RN (τ, z;X) one sees that

‖dRN (τ, z;X)[ẑ]‖s+N+1 .s,N ‖z⊥‖0‖ẑ‖0 + ‖z⊥‖20
(
‖ẑ‖s + ‖z⊥‖s‖ẑ‖0

)
+ ‖z⊥‖0‖z⊥‖s‖ẑ‖0 ,

yielding the claimed estimate for ‖dRN (τ, z;X)[ẑ]‖s+N+1. The ones for ‖dlRN (τ, z;X)[ẑ1, . . . , ẑl]‖s+N+1

with l ≥ 2 are derived in a similar fashion.
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After these preliminary considerations we can now state the main result of this section, saying that for
any τ0, τ ∈ [0, 1], the flow map Ψτ0,τX , defined on V ′ and with values in V , admits an expansion, referred to
as parametrix for the solution of the initial value problem of ∂τz = X(τ, z).

Theorem 3.1. (i) For any τ0, τ ∈ [0, 1], N ∈ N, and z = (zS , z⊥) ∈ V ′,

Ψτ0,τX (z) = (zS , z⊥) +
(
0, F⊥ ◦

N∑

k=1

ak(z; Ψ
τ0,τ
X ) ∂−kx F−1

⊥ [z⊥]
)
+RN (z; Ψτ0,τX ) (3.22)

where for any τ0, τ ∈ [0, 1], 1 ≤ k ≤ N , and s ≥ 0, the maps

V ′ → Hs, z 7→ ak(z; Ψ
τ0,τ
X ), V ′ ∩ hs0 → hs+N+1

0 , z 7→ RN (z; Ψτ0,τX )

are real analytic. Furthermore, for any z ∈ V ′, ẑ ∈ h00,

‖ak(z; Ψτ0,τX )‖s .s,k ‖z⊥‖20 , ‖dak(z; Ψτ0,τX )[ẑ]‖s .s,k ‖z⊥‖0‖ẑ‖0

and for any ẑ1, . . . , ẑl ∈ h00, l ≥ 2,

‖dlak(z; Ψτ0,τX )[ẑ1, . . . , ẑl]‖s .s,k,l
l∏

j=1

‖ẑj‖0 .

The remainder term satisfies the following estimates: for any z ∈ V ′ ∩ hs0, ẑ ∈ hs0

‖RN (z; Ψτ0,τX )‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 , ‖dRN (z; Ψτ0,τX )[ẑ]‖s+N+1 .s,N ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s ,

and for any ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dlRN (z; Ψτ0,τX )[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

(ii) In particular, the statements of item (i) hold for ΨC := Ψ0,1
X : V ′ → Ψ0,1

X (V ′), referred to as symplectic

corrector, and Ψ1,0
X : V ′ → Ψ1,0

X (V ′), which by a slight abuse of terminology with respect to its domain of
definition we refer to as the inverse of ΨC and denote by Ψ−1

C . The expansion of the map ΨC is then written
as (z ∈ V ′)

ΨC(z) = z +
(
0, F⊥ ◦

N∑

k=1

ak(z; ΨC)∂
−k
x F−1

⊥ [z⊥]
)
+RN (z; ΨC)

where
ak(z; ΨC) := ak(z; Ψ

0,1
X ) , RN (z; ΨC) := RN (z; Ψ0,1

X ) .

Similarly, the expansion for the inverse Ψ−1
C (z), z ∈ V ′, is written as

ΨC(z)
−1 = z +

(
0, F⊥ ◦

N∑

k=1

ak(z; Ψ
−1
C )∂−kx F−1

⊥ [z⊥]
)
+RN (z; Ψ−1

C )

where
ak(z; Ψ

−1
C ) := ak(z; Ψ

1,0
X ) , RN (z; Ψ−1

C ) := RN (z; Ψ1,0
X ).

Proof. Clearly, item (ii) is a direct consequence of (i). Since the proof of item (i) is quite lengthy, we divide
it up into several steps. First note that the flow map Ψτ0,τ ≡ Ψτ0,τX is a bounded nonlinear operator acting
on V ′ ∩ hs0, s ≥ 0, satisfying the integral equation

Ψτ0,τ (z) = z +

∫ τ

τ0

X(t,Ψτ0,t(z)) dt . (3.23)
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Using the latter equation, the coefficients ak(z; Ψ
τ0,τ ), k ≥ 1, and the remainder term RN (z; Ψτ0,τX ) of the

parametrix (3.22) are determined inductively. By (3.17), one obtains for any 0 ≤ τ0, t ≤ 1, z ∈ V ′,

X(t,Ψτ0,t(z)) =
(
0, F⊥ ◦

N∑

k=1

ak(t,Ψ
τ0,t(z);X) ∂−kx F−1

⊥ [π⊥Ψ
τ0,t(z)]

)
+RN (t,Ψτ0,t(z);X) . (3.24)

Expansion of ∂−kx F−1
⊥ [π⊥Ψτ0,t(z)], 1 ≤ k ≤ N : To find candidates for the coeffcients ak(z; Ψ

τ0,τ
X ) we argue

formally and substitute the expansion (3.22) into the expression ∂−kx F−1
⊥ [π⊥Ψτ0,t(z)] yielding

∂−kx F−1
⊥ [π⊥Ψ

τ0,t(z)] = ∂−kx

(
F−1

⊥ [z⊥] +
N∑

j=1

aj(z; Ψ
τ0,t) ∂−jx F−1

⊥ [z⊥] + F−1
⊥ π⊥RN (z; Ψτ0,t)

)

= ∂−kx

(
F−1

⊥ [z⊥] +
N−k∑

j=1

aj(z; Ψ
τ0,t) ∂−jx F−1

⊥ [z⊥]
)
+R(1)

N,k(t, z; τ0) (3.25)

where

R(1)
N,k(t, z; τ0) := ∂−kx

( N∑

j=N−k+1

aj(z; Ψ
τ0,t) ∂−jx F−1

⊥ [z⊥] + F−1
⊥ π⊥RN (z; Ψτ0,t)

)
. (3.26)

Using Lemma E.2(i) and the notation established there, one has

∂−kx
(
aj(z; Ψ

τ0,t) ∂−jx F−1
⊥ [z⊥]

)
=

N−k−j∑

i=0

Ci(k, j)(∂
i
xaj(z; Ψ

τ0,t)) ∂−k−j−ix F−1
⊥ [z⊥] +R(2)

N,k,j(t, z; τ0)

where
R(2)
N,k,j(t, z; τ0) := Rψdo

N,k,j(aj(z; Ψ
τ0,t))F−1

⊥ [z⊥] . (3.27)

By Lemma E.2, for any z ∈ V ′ ∩ hs0, s ≥ 0, 0 ≤ t, τ0 ≤ 1, 1 ≤ j ≤ N

‖R(2)
N,k,j(t, z; τ0)‖s+N+1 .s,N max1≤i≤N‖ai(z; Ψτ0,t)‖s+2N‖z⊥‖s . (3.28)

Hence, (3.25) reads

∂−kx F−1
⊥ [π⊥Ψ

τ0,t(z)] = ∂−kx F−1
⊥ [z⊥] +

N−k∑

j=1

N−k−j∑

i=0

Ci(k, j)(∂
i
xaj(z; Ψ

τ0,t)) ∂−k−j−ix F−1
⊥ [z⊥] +R(3)

N,k(t, z; τ0)

where

R(3)
N,k(t, z; τ0) := R(1)

N,k(t, z; τ0) +

N−k∑

j=1

R(2)
N,k,j(t, z; τ0) . (3.29)

Changing in the double sum
∑N−k
j=1

∑N−k−j
i=0 the index i of summation to n := i+ j and then interchanging

the order of summation, one obtains

N−k∑

j=1

N−k−j∑

i=0

Ci(k, j)(∂
i
xaj) ∂

−k−j−i
x =

N−k∑

n=1

n∑

j=1

Cn−j(k, j)(∂
n−j
x aj) ∂

−k−n
x

implying that ∂−kx F−1
⊥ [π⊥Ψτ0,t(z)] equals

∂−kx F−1
⊥ [z⊥] +

N−k∑

n=1

( n∑

j=1

Cn−j(k, j)(∂
n−j
x aj(z; Ψ

τ0,t))
)
∂−k−nx F−1

⊥ [z⊥] +R(3)
N,k(t, z; τ0) . (3.30)

Expansion of
∑N

k=1 ak(t,Ψ
τ0,t(z);X) ∂−kx F−1

⊥ [π⊥Ψτ0,t(z)]: To simplify notation, introduce

ak(t, z; τ0) := ak(t,Ψ
τ0,t(z);X) (3.31)
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and then substitute (3.30) into
∑N

k=1 ak(t,Ψ
τ0,t(z);X) ∂−kx F−1

⊥ [π⊥Ψτ0,t(z)] to get

N∑

k=1

ak(t, z; τ0) ∂
−k
x F−1

⊥ [π⊥Ψ
τ0,t(z)] =

N∑

k=1

ak(t, z; τ0) ∂
−k
x F−1

⊥ [z⊥] (3.32)

+

N∑

k=1

N−k∑

n=1

n∑

j=1

Cn−j(k, j)ak(t, z; τ0)(∂
n−j
x aj(z; Ψ

τ0,t)) ∂−k−nx F−1
⊥ [z⊥] +

N∑

k=1

ak(t, z; τ0)R(3)
N,k(t, z; τ0)

Changing the index of summation n to l := k + n and then interchanging the sum with respect to k and l
and in turn with respect to k and j, the triple sum in (3.32) becomes

N∑

k=1

N∑

l=k+1

l−k∑

j=1

Cl−k−j(k, j)ak(t, z; τ0)(∂
l−k−j
x aj(z; Ψ

τ0,t)) ∂−lx F−1
⊥ [z⊥]

=

N∑

l=2

( l−1∑

k=1

l−k∑

j=1

Cl−k−j(k, j)ak(t, z; τ0)(∂
l−k−j
x aj(z; Ψ

τ0,t))
)
∂−lx F−1

⊥ [z⊥]

=

N∑

l=2

( l−1∑

j=1

l−j∑

k=1

Cl−k−j(k, j)ak(t, z; τ0)(∂
l−k−j
x aj(z; Ψ

τ0,t))
)
∂−lx F−1

⊥ [z⊥] . (3.33)

Expansion of X(t,Ψτ0,t(z)): Writing k for l and n for k, the expansion (3.24) of X(t,Ψτ0,t(z)) takes the
form

(
0, F⊥

(
a1(t, z; τ0) ∂

−1
x F−1

⊥ [z⊥]
)
+ F⊥ ◦

N∑

k=2

(
ak(t, z; τ0) + bk(t, z; τ0)

)
∂−kx F−1

⊥ [z⊥]
)
+ R(4)

N (t, z; τ0) (3.34)

where

bk(t, z; τ0) =

k−1∑

j=1

k−j∑

n=1

Ck−n−j(n, j)an(t, z; τ0) ∂
k−n−j
x aj(z; Ψ

τ0,t) (3.35)

and

R(4)
N (t, z; τ0) :=

(
0, F⊥ ◦

N∑

k=1

ak(t, z; τ0)R(3)
N,k(t, z; τ0)

)
+ RN (t,Ψτ0,t(z);X) . (3.36)

Definition and estimates of ak(z; Ψ
τ0,t), 1 ≤ k ≤ N : The fact that for any given 1 ≤ k ≤ N , the coef-

ficient bk(t, z; τ0) only depends on the unknown coefficients aj(z; Ψ
τ0,t) with 1 ≤ j ≤ k − 1, but not on

ak(z; Ψ
τ0,t) allows to determine ak(z; Ψ

τ0,t) recursively by using equation (3.23). Indeed, substituting (3.34)
for X(t,Ψτ0,t(z)) into equation (3.23) and combining it with (3.22), leads, up to remainder terms, to the
equations

F⊥
(
a1(z; Ψ

τ0,τ ) ∂−1
x F−1

⊥ [z⊥]
)
= F⊥

( ∫ τ

τ0

a1(t, z; τ0)d t ∂
−1
x F−1

⊥ [z⊥]
)

and for any 2 ≤ k ≤ N ,

F⊥
(
ak(z; Ψ

τ0,τ ) ∂−kx F−1
⊥ [z⊥]) = F⊥

( ∫ τ

τ0

(ak(t, z; τ0) + bk(t, z; τ0))d t ∂
−k
x F−1

⊥ [z⊥]
)
.

We then define for any z ∈ V ′, 0 ≤ τ0, τ ≤ 1,

a1(z; Ψ
τ0,τ ) :=

∫ τ

τ0

a1(t, z; τ0) dt

and for any k ≥ 2, ak(z; Ψ
τ0,τ ) :=

∫ τ
τ0
(ak(t, z; τ0) + bk(t, z; τ0)) dt, or more explicitly,

ak(z; Ψ
τ0,τ ) =

∫ τ

τ0

(
ak(t, z; τ0) +

k−1∑

j=1

k−j∑

n=1

Ck−n−j(n, j)an(t, z; τ0) ∂
k−n−j
x aj(z; Ψ

τ0,t)
)
dt . (3.37)
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To prove the claimed estimates for ak(z; Ψ
τ0,τ ), we first estimate ak(t, z; τ0). Recall that by (3.31), ak(t, z; τ0) =

ak(t,Ψ
τ0,t(z);X). By Lemma 3.6 and Lemma 3.4 one has for any 0 ≤ τ0, t ≤ 1, z ∈ V ′, and s ≥ 0,

‖ak(t, z; τ0)‖s .s,k ‖π⊥Ψτ0,t(z)‖20 .s,k ‖z⊥‖20 . (3.38)

It then follows from the definition of a1(z; Ψ
τ0,τ ) that for any s ≥ 0,

‖a1(z; Ψτ0,τ )‖s .s ‖z⊥‖20 ∀ 0 ≤ τ0, τ ≤ 1, ∀ z ∈ V ′ .

To prove corresponding estimates for ak(z; Ψ
τ0,τ ) with 2 ≤ k ≤ N, we argue by induction. Assume that for

any 1 ≤ j ≤ k − 1 and s ≥ 0,

‖aj(z; Ψτ0,τ )‖s .s,j ‖z⊥‖20, ∀ 0 ≤ τ0, τ ≤ 1, ∀ z ∈ V ′ . (3.39)

By the estimate (3.38), the definition (3.37) of ak(z; Ψ
τ0,τ ), and the interpolation Lemma E.3, one then

concludes that the estimate (3.39) is also satisfied for j = k. Using the analyticity properties established for
ak(τ, z; τ0) and Ψτ0,τ (z), one verifies the ones stated for the coefficients ak(z; Ψ

τ0,τ ).

Estimates of the derivatives of ak(z; Ψ
τ0,τ ): By Lemma 3.6, Lemma 3.4 and the chain rule one has for any

0 ≤ τ0, t ≤ 1, z ∈ V ′, ẑ ∈ h00, s ≥ 0,

‖dak(t, z; τ0)[ẑ]‖s .s,k ‖π⊥Ψτ0,τ (z)‖0‖dΨτ0,τ (z)[ẑ]‖0 .s ‖z⊥‖0‖ẑ‖0 (3.40)

and if in addition, ẑ1, . . . , ẑl ∈ h00, l ≥ 2,

‖dlak(t, z; τ0)[ẑ1, . . . , ẑl]‖s .s
l∏

j=1

‖ẑj‖0 . (3.41)

By the definition of a1(z; Ψ
τ0,τ ), (3.40) and (3.41) yield the claimed estimate for ‖dla1(z; Ψτ0,τ )[ẑ1, . . . , ẑl]‖s

for any l ≥ 1. To prove corresponding estimates for the derivatives of ak(z; Ψ
τ0,τ ) with 2 ≤ k ≤ N, we again

argue by induction. Assume that for any 1 ≤ j ≤ k − 1 and s ≥ 0,

‖daj(z; Ψτ0,τ )[ẑ]‖s .s,j ‖z⊥‖0‖ẑ‖0, ∀ 0 ≤ τ0, τ ≤ 1, ∀ z ∈ V ′ , ẑ ∈ h00 . (3.42)

By the definition (3.37) of ak(z; Ψ
τ0,τ ), the estimate (3.40) and the product rule it then follows that (3.42)

also holds for j = k. The estimates for ‖dlak(z; Ψτ0,τ )[ẑ1, . . . , ẑl]‖s with l ≥ 2 are derived in a similar fashion.

Definition and estimate of RN (z; Ψτ0,τ ): The remainder term RN (z; Ψτ0,τ ) is defined so that the identity
(3.22) holds,

RN (z; Ψτ0,τX ) := Ψτ0,τX (z)− z −
(
0, F⊥ ◦

N∑

k=1

ak(z; Ψ
τ0,τ
X ) ∂−kx F−1

⊥ [z⊥]
)

where ak(z; Ψ
τ0,τ
X ) are given by (3.37). By (3.23) and the expansion (3.34) of X , RN (z; Ψτ0,τ ) satisfies

RN (z; Ψτ0,τ ) =

∫ τ

τ0

R(4)
N (t, z; τ0) dt

where by (3.36)

∫ τ

τ0

R(4)
N (t, z; τ0) dt =

(
0, F⊥ ◦

N∑

k=1

∫ τ

τ0

ak(t, z; τ0)R(3)
N,k(t, z; τ0) dt

)
+

∫ τ

τ0

RN (t,Ψτ0,t(z);X) dt . (3.43)

We estimate the two components πS
∫ τ
τ0
R(4)
N (t, z; τ0) dt and π⊥

∫ τ
τ0
R(4)
N (t, z; τ0) dt of

∫ τ
τ0
R(4)
N (t, z; τ0) dt sep-

arately. By (3.43)

πS

∫ τ

τ0

R(4)
N (t, z; τ0) dt =

∫ τ

τ0

πSRN (t,Ψτ0,t(z);X) dt
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and

π⊥

∫ τ

τ0

R(4)
N (t, z; τ0) dt =

∫ τ

τ0

π⊥RN (t,Ψτ0,t(z);X) dt+ F⊥ ◦
N∑

k=1

∫ τ

τ0

ak(t, z; τ0)R(3)
N,k(t, z; τ0) dt .

By Lemma 3.6 and Lemma 3.4, for any z ∈ V ′, 0 ≤ τ0, t ≤ 1,

‖πSRN (t,Ψτ0,t(z);X)‖ .N ‖RN (t,Ψτ0,t(z);X)‖0 .N ‖z⊥‖20 , (3.44)

implying that

‖
∫ τ

τ0

πSRN (t,Ψτ0,t(z);X) dt‖ .s,N ‖z⊥‖20 .

By the definition (3.29) of R(3)
N,k(t, z; τ0), one has

∫ τ

τ0

ak(t, z; τ0)R(3)
N,k(t, z; τ0) dt =

∫ τ

τ0

ak(t, z; τ0)R(1)
N,k(t, z; τ0) dt+

N−k∑

j=1

∫ τ

τ0

ak(t, z; τ0)R(2)
N,k,j(t, z; τ0) dt .

Furthermore, by the definition (3.26) of R(1)
N,k(t, z; τ0), the term

∫ τ
τ0
ak(t, z; τ0)R(1)

N,k(t, z; τ0) dt equals

∫ τ

τ0

ak(t, z; τ0) ∂
−k
x

( N∑

j=N−k+1

aj(z; Ψ
τ0,t) ∂−jx F−1

⊥ [z⊥]
)
dt +

∫ τ

τ0

ak(t, z; τ0)∂
−k
x F−1

⊥ π⊥RN (z; Ψτ0,t) dt .

(3.45)
Altogether, one concludes that π⊥RN (z; Ψτ0,τ ) satisfies the integral equation

π⊥RN (z; Ψτ0,τ ) = BN (τ, z; τ0) + F⊥ ◦
∫ τ

τ0

( N∑

k=1

ak(t, z; τ0)∂
−k
x

)
F−1

⊥ π⊥RN (z; Ψτ0,t) dt (3.46)

where

BN (τ, z; τ0) :=

∫ τ

τ0

π⊥RN (t,Ψτ0,t(z);X) dt+ F⊥ ◦
N∑

k=1

N−k∑

j=1

∫ τ

τ0

ak(t, z; τ0)R(2)
N,k,j(t, z; τ0) dt

+ F⊥ ◦
N∑

k=1

N∑

j=N−k+1

∫ τ

τ0

ak(t, z; τ0)∂
−k
x

(
aj(z; Ψ

τ0,t) ∂−jx F−1
⊥ [z⊥]

)
dt . (3.47)

By the estimates (3.28) of R(2)
N,k,j(t, z; τ0), the ones of ak(τ, z;X) and RN (τ, z;X) given by Lemma 3.6,

the estimates of Ψτ0,t(z), given by Lemma 3.4, and the ones of ak(z; Ψ
τ0,τ ), given by (3.39), and using the

interpolation Lemma E.3, one obtains for any s ≥ 0,

‖BN(τ, z; τ0)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 , ∀z ∈ V ′ ∩ hs0 , ∀ 0 ≤ τ0, τ ≤ 1 .

Note that
∑N

k=1 ak(t, z; τ0)∂
−k
x is a pseudodifferential operator of order −1 where by (3.38) the coefficients

ak(t, z; τ0) satisfy ‖ak(t, z; τ0)‖s .s,k ‖z⊥‖20. Hence for any z ∈ V ′ ∩ hs0, 0 ≤ τ0, τ ≤ 1,

‖
N∑

k=1

ak(t, z; τ0)∂
−k
x F−1

⊥ π⊥RN (z; Ψτ0,t)‖s+N+1 .s,N ‖z⊥‖20 ‖F−1
⊥ π⊥RN (z; Ψτ0,t)‖s+N+1 .

By Gronwall’s inequality and since V ′
⊥ is a ball of sufficiently small radius, the integral equation (3.46) yields

that for any s ≥ 0,

‖π⊥RN (z; Ψτ0,τ )‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 , ∀z ∈ V ′ ∩ hs0 , ∀ 0 ≤ τ0, t ≤ 1 . (3.48)
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The estimates (3.44), (3.48) imply the claimed estimate of RN (z; Ψτ0,τ ). The stated analyticity property
of RN (z; Ψτ0,τX ) then follows from the already established analyticity properties of Ψτ0,τX (z), ak(τ, z; τ0), and
ak(z; Ψ

τ0,τ ) (cf e.g. [7, Theorem A.5]).

Estimates of the derivatives of RN (z; Ψτ0,τ ): The estimates of the derivatives ofRN (z; Ψτ0,τ ) can be obtained
in a similar way as the ones for RN (z; Ψτ0,τ ). Indeed, for any s ≥ 0, z ∈ V ′ ∩ hs0, 0 ≤ τ0, τ ≤ 1, ẑ ∈ hs0, one
has

dRN (z; Ψτ0,τ )[ẑ] =
(
0, F⊥ ◦

N∑

k=1

∫ τ

τ0

d
(
ak(t, z; τ0)R(3)

N,k(t, z; τ0)
)
[ẑ] dt

)
+

∫ τ

τ0

d
(
RN (t,Ψτ0,t(z);X)

)
[ẑ] dt .

Again, we estimate πS
(
dRN (z; Ψτ0,τ )[ẑ]

)
=

∫ τ
τ0
πS

(
d
(
RN (t,Ψτ0,t(z);X)

)
[ẑ]

)
dt and π⊥

(
dRN (z; Ψτ0,τ )[ẑ]

)

separately. By Lemma 3.6, Lemma 3.4, and the chain rule, one has

‖
∫ τ

τ0

πS
(
d
(
RN (t,Ψτ0,t(z);X)

)
[ẑ]

)
dt‖ .N ‖z⊥‖0‖ẑ‖0 (3.49)

whereas by (3.46), π⊥
(
dRN (z; Ψτ0,τ )[ẑ]

)
satisfies

π⊥
(
dRN (z; Ψτ0,τ )

[
ẑ]
)
= B

(1)
N (τ, z; τ0)[ẑ] +F⊥ ◦

∫ τ

τ0

( N∑

k=1

ak(t, z; τ0)∂
−k
x

)
F−1

⊥ π⊥
(
dRN (z; Ψτ0,t)[ẑ]

)
dt (3.50)

with B
(1)
N (τ, z; τ0)[ẑ] given by

B
(1)
N (τ, z; τ0)[ẑ] = d

(
BN (τ, z; τ0)

)
[ẑ] + F⊥ ◦

∫ τ

τ0

( N∑

k=1

(dak(t, z; τ0)[ẑ])∂
−k
x

)
F−1

⊥ π⊥RN (z; Ψτ0,t) dt .

Since

‖B(1)
N (τ, z; τ0)[ẑ]‖s+N+1 .s,N ‖z⊥‖s‖ẑ‖0 + ‖z⊥‖0‖ẑ‖s , ∀z ∈ V ′ ∩ hs0 , ẑ ∈ hs0 , 0 ≤ τ0, τ ≤ 1

we conclude from (3.50) by Gronwall’s inequality that

‖π⊥
(
dRN (z; Ψτ0,τ )[ẑ]

)
‖s+N+1 .s,N ‖z⊥‖s‖ẑ‖0+‖z⊥‖0‖ẑ‖s , ∀z ∈ V ′∩hs0 , ẑ ∈ hs0 , 0 ≤ τ0, τ ≤ 1 . (3.51)

The estimates (3.49) and (3.51) imply the claimed estimate for dRN (z; Ψτ0,τ )[ẑ]. In a similar fashion, one
derives the estimates for ‖dlRN (z; Ψτ0,τ )[ẑ1, . . . , ẑl]‖s+N+1 with ẑ1, . . . , ẑl ∈ hs0, l ≥ 2.

It turns out that the flow maps Ψτ0,τX and hence the symplectic corrector ΨC and its inverse Ψ−1
C preserve

the reversible structures, introduced in Section 1, acts on. To state the result in more detail, note that without
loss of generality, we may assume that the neighborhood V ′ = V ′

S × V ′
⊥ (cf Lemma 3.4) is invariant under

the map Srev.
Addendum to Theorem 3.1 (i) For any 0 ≤ τ0, τ ≤ 1, Ψτ0,τX ◦ Srev = Srev ◦ Ψτ0,τX on V ′ and for any
z ∈ V ′, x ∈ R, N ∈ N, and 1 ≤ k ≤ N ,

ak(Srevz; Ψτ0,τX )(x) = (−1)kak(z; Ψ
τ0,τ
X )(−x) , RN (Srevz; Ψτ0,τX ) = Srev(RN (z; Ψτ0,τX )) .

(ii) As a consequence, ΨC and Ψ−1
C are invariant under Srev on V ′,

ΨC ◦ Srev = Srev ◦ΨC , Ψ−1
C ◦ Srev = Srev ◦Ψ−1

C (3.52)

and for any z ∈ V ′, x ∈ R, N ∈ N, and 1 ≤ k ≤ N ,

ak(Srevz; ΨC)(x) = (−1)kak(z; ΨC)(−x) , RN (Srevz; ΨC) = Srev(RN (z; ΨC)) .
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Proof of Addendum to Theorem 3.1 Clearly, item (ii) is a direct consequence of item (i). By the
Addendum to Lemma 2.1, the operator L(z), introduced in (2.20), satisfies L(Srevz) ◦ Srev = −Srev ◦ L(z)
on V . It implies that for any z ∈ V , E(Srevz) = −SrevE(z) where E(z) has been introduced in (3.4).
Altogether we then conclude that the vector field X(τ, z), introduced in (3.7), satisfies

X(τ,Srevz) = SrevX(τ, z) , ∀ z ∈ V , 0 ≤ τ ≤ 1

and hence by the uniqueness of the initial value problem of ∂τz = X(τ, z), the solution map satisfies

Ψτ0,τX (Srevz) = SrevΨτ0,τX (z) , ∀ z ∈ V ′ , 0 ≤ τ0, τ ≤ 1 .

The claimed identities for ak(z; Ψ
τ0,τ
X ) and RN (z; Ψτ0,τX ) then follow from the expansion (3.22). �

We now discuss two applications of Theorem 3.1. The first one concerns the expansion of the transpose
dΨ0,τ

X (z)t of the differential dΨ0,τ
X (z) which will be used in Section 4 in the proof of Lemma 4.10. Recall

that for any z ∈ V ′, and ẑ, ŵ ∈ h00

Λτ (z)[ẑ, ŵ] = 〈J−1Lτ (z)[ẑ], ŵ〉, Lτ (z) = Id + τJL(z), 0 ≤ τ ≤ 1

and that the flow Ψ0,τ
X satisfies ∂τ

(
(Ψ0,τ

X )∗Λτ
)
= 0 and hence (Ψ0,τ

X )∗Λτ = Λ0. By the definition of the
pullback this means that for any z ∈ V ′, 0 ≤ τ ≤ 1, ẑ, ŵ ∈ h00,

〈J−1Lτ (Ψ0,τ
X (z))[dΨ0,τ

X (z)[ẑ]], dΨ0,τ
X (z)[ŵ]〉 = 〈J−1ẑ, ŵ〉 or dΨ0,τ

X (z)tJ−1Lτ (Ψ0,τ
X (z))dΨ0,τ

X (z) = J−1.

Using that dΨ0,τ
X (z)−1 = dΨτ,0X (Ψ0,τ

X (z)) one obtains the following formula for dΨ0,τ
X (z)t,

dΨ0,τ
X (z)t = J−1 dΨτ,0X (Ψ0,τ

X (z))Lτ (Ψ0,τ
X (z))−1J. (3.53)

Note that dΨτ,0X (Ψ0,τ
X (z)) and Lτ (Ψ0,τ

X (z))−1 are bounded linear operators on h00, implying that dΨ0,τ
X (z)t is

one on h10, and that these operators and their derivatives depend continuously on 0 ≤ τ ≤ 1.

Corollary 3.1. For any 0 ≤ τ ≤ 1, z ∈ V ′, the transpose dΨ0,τ
X (z)t (with respect to the standard inner

product) of the differential dΨ0,τ
X (z) is a bounded linear operator dΨ0,τ

X (z)t : h10 → h10 and for any N ∈ N

and ẑ ∈ h10, dΨ
0,τ
X (z)t[ẑ] admits an expansion of the form

(
0, ẑ⊥ + F⊥ ◦

N∑

k=1

ak(z; (dΨ
0,τ
X )t)∂−kx F−1

⊥ [ẑ⊥] + F⊥ ◦
N∑

k=1

Ak(z; (dΨ
0,τ
X )t)[ẑ]∂−kx F−1

⊥ z⊥
)
+RN (z; (dΨ0,τ

X )t)[ẑ]

where for any integer s ≥ 0 and 1 ≤ k ≤ N ,

ak( · ; (dΨ0,τ
X )t) : V ′ → Hs , z 7→ ak(z; (dΨ

0,τ
X )t) , Ak( · ; (dΨ0,τ

X )t) : V ′ → B(h10, Hs), z 7→ Ak(z; (dΨ
0,τ
X )t) ,

RN ( · ; (dΨ0,τ
X )t) : V ′ ∩ hs0 → B(hs+1

0 , hs+1+N+1
0 ), z 7→ RN (z; (dΨ0,τ

X )t)

are real analytic maps. Furthermore, for any z ∈ V ′, 1 ≤ k ≤ N , ẑ1, . . . , ẑl ∈ h00, l ≥ 2,

‖ak(z; (dΨ0,τ
X )t)‖s .s,k ‖z⊥‖20 , ‖dak(z; (dΨ0,τ

X )t)[ẑ1]‖s .s,k ‖z⊥‖0‖ẑ1‖0 ,

‖dlak(z; (dΨ0,τ
X )t)[ẑ1, . . . , ẑl]‖s .s,k,l

l∏

j=1

‖ẑj‖0 ,

and for any z ∈ V ′, ẑ ∈ h10, ẑ1, . . . , ẑl ∈ h00, l ≥ 1,

‖Ak(z; (dΨ
0,τ
X )t)[ẑ]‖s .s,k ‖z⊥‖0‖ẑ‖1 , ‖dl(Ak(z; (dΨ

0,τ
X )t)[ẑ])[ẑ1, . . . , ẑl]‖s .s,k,l ‖ẑ‖1

l∏

j=1

‖ẑj‖0 .
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The remainder RN (z; (dΨ0,τ
X )t) satisfies for any z ∈ V ′ ∩ hs0, ẑ ∈ hs+1

0 , and ẑ1, . . . , ẑl ∈ hs0, l ∈ N,

‖RN (z; (dΨ0,τ
X )t)[ẑ]‖s+1+N+1 .s,N ‖z⊥‖0‖ẑ‖s+1 + ‖z⊥‖s‖ẑ‖1 ,

‖dl
(
RN (z; (dΨ0,τ

X )t)[ẑ]
)
[ẑ1, . . . , ẑl]‖s+1+N+1

.s,N,l ‖ẑ‖s+1

l∏

j=1

‖ẑj‖0 + ‖ẑ‖1
l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s‖ẑ‖1

l∏

j=1

‖ẑj‖0 .

Remark 3.1. Corollary 3.1 holds in particular for dΨC(z)
t = dΨ0,1

X (z)t.

Proof. The starting point is the formula (3.53) for dΨ0,τ
X (z)t. Note that ‖Jẑ‖s .s ‖ẑ‖s+1 and ‖J−1ẑ‖s+1 .s

‖ẑ‖s. Hence it suffices to derive corresponding estimates for the operator dΨτ,0X (Ψ0,τ
X (z))Lτ (Ψ0,τ

X (z))−1. By

Theorem 3.1, for any ŵ ∈ h00, dΨ
τ,0
X (w)[ŵ] admits an expansion of the form

ŵ +
(
0, F⊥ ◦

N∑

k=1

ak(w; Ψ
τ,0
X ) ∂−kx F−1

⊥ [ŵ⊥] + F⊥ ◦
N∑

k=1

dak(w; Ψ
τ,0
X )[ŵ] ∂−kx F−1

⊥ [w⊥]
)
+ dRN (w; Ψτ,0X )[ŵ]

where in the situation at hand

w = Ψ0,τ
X (z) = z +

(
0, F⊥ ◦

N∑

k=1

ak(z; Ψ
0,τ
X ) ∂−kx F−1

⊥ [z⊥]
)
+RN (z; Ψ0,τ

X ).

By writing L1(w)
−1 =

(
Id + JL(w)

)−1
as a Neumann series, its asymptotic expansion is then obtained

from Lemma 3.5 (cf also proof of Theorem 3.1). Combining these results, one obtains the corresponding
asymptotic expansion of dΨτ,0X (Ψ0,τ

X (z))Lτ (Ψ0,τ
X (z))−1. The claimed estimate then follow from Lemma 3.5

and Theorem 3.1.

As a second application of Theorem 3.1, we compute the Taylor expansion of the symplectic corrector
ΨC(zS , z⊥) in z⊥ at 0. This expansion will be needed in the subsequent section to show that the KdV
Hamiltonian, when expressed in the new coordinates provided by the map ΨL ◦ ΨC , is in Birkhoff normal
form up to order three. Note that by Theorem 3.1, for any zS ∈ V ′

S , ẑ⊥ ∈ h0⊥, 1 ≤ k ≤ N ,

ak((zS , 0);ΨC) = 0 , d⊥ak((zS , 0);ΨC)[ẑ⊥] = 0 , RN ((zS , 0);ΨC) = 0 , d⊥
(
RN ((zS , 0);ΨC)

)
[ẑ⊥] = 0 .

Hence the Taylor expansion of RN (z; ΨC) in z⊥ of order three at 0 reads

RN (z; ΨC) = RN,2(z; ΨC) +RN,3(z; ΨC) , RN,2(z; ΨC) :=
1

2
d2⊥RN ((zS , 0);ΨC)[z⊥, z⊥] (3.54)

with the Taylor remainder term RN,3(z; ΨC) given by

RN,3(z; ΨC) =

∫ 1

0

d3⊥RN ((zS , tz⊥); ΨC)[z⊥, z⊥, z⊥]
1

2
(1− t)2 dt (3.55)

whereas for any 1 ≤ k ≤ N , F⊥
(
ak(z; ΨC)∂

−k
x F−1

⊥ [z⊥]
)
vanishes in z⊥ at 0 up to order two. Furthermore,

according to Corollary 3.1, for any (zS , 0) ∈ V ′, RN ((zS , 0); dΨ
t
C) = 0 and hence for any ẑ ∈ h10, the Taylor

expansion of RN (z; dΨtC)[ẑ] of order 2 in z⊥ around 0 reads

RN (z; dΨtC)[ẑ] = RN,1(z; dΨ
t
C)[ẑ] +RN,2(z; dΨ

t
C)[ẑ] (3.56)

where RN,2(z; dΨ
t
C)[ẑ] denotes the Taylor remainder term of order 2.
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Corollary 3.2. (i) For any integer N ≥ 1, the Taylor expansion of the symplectic corrector ΨC(zS , z⊥) in
z⊥ around 0 reads

ΨC(z) = (zS , 0) + (0, z⊥) +RN,2(z; ΨC) + ΨC,3(z)

where ΨC,3(z) ≡ ΨC,N,3(z) is given by

ΨC,N,3(z) :=
(
0, F⊥ ◦

N∑

k=1

ak(z; ΨC)∂
−k
x F−1

⊥ [z⊥]
)
+RN,3(z; ΨC) . (3.57)

For any s ≥ 0, the map V ′ ∩ hs0 → hs+N+1
0 , z 7→ RN,2(z; ΨC) is real analytic and the following estimates

hold: for any z ∈ V ′ ∩ hs0, ẑ ∈ hs0,

‖RN,2(z; ΨC)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 , ‖dRN,2(z; ΨC)[ẑ]‖s+N+1 .s,N ‖z⊥‖0‖ẑ‖s + ‖z⊥‖s‖ẑ‖0 ,

and, if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dlRN,2(z; ΨC)[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Similarly, for any s ≥ 0, the map V ′ ∩ hs0 → hs+N+1
0 , z 7→ RN,3(z; ΨC) is real analytic and the following

estimates hold: for any z ∈ V ′ ∩ hs0, ẑ1, ẑ2 ∈ hs0,

‖RN,3(z; ΨC)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖20 , ‖dRN,3(z; ΨC)[ẑ1]‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0‖ẑ1‖0+‖z⊥‖20‖ẑ1‖s ,

‖d2RN,3(z; ΨC)[ẑ1, ẑ2]‖s+N+1 .s,N ‖z⊥‖0
(
‖ẑ1‖s‖ẑ2‖0 + ‖ẑ1‖0‖ẑ2‖s

)
+ ‖z⊥‖s‖ẑ1‖0‖ẑ2‖0 ,

and if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 3,

‖dlRN,3(z; ΨC)[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

(ii) For any integer N ≥ 1 and ẑ ∈ h10, the Taylor expansion of dΨC(zS , z⊥)t[ẑ] in z⊥ around 0 is given by

dΨC(z)
t[ẑ] = ẑ +ΨtC,1(z)[ẑ] + ΨtC,2(z)[ẑ]

where ΨtC,1(z) = RN,1(z; dΨ
t
C) (cf (3.56)) and ΨtC,2(z)[ẑ] has an expansion of the form

ΨtC,2(z)[ẑ] =
(
0, F⊥ ◦

N∑

k=1

ak(z; dΨ
t
C)∂

−k
x F−1

⊥ [ẑ⊥] + F⊥ ◦
N∑

k=1

Ak(z; dΨ
t
C)[ẑ]∂

−k
x F−1

⊥ [z⊥]
)
+RN,2(z; dΨ

t
C)[ẑ]

with ak(z; dΨ
t
C), Ak(z; dΨ

t
C) given as in Corollary 3.1, and RN,2(z; dΨ

t
C)[ẑ] given by (3.56). For any i = 1, 2,

s ≥ 0,
RN,i( · ; dΨtC) : V ′ ∩ hs0 → B(hs+1

0 , hs+1+N+1
0 ), z 7→ RN,i(z; dΨ

t
C)

is a real analytic maps. Furthermore, for any z ∈ V ′ ∩ hs0, ẑ ∈ hs+1
0 ,

‖RN,1(z; dΨ
t
C)[ẑ]‖s+1+N+1 .s,N ‖z⊥‖0‖ẑ‖s+1 + ‖z⊥‖s‖ẑ‖1 ,

and if in addition ẑ1, . . . , ẑl ∈ hs0, l ∈ N,

‖dl
(
RN,1(z; dΨ

t
C)[ẑ]

)
[ẑ1, . . . , ẑl]‖s+1+N+1

.s,N,l ‖ẑ‖s+1

l∏

j=1

‖ẑj‖0 + ‖ẑ‖1
l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s‖ẑ‖1

l∏

j=1

‖ẑj‖0 .
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and for any z ∈ V ′ ∩ hs0, ẑ ∈ hs+1
0 , ẑ1 ∈ hs0,

‖RN,2(z; dΨ
t
C)[ẑ]‖s+1+N+1 .s,N ‖z⊥‖20‖ẑ‖s+1 + ‖z⊥‖s‖z⊥‖0‖ẑ‖1 ,

‖d
(
RN,2(z; dΨ

t
C)[ẑ]

)
[ẑ1]‖s+1+N+1 .s,N ‖z⊥‖0‖ẑ1‖0‖ẑ‖s+1 + ‖z⊥‖0‖ẑ1‖s‖ẑ‖1 + ‖z⊥‖s‖ẑ1‖0‖ẑ‖1 ,

and if in addition ẑ2, . . . , ẑl ∈ hs0, l ≥ 2,

‖dl
(
RN,2(z; dΨ

t
C)[ẑ]

)
[ẑ1, . . . , ẑl]‖s+1+N+1

.s,N,l ‖ẑ‖s+1

l∏

j=1

‖ẑj‖0 + ‖ẑ‖1
l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖ẑ‖1‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Proof. (i) The claimed properties of RN,2(z; ΨC) follow directly from Theorem 3.1. In view of the formula
(3.55) the same is true for the ones of RN,3(z; ΨC). Item (ii) is a direct consequence of Corollary 3.1.

4 The KdV Hamiltonian in new coordinates

In this section we provide an expansion of the transformed KdV Hamiltonian H = Hkdv ◦Ψ where the map
Ψ = ΨL ◦ ΨC is the composition of ΨL (cf Section 2) with the symplectic corrector ΨC (cf Section 3) and
Hkdv is the KdV Hamiltonian given by

Hkdv(u) =
1

2

∫ 1

0

u2x dx+

∫ 1

0

u3 dx . (4.1)

First we need to make some preliminary considerations. Recall that for any finite subset S+ ⊂ N, the Birkhoff
map Ψkdv establishes a one to one correspondance between MS and the set MS of S−gap potentials where
S = S+ ∪ (−S+). For any S−gap potential q, the corresponding KdV actions I = (IS , I⊥), defined in terms
of the Birkhoff coordinates Φkdv(q), satisfy I⊥ = 0. Denote by Ω⊥(IS) ≡ Ωkdv⊥ (IS) and ΩS(IS) ≡ ΩkdvS (IS)
the diagonal linear operators defined by

ΩS(IS) := diag((Ωn(IS))n∈S) : h
0
S → h0S , (zn)n∈S → (Ωn(IS)zn)n∈S (4.2)

Ω⊥(IS) := diag((Ωn(IS))n∈S⊥) : h2⊥ → h0⊥ , (zn)n∈S⊥ → (Ωn(IS)zn)n∈S⊥ (4.3)

where for any n ≥ 1,

Ωn(IS) ≡ Ωkdvn (IS) :=
1

2πn
ωn((IS , 0)) , Ω−n(IS) ≡ Ωkdv−n (IS) := Ωkdvn (IS) (4.4)

and ωn(I) ≡ ωkdvn (I) is the nth KdV frequency, viewed as a function of the actions. By Lemma C.7, one
has:

Lemma 4.1. For any finite gap potential q ∈MS, n ≥ 1, and N ≥ 1 one has

Ωn(IS) = (2πn)2 +

N∑

k=1

Ωae2k(IS)

(2πn)2k
+

RΩn

2N (IS)

(2πn)2N+1
(4.5)

where Ωae2k(IS) = ωae2k−1(IS , 0), RΩn

2N (IS) = Rωn

2N (IS , 0) and ωae2k−1(IS , 0), Rωn

2N (IS , 0) are given by Lemma
C.7.

Assume that q(t) is a solution of the KdV equation (1.1) in MS with z(t) := Φkdv(q(t)) ∈ V for any t.
Note that z(t) is of the form (zS(t), 0), the actions I = (In)n≥1 of q(t) are independent of t, and I = (IS , 0)
where IS = ( 1

2πnzn(0)z−n(0))n∈S+ . Furthermore, ∂tzS(t) = JSΩS(IS)[zS(t)], or in more detail, for any
n ∈ S,

∂tzn(t) = 2πinΩn(IS)zn(t) .
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Denote by q̂(t) the solution of the equation, obtained by linearizing the KdV equation along q(t),

∂tq̂(t) = ∂xd∇Hkdv(q(t))[q̂(t)] . (4.6)

We need to investigate ∂xd∇Hkdv(q(t))[q̂(t)] further. If q̂(0) is of the form dΨL(zS(0), 0)[0, ẑ⊥(0)] (=
Ψ1(zS(0))[ẑ⊥(0)] ) with ẑ⊥(0) ∈ h3⊥, then by (2.2) (definition of ΨL) and (2.3) (formula of the differen-
tial dΨL), ẑ⊥(t), defined by q̂(t) = Ψ1(zS(t))[ẑ⊥(t)], solves the equation

∂tẑ⊥(t) = J⊥Ω⊥(IS)[ẑ⊥(t)]

or more explicitly, for any n ∈ S⊥
+ ,

∂tẑn(t) = 2πinΩn(IS)ẑn(t), ∂tẑ−n(t) = 2πi(−n)Ω−n(IS)ẑ−n(t) .

By differentiating q̂(t) = Ψ1(zS(t))[ẑ⊥(t)] with respect to t, one gets

∂tq̂(t) = Ψ1(zS(t))[∂tẑ⊥(t)] + dS
(
Ψ1(zS(t))[ẑ⊥(t)]

)
[∂tzS(t)]

= Ψ1(zS(t))
[
J⊥Ω⊥(IS)[ẑ⊥(t)]

]
+ dS

(
Ψ1(zS(t))[ẑ⊥(t)]

)
[∂tzS(t)] . (4.7)

Comparing (4.6) and (4.7) and using that ∂tzS(t) = JSΩS(IS)[zS(t)], one gets

∂xd∇Hkdv(q(t))
[
Ψ1(zS(t))[ẑ⊥(t)]

]
= Ψ1(zS(t))

[
J⊥Ω⊥(IS)[ẑ⊥(t)]

]

+ dS
(
Ψ1(zS(t))[ẑ⊥(t)]

)
[JSΩS(IS)[zS(t)]] . (4.8)

Now apply Ψ1(zS(t))
−1 to both sides of the latter equality yielding

Ψ1(zS(t))
−1∂xd∇Hkdv(q(t))

[
Ψ1(zS(t))[ẑ⊥(t)]

]
= J⊥Ω⊥(IS)[ẑ⊥(t)]

+ Ψ1(zS(t))
−1dS

(
Ψ1(zS(t))[ẑ(t)]

)
[JSΩS(IS)[zS(t)]] . (4.9)

Since Ψ1(zS) is symplectic one has Ψ1(zS)
t∂−1
x Ψ1(zS) = J−1

⊥ or Ψ1(zS)
−1∂x = J⊥Ψ1(zS)

t, implying that

J⊥Ψ1(zS(t))
td∇Hkdv(q(t))

[
Ψ1(zS(t))[ẑ⊥(t)]

]
= J⊥Ω⊥(IS)[ẑ⊥(t)]

+ Ψ1(zS(t))
−1dS

(
Ψ1(zS(t))[ẑ⊥(t)]

)
[JSΩS(IS)[zS(t)]] . (4.10)

The latter identity implies that for any zS ∈ VS , IS = ( 1
2πnznz−n)n∈S+ , q = Ψkdv(zS , 0), ẑ⊥ ∈ h3⊥,

Ψ1(zS)
td∇Hkdv(q)

[
Ψ1(zS)[ẑ⊥]

]
= Ω⊥(IS)[ẑ⊥] + G(zS)[ẑ⊥] (4.11)

where G(zS) : h0⊥ → h0⊥ is given by

G(zS)[ẑ⊥] := J−1
⊥ Ψ1(zS)

−1dS
(
Ψ1(zS)[ẑ⊥]

)
[JSΩS(IS)[zS ]] . (4.12)

In the next lemma we record an expansion for the operator G(zS).

Lemma 4.2. For any integer N ≥ 1, the operator G(zS) : h0⊥ → h0⊥ admits an expansion of the form

G(zS) = F⊥ ◦
N∑

k=1

ak(zS ;G)∂−kx ◦ F−1
⊥ +RN (zS ;G)

where for any 1 ≤ k ≤ N, s ≥ 0, the maps

VS → Hs, zS 7→ ak(zS ;G) , VS 7→ B(hs⊥, hs+N+1
⊥ ), zS 7→ RN (zS ;G)

are real analytic.

Proof. In view of the definition (4.12) of G, the lemma follows from item (ii) of Theorem 2.1 (expansion of
Ψ1(zS)) and Lemma E.2.
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After this preliminary discussion, we can now study the transformed Hamiltonian Hkdv ◦ Ψ where Ψ =
ΨL ◦ ΨC . We split the analysis into two parts. First we expand H(1) := Hkdv ◦ ΨL and then we analyze
H(2) = H(1) ◦ΨC .
Expansion of H(1) := Hkdv ◦ΨL
To expand Hkdv ◦ΨL, it is useful to write Hkdv(u) as Hkdv(u) = Hkdv

2 (u) +Hkdv
3 (u) where

Hkdv
2 (u) :=

1

2
〈(−∂2x)u , u〉 , Hkdv

3 (u) :=

∫ 1

0

u3 dx . (4.13)

The L2−gradient ∇Hkdv of Hkdv and its derivative are then given by

∇Hkdv(u) = −∂2xu+ 3u2 , d∇Hkdv(u) = −∂2x + 6u . (4.14)

Let zS ∈ VS, q = Ψkdv(zS , 0). The Taylor expansion of Hkdv(q + v) around q in direction v = Ψ1(zS)[z⊥]
with z⊥ ∈ V⊥ ∩ h1⊥ reads

Hkdv(q + v) = Hkdv(q) + 〈∇Hkdv(q), v〉+ 1

2
〈d∇Hkdv(q)[v] , v〉+

∫ 1

0

v3 dx . (4.15)

Since v = dΨkdv(zS , 0)[0, z⊥] one has 〈∇Hkdv(q), v〉 = ∂y|y=0H
kdv(Ψkdv(zS , yz⊥)). Recall that Hkdv =

Hkdv ◦Ψkdv is a function of the actions alone and In = 1
2πnznz−n, n ≥ 1. It implies that

∂y|y=0H
kdv(Ψkdv(zS , yz⊥)) =

∑

n∈S⊥
+

ωn(IS , 0)∂y|y=0 y
2In = 0,

and hence 〈∇Hkdv(q), v〉 = 0. Since ΨL(z) = q +Ψ1(zS)[z⊥] one then gets

H(1)(z) = Hkdv(ΨL(z)) = Hkdv(q) +
1

2

〈
d∇Hkdv(q)

[
Ψ1(zS)[z⊥]

]
, Ψ1(zS)[z⊥]

〉
+

∫ 1

0

(Ψ1(zS)[z⊥])
3 dx .

By formula (4.11),

〈
d∇Hkdv(q)

[
Ψ1(zS)[z⊥]

]
, Ψ1(zS)[z⊥]

〉
=

〈
Ωkdv⊥ (IS)[z⊥] , z⊥

〉
+
〈
G(zS)[z⊥] , z⊥

〉
.

Since Ψ1(zS)
td∇Hkdv(q)Ψ1(zS) and Ωkdv⊥ (IS) are symmetric, so is the operator G(zS). In summary,

H(1)(z) = Hkdv
S (z) +

1

2

〈
Ωkdv⊥ (IS)[z⊥], z⊥

〉
+ P(1)

2 (z) + P(1)
3 (z) (4.16)

where for any z = (zS , z⊥) ∈ V ∩ h10,

Hkdv
S (z) := Hkdv(Ψkdv(zS , 0)) , P(1)

2 (z) :=
1

2
〈G(zS)[z⊥], z⊥〉 , P(1)

3 (z) :=

∫ 1

0

(Ψ1(zS)[z⊥])
3 dx . (4.17)

Note that Hkdv
S (z) = Hkdv

S (ΠSz) where ΠS : h0S×h0⊥ → h0S×h0⊥ denotes the projection, given by (ẑS , ẑ⊥) 7→
(ẑS , 0) (cf (3.9)). We record that P(1)

2 (z) is quadratic and P(1)
3 (z) cubic in z⊥ where the superscript (1)

refers to the Hamiltonian H(1). Recall from (E.3) that for any a ∈ H1, the paraproduct Tau of the function
a with u ∈ L2 with respect to the cut-off function χ is defined as (Tau)(x) =

∑
k,n∈Z

χ(k, n)akune
i2π(k+n)x

with un, n ∈ Z, denoting the Fourier coefficients of u.

Lemma 4.3. For any integer N ≥ 1, there exists an integer σN ≥ N (loss of regularity) so that on V ∩hσN

0 ,

the L2−gradient ∇P(1)
3 of P(1)

3 admits the asymptotic expansion of the form

∇P(1)
3 (z) =

(
0, F⊥ ◦

N∑

k=0

T
ak(z;∇P(1)

3 )
∂−kx F−1

⊥ [z⊥]
)
+RN (z;∇P(1)

3 ) (4.18)
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where for any s ≥ 0, 1 ≤ k ≤ N , the maps

V ∩ hs+σN

0 → Hs, z 7→ ak(z;∇P(1)
3 ) , V ∩ hs∨σN

0 → hs+N+1
0 , z 7→ RN (z;∇P(1)

3 )

are real analytic. Furthermore, for any z ∈ V ∩ hs+σN

0 with ‖z‖σN
≤ 1, ‖ak(z;∇P(1)

3 )‖s .s,N ‖z⊥‖s+σN
and

if in addition ẑ1, . . . , ẑl ∈ hs+σN

0 , l ≥ 1,

‖dlak(z;∇P(1)
3 )[ẑ1, . . . , ẑl]‖s .s,k,l

l∑

j=1

‖ẑj‖s+σN

∏

i6=j
‖ẑi‖σN

+ ‖z⊥‖s+σN

l∏

j=1

‖ẑj‖σN
. (4.19)

Similarly, for any z ∈ V ∩ hs∨σN

0 with ‖z‖σN
≤ 1, ẑ ∈ hs∨σN

0 , ‖RN (z;∇P(1)
3 )‖s+N+1 .s,N ‖z⊥‖s∨σN

‖z⊥‖σN

and
‖dRN (z;∇P(1)

3 )[ẑ]‖s+N+1 .s,N ‖z⊥‖s∨σN
‖ẑ‖σN

+ ‖z⊥‖σN
‖ẑ‖s∨σN

(4.20)

and if in addition ẑ1, . . . , ẑl ∈ hs∨σN

0 , l ≥ 2, then

‖dlRN (z;∇P(1)
3 )[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s∨σN

∏

i6=j
‖ẑi‖σN

+ ‖z⊥‖s∨σN

l∏

j=1

‖ẑj‖σN
. (4.21)

Proof. By a straightforward calculation, one has ∇⊥P(1)
3 (z) = 3Ψ1(zS)

t(Ψ1(zS)[z⊥])2. By the Bony decom-
position given in Lemma E.1(ii),

(Ψ1(zS)[z⊥])
2 = 2TΨ1(zS)[z⊥]Ψ1(zS)[z⊥] + R(B)(Ψ1(zS)[z⊥] , Ψ1(zS)[z⊥]) .

The expansion (4.18) and the stated estimates follow from Theorem 2.1(ii), Corollary 2.2, and Lemmata
E.1, E.2, E.3.

Expansion of H(2) := H(1) ◦ΨC
To compute the expansion of H(2)(z) = H(1)(ΨC(z)) on V ′ ∩ h10, we study the composition of each of the
terms in (4.16) with the symplectic corrector ΨC separately. Recall that ΨC is defined on V ′ and takes
values in V .
Term Hkdv

S : By Corollary 3.2, ΨC(z) has a Taylor expansion in z⊥ around 0 of the form

ΨC(z) = (zS , 0) + (0, z⊥) + Ψ̃C(z), Ψ̃C(z) := RN,2(z; ΨC) + ΨC,3(z) , ΨC,3(z) ≡ ΨC,N,3(z)

where RN,2(z; ΨC) is the term of order two, given by RN,2(z; ΨC) =
1
2d

2
⊥RN ((zS , 0);ΨC)[z⊥, z⊥] (cf (3.54)),

and ΨC,3(z) is given by (3.57)

ΨC,3(z) =
(
0, F⊥ ◦

N∑

k=1

ak(z; ΨC)∂
−k
x F−1

⊥ [z⊥]
)
+RN,3(z; ΨC)

with RN,3(z; ΨC) denoting the Taylor remainder term (3.55). Since Hkdv
S (z) = Hkdv

S (ΠSz) (cf (4.17)), the

Taylor expansion of Hkdv
S (ΨC(z)) = Hkdv

S (z + Ψ̃C(z)) reads

Hkdv
S (ΨC(z)) = Hkdv

S (z) + 〈∇SHkdv
S (z), πSRN,2(z; ΨC)〉+ P(2a)

3 (z) , (4.22)

where P(2a)
3 (z) is the Taylor remainder term of order three, given by

〈∇SHkdv
S (z), πSΨC,3(z)〉+

∫ 1

0

(1 − y)
〈
dS

(
∇SHkdv

S (z + yΨ̃C(z))
)
[πSΨ̃C(z)], πSΨ̃C(z)

〉
dy

and πS : h0S × h0⊥ → h0S denotes the map given by z = (zS , z⊥) 7→ zS (cf (3.10)). Since πSΨC,3(z) =

πSRN,3(z; ΨC) and πSΨ̃C(z) = πSRN (z; ΨC), one has

P(2a)
3 (z) = 〈∇SHkdv

S (z), πSRN,3(z; ΨC)〉

+

∫ 1

0

(1 − y)
〈
dS

(
∇SHkdv

S (z + yΨ̃C(z))
)
[πSRN (z; ΨC)], πSRN (z; ΨC)

〉
dy. (4.23)

In the next lemma we show that ∇P(2a)
3 (z) is in hs+N+1

0 for any z ∈ V ′ ∩ hs0.
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Lemma 4.4. The Hamiltonian P(2a)
3 : V ′ → R is real analytic and for any integers s ≥ 0, N ≥ 1, the map

V ′ ∩ hs0 → hs+N+1
0 , z 7→ ∇P(2a)

3 (z) is real analytic. Furthermore, for any z ∈ V ′ ∩ hs0, and ẑ ∈ hs0,

‖∇P(2a)
3 (z)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 , ‖d∇P(2a)

3 (z)[ẑ1]‖s+N+1 .s,N ‖z⊥‖s‖ẑ1‖0 + ‖z⊥‖0‖ẑ1‖s
and if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 2,

‖dl∇P(2a)
3 (z)[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Proof. We begin by analyzing the first term 〈∇SHkdv
S (z), πSΨC,3(z)〉 on the right hand side of (4.23). It is

given by the finite sum
∑

n∈S hn(z) where

hn(z) := (∇Hkdv
S (z))n (ΨC,3(z))−n = (∂z−n

Hkdv
S (z)) 〈RN,3(z; ΨC), en〉 , ∀n ∈ S ,

and (en)n∈S denotes the standard basis of h0S . The derivative of hn in direction ẑ ∈ h00 then reads

〈∇hn(z), ẑ〉 = 〈∇∂z−n
Hkdv
S (z), ẑ〉 〈RN,3(z; ΨC), en〉+ ∂z−n

Hkdv
S (z)〈d(RN,3(z; ΨC))[ẑ] , en〉

= 〈∇∂z−n
Hkdv
S (z), ẑ〉 〈RN,3(z; ΨC), en〉+ ∂z−n

Hkdv
S (z) 〈(dRN,3(z; ΨC))

t[en], ẑ〉

implying that

∇hn(z) = 〈RN,3(z; ΨC), en〉∇∂z−n
Hkdv
S (z) + ∂z−n

Hkdv
S (z) (dRN,3(z; ΨC))

t[en] .

By Corollary 3.2, for any s ≥ 0, V ′ ∩ hs0 → hs+N+1
0 , z 7→ ∇hn(z) is real analytic and satisfies the estimates

‖∇hn(z)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖0 . The estimates for the higher order derivatives of hn, n ∈ S, are obtained
by differentiating the expression for ∇hn(z) and using the estimates of Corollary 3.2.
In order to analyze the second term on the right hand side of (4.23) it suffices to study the functions hn,k(z),
n, k ∈ S, given by

hn,k(z; y) := ∂z−n
∂z−k

Hkdv
S (z + yΨ̃C(z)) 〈RN (z; ΨC), en〉 〈RN (z; ΨC), ek〉

where 0 ≤ y ≤ 1. Clearly, hn,k(z; y) depends continuously on y as do all the derivatives with respect to the

variable z. Since Hkdv
S (z + yΨ̃C(z)) only depends on πS(z + yΨ̃C(z)) one sees that

〈∇hn,k(z; y), ẑ〉 = 〈∇S

(
∂z−n

∂z−k
Hkdv
S (z + yΨ̃C(z))

)
, πS

(
Id + y dΨ̃C(z)

)
[̂z]〉 〈RN(z; ΨC), en〉 〈RN(z; ΨC), ek〉

+ ∂z−n
∂z−k

Hkdv
S (z + yΨ̃C(z)) 〈(dRN (z; ΨC))

t[en], ẑ〉 〈RN (z; ΨC), ek〉
+ ∂z−n

∂z−k
Hkdv
S (z + yΨ̃C(z))〈RN (z; ΨC), en〉 〈(dRN (z; ΨC))

t[ek], ẑ〉

implying that

∇hn,k(z; y) =
(
Id + s dΨ̃C(z)

)t[
ΠS∇S

(
∂z−n∂z−k

Hkdv
S (z + yΨ̃C(z))

)]
〈RN(z; ΨC), en〉 〈RN(z; ΨC), ek〉

+ ∂z−n
∂z−k

Hkdv
S (z + yΨ̃C(z)) 〈RN (z; ΨC), ek〉 (dRN (z; ΨC))

t[en]

+ ∂z−n
∂z−k

Hkdv
S (z + yΨ̃C(z)) 〈RN (z; ΨC), en〉 (dRN (z; ΨC))

t[ek]

By Corollary 3.2, for any s ≥ 0, the map V ′∩hs0 → hs+N+1
0 , z 7→ ∇hn,k(z; y) is real analytic and satisfies the

estimate ‖∇hn,k(z; y)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖20. The estimates for the higher order derivatives are obtained
by differentiating ∇hn,k and applying again Corollary 3.2.

Term HΩ(z) :=
1
2 〈Ω⊥(IS)[z⊥], z⊥〉: According to (4.3), the operator Ω⊥(IS) reads

Ω⊥(IS) = D2
⊥ +Ω

(0)
⊥ (IS) , (4.24)

where
D⊥ := diagn∈S⊥(2πn) , Ω

(0)
⊥ (IS) := diagn∈S⊥(Ωn(IS)− 4π2n2) . (4.25)

By Lemma 4.1, the following holds.
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Lemma 4.5. For any integer N ≥ 2, the operator Ω
(0)
⊥ (IS) admits the expansion

Ω
(0)
⊥ (IS) = F⊥ ◦

N∑

k=2

ak(IS ; Ω
(0)
⊥ )∂−kx F−1

⊥ +RN (IS ; Ω
(0)
⊥ )

where for any 2 ≤ k ≤ N and s ≥ 0, the maps

R
S+

≥0 → R, IS 7→ ak(IS ; Ω
(0)
⊥ ) , R

S+

≥0 → B(hs⊥, hs+N+1
⊥ ), IS 7→ RN (IS ; Ω

(0)
⊥ )

are real analytic.

To analyze HΩ(ΨC(z)), we write the quadratic form
〈
Ω⊥(IS)[z⊥], z⊥

〉
, z⊥ ∈ h10, as a sum

〈Ω⊥(IS)[z⊥], z⊥〉 = 〈D2
⊥[z⊥], z⊥〉+ 〈Ω(0)

⊥ (IS)[z⊥] , z⊥〉

and consider 〈D2
⊥[z⊥], z⊥〉 and 〈Ω(0)

⊥ (IS)[z⊥] , z⊥〉 separately. When substituting for z⊥ in
〈
D2

⊥[z⊥], z⊥
〉
the

expression π⊥ΨC(z) = z⊥ + π⊥Ψ̃C(z), one gets

〈
D2

⊥[z⊥ + π⊥Ψ̃C(z)], z⊥ + π⊥Ψ̃C(z)
〉
=

〈
D2

⊥[z⊥], z⊥
〉
+
〈
D2

⊥[z⊥], π⊥Ψ̃C(z)
〉

+
〈
D2

⊥[π⊥Ψ̃C(z)], z⊥
〉
+
〈
D2

⊥[π⊥Ψ̃C(z)], π⊥Ψ̃C(z)
〉

(4.26)

where the map π⊥ is defined in (3.10). With a view towards the expansion of Hkdv ◦Ψ, stated in Theorem
1.1, we treat the difference

1

2

〈
D2

⊥[z⊥ + π⊥Ψ̃C(z)], z⊥ + π⊥Ψ̃C(z)
〉
− 1

2

〈
D2

⊥[z⊥], z⊥
〉

as part of the error term P3(z). It needs special care since the two terms

〈D2
⊥[z⊥], π⊥Ψ̃C(z)〉 , 〈D2

⊥[π⊥Ψ̃C(z)], z⊥〉

could have the property that the associated Hamiltonian vector field is unbounded. We write

HΩ(ΨC(z)) = HΩ(z) + P(2b)
3 (z) , P(2b)

3 (z) := HΩ(ΨC(z))−HΩ(z) . (4.27)

and note that by the mean value theorem,

P(2b)
3 (z) =

∫ 1

0

PΩ(τ,Ψ
0,τ
X (z)) dτ (4.28)

where for τ ∈ [0, 1], z ∈ V , PΩ(τ, z) is defined by

PΩ(τ, z) := 〈∇HΩ(z), X(τ, z)〉 . (4.29)

In a first step we analyze PΩ(τ, z). One has

〈∇HΩ(z), X(τ, z)〉 = 〈∇SHΩ(z) , πSX(τ, z)〉+ 1

2
〈Ω⊥(IS)z⊥, π⊥X(τ, z)〉 . (4.30)

Since HΩ = 1
2 〈Ω⊥(IS)[z⊥], z⊥〉 and Ω⊥(IS) = D2

⊥ +Ω
(0)
⊥ (IS) one has

〈∇SHΩ(z) , πSX(τ, z)〉 = 1

2

∑

j∈S
(∂z−j

HΩ(z)) 〈X(τ, z), ej〉 =
1

2

∑

j∈S
〈∂z−j

Ω
(0)
⊥ (IS)[z⊥], z⊥〉 〈X(τ, z), ej〉 .

(4.31)
Concerning the term 1

2 〈Ω⊥(IS)z⊥, π⊥X(τ, z)〉 in (4.30), recall that X(τ, z) = −Lτ (z)−1[JE(z)] (cf (3.7)),
Lτ (z) = Id + τJL(z) (cf (3.2)) and hence

X(τ, z) = −JE(z)− τJL(z)[X(τ, z)] . (4.32)
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Since E(z) = (ES(z), 0) and J t = −J , the term
〈
Ω⊥(IS)z⊥, π⊥X(τ, z)

〉
becomes

−
〈
Ω⊥(IS)z⊥, π⊥τJL(z)X(τ, z)

〉
= τ

〈
J⊥Ω⊥(IS)z⊥, π⊥L(z)X(τ, z)

〉
. (4.33)

By (2.21) the component L⊥
⊥(z) of L(z) vanishes, implying that π⊥L(z)X(τ, z) = LS⊥(z)πSX(τ, z). Sub-

stituting the latter expression into (4.33) and using that LS⊥(z)t = −L⊥
S (z) since L(z) is skew adjoint (cf

(2.20)) then leads to

〈
Ω⊥(IS)z⊥, π⊥X(τ, z)

〉
= τ

〈
J⊥Ω⊥(IS)z⊥, LS⊥(z)πSX(τ, z)

〉
= −τ

〈
L⊥
S (z)J⊥Ω⊥(IS)z⊥ , πSX(τ, z)

〉
. (4.34)

Furthermore, by (2.23),

L⊥
S (z)[J⊥Ω⊥(IS)z⊥] =

(〈
∂−1
x Ψ1(zS)[J⊥Ω⊥(IS)z⊥] , ∂znΨ1(zS)[z⊥]

〉)
n∈S . (4.35)

Since Ω⊥(IS) = D2
⊥+Ω

(0)
⊥ (IS) and J⊥D2

⊥ = iD3
⊥ we need to analyze Ψ1(zS)iD

3
⊥. By Remark 2.2, Ψ1(zS)iD

3
⊥

is a bounded linear operator hs⊥ → Hs−3
0 for any s ≥ 0.

Lemma 4.6. For any integer N ≥ 0, the operator T (zS) := Ψ1(zS)iD
3
⊥ − F−1

⊥ iD3
⊥F⊥Ψ1(zS) admits the

expansion

T (zS) =

N∑

k=−1

ak(zS ; T )∂−kx F−1
⊥ +RN (zS ; T )

where for any s ≥ 0, −1 ≤ k ≤ N , the maps

VS → Hs, zS 7→ ak(zS ; T ) , VS → B(hs⊥, Hs+N+1), zS 7→ RN (zS ; T )

are real analytic. A similar statement holds for the transpose T (zS)
t of T (zS).

Proof. First note that the expression obtained from Ψ1(zS)iD
3
⊥ − F−1

⊥ iD3
⊥F⊥Ψ1(zS) by replacing Ψ1(zS)

by its highest order part F−1
⊥ (cf Theorem 2.1), vanishes. Since the order of the commutator of two scalar

pseudodifferential operators of order one is again of order one, it follows that the operator T (zS) is of order 1,
meaning that the expansion of T (zS) is of the form as stated. Taking into account that iD3

⊥ = −F⊥∂3xF−1
⊥ ,

the claimed statements follow from Theorem 2.1 (expansion of Ψ1(zS)) and Corollary 2.2 (expansion of
Ψ1(zS)

t).

Taking into account that J⊥Ω⊥(IS) = iD3
⊥ + J⊥Ω

(0)
⊥ (IS), the operator ∂−1

x Ψ1(zS)J⊥Ω⊥(IS), appearing
in formula (4.35) reads

∂−1
x Ψ1(zS)J⊥Ω⊥(IS) = ∂−1

x Ψ1(zS)iD
3
⊥ + ∂−1

x Ψ1(zS)J⊥Ω
(0)
⊥ (IS).

By the definition of T (zS) and using that ∂−1
x F−1

⊥ iD3
⊥ = −∂2xF−1

⊥ , one then gets

∂−1
x Ψ1(zS)iD

3
⊥ = ∂−1

x F−1
⊥ iD3

⊥F⊥Ψ1(zS) + ∂−1
x T (zS) = −∂2xΨ1(zS) + ∂−1

x T (zS) .

Altogether we thus have shown that the nth component
〈
∂−1
x Ψ1(zS)[J⊥Ω⊥(IS)z⊥] , ∂znΨ1(zS)[z⊥]

〉
, n ∈ S,

of L⊥
S (z)[J⊥Ω⊥(IS)z⊥] is given by

(
L⊥
S (z)[J⊥Ω⊥(IS)z⊥]

)
n
= −

〈
∂2xΨ1(zS)[z⊥] , ∂znΨ1(zS)[z⊥]

〉
+
〈
T1,n(zS)[z⊥] , z⊥

〉
(4.36)

where for any zS ∈ VS , the operator T1,n(zS) is given by

T1,n(zS) := (∂znΨ1(zS))
t∂−1
x T (zS) + (∂znΨ1(zS))

t∂−1
x Ψ1(zS)J⊥Ω

(0)
⊥ (IS) . (4.37)

Since (∂znΨ1(zS))
t is one smoothing (cf Corollary 2.2) and ∂−1

x T (zS) is of order zero (cf Lemma 4.6), one
sees that T1,n(zS) maps h0⊥ into h1⊥. More precisely, the following result holds.
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Lemma 4.7. For any n ∈ S and N ∈ N, the operator T1,n(zS), defined by (4.37) for zS ∈ VS, admits the
expansion

T1,n(zS) = F⊥ ◦
N∑

k=1

ak(zS ; T1,n)∂−kx F−1
⊥ +RN (zS ; T1,n)

where for any s ≥ 0, 1 ≤ k ≤ N , the maps

VS → Hs, zS 7→ ak(zS ; T1,n) , VS → B(hs⊥, hs+N+1
⊥ ), zS 7→ RN (zS ; T1,n)

are real analytic.

Proof. The claimed statements follow from Corollary 2.2, Lemmata 4.5, 4.6, and Lemma E.2.

We now turn our attention to the term −
〈
∂2xΨ1(zS)[z⊥] , ∂znΨ1(zS)[z⊥]

〉
in (4.36). By (4.13)

d∇Hkdv(q) = −∂2x + d∇Hkdv
3 (q) = −∂2x + 6q, Hkdv

3 (q) :=

∫ 1

0

q3dx .

Hence using that −∂2x = d∇Hkdv(q)− 6q one obtains for any n ∈ S

−
〈
∂2xΨ1(zS)[z⊥] , ∂znΨ1(zS)[z⊥]

〉
=

1

2
∂zn

〈
− ∂2xΨ1(zS)[z⊥] , Ψ1(zS)[z⊥]

〉

=
1

2
∂zn

〈
d∇Hkdv(q)

[
Ψ1(zS)[z⊥]

]
, Ψ1(zS)[z⊥]

〉
− 1

2
∂zn

〈
6qΨ1(zS)[z⊥] , Ψ1(zS)[z⊥]

〉
.

(4.38)

Since by (4.11),
Ψ1(zS)

td∇Hkdv(q)Ψ1(zS) = Ω⊥(IS) + G(zS)
we conclude that −

〈
∂2xΨ1(zS)[z⊥] , ∂znΨ1(zS)[z⊥]

〉
equals

1

2

〈
∂znΩ⊥(IS)[z⊥] , z⊥

〉
+

1

2

〈
∂znG(zS)[z⊥] , z⊥

〉
− 1

2

〈
∂zn

(
6Ψ1(zS)

t qΨ1(zS)
)
[z⊥] , z⊥

〉
. (4.39)

Using again that for any n ∈ S, ∂znΩ⊥(IS) = ∂znΩ
(0)
⊥ (IS), one thus obtains

−〈∂2xΨ1(zS)[z⊥] , ∂znΨ1(zS)[z⊥]〉 = 〈T2,n(zS)[z⊥] , z⊥〉

where

T2,n(zS) :=
1

2
∂zn

(
Ω

(0)
⊥ (IS) + G(zS)− 6Ψ1(zS)

tqΨ1(zS)
)
. (4.40)

Lemma 4.8. For any n ∈ S and any integer N ≥ 0, the operator T2,n(zS) : h0⊥ → h0⊥, defined by (4.40) for
zS ∈ VS, admits the expansion

T2,n(zS) = F⊥ ◦
N∑

k=0

ak(zS ; T2,n)∂−kx F−1
⊥ +RN (zS ; T2,n)

where for any s ≥ 0, 0 ≤ k ≤ N, the maps

VS → Hs, zS 7→ ak(zS ; T2,n) , VS → B(hs⊥, hs+N+1
⊥ ), zS 7→ RN (zS ; T2,n)

are real analytic. A similar statement holds for the transpose T2,n(zS)t of the operator T2,n(zS).

Proof. The lemma follows by Lemmata 2.2, 4.2, 4.5, and Lemma E.2.
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By (4.29) – (4.31), (4.34) – (4.36), and (4.40) the Hamiltonian PΩ(τ, z), defined in (4.29), is given by

PΩ(τ, z) =
1

2
〈∇SHΩ(z) , πSX(τ, z)〉+ τ

2

∑

j∈S

〈(
T1,j(zS) + T2,j(zS)

)
[z⊥] , z⊥

〉
· 〈X(τ, z) , ej〉

=
1

2

∑

j∈S
〈T3,j(τ, zS)[z⊥] , z⊥〉 · 〈X(τ, z) , ej〉

(4.41)

where for any j ∈ S, zS ∈ VS , and 0 ≤ τ ≤ 1, the operator T3,j(τ, zS) : h0⊥ → h0⊥ is defined by

T3,j(τ, zS) := ∂z−j
Ω

(0)
⊥ (IS) + τT1,j(zS) + τT2,j(zS) . (4.42)

The Hamiltonian PΩ(τ, z) has the following properties.

Lemma 4.9. For any 0 ≤ τ ≤ 1 and any integer N ≥ 0, the Hamiltonian PΩ(τ, ·) : V → R is real analytic
and ∇PΩ(τ, z) admits the expansion

∇PΩ(τ, z) =
(
0, F⊥ ◦

N∑

k=0

ak(τ, z;∇PΩ)∂
−k
x F−1

⊥ [z⊥]
)
+RN (τ, z;∇PΩ)

where for any s ≥ 0, 0 ≤ k ≤ N, the maps

V → Hs, z 7→ ak(τ, z;∇PΩ) , V ∩ hs0 → hs+N+1
0 , z 7→ RN (τ, z;∇PΩ)

are real analytic. Furthermore, for any 0 ≤ τ ≤ 1, z ∈ V, ẑ ∈ h00

‖ak(τ, z;∇PΩ)‖s .s ‖z⊥‖20 , ‖dak(τ, z;∇PΩ)[ẑ]‖s .s ‖z⊥‖0‖ẑ‖0 ,

and if in addition, ẑ1, . . . , ẑl ∈ h00, l ≥ 2,

‖dlak(τ, z;∇PΩ)[ẑ1, . . . , ẑl]‖s .s,l
l∏

j=1

‖ẑj‖0 .

Similarly, for any 0 ≤ τ ≤ 1, z ∈ V ∩ hs0, ẑ1, ẑ2 ∈ hs0,

‖RN (τ, z;∇PΩ)‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖20 , ‖dRN (τ, z;∇PΩ)[ẑ1]‖s+N+1 .s,N ‖z⊥‖20‖ẑ1‖s+‖z⊥‖s‖z⊥‖0‖ẑ1‖0 ,

‖d2RN (τ, z;∇PΩ)[ẑ1, ẑ2]‖s+N+1 .s,N ‖z⊥‖0
(
‖ẑ1‖s‖ẑ2‖0 + ‖ẑ1‖0‖ẑ2‖s

)
+ ‖z⊥‖s‖ẑ1‖0‖ẑ2‖0 ,

and if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 3,

‖dlRN (τ, z;∇PΩ)[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Proof. One has ∇SPΩ(τ, z) = (∂z−n
PΩ(τ, z))n∈S with

∂z−n
PΩ(τ, z) =

1

2

∑

j∈S
〈∂z−n

T3,j(τ, zS)[z⊥] , z⊥〉 · 〈X(τ, z) , ej〉+
1

2

∑

j∈S
〈T3,j(τ, zS)[z⊥] , z⊥〉 · 〈∂z−n

X(τ, z) , ej〉,

whereas ∇⊥PΩ(τ, z) can be computed to be

∇⊥PΩ(τ, z) =
∑

j∈S
〈X(τ, z) , ej〉 T3,j(τ, zS)[z⊥] +

1

2

∑

j∈S
〈T3,j(τ, zS)[z⊥] , z⊥〉 (d⊥X(τ, z))t[ej ] .

The claimed statements then follow by Lemmata 3.6, 4.5, 4.7, 4.8.
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We are now ready to analyze the gradient of the Hamiltonian P(2b)
3 (z) :=

∫ 1

0 PΩ(τ,Ψ
0,τ
X (z)) dτ (cf (4.28)).

Lemma 4.10. The Hamiltonian P(2b)
3 : V ′ → R is real analytic and for any integer N ≥ 0, its gradient

∇P(2b)
3 (z) admits the expansion

∇P(2b)
3 (z) =

(
0, F⊥ ◦

N∑

k=0

ak(z;∇P(2b)
3 ) ∂−kx F−1

⊥ [z⊥]
)
+ RN (z;∇P(2b)

3 )

where for any s ≥ 0, 0 ≤ k ≤ N , the maps

V ′ → Hs, z 7→ ak(z;∇P(2b)
3 ) , V ′ ∩ hs0 → hs+N+1

0 , z 7→ RN (z;∇P(2b)
3 )

are real analytic. Furthermore, the following estimates hold: for any z ∈ V ′, ẑ ∈ h00,

‖ak(z;∇P(2b)
3 )‖s .s ‖z⊥‖20 , ‖dak(z;∇P(2b)

3 )[ẑ]‖s .s ‖z⊥‖0‖ẑ‖0 ,

and if in addition ẑ1, . . . , ẑl ∈ h00, l ≥ 2, then ‖dlak(z;∇P(2b)
3 )[ẑ1, . . . , ẑl]‖s .s,l

∏l
j=1 ‖ẑj‖0.

Similarly, for any z ∈ V ′ ∩ hs0, ẑ1, ẑ2 ∈ hs0,

‖RN (z;∇P(2b)
3 )‖s+N+1 .s,N ‖z⊥‖s‖z⊥‖20 , ‖dRN (z;∇P(2b)

3 )[ẑ1]‖s+N+1 .s,N ‖z⊥‖20‖ẑ1‖s+‖z⊥‖s‖z⊥‖0‖ẑ1‖0 ,

‖d2RN (z;∇P(2b)
3 )[ẑ1, ẑ2]‖s+N+1 .s,N ‖z⊥‖0

(
‖ẑ1‖s‖ẑ2‖0 + ‖ẑ1‖0‖ẑ2‖s

)
+ ‖z⊥‖s‖ẑ1‖0‖ẑ2‖0 ,

and if in addition ẑ1, . . . , ẑl ∈ hs0, l ≥ 2, then

‖dlRN (z;∇P(2b)
3 )[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s
∏

i6=j
‖ẑi‖0 + ‖z⊥‖s

l∏

j=1

‖ẑj‖0 .

Proof. By a straightforward computation, one has for any z ∈ V ′,

∇P(2b)
3 (z) =

∫ 1

0

(dΨ0,τ
X (z))t∇PΩ(τ,Ψ

0,τ
X (z)) dτ .

The claimed statements then follow by applying Corollary 3.1 (expansion of dΨ0,τ
X (z)t), Lemma 4.9 (expan-

sion of ∇PΩ(τ, z)), Theorem 3.1 (expansion of Ψ0,τ
X (z)), and Lemma E.2.

Terms P(1)
2 , P(1)

3 : Recall that the Hamiltonians P(1)
2 and P(1)

3 were introduced in (4.17). We write

P(1)
2 (ΨC(z))+P(1)

3 (ΨC(z)) = P(1)
2 (z)+P(2c)

3 (z) , P(2c)
3 (z) := P(1)

2 (ΨC(z))−P(1)
2 (z)+P(1)

3 (ΨC(z)) (4.43)

where by the mean value theorem

P(1)
2 (ΨC(z))− P(1)

2 (z) =

∫ 1

0

〈
∇P(1)

2

(
z + y(ΨC(z)− z)

)
, ΨC(z)− z

〉
dy .

The Hamiltonian P(2c)
3 (ΨC(z)) has the following properties.

Lemma 4.11. The Hamiltonian P(2c)
3 : V ′ ∩ h10 → R is real analytic and for any integer N ≥ 0 its gradient

∇P(2c)
3 (z) admits the expansion

∇P(2c)
3 (z) =

(
0, F⊥ ◦

N∑

k=0

T
ak(z;∇P(2c)

3 )
∂−kx F−1

⊥ [z⊥]
)
+RN (z;∇P(2c)

3 )
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with the property that there exists an integer σN ≥ N (loss of regularity) such that for any s ≥ 0, 0 ≤ k ≤ N ,
the maps

V ′ ∩ hs+σN → Hs, z 7→ ak(z;∇P(2c)
3 ) , V ′ ∩ hs∨σN

0 → hs+N+1
0 , z 7→ RN (z;∇P(2c)

3 )

are real analytic. Furthermore, for any s ≥ 0, z ∈ V ′ ∩ hs+σN

0 with ‖z‖σN
≤ 1, ẑ1, . . . , ẑl ∈ hs+σN

0 , l ≥ 1,

‖ak(z;∇P(2c)
3 )‖s .s,N ‖z⊥‖s+σN

,

‖dlak(z;∇P(2c)
3 )[ẑ1, . . . , ẑl]‖s .s,N,l

l∑

j=1

‖ẑj‖s+σN

∏

i6=j
‖ẑj‖σN

+ ‖z⊥‖s+σN

l∏

j=1

‖ẑj‖σN
.

Similarly, for any s ≥ 0, z ∈ V ′ ∩ hs∨σN

0 with ‖z‖σN
≤ 1, ẑ ∈ hs∨σN

0 ,

‖RN (z;∇P(2c)
3 )‖s+N+1 .s,N ‖z⊥‖s∨σN

‖z⊥‖σN
,

‖dRN (z;∇P(2c)
3 )[ẑ]‖s+N+1 .s,N ‖z⊥‖σN

‖ẑ‖s∨σN
+ ‖z⊥‖s∨σN

‖ẑ‖σN
,

and if in addition ẑ1, . . . , ẑl ∈ hs∨σN

0 , l ≥ 2,

‖dlRN (z;∇P(2c)
3 )[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s∨σN

∏

i6=j
‖ẑi‖σN

+ ‖z⊥‖s∨σN

l∏

j=1

‖ẑj‖σN
.

Proof. The lemma follows by differentiating the Hamiltonian P(2c)
3 , defined in (4.43) and then applying

Corollary 3.2, Lemmata 4.2, 4.3 and using Lemmata E.1, E.2.

By (4.16), (4.22), (4.27), (4.43) it follows that for z = (zS , z⊥) ∈ V ′, the Hamiltonian H(2)(z) is given by

H(2)(z) = Hkdv(IS) +
1

2

〈
Ω⊥(IS)[z⊥], z⊥

〉
+ P(2)

2 (z) + P(2)
3 (z) (4.44)

where

P(2)
2 (z) := 〈∇SHkdv

S (z), πSRN,2(z; ΨC)〉+ P(1)
2 (z) , P(2)

3 (z) := P(2a)
3 (z) + P(2b)

3 (z) + P(2c)
3 (z). (4.45)

and where we recall that by (3.54) and (4.17)

RN,2(z; ΨC) =
1

2
d2⊥RN ((zS , 0);ΨC)[z⊥, z⊥] , P(1)

2 (z) =
1

2
〈G(zS)[z⊥], z⊥〉 . (4.46)

Note that P(2)
2 is quadratic with respect to z⊥, whereas P(2)

3 is a remainder term of order three in z⊥. Being

quadratic with respect to z⊥, P(2)
2 can be written as

P(2)
2 (z) =

1

2
〈d⊥∇⊥P(2)

2 (zS , 0)[z⊥], z⊥〉 . (4.47)

The following vanishing lemma is due to Kuksin [19]. Since our setup is different from the one in [19], we
include its proof for the convenience of the reader.

Lemma 4.12. The Hamiltonian P(2)
2 vanishes on V ′.

Proof. In view of (4.47), it suffices to prove that for any zS ∈ V ′
S, the operator d⊥∇⊥P(2)

2 (zS , 0) vanishes.

We establish that d⊥∇⊥P(2)
2 (zS , 0) = 0 by studying the linearization of ∂tw = J∇H(2)(w) along an arbitrary

solution w(t) of the form w(t) = (wS(t), 0). First we need to make some preliminary considerations. Let
t 7→ q(t) ∈ MS be a solution of the KdV equation ∂tq = ∂x∇Hkdv(q) and denote by t 7→ z(t) := (zS(t), 0)
the corresponding solution in Birkhoff coordinates, defined by q(t) = Ψkdv(z(t)). It satisfies ∂tz(t) =
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JΩ(IS)[z(t)]. Furthermore, let q̂(t) be the solution of the equation, obtained by linearizing the KdV equation
along q(t),

∂tq̂(t) = ∂xd∇Hkdv(q(t))[q̂(t)] ,

with initial data q̂0 := dΨkdv(zS(0), 0)[0, ẑ
0
⊥] and ẑ0⊥ ∈ h3⊥. Similarly, denote by ẑ(t) the solution of the

equation, obtained by linearizing ∂tz = JΩ(IS)[z] along the solution z(t) with initial data ẑ0 = (0, ẑ0⊥),
∂tẑ(t) = Jd∇Hkdv(z(t))[ẑ(t)]. Since ∂tz(t) = JΩ(IS)[z(t)] one concludes that

ẑ(t) = (0, ẑ⊥(t)) , ∂tẑ⊥(t) = J⊥Ω⊥(IS)[ẑ⊥(t)] . (4.48)

and since Ψkdv is symplectic and Hkdv = Hkdv ◦ Ψkdv, one has q̂(t) = dΨkdv(zS(t), 0)[ẑ(t)] . Recall that for
any zS ∈ V ′

S , ΨL(zS , 0) = Ψkdv(zS , 0) (cf definition (2.2) of ΨL) and ΨC(zS , 0) = (zS , 0) (cf Corollary 3.2),
implying that Ψ(zS , 0) = Ψkdv(zS , 0) and hence q(t) = Ψ(zS(t), 0) for any t. Since Ψ : V ′ → H0

0 is symplectic
andH(2) = Hkdv◦Ψ, one sees that z(t) = (zS(t), 0) is also a solution of the equation ∂tw = J∇H(2)(w). With

these preliminary considerations made, we are now ready to prove that d⊥∇⊥P(2)
2 (zS , 0) vanishes. To this end

consider the solution ŵ(t) of the equation obtained by linearizing ∂tw = J∇H(2)(w) along the solution z(t) =
(zS(t), 0) with initial data ŵ0 = (0, ẑ0⊥). Again using that the map Ψ is symplectic and H(2) = Hkdv ◦Ψ, it
follows that dΨ(z(t))[ŵ(t)] solves the linearized KdV equation. Since dΨ(z(0)) = dΨkdv(z(0)) and ŵ0 = ẑ0,
one then concludes from the uniqueness of the initial value problem that dΨ(z(t))[ŵ(t)] = dΨkdv(z(t))[ẑ(t)]
and hence ŵ(t) = ẑ(t) for any t. It means that ẑ(t) satisfies also the linear equation

∂tẑ(t) = Jd∇H(2)(z(t))[ẑ(t)] .

In view of the expansion (4.44) of H(2) one then obtains

∂tẑ⊥(t) = J⊥Ω⊥(IS)[ẑ⊥(t)] + J⊥d⊥∇⊥P2(zS(t), 0)[ẑ⊥(t)] .

Comparing the latter identity with (4.48) one concludes that in particular, d⊥∇⊥P2(zS(0), 0) = 0. Since
the initial data zS(0) ∈ V ′

S can be chosen arbitrarily, we thus have d⊥∇⊥P2(zS , 0) = 0 for any zS ∈ V ′
S as

claimed.

In summary, we have proved the following results on the Hamiltonian H(2) = Hkdv ◦Ψ.

Theorem 4.1. The Hamiltonian H(2) : V ′ ∩ h10 → R has an expansion of the form

H(2)(z) = Hkdv(q) +
1

2
〈Ω⊥(IS)[z⊥], z⊥〉+ P(2)

3 (z) (4.49)

where Ω⊥(IS) is given by (4.3) and the remainder term P(2)
3 , defined by (4.45), satisfies the following:

P(2)
3 : V ′ ∩ h10 → R is real analytic and for any integer N ≥ 1, its gradient ∇P(2)

3 (z) admits the asymptotic
expansion

∇P(2)
3 (z) =

(
0, F⊥ ◦

N∑

k=0

T
ak(z;∇P(2)

3 )
∂−kx F−1

⊥ [z⊥]
)
+RN (z;∇P(2)

3 )

with the property that there there exists an integer σN ≥ N (loss of regularity) so that for any s ≥ 0,
0 ≤ k ≤ N , the maps

V ′ ∩ hs+σN

0 → Hs, z 7→ ak(z;∇P(2)
3 ) , V ′ ∩ hs∨σN

0 → hs+N+1
0 , z 7→ RN (z;∇P(2)

3 )

are real analytic and satisfy the following estimates: for any s ≥ 0, z ∈ V ′ ∩ hs+σN

0 with ‖z‖σN
≤ 1,

ẑ1, . . . , ẑl ∈ hs+σN

0 , l ≥ 1,

‖ak(z;∇P(2)
3 )‖s .s,N ‖z⊥‖s+σN

,

‖dlak(z;∇P(2)
3 )[ẑ1, . . . , ẑl]‖s .s,N,l

l∑

j=1

‖ẑj‖s+σN

∏

i6=j
‖ẑj‖σN

+ ‖z⊥‖s+σN

l∏

j=1

‖ẑj‖σN
.
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Similarly, for any s ≥ 1, z ∈ V ′ ∩ hs∨σN

0 with ‖z⊥‖σN
≤ 1, ẑ ∈ hs∨σN

0 ,

‖RN (z;∇P(2)
3 )‖s+N+1 .s,N ‖z⊥‖s∨σN

‖z⊥‖σN
,

‖dRN (z;∇P(2)
3 )[ẑ]‖s+N+1 .s,N ‖z⊥‖σN

‖ẑ‖s∨σN
+ ‖z⊥‖s∨σN

‖ẑ‖σN
,

and if in addition ẑ1, . . . , ẑl ∈ hs∨σN

0 , l ≥ 2,

‖dlRN (z;∇P(2)
3 )[ẑ1, . . . , ẑl]‖s+N+1 .s,N,l

l∑

j=1

‖ẑj‖s∨σN

∏

i6=j
‖ẑi‖σN

+ ‖z⊥‖s∨σN

l∏

j=1

‖ẑj‖σN
.

Proof. The identity (4.49) folllows from formula (4.44) and Lemma 4.12. The claimed asymptotic expansion

of the gradient of P(2)
3 and its properties follow from Lemmata 4.4, 4.10, 4.11 and Lemma E.1.

5 Summary of the proofs of Theorem 1.1 and Theorem 1.2

In this section we summarize the proofs of Theorem 1.1, of its addendum, and of Theorem 1.2. First recall
that in view of the envisioned applications, these theorems are formulated in terms of action angle coordinates
on the submanifold Mo

S of proper S−gap potentials. Denote by Ξ the map relating action angle variables
and complex Birkhoff coordinates,

Ξ : TS+ × R
S+

>0 × h0⊥ → h0S × h0⊥, (θS , IS , z⊥) 7→ (zS(θS , IS), z⊥) , z±n =
√
2πnIne

∓iθn , n ∈ S+ .

Clearly, Ξ is symplectic and, for any s ≥ 0, the map Ξ : TS+ × R
S+

>0 × hs⊥ → h0S × hs⊥, is real analytic.
Furthermore, in view of the definition (1.9), the map Ξ preserves the reversible structure. Hence the claimed
results for the map ΨL ◦ ΨC ◦ Ξ follow from the corresponding ones for the map ΨL ◦ ΨC . In what follows
we summarize the proofs of the results for ΨL ◦ΨC corresponding to the ones claimed for ΨL ◦ΨC ◦ Ξ.
Proof of Theorem 1.1. By a slight abuse of notation, the map Ψ of Theorem 1.1 is defined to be the
composition ΨL ◦ ΨC . By (3.8), it is defined on the neighborhood V ′ = V ′

S × V ′
⊥ where V ′

S is a bounded
neighborhood of any given compact subset K ⊂ h0S and V ′

⊥ is a ball in h0⊥ of radius smaller than 1, centered
at 0. The expansion of Ψ, corresponding to the one of (AE1), follows from the expansion for the map ΨL,
provided by Theorem 2.1 and the one for the map ΨC , provided by Theorem 3.1.
The expansion of the transpose dΨ(z)t of the derivative dΨ(z), corresponding to the one of (AE2), follows
from the fact that Ψ : V ′ → L2

0 is symplectic, meaning that for any z ∈ V ′, the operator dΨ(z)t : H1
0 → h10

satisfies dΨ(z)t = J−1(dΨ(z))−1∂x. The expansion of Ψ(z) in (AE1) then leads to an expansion of dΨ(z)
and in turn of (dΨ(z))−1 and hence of dΨ(z)t. In addition, the identity dΨ(z)t = J−1(dΨ(z))−1∂x implies
that the coefficient a1(z; dΨ

t) in the expansion of dΨt satisfies a1(z; dΨ
t) = −a1(z; Ψ).

The expansion of the Hamiltonian H(2) and of the remainder term P(2)
3 , corresponding to the one in (AE3),

are provided in Theorem 4.1. �

Proof of Addendum to Theorem 1.1. Clearly, the Fourier transform F and its inverse preserve the reversible
structure and by Proposition D.1, so do the Birkhoff map Φkdv and its inverse Ψkdv. Furthermore, by the
Addendum to Theorem 2.1, and the Addendum to Theorem 3.1 also the maps ΨL and ΨC and hence ΨL◦ΨC
preserve the reversible structure, as do the coefficients and the remainder terms in their expansions as well
as the transpose of their derivatives.
Clearly, the KdV Hamiltonian Hkdv is reversible and therefore so is H(2) = Hkdv ◦ Ψ. By (4.49) one then

concludes that also the remainder P(2)
3 is reversible. �

Proof of Theorem 1.2. The estimates of the coefficients and the remainder in the expansion of Ψ = ΨL ◦ΨC ,
corresponding to the ones of (Est1), follow from the estimates of the coefficients and the remainder in the
expansion of the map ΨL, provided by Theorem 2.1, and the ones of the coefficients and the remainder in
the expansion of the map ΨC , provided by Theorem 3.1.
The estimates of the coefficients and the remainder in the expansion of dΨ(z)t, corresponding to the one of
(Est2), follow from the fact that Ψ : V ′ → L2

0 is symplectic, meaning that for any z ∈ V ′, dΨ(z)t : H1
0 → h10
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satisfies dΨ(z)t = J−1(dΨ(z))−1∂x and the estimates (Est1) of the coefficients and the remainder in the
expansion of Ψ(z) which lead to corresponding estimates of the coefficients and the remainder in the expansion
of dΨ(z) and in turn of (dΨ(z))−1.

The estimates of the remainder term P(2)
3 in the expansion of the HamiltonianH(2) = Hkdv◦Ψ, corresponding

to (Est3), are provided by Theorem 4.1. �

A Birkhoff map

In this appendix we review the Birkhoff map and properties of it, relevant for our purposes. We refer to [13]
and [9], [14], [16] for more details in these matters.

Theorem A.1 ([13], [16]). There exists an open neighborhood W of L2
0 in L2

0,C and a real analytic map

Φkdv :W → h00,C , q 7→ z(q) = (zn(q))n6=0

with Φkdv(0) = 0 so that the following holds:

(B0) For any n ∈ N, the complex Birkhoff coordinates zn(q), z−n(q) are related to the Birkhoff coordinates
xn(q), yn(q) as introduced in [13] by the formulas (1.4) .

(B1) For any s ∈ Z≥0, the restriction of Φkdv to Hs
0 gives rise to a map Φkdv : Hs

0 → hs0 which is a
bi-analytic diffeomorphism.

(B2) The map Φkdv is canonical, meaning that on W , {zn, z−n} = i2πn for any n ∈ N and the brackets
between all other coordinate functions vanish.

(B3) The Hamiltonian Hkdv ◦ (Φkdv)−1, defined on h10, only depends on the actions (In)n∈N (cf (1.5)).
More precisely, it can be viewed as a real analytic map Hkdv on a complex neighborhood of the positive
quadrant ℓ1,3+ in ℓ1,3(N,C) (cf (1.6)).

(B4) The differential d0Φ
kdv of Φkdv at 0 is the Fourier transform F (cf (1.7)).

(B5) The nonlinear part of the Birkhoff map, Akdv := Φkdv − F , and the one of its inverse, Bkdv :=
(Φkdv)−1 − F−1, are one smoothing. More precisely, for any s ∈ N, Akdv : Hs

0 → hs+1
0 and Bkdv :

hs0 → Hs+1
0 are real analytic.

The inverse of Φkdv is denoted by Ψkdv.

To continue we first need to introduce some more notations and review properties of the Schrödinger
operator −∂2x + q. For any s ∈ Z≥0, denote by Hs

C
[0, 1] ≡ Hs([0, 1],C) the Sobolev space of functions

f : [0, 1] → C with the property that for any 0 ≤ j ≤ s, the distributional derivative ∂jxf is in L2
C
[0, 1] ≡

L2([0, 1],C). Similarly, Hs
0,C ≡ Hs

0(T,C) denotes the Sobolev space of functions q : T → C in Hs(T,C)

with
∫ 1

0
q(x)dx = 0. For any q ∈ L2

0,C ≡ H0
0,C and λ ∈ C, we denote by yj(x, λ) ≡ yj(x, λ, q), j = 1, 2, the

fundamental solutions of −y′′+qy = λy. These are the solutions satisfying the initial conditions y1(0, λ) = 1,
y′1(0, λ) = 0 and y2(0, λ) = 0, y′2(0, λ) = 1. It is well known that for any s ∈ Z≥0 and 1 ≤ j ≤ 2, the map

C×Hs
0,C → Hs+2

C
[0, 1] , (λ, q) 7→ yj(·, λ, q)

is analytic (cf [24]). For q in L2
0,C, the Schrödinger operator −∂2x + q, considered on the interval [0, 2] with

periodic boundary conditions, has a discrete spectrum. It consists of a sequence of complex numbers bounded
from below. We list them lexicographically and with algebraic multiplicities, i.e., λ+0 � λ−1 � λ+1 � λ−2 � . . .
where λ±n ≡ λ±n (q) (cf [13]). They are referred to as periodic eigenvalues of q and satisfy the asymptotic
estimates λ+n , λ

−
n = n2π2 + ℓ2n, valid uniformly on bounded subsets of L2

0,C (cf [13]). For real valued q, the

periodic eigenvalues are real and come in isolated pairs, meaning that λ+0 < λ−1 ≤ λ+1 < λ−2 ≤ λ+2 < . . . .
We remark that for any given finite subset S+ ⊆ N, the manifold MS of S-gap potentials defined in the
introduction, coincides with the set

{
q ∈ L2

0 : λ−n (q) = λ+n (q) ∀n ∈ S⊥
+

}
.
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By shrinking the neigbourhood W of Theorem A.1, if needed, one can ensure that for any q ∈ W , the closed
intervals

Gn = {(1− t)λ−n + tλ+n | 0 ≤ t ≤ 1}, n ≥ 1 , G0 = {t+ λ+0 | −∞ < t ≤ 0}
are disjoint from each other. By a slight abuse of terminology, we refer to the closed interval Gn, n ≥ 1, as
the n’th gap and to γn ≡ γn(q) as the n’th gap length, γn := λ+n − λ−n and denote by τn ≡ τn(q) the middle
point of Gn, τn = (λ+n +λ−n )/2. Due to the asymptotic behaviour of the periodic eigenvalues, (Gn)n≥1 admit
mutually disjoint neighbourhoods Un ⊆ C, n ≥ 1, with Gn ⊆ Un, referred to as isolating neighbourhoods.
They can be chosen locally independently of q (cf [13]). Denote by F (λ) ≡ F (λ, q) the Floquet matrix

F (λ) =

(
m1(λ) m2(λ)
m′

1(λ) m′
2(λ)

)
, mj(λ) = yj(1, λ) , m′

j(λ) = y′j(1, λ) , j = 1, 2 , (A.1)

and introduce the discriminant ∆(λ) ≡ ∆(λ, q) := Tr(F (λ, q)), its derivative ∆̇(λ) ≡ ∆̇(λ, q) := ∂λ∆(λ, q),
and the anti-discriminant δ(λ) ≡ δ(λ, q) = m1(λ, q)−m′

2(λ, q). The functionsmj(λ) ≡ mj(λ, q) andm
′
j(λ) ≡

m′
j(λ, q) are analytic on C × L2

0,C. The entire functions ∆2(λ) − 4 and ∆̇(λ) have product representations
(see [13, Proposition B.10, Proposition B.13])

∆2(λ)− 4 = 4(λ+0 − λ)
∏

n≥1

(λ+n − λ)(λ−n − λ)

π4
n

, ∆̇(λ) = −
∏

n≥1

λ̇n − λ

π2
n

(A.2)

where πn = nπ for any n ≥ 1 and where the zeroes λ̇n ≡ λ̇n(q) satisfy the asymptotic estimate λ̇n = n2π2+ℓ2n.
We also need to consider the operator −∂2x + q on [0, 1] with Dirichlet and Neumann boundary conditions.
For any q in L2

0,C, the corresponding spectra are again discrete, consisting of sequences of complex numbers,
bounded from below. They are referred to as Dirichlet and respectively, Neumann eigenvalues of q. We list
them lexicographically and with their algebraic multiplicities µ1 � µ2 � µ3 � . . . and ν0 � ν1 � ν2 � . . . .
The µn ≡ µn(q) and νn ≡ νn(q) satisfy the asymptotics µn, νn = n2π2 + ℓ2n, valid uniformly on bounded
subsets of L2

0,C. For real valued q, the Dirichlet and the Neumann eigenvalues are real and satisfy

λ−1 ≤ µ1 ≤ λ+1 < λ−2 ≤ µ2 ≤ λ+2 < . . . , ν0 ≤ λ+0 < λ−1 ≤ ν1 ≤ λ+1 < . . . .

By shrinking the neighbourhood W of Theorem A.1, if needed, one can assure that for any q ∈ W there
exist isolating neighbourhoods (Un)n≥1 so that for any n ≥ 1, µn, νn, τn, λ̇n ∈ Un, whereas λ

+
0 and ν0 are

not contained in any of the Un’s (cf [13]). Isolating neighbourhoods with this additional property can also
be chosen locally independently of q. Note that for q ∈ W , the Dirichlet und Neumann eigenvalues are all
simple and are analytic functions on W . Similarly, τn and λ̇n, n ∈ N, are analytic on W . In addition, m2(λ)
and m′

1(λ) admit the product representations (cf [13, Proposition B.6])

m2(λ) =
∏

n≥1

µn − λ

π2
n

, m′
1(λ) = −(ν0 − λ)

∏

n≥1

νn − λ

π2
n

.

Let S+ ⊂ N be finite and set S = S+ ∪ (−S+). For any s ∈ Z≥0, we identify hs0 with h0S × hs⊥ and
hs0,C with CS × hs⊥,C. The manifold MS of S−gap potentials is given by Ψkdv(h0S × {0}). By item (B1) of
Theorem A.1 it then follows that MS ⊂ ∩s≥0H

s
0 . Actually, potentials in MS are real analytic functions. For

our purposes, it is useful to consider the Hilbert spaces Hw
0,C := {q ∈ L2

0,C : ‖q‖w ≡ ‖(qn)n6=0‖w < ∞} and

hw0,C := {(zn)n6=0 ∈ ℓ20,C : ‖(zn)n6=0‖w <∞} where

‖(zn)n6=0‖w := (
∑

n6=0

w2
n|zn|2)1/2 , wn := 〈n〉rea|n|σ , n ∈ Z , r ≥ 0 , a > 0 , 0 < σ < 1

The weight w = (wn)n∈Z is referred to as Gevrey weight and the Hilbert space Hw
0,C as weighted Sobolev

space. Functions in Hw
0,C are Gevrey smooth. Correspondingly, we define the real Hilbert spaces Hw

0 := {q ∈
Hw

0,C : q real valued} and hw0 := {(zn)n6=0 ∈ hw0,C : z−n = zn ∀n ≥ 1}. To fix ideas we will only consider the
Gevrey weight with parameters r = 0, a = 1, and σ = 1/2 und denote it by w∗, but any other choice of a
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Gevrey weight would also be possible. Note that MS ⊂ Hw∗

0 and that Hw∗

0,C naturally embeds into Hs
0,C for

any s ∈ Z≥0. According to [14, Addendum 1 to Theorem 5], we have the following

Addendum to Theorem A.1 The restriction of Φkdv to Hw∗

0 gives rise to a map Φkdv : Hw∗

0 → hw∗

0

which is a bi-analytic diffeomorphism. In particular, for any q ∈MS, there exists a neighborhood V ∗
q of q in

Hw∗

0,C ∩W and a neighborhood V∗
z(q) of z(q) = Φkdv(q) in hw∗

0,C so that the restriction of Φkdv to V ∗
q gives rise

to a real analytic diffeomorphism Φkdv : V ∗
q → V∗

z(q). The neighborhood V∗
z(q) can be chosen to be of the form

V∗
zS(q)

×V∗
0,⊥ where V∗

zS(q)
is a neighborhood of zS(q) = (zn(q))n∈S in CS and V∗

0,⊥ is a ball in hw⊥,C, centered

at 0 with radius depending on q. We denote the set Ψkdv(V∗
zS(q)×{0}) by V ∗

q,S . It consists of complex valued
S−gap potentials near q.

B Floquet solutions

In this appendix we obtain formulas for Floquet solutions f±n(x, q), n ∈ S⊥
+ , for potentials q inMS which will

be used in Proposition 2.2 of Section 2 to relate these solutions to the differentials of the complex Birkhoff
coordinates z±n(q). The resulting formulas are a key ingredient for proving the asymptotic expansion of the
map ΨL (cf Section 2). Without further reference, we will use the notations estabished in Appendix A.
We begin by recalling the notion of Floquet solutions of −y′′+ qy = λy for any given q ∈ L2

0 and λ ∈ R. The
eigenvalues κ±(λ) ≡ κ±(λ, q) of the Floquet matrix F (λ) (cf (A.1)) are given by the roots of det

(
F (λ) −

κId2×2

)
= κ2 −∆(λ)κ + 1. For λ in (λ+0 ,∞) \

(⋃
n≥1[λ

−
n , λ

+
n ]
)
one has κ±(λ) =

∆(λ)
2 ∓ 1

2
c
√
∆2(λ) − 4 ∈ C

where c
√
∆2(λ)− 4 denotes the canonical root determined by sign

(
c
√

∆2(λ)− 4
)
= −i for λ+0 < λ < λ−1

(cf [13, definition (6.10)]). For λ ∈ (λ+0 ,∞) \
(⋃

n≥1[λ
−
n , λ

+
n ]
)
, m2(λ) 6= 0 (λ is not a Dirichlet eigenvalue),

m′
1(λ) 6= 0 (λ is not a Neumann eigenvalue) and (1, a+(λ)) ∈ C2 is an eigenvector of F (λ) corresponding to

the eigenvalue κ+(λ)

F (λ)

(
1

a+(λ)

)
=

(
m1(λ) m2(λ)
m′

1(λ) m′
2(λ)

)(
1

a+(λ)

)
= κ+(λ)

(
1

a+(λ)

)

where a+(λ) ≡ a+(λ, q) is given by

a+(λ) =
κ+(λ)−m1(λ)

m2(λ)
or, equivalently, a+(λ) =

m′
1(λ)

κ+(λ)−m′
2(λ)

. (B.1)

Similarly, (1, a−(λ)) ∈ C2, a−(λ) ≡ a−(λ, q), is an eigenvector of F (λ) corresponding to the eigenvalue
κ−(λ),

F (λ)

(
1

a−(λ)

)
= κ−(λ)

(
1

a−(λ)

)
, a−(λ) =

κ−(λ)−m1(λ)

m2(λ)
or a−(λ) =

m′
1(λ)

κ−(λ)−m′
2(λ)

. (B.2)

If λ+n is a double periodic eigenvalue, one has λ−n = λ+n = τn and F (τn) = (−1)nId2×2. By de l’Hospital’s
rule, the formulas in (B.1) - (B.2) admit limits at such eigenvalues. Recall that S+ ⊆ N is finite, S⊥

+ = N\S+

and S = S+ ∪ (−S+). We denote by ˙ the derivative with respect to λ.

Lemma B.1. For any q ∈MS and n ∈ S⊥
+ , the following holds:

(i) (−1)nṁ2(τn) > 0, (−1)n+1∆̈(τn) > 0.
(ii) The limit a±n ≡ a±n(q) := limλ→τn a±(λ, q) exists and

a±n = −ṁ1(τn)

ṁ2(τn)
± i

+

√
(−1)n+1∆̈(τn)/2

(−1)nṁ2(τn)
. (B.3)

(iii) One has ṁ1
′(τn) 6= 0 and

a±n =
ṁ1

′(τn)

−ṁ2
′(τn)± i(−1)n +

√
(−1)n+1∆̈(τn)/2

. (B.4)
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Remark B.1. Recall that for any given q ∈ MS, V
∗
q,S is the set of S−gap potentials, introduced at the end

of Appendix A. By shrinking W of Theorem A.1, if needed, the expressions in the formulas for a±n, n ∈ S⊥
+ ,

of item (ii) and (iii) of Lemma B.1 are well defined, real analytic functions on V ∗
q,S and the formulas for

a±n continue to hold for any potential in V ∗
q,S (cf Appendix A).

Proof. (i) For any q ∈ MS and n ∈ S⊥
+ , τn = µn, m1(τn) = (−1)n, m′

2(τn) = (−1)n, and ṁ2(µn) =

(−1)n
∫ 1

0
y2(x, µn)

2 dx (cf [13, Proposition B.4]). Since τn is a nondegenerate critical point of ∆, one has

∆̇(τn) = 0 and ∆̈(τn) 6= 0. Furthermore, one has ∆(τn) = (−1)n2 and (−1)n+1∆̈(τn) > 0. (ii) It is well
known that F (λ) is real analytic in λ (cf Appendix A). Expanding m1(λ) and m2(λ) at τn, n ∈ S⊥

+ , one has

m1(λ) = (−1)n + ṁ1(τn)(λ− τn) +O((λ − τn)
2) , m2(λ) = ṁ2(τn)(λ− τn) +O((λ − τn)

2) ,

and ∆(λ) = (−1)n2 + ∆̈(τn)
2 (λ− τn)

2 + O
(
(λ− τn)

3
)
. It follows that for λ+n−1 < λ < λ−n+1,

c
√
∆2(λ)− 4 = i(−1)n+1 +

√
(−1)n+12∆̈(τn) (λ − τn) +O((λ − τn)

2)

(where we set c
√
∆2(τn)− 4 = 0). Combining these asymptotic estimates, the claimed formula (B.3) then

follows from (B.1) - (B.2). (iii) Since τn is a Neumann eigenvalue and Neumann eigenvalues are simple, it
follows that ṁ′

1(τn) 6= 0. Expanding m′
1(λ), m

′
2(λ) at τn one gets

m′
1(λ) = ṁ′

1(τn)(λ− τn) +O
(
(λ − τn)

2
)
, m′

2(λ) = (−1)n + ṁ′
2(τn)(λ− τn) +O

(
(λ− τn)

2
)
.

Furthermore, one has

κ±(λ) = (−1)n ± i
(−1)n

2
+

√
(−1)n+12∆̈(τn)/2 (λ− τn) +O

(
(λ− τn)

2
)
.

Formula (B.4) then follows from (B.1) - (B.2).

For q ∈MS and n ∈ S⊥
+ , we define the Floquet solutions f±n(x) ≡ f±n(x, q) at τn by

f±n(x, q) := y1(x, τn, q) + a±n(q)y2(x, τn, q) .

By Lemma B.1 and Remark B.1 they are welldefined for any potential in V ∗
q,S . Furthermore, consider the

normalized solutions Hn(x) ≡ Hn(x, q) and Gn(x) ≡ Gn(x, q) of −y′′ + qy = τny,

Hn(x) :=
(
− 2ṁ2(τn)

∆̈(τn)

) 1
2

(
y1(x, τn)−

ṁ1(τn)

ṁ2(τn)
y2(x, τn)

)
(B.5)

Gn(x) :=
(
− 2ṁ2(τn)

∆̈(τn)

) 1
2

+

√
(−1)n+1∆̈(τn)/2

(−1)nṁ2(τn)
y2(x, τn) . (B.6)

One then has Gn(0) = 0 and

Hn(x) + iGn(x) =
(
− 2ṁ2(τn)

∆̈(τn)

) 1
2 fn(x) , Hn(x)− iGn(x) =

(
− 2ṁ2(τn)

∆̈(τn)

) 1
2 f−n(x) . (B.7)

Note that for any q ∈ MS , f−n(x, q) = fn(x, q), and Hn(x, q) and Gn(x, q) are the normalized real and
respectively imaginary parts of fn(x, q). In addition, they satisfy Hn(0, q) > 0 and G′

n(0, q) > 0 by the
formulas above. Hence given q ∈ MS , by shrinking V ∗

q,S , if needed, we can assume that ReHn(0) > 0 and

ReG′
n(0) > 0 on V ∗

q,S for any n ∈ S⊥
+ .
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Proposition B.1. For any q ∈MS and n ∈ S⊥
+ the following holds: (i) For any s ∈ Z≥0, Hn(·, p), Gn(·, p),

and f±n(·, p) are analytic maps in p ∈ V ∗
q,S with values in Hs

C
[0, 1].

(ii) For any p ∈ V ∗
q,S , the Floquet solutions

(
− 2ṁ2(τn)

∆̈(τn)

) 1
2 f±n(x) = Hn(x) ± iGn(x)

have the property that Hn, Gn are the unique solutions of −y′′ + py = τny, satisfying the following normal-

ization conditions: (ii1)
∫ 1

0
Hn(x)Gn(x) dx = 0 and

(ii2)

∫ 1

0

G2
n(x) dx = 1 , Gn(0) = 0 , ReG′

n(0) > 0 ; (ii3)

∫ 1

0

H2
n(x) dx = 1 , ReHn(0) > 0 .

Proof. (i) Since for any s ∈ Z≥0, H
w∗

0,C embeds into the Sobolev space Hs
0,C the claimed analyticity statements

follow from the results recorded in Appendix A. (ii) Clearly, the statement on uniqueness follows from the
uniqueness of the initial value problem for −y′′ + qy = τny. Hence it remains to prove that Gn and Hn

satisfy items (ii1) - (ii3). In view of item (i), it suffices to verify these normalisation conditions on MS . By
[24], Theorem 6, page 21, one has

ṁ′
1(τn) = (−1)n+1

∫ 1

0

y1(x, τn)
2 dx , ṁ2(τn) = (−1)n

∫ 1

0

y2(x, τn)
2 dx , (B.8)

ṁ′
2(τn) = (−1)n+1

∫ 1

0

y1(x, τn)y2(x, τn) dx = −ṁ1(τn) . (B.9)

To prove (ii1) it is to show that J :=
∫ 1

0
(Refn(x)) y2(x, τn) dx = 0. By (B.5)-(B.9),

J =

∫ 1

0

(
y1(x, τn)−

ṁ1(τn)

ṁ2(τn)
y2(x, τn)

)
y2(x, τn) dx = (−1)n+1ṁ′

2(τn)−
ṁ1(τn)

ṁ2(τn)
(−1)nṁ2(τn) .

Since ∆̇(τn) = 0 and at the same time ∆̇(τn) = ṁ1(τn) + ṁ′
2(τn) one concludes that J = 0. (ii2) By the

definition of Gn, one has Gn(0) = 0 and G′
n(0) > 0. To see that

∫ 1

0
Gn(x)

2 dx = 1, note that

∫ 1

0

(
Imf(x)

)2
dx =

(−1)n+1∆̈(τn)/2

(ṁ2(τn))2
(−1)nṁ2(τn) = − ∆̈(τn)

2ṁ2(τn)

implying that
∫ 1

0 Gn(x)
2 dx = 1. (ii3) Since Refn(0) = y1(0, τn) = 1, one has Hn(0) > 0 whereas

J :=

∫ 1

0

Refn(x)
2 dx =

∫ 1

0

y1(x, τn)
2 − 2

ṁ1(τn)

ṁ2(τn)

∫ 1

0

y1(x, τn)y2(x, τn) dx+
(ṁ1(τn)

ṁ2(τn)

)2
∫ 1

0

y2(x, τn)
2 dx

is given by (cf (B.8)-(B.9))

J = (−1)n+1ṁ′
1(τn)−2

ṁ1(τn)

ṁ2(τn)
(−1)nṁ1(τn)+

(ṁ1(τn)

ṁ2(τn)

)2

(−1)nṁ2(τn) = (−1)n+1ṁ′
1(τn)+(−1)n+1 ṁ1(τn)

2

ṁ2(τn)
.

By the definition (B.5), it is therefore to show that

(−1)n
∆̈(τn)

2ṁ2(τn)
= ṁ′

1(τn) +
ṁ1(τn)

2

ṁ2(τn)
or ṁ′

1(τn)ṁ2(τn) = (−1)n∆̈(τn)/2− ṁ1(τn)
2 .

This latter identity follows by combining the two formulas for an, given in Lemma B.1.
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C Asymptotic expansions

The main purpose of this appendix is to provide for any S−gap potential q an asymptotic expansion of the
Floquet solutions f±n(x) ≡ f±n(x, q) as n → ∞. These expansions are a key ingredient for proving the
asymptotic expansion of the map ΨL, stated in Theorem 2.1 in Section 2. At the end of this appendix we
provide an asymptotic expansion for the KdV frequencies for S−gap potentials, needed for the expansion of
the KdV Hamiltonian in the new coordinates.
Throughout this appendix, if not mentioned otherwise, we assume that q ∈MS where S = S+ ∪ (−S+) and
S+ ⊂ N is a finite subset. Furthermore, V ∗

q,S is the neighborhood of q, introduced at the end of Appendix A. If
not mentioned otherwise,

√
µ denotes the principal branch +

√
µ of the square root, defined for µ ∈ C\(−∞, 0].

Recall that for any p ∈ V ∗
q,S , one has

∫ 1

0
p(x) dx = 0 and

f±n(x) = y1(x, τn) + a±ny2(x, τn) , ∀n ∈ S⊥
+ , (C.1)

where yj(x, λ), j = 1, 2, denote the fundamental solutions of −y′′ + py = λy, a±n are the complex numbers
given by (B.3), and τn = (λ+n + λ−n )/2. Note that if p is real valued, then

τn(p) ∈ R , a−n(p) = an(p) , and f−n(x, p) = fn(x, p) , ∀n ∈ S⊥
+ .

Theorem C.1. Let q ∈ MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S , the Floquet solutions fn, n ∈ S⊥, have

an expansion as |n| → ∞ of the form

fn(x, p) = eiπnx
(
1 +

N∑

k=1

faek (x, p)

(2πin)k
+

Rfn
N (x, p)

(2πin)N+1

)
(C.2)

where for any s ≥ 0, the coefficients V ∗
q,S → Hs

C
, p 7→ faek (·, p), k ≥ 1, are real analytic and the remainder

V ∗
q,S → Hs

C
, p 7→ Rfn

N (·, p), is analytic. In addition, for any given j ≥ 0,

sup
0≤x≤1

n∈S⊥

|∂jxRfn
N (x, p)| ≤ CN,j (C.3)

where the constant CN,j ≥ 1 can be chosen locally uniformly for p in V ∗
q,S .

To prove Theorem C.1, we first need to establish some auxiliary results.

Lemma C.1. For any q ∈ MS and any integers N,M ≥ 0, the following holds: for any p ∈ V ∗
q,S and

ν ∈ C \ {0}, there exist solutions yN,M(x, ν) ≡ yN,M (x, ν, p) of −y′′ + py = ν2y of the form

yN,M(x, ν, p) = eiνx
(
1 +

N∑

k=1

yaek (x, p)

(2iν)k
+
ỹN,M (x, ν, p)

(2iν)N+1

)
. (C.4)

The functions yaek (x) ≡ yaek (x, p), k ≥ 1, are defined inductively by

yaek (x) =

∫ x

0

(−∂2t + p)yaek−1(t) dt , yae0 (x) ≡ 1 (C.5)

and for any s ∈ Z≥0, the maps V ∗
q,S → Hs

C
[0, 1], p 7→ yaek (·, p), are real analytic. The remainder ỹN,M(x, ν, p)

satisfies ỹN,M(0, ν, p) = 0, ∂xỹN,M(0, ν, p) =
∑M
k=1

∂xy
ae
N+k(0,p)

(2iν)k
and has the property that for any s ∈ Z≥0,

(C\{0})×V ∗
q,S → Hs

C
[0, 1], (ν, p) 7→ ỹN,M (·, ν, p) is analytic. Furthermore, if ν ∈ R\{0} and p is real valued

then yN,M(x,−ν, p) = yN,M (x, ν, p). In addition, for any given c > 0, the remainder ỹN,M (·, ν, p) satisfies

sup
|Im ν|≤c,|ν|≥1
0≤x≤1,0≤j≤M

|∂jxỹN,M (x, ν, p)| ≤ CN,M (C.6)

where the constant CN,M can be chosen locally uniformly in p ∈ V ∗
q,S .
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Remark C.1. By (C.5), for any k ≥ 1 and s ≥ k − 1, the map yaek : Hs
0,C → Hs−k+2

C
[0, 1], q 7→ yaek (·, q) is

real analytic. Writing Q(x) :=
∫ x
0
q(t)dt, the formulas for yae1 , y

ae
2 , and y

ae
3 read as follows:

yae1 (x, q) = Q(x) , yae2 (x, q) = −(q(x)− q(0)) +
1

2
Q(x)2 ,

yae3 (x, q) = (q′(x) − q′(0))−
∫ x

0

q(t)2dt+ q(0)Q(x)− q(x)Q(x) +
1

6
Q(x)3.

Proof. For any p ∈ V ∗
q,S and ν 6= 0, the solutions yN,M(x, ν) ≡ yN,M (x, ν, p) of −y′′ + py = ν2y are obtained

from solutions of the form

yN1(x, ν) = eiνx
(
1 +

N1∑

k=1

yaek (x)

(2iν)k
+
ỹN1(x, ν)

(2iν)N1+1

)
(C.7)

with an appropriate choice of N1. Solutions of the form (C.7) were studied in [21, Chapter 1, Section 4].
Here for any k ≥ 1, yaek (x) ≡ yaek (x, p) is defined by (C.5) and ỹN1(x, ν) ≡ ỹN1(x, ν, p) is the unique solution
of the inhomogeneous ODE

(
− ∂2x + p− ν2

)
[eiνxỹN1(x, ν)] = −2iνeiνx∂xy

ae
N1+1(x) (C.8)

satisfying the initial conditions
ỹN1(0, ν) = 0 , ∂xỹN1(0, ν) = 0 . (C.9)

Clearly, for any s ≥ 0 and k ≥ 1, the maps V ∗
q,S → Hs

C
[0, 1], p 7→ yaek (·, p), are real analytic. Arguing as in

[13, Chapter 1], one sees that for any s ≥ 0, the map (C \ {0}) × V ∗
q,S → Hs

C
[0, 1], (ν, p) 7→ ỹN1(·, ν, p) is

analytic. Furthermore, note that yN1(0, ν) = 0 and ∂xyN1(0, ν) = iν +
∑N1

k=1
∂xy

ae
k (0)

(2iν)k
. It then follows that

for any ν 6= 0, yN1(x, ν) is a solution of −y′′ + py = ν2y. Indeed

(
− ∂2x + p− ν2

)
yN1 = eiνx

N1∑

k=1

−∂xyaek − ∂2xy
ae
k−1 + pyaek−1

(2iν)k−1

+ eiνx
−∂2xyaeN1

+ pyaeN1

(2iν)N1
+ (−∂2x + p− ν2)

[
eiνx

ỹN1(x, ν)

(2iν)N1+1

]
.

Hence by (C.5) and (C.8),
(
− ∂2x + p− ν2

)
yN1 = 0. The solution yN,M(x, ν) is then defined as follows

yN,M (x, ν) = eiνx
(
1 +

N∑

k=1

yaek (x)

(2iν)k
+
ỹN,M(x, ν)

(2iν)N+1

)
, ỹN,M(x, ν) =

M∑

k=1

yaeN+k(x)

(2iν)k−1
+
ỹN+M (x, ν)

(2iν)M
.

Since by the definition (C.5), yaek (0) = 0 for any k ≥ 1 and by (C.9), ỹN+M (0, ν) = 0 one concludes that
ỹN,M(0, ν) = 0. Furthermore, since by (C.9) ∂xỹN+M (0, ν) = 0, one has

∂xỹN,M (0, ν) =

M∑

k=1

∂xy
ae
N+k(0)

(2iν)k−1

and by the arguments above, for any s ≥ 0, the map (C \ {0})× V ∗
q,S → Hs

C
[0, 1], (ν, p) 7→ ỹN,M (·, ν, p) is

analytic. Furthermore, if ν ∈ R \ {0} and p is real valued then

y′N,M(0,−ν) = −iν +

N+M∑

k=1

∂xy
ae
k (0)

(−2iν)k
= y′N,M(0,−ν) .

Since yN,M(0,±ν) = 1 and yN,M(0, ν) and yN,M(0,−ν) both solve−y′′+py = ν2y it follows by the uniqueness

of the initial value problem that yN,M(·,−ν) = yN,M(·, ν). It remains to show the estimate (C.6). Note that
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for any p ∈ V ∗
q,S , the terms

yae
N+k(x)

(2iν)k−1 , 1 ≤ k ≤ M , satisfy an estimate of the type (C.6). Hence it suffices to

show that

sup
|Im ν|≤c,|ν|≥1
0≤x≤1,0≤j≤M

|∂jxỹN+M (x, ν)|
|ν|j ≤ C̃N,M (C.10)

for some constant C̃N,M > 0. By (C.8), (C.9), ỹN+M solves the initial value problem

(
− ∂2x + p− ν2

)[
eiνxỹN+M (x, ν)

]
= −2iνeiνx∂xy

ae
N+M+1(x) ,

ỹN+M (0, ν) = 0 , ∂xỹN+M (0, ν) = 0 .
(C.11)

By the method of the variation of the constants it is given by

ỹN+M (x, ν) = −2iν

∫ x

0

K(x, t, ν2)eiν(t−x)∂ty
ae
N+M+1(t) dt (C.12)

where K(x, t, ν2) = y1(x, ν
2)y2(t, ν

2)− y1(t, ν
2)y2(x, ν

2), satisfying the estimates (cf [13, Chapter 1])

sup
0≤x≤1

|Im ν|≤c,|ν|≥1

|y1(x, ν2)| ≤ C , sup
0≤x≤1

|Im ν|≤c,|ν|≥1

|ν||y2(x, ν2)| ≤ C ,

sup
0≤x≤1

|Im ν|≤c,|ν|≥1

|∂xy1(x, ν2)|
|ν| ≤ C , sup

0≤x≤1
|Im ν|≤c,|ν|≥1

|∂xy2(x, ν2)| ≤ C

for some constant C > 0. It then follows from (C.12) and (C.5) that sup 0≤x≤1
|Im ν|≤c,|ν|≥1

|ỹN+M (x, ν)| ≤ C .

Since K(x, x, ν2) = 0 one has that

∂xỹN+M (x, ν) = −iνỹN+M (x, ν)− 2iν

∫ x

0

∂xK(x, t, ν2)eiν(t−x)∂ty
ae
N+M+1(t) dt

implying that sup 0≤x≤1
|Im ν|≤c,|ν|≥1

|∂xỹN+M(x,ν)|
|ν| ≤ C . Using equation (C.11) one gets

− ∂2xỹN+M (x, ν) = 2iν∂xỹN+M (x, ν) − pỹN+M (x, ν)− 2iν∂xy
ae
N+M+1(x) (C.13)

yielding sup 0≤x≤1
|Im ν|≤c,|ν|≥1

|∂2
xỹN+M(x,ν)|

|ν|2 ≤ C . By taking derivatives of (C.13), one then concludes that there

exists a constant CN,M > 0 so that for any 0 ≤ j ≤ M , sup 0≤x≤1
|Im ν|≤c,|ν|≥1

|∂j
xỹN+M(x,ν)|

|ν|j ≤ C̃N,M . Going

through the arguments of the proof one concludes that the constant CN,M can be chosen locally uniformly
for p ∈ V ∗

q,S .

Let q ∈ MS and N,M ≥ 0. Then for any p ∈ V ∗
q,S and ν 6= 0 with |ν| sufficiently large, the solutions

yN,M(x, ν) and yN,M(x,−ν) of −y′′ + py = ν2y, considered in Lemma C.1, are linearly independent. Indeed
by Lemma C.1, for any ν 6= 0,

yN,M (0, ν) = 1 , ∂xyN,M(0, ν) = iν +

N+M∑

k=1

∂xy
ae
k (0)

(2iν)k

implying that the Wronskian of yN,M(·,−ν) and yN,M (·, ν) equals

det

(
yN,M(0,−ν) yN,M(0, ν)
∂xyN,M(0,−ν) ∂xyN,M(0, ν)

)
= ∂xyN,M(0, ν)− ∂xyN,M(0,−ν) = 2iν +

N+M∑

k=1

∂xy
ae
k (0)

(2iν)k
(
1− (−1)k

)
.
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Hence there exists νb ≥ 1 so that

∣∣∣2iν +
N+M∑

k=1

∂xy
ae
k (0)

(2iν)k
(
1− (−1)k

)∣∣∣ ≥ 1, ∀ν with |ν| ≥ νb . (C.14)

The bound νb can be chosen locally uniformly in p ∈ V ∗
q,S . It then follows that for |ν| ≥ νb, y1(x, ν

2),

y2(x, ν
2) are linear combinations of yN,M(x, ν) and yN,M (x,−ν),

y1(x, ν
2) = αN,M (−ν)yN,M (x, ν) + αN,M(ν)yN,M (x,−ν) , (C.15)

αN,M(ν) =
∂xyN,M(0, ν)

∂xyN,M(0, ν)− ∂xyN,M(0,−ν) (C.16)

and
y2(x, ν

2) = βN,M(ν)yN,M (x, ν) + βN,M (−ν)yN,M (x,−ν) , (C.17)

βN,M (ν) =
1

∂xyN,M (0, ν)− ∂xyN,M (0,−ν) . (C.18)

We note that βN,M (−ν) = −βN,M(ν) and for |ν| sufficiently large, αN,M (ν) ≃ 1
2 and βN,M (ν) ≃ 1

2iν .
Furthermore, in case p is real valued and ν ∈ R with |ν| ≥ νb, one has

αN,M (−ν) = αN,M (ν) and βN,M (−ν) = βN,M (ν) = −βN,M (ν) ,

implying that βN,M (ν) is purely imaginary. Finally, to prove Theorem C.1, the following two additional
results are needed. It is well know that τn = (λ+n + λ−n )/2 admits an asymptotic expansion as n → ∞ (cf
e.g. [15, Theorem 1.3]). More precisely, we have the following

Lemma C.2. Let q ∈ MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S, τn(p), n ∈ S⊥

+ , has an expansion of the
form

τn(p) = n2π2 +
N∑

k=1

τae2k (p)

(2πin)2k
+

Rτn
2N (p)

(2πin)2N+2
(C.19)

where V ∗
q,S → C, p 7→ τae2k (p), k ≥ 1, and V ∗

q,S → C, p 7→ Rτn
2N (p) are real analytic. As a consequence,

choosing n0 ≥ mS := 1 + max{n ∈ S} so that Re(τn(p)) > 0 for any n ≥ n0, it follows that 2i
√
τn(p),

n ≥ n0, admits an expansion of the form

2i
√
τn(p) = 2πin

(
1 +

N∑

k=2

√
τ
ae
2k(p)

(2πin)2k
+

R
√
τn

2N (p)

(2πin)2N+2

)
(C.20)

where V ∗
q,S → C, p 7→ √

τ
ae
2k(p), k ≥ 2, and V ∗

q,S → C, p 7→ R
√
τn

2N (p) are real analytic. In addition, the

remainders Rτn
2N (p) and R

√
τn

2N (p) satisfy

sup
n∈S⊥

+

|Rτn
2N (p)| ≤ CN , sup

n≥n0

|R
√
τn

2N (p)| ≤ CN

where the constants CN > 0 and n0 > mS can be chosen locally uniformly for p ∈ V ∗
q,S .

Proof. The functions τae2k (q), k ≥ 2, are given by polynomial expressions of integrals of densities, involving
q and its derivatives up to order 2k (cf [15]) and are real analytic maps, Hk

0,C → C, q 7→ τae2k (q). Since τn is
real analytic on V ∗

q,S so is

Rτn
2N (p) = (2πin)2N+2

(
τn(p)− n2π2 −

N∑

k=1

τae2k (p)

(2πin)2k

)
.

The claimed bounds for Rτn
2N (p) were established in [15]. In view of the asymptotics of τn(p), one finds

n0 ≥ mS with the claimed properties and then obtains the coefficients
√
τ
ae
2k(p) from the expansion of τn(p)

in a recursive way and concludes that they are real analytic. Since
√
τn(p) is real analytic one again concludes

that the remainder term R
√
τn

2N (p) is real analytic as well and deduces the claimed bounds.
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The second result concerns the asymptotic expansion of the coefficients an, defined in (B.3).

Lemma C.3. Let q ∈ MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S , an(p), n ∈ S⊥, has an expansion of the

form

an(p) = inπ +

N∑

k=0

aaek (p)

(2πin)k
+

Ran
N (p)

(2πin)N+1
(C.21)

where V ∗
q,S → C, p 7→ aaek (p), k ≥ 0, are real analytic and V ∗

q,S → C, p 7→ Ran
N (p) is analytic. In addition,

the remainders Ran
N (p) satisfy

sup
n∈S⊥

|Ran
N (p)| ≤ CN

where the constant CN > 0 can be chosen locally uniformly for p ∈ V ∗
q,S .

Proof. To start with, we compute the leading term in the expansion of an. Recall that by (B.3),

a±n = −ṁ1(τn)

ṁ2(τn)
± i

√
(−1)n+1∆̈(τn)/2

(−1)nṁ2(τn)
, n ∈ S⊥

+ .

By (B.8) - (B.9), for any n ∈ S⊥
+ , ṁ1(τn) = (−1)n

∫ 1

0
y1(t, τn)y2(t, τn) dt and ṁ2(τn) = (−1)n

∫ 1

0
y2(x, τn)

2 dx,
yielding

a±n = −
∫ 1

0
y1(t, τn)y2(t, τn) dt∫ 1

0 y2(t, τn)
2 dt

± i
1

(
2
∫ 1

0
y2(t, τn)2 dt

) 1
2

√

− ∆̈(τn)

ṁ2(τn)
. (C.22)

Since
√
τn = nπ

(
1 +O( 1

n4 )
)
(Lemma C.2) and hence y1(t, τn) = cos(nπt) +O( 1

n ) and y2(t, τn) =
sin(nπt)
nπ +

O( 1
n2 ) (cf [24, Chapter 1]) one has

∫ 1

0

y1(t, τn)y2(t, τn) dt = O
( 1

n2

)
, 2

∫ 1

0

y2(t, τn)
2 dt =

1

n2π2

(
1 +O(

1

n
)
)
. (C.23)

To analyze the quotient − ∆̈(τn)
ṁ2(τn)

we use the product representation of ∆̇(λ) and m2(λ) (cf Appendix A),

∆̇(λ) = −
∏

k≥1

λ̇k − λ

π2k2
, m2(λ) =

∏

k≥1

µk − λ

π2k2
.

Since for n ∈ S⊥
+ , λ+n = λ̇n = µn = τn,

∆̈(τn) =
1

n2π2

∏

k 6=n

λ̇k − τn
π2k2

, ṁ2(τn) = − 1

π2n2

∏

k 6=n

µk − τn
π2k2

and one concludes that

− ∆̈(τn)

ṁ2(τn)
=

∏

k∈S+

λ̇k − τn
µk − τn

=
∏

k∈S+

1− λ̇k

τn

1− µk

τn

.

Altogether we thus have proved that for any n ∈ S⊥
+ ,

a±n = ±inπ +O(1) and a±n = −
∫ 1

0
y1(t, τn)y2(t, τn) dt∫ 1

0 y2(t, τn)
2 dt

± i
1

(
2
∫ 1

0 y2(t, τn)
2 dt

) 1
2

( ∏

k∈S+

1− λ̇k

τn

1− µk

τn

) 1
2

.

Expressing y1(t, τn) and y2(t, τn) in terms of yN,M(x,±√
τn) (cf (C.15), (C.17)), one obtains an expansion of

the form (C.21) where the coefficients aaek can be explicitly computed by using the expansion of yN,M(x, ν),
obtained in Lemma C.1 and the one of

√
τn of Lemma C.2. It follows that for any k ≥ 0, the map V ∗

q,S → C,
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p 7→ aaek (p) is analytic. In case p is real valued one has a−n = an (cf definition (B.3) of a±n). By an
inductive argument it then follows from the expansion of an + a−n that for any k ≥ 0, the coefficient aaek is
real valued. With regard to the remainder term, since for any n ∈ S⊥, an is analytic on V ∗

q,S (cf Remark B.1)
one sees that Ran

N is analytic on V ∗
q,S . The claimed estimates are obtained from the corresponding estimates

of Lemma C.1 and Lemma C.2.

Proof of Theorem C.1. Let q ∈ MS and N ≥ 0. To prove that for p ∈ V ∗
q,S , fn(x, p) has an expansion

of the form (C.2) we first note that since y1(x, τn) = cos(nπx) + O( 1
n ), y2(x, τn) = 1

nπ sin(nπx) + O( 1
n2 ),

and a±n = inπ + O(1), one has f±n(x) = e±iπnx + O( 1
n ). To obtain the expansion as claimed, we want to

apply Lemma C.1. Choose M ≥ 0 (arbitrarily large) and n0 ≥ mS (cf Lemma C.2) so that Re τn > 0 and in
addition |√τn| ≥ νb for any n ≥ n0 where νb ≥ 1 is given by (C.14). We then substitute the formulas (C.15)
and (C.17) with ν2 = τn into the expression (C.1) for f±n(x) ≡ f±n(x, p) to get for n ≥ n0

f±n(x) = αN,M (−√
τn) yN,M (x,

√
τn) + αN,M (

√
τn
)
yN,M(x,−√

τn)

+ a±n
(
βN,M (

√
τn) yN,M(x,

√
τn) + βN,M (−√

τn) yN,M(x,−√
τn)

)
.

(C.24)

Using the expansions of
√
τn (Lemma C.2), a±n (Lemma C.3), and yN,M(x, ν) (Lemma C.1) one gets an

expansion of fn, |n| ≥ n0, of the form (C.2) where the coefficients faek , k ≥ 1, and the remainder Rfn
N

can be explicitly computed. One verifies that for any s ≥ 0 and k ≥ 1, faek : V ∗
q,S → Hs

C
[0, 1] is analytic.

Furthermore, by choosing M sufficiently large and using the estimates of the lemmas referred to above,
one obtains the claimed estimate (C.3) of Rfn

N for any |n| ≥ n0. Note that at this point, we only know
that faek (·, p) is an element in Hs

C
[0, 1] for any s ≥ 0. But since e−iπnxfn(x) is one periodic in x, it follows

by induction that for any k ≥ 1, faek (x) is one periodic in x as well. Since in case p is real valued,

e−iπnxfn(x) = eiπnxf−n(x) one reads off from the expansions of e−iπnxfn(x) and eiπnxf−n(x) that faek ,
k ≥ 1, are real valued. Altogether this shows that for any s ≥ 0 and k ≥ 1, faek : V ∗

q,S → Hs
C
is real analytic.

For n ∈ S⊥ with |n| < n0, we define Rfn
N (x) by

Rfn
N (x) = (2πin)N+1

(
e−iπnxfn(x)− 1−

N∑

k=1

faek (x)

(2πin)k

)
.

We then conclude that for any n ∈ S⊥, Rfn
N (x) is one periodic in x. Furthermore, since for any n ∈ S⊥

and s ≥ 0, e−iπnxfn : V ∗
q,S → Hs

C
is analytic (cf (C.1)) it follows that Rfn

N : V ∗
q,S → Hs

C
is analytic as well.

Going through the arguments of the proof one sees that the estimate (C.3) holds for any n ∈ S⊥ and that
the constant CN,j in (C.3) can be chosen locally uniformly for p ∈ V ∗

q,S . �

The next result states how the map Srev, defined in Section 1, acts on the functions fn(x, q) and how on
the coefficients and the remainder of its expansion.
Addendum to Theorem C.1. For any q ∈MS and n ∈ S⊥

fn(x, Srevq) = f−n(−x, q)
(
= (Srevf−n)(x, q)

)
, ∀x ∈ R

and as a consequence,

faek (x, Srevq) = (−1)kfaek (−x, q) , k ≥ 1, Rfn
N (x, Srevq) = (−1)N+1Rf−n

N (−x, q) . (C.25)

Proof of Addendum to Theorem C.1. Let q ∈ MS and n ∈ S⊥
+ . By Lemma D.1, one knows that

τn(Srev(q)) = τn(q) and

f±n(x, Srevq) =
(
y1(x) + a±ny2(x)

)
|τn,Srevq = y1(−x, τn, q)− a±n(Srevq)y2(−x, τn, q) ∀x ∈ R (C.26)

where τn ≡ τn(q). Recall that a±n is given by a±n = − ṁ1(τn)
ṁ2(τn)

± i

√
(−1)n+1∆̈(τn)/2

(−1)nṁ2(τn)
. Note that again by

Lemma D.1, one has

m2(λ, Srevq) = m2(λ, q) , ∆(λ, Srevq) = ∆(λ, q) , m1(λ, Srevq) = m′
2(λ, q) , ∀λ ∈ R .
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Since ∆̇(τn, q) = 0 and hence ṁ′
2(τn, q) = −ṁ1(τn, q) it then follows that ṁ1(τn, Srevq) = −ṁ1(τn, q).

Combining all these identities one concludes that a±n(Srevq) = −a∓n(q) and hence by (C.26)

f±n(x, Srevq) = y1(−x, τn, q) + a∓n(Srevq)y2(−x, τn, q) = f∓n(−x, q)

as claimed. Considering the expansions of the latter identities one obtains (C.25). �

To obtain the asymptotic expansion for ΨL, presented in Section 2, we need to establish such an expansion
for each of the factors appearing in the definition (2.7) ofW±n(q) for a finite gap potential q. First we consider
the factor ξn which compares the square root of the n’th action with the n’th gap length. For any q ∈ W
(cf Theorem A.1) with γn(q) 6= 0, it is given by

√
8In(q)/γ2n(q). In case γn(q) = 0, it can be computed by a

limiting argument. By a slight abuse of terminology, we denote this limit also by
√
8In(q)/γ2n(q).

Lemma C.4. Let q ∈ MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S , ξn(q) :=

√
8In(q)/γ2n(q), n ∈ S⊥

+ , has an
expansion of the form

√
nπξn(p) = 1 +

N∑

k=1

ξae2k(p)

(2πin)2k
+

Rξn
2N (p)

(2πin)2N+2

where V ∗
q,S → C, p 7→ ξae2k(p), k ≥ 1, and V ∗

q,S → C, p 7→ Rξn
2N (p), are real analytic. In addition, the

remainders Rξn
2N (p) satisfy

sup
n∈S⊥

+

|Rξn
2N (p)| ≤ CN (C.27)

where the constant CN > 0 can be chosen locally uniformly for p ∈ V ∗
q,S .

Proof. Let q ∈ MS and N ∈ Z≥0. Following the proof of [13, Theorem 7.3], for any p ∈ V ∗
q,S and n ∈ S⊥

+ ,

8In(p)/γ
2
n(p) can be computed by considering a sequence of Sn-gap potentials (pj)j≥1 inW (cf Theorem A.1)

with γn(pj) > 0 so that pj → p as j → ∞ where Sn := S ∪ {−n, n}. One then obtains in the limit the

formula 8In(p)/γ
2
n(p) = χ(τn(p), p) where χ(λ) ≡ χ(λ, p) is given by 1√

λ−λ0

∏
k∈S+

λ−λ̇k√
(λ+

k
−λ)(λ−

k
−λ)

, implying

that for n ≥ n0 with n0 ≥ mS chosen so that Re(τn(p)) > 0 for any n ≥ n0 (cf Lemma C.2)

χ(τn) =
1√
τn

1√
1− λ0

τn

∏

k∈S+

1− λ̇k

τn√
(1− λ+

k

τn
)(1 − λ−

k

τn
)

. (C.28)

Combining (C.28) with the expansion of τn (cf Lemma C.2) then yields the expansion

√
nπξn(p) =

√
nπ

√
χ(τn(p), p) = 1 +

N∑

k=1

ξae2k(p)

(2πin)2k
+

Rξn
2N (p)

(2πin)2N+2
.

where V ∗
q,S → C, p 7→ ξae2k(p), k ≥ 1, are real analytic and supn∈S⊥

+
|Rξn

2N (p)| is bounded. For n ∈ S⊥
+ with

n < n0, Rξn
2N (p) is defined by (2πin)2N+2

(√
nπξn(p)− 1 −∑N

k=1
ξae
2k(p)

(2πin)2k

)
. Since for any n ∈ S⊥

+ ,
√
nπξn is

real analytic on V ∗
q,S , so is Rξn

N (p). Going through the arguments of the proof one sees that the constant
CN in (C.27) can be chosen locally uniformly for p ∈ V ∗

q,S .

Next we prove an expansion for the factor ṁ2(τn(q), q)/∆̈(τn(q), q) in (2.7) for q ∈ MS. More precisely,
we show the following

Lemma C.5. Let q ∈ MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S , dn(p) := −ṁ2(τn(p), p)/∆̈(τn(p), p),

n ∈ S⊥
+ , has an expansion of the form

dn(p) = 1 +

N∑

k=1

dae2k(p)

(2πin)2k
+

Rdn
2N (p)

(2πin)2N+2
,
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where V ∗
q,S → C, p 7→ dae2k(p), k ≥ 1, and V ∗

q,S → C, p 7→ Rdn
2N (p), are real analytic. In addition, the

remainders Rdn
2N (p) satisfy

sup
n∈S⊥

+

|Rdn
2N (p)| ≤ CN

where the constant CN > 0 can be chosen locally uniformly for p ∈ V ∗
q,S .

Proof. Let q ∈ MS and N ∈ Z≥0 be given. For any p ∈ V ∗
q,S , m2(λ) ≡ m2(λ, p) admits the product

representation (cf Appendix A) m2(λ) =
∏
k≥1

µk−λ
π2k2 where (µk)k≥1 denote the Dirichlet eigenvalues of

the operator −∂2x + p, listed in lexicograpic order. By (A.2), ∆̇(λ) also admits such a representation,

∆̇(λ) = −∏
k≥1

λ̇k−λ
π2k2 with (λ̇k)k≥1 being listed in lexicographic order. Since (µk)k≥1, (λ̇k)k≥1 are simple

ṁ2(µn) = − 1

π2n2

∏

k 6=n

µk − µn
π2k2

6= 0 and ∆̈(λ̇n) =
1

π2n2

∏

k 6=n

λ̇k − λ̇n
π2k2

6= 0 .

For any n ∈ S⊥
+ , one has µn = λ̇n = τn and hence one concludes that for n sufficiently large so that Re τn > 0,

− ṁ2(τn)

∆̈(τn)
=

∏

k∈S+

µk − τn

λ̇k − τn
=

∏

k∈S+

1− µk

τn

1− λ̇k

τn

. (C.29)

Combining this with the results of τn (Lemma C.2) then yields the expansion of the stated form. Going
through the arguments of the proof one concludes that dae2k, k ≥ 1, and Rdn

2N have the claimed properties.

It remains to prove that the factors e±iβn(q), appearing in the definition (2.7) of W±n(x, q), admit an
expansion as well. Clearly, it suffices to prove such an expansion for βn(q). Recall that for any q ∈MS and
n ∈ S⊥

+ , βn(q) is given by βn(q) =
∑

ℓ∈S+
βnℓ (q) ([13, Theorem 8.5]) and by [13, page 70],

βnℓ (q) =

∫ µ∗
ℓ (q)

λ−

ℓ
(q)

ψn(λ, q)√
∆2(λ, q)− 4

dλ, µ∗
ℓ (q) = (µn(q), δ(µℓ)) ∈ R

2

where δ(λ) ≡ δ(λ, q) denotes the anti-discriminant. Here we used that for any ℓ ∈ S⊥
+ \{n}, one has µℓ = λ−ℓ

and hence βnℓ (q) = 0. Furthermore recall that by [13, Theorem 8.1] ψn(λ, q) is an entire function of λ.

Lemma C.6. Let q ∈ MS and N ∈ Z≥0. After shrinking V ∗
q,S , if needed, it follows that for any p ∈ V ∗

q,S ,

βn(p), n ∈ S⊥
+ , admits an expansion of the form

βn(p) =
1

nπ

N∑

k=0

βae2k(p)

(2πin)2k
+

Rβn

2N (p)

(2πin)2N+2
,

where V ∗
q,S → C, p 7→ βae2k(p), k ≥ 1, and V ∗

q,S → C, p 7→ Rβn

2N (p), are real analytic. In addition, the

remainders Rβn

2N (p) satisfy

sup
n∈S⊥

+

|Rβn

2N (p)| ≤ CN

where the constant CN > 0 can be chosen locally uniformly for p ∈ V ∗
q,S .

Proof. Let p ∈ V ∗
q,S and n ∈ S⊥

+ . Since p is an S−gap potential, it follows from [13, Theorem 8.5] that the

quotient of ψn(λ) ≡ ψn(λ, p) with
√
∆2(λ) − 4 ≡

√
∆2(λ, p)− 4 is of the form

ψn(λ)√
∆2(λ) − 4

=
λM + snM−1λ

M−1 + · · ·+ sn0√
R

nπ

τn − λ
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where up to a sign, the complex numbers snj ≡ snj (p), 0 ≤ j ≤ M − 1, are the symmetric functions of the
roots σnℓ , ℓ ∈ S+, of ψn(λ), M = |S|, and R(λ) ≡ R(λ, p) is given by

R(λ) = (λ+0 − λ)
∏

j∈S+

(λ+j − λ)(λ−j − λ).

Here we used that for any k 6= n with λ+k = λ−k , the eigenvalue λ+k is also a root of ψn(λ) and we listed the
roots σnℓ , ℓ ∈ S+, in lexicographic order. Without loss of generality we thus may assume in the sequel that
λ+ℓ 6= λ−ℓ for any ℓ ∈ S+. It then follows that for any ℓ ∈ S+,

βnℓ =

∫ µ∗
ℓ

λ−

ℓ

ψn(λ)√
∆2(λ) − 4

dλ =
1

nπ

∫ µ∗
ℓ

λ−

ℓ

λM√
R

n2π2

τn − λ
dλ+

1

nπ

M−1∑

j=0

snj

∫ µ∗
ℓ

λ−

ℓ

λj√
R

n2π2

τn − λ
dλ.

Using Lemma C.2, one concludes that n2π2

τn−λ = 1+O( 1
n2 ) and shows in a straightforward way that n2π2

τn−λ and

hence the integrals
∫ µ∗

ℓ

λ−

ℓ

λj

√
R
n2π2

τn−λdλ admit an expansion in 1
(2πin)2k

, k ≥ 0, with coefficients and remainder

having properties as stated. It thus remains to show that for any 0 ≤ j ≤ M − 1, snj also admits such an
expansion. By the uniqueness statement of [13, Proposition D.7] (and after shrinking V ∗

q,S , if needed,) it
follows that (snj )0≤j≤M−1 is the unique solution of the following inhomogeneous, linear M ×M system

M−1∑

j=0

snj

∫ λ+
ℓ

λ−

ℓ

λj√
R

n2π2

τn − λ
dλ = −

∫ λ+
ℓ

λ−

ℓ

λM√
R

n2π2

τn − λ
dλ , ∀ℓ ∈ S+.

It then follows that det(En) 6= 0 where En ≡ En(p) denotes the M ×M matrix with coefficients

Enℓj =

∫ λ+
ℓ

λ−

ℓ

λj√
R

n2π2

τn − λ
dλ , ℓ ∈ S+, 0 ≤ j ≤M − 1.

Therefore,

(snj )0≤j≤M−1 = −(En)−1(bnℓ )ℓ∈S+ , bnℓ =

∫ λ+
ℓ

λ−

ℓ

λM√
R

n2π2

τn − λ
dλ, ℓ ∈ S+.

Using once again the expansion of τn of Lemma C.2 one shows that snj , 0 ≤ j ≤M − 1, admit an expansion

in 1
(2πin)2k

, k ≥ 0, with coefficients and remainder having properties as stated. As an aside, we remark that

by [13, Proposition D.7], limn→∞ σnℓ = λ̇ℓ, ℓ ∈ S+, and hence limn→∞ snj = sj for any 0 ≤ j ≤ M − 1

where up to signs, (sj)0≤j≤M−1 are the symmetric polynomials of λ̇ℓ, ℓ ∈ S+. One then concludes that

σnℓ = λ̇ℓ +O( 1
n2 ), ℓ ∈ S+, and in turn snj = sj +O( 1

n2 ), 0 ≤ j ≤M − 1.

We finish this appendix by proving an expansion of the KdV frequencies ωn ≡ ωkdvn (cf Section 1) at
finite gap potentials. Using the Birkhoff map, we view them as functions of the potential, which by a slight
abuse of notation, we denote also by ωn.

Lemma C.7. Let q ∈MS and N ∈ Z≥0. Then for any p ∈ V ∗
q,S , the KdV frequencies ωn(p), n ∈ S⊥

+ , have
an expansion of the form

ωn(p) = (2πn)3 +

N∑

k=1

ωae2k−1(p)

(2πn)2k−1
+

Rωn

2N (p)

(2πn)2N+1
(C.30)

where V ∗
q,S → C, p 7→ ωae2k−1(p), k ≥ 1, and V ∗

q,S → C, p 7→ Rωn

2N (p), are real analytic. In addition, the
remainders Rωn

2N (p) satisfy
sup
n∈S⊥

+

|Rωn

2N (p)| ≤ CN ,

where the constant CN > 0 can be chosen locally uniformly for p ∈ V ∗
q,S .
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Proof. Let q ∈MS and N ∈ Z≥0 be given. The basic ingredient into our proof of (C.30) are formulas of the
frequencies in terms of periods of an Abelian differential of the second kind on the hyperelliptic Riemann
surface Σp, associated to the periodic spectrum of Lp = −∂2x + p (see [5], [6], [8], [17], [22]). We follow [17,
Section 2] and note that the arguments made there extend to complex valued potentials: for any p ∈ V ∗

q,S ,
denote by Σp the compact Riemann surface associated to the simple periodic eigenvalues of p,

Σp :=
{
(λ, µ) ∈ C

2 : µ2 = (λ− λ0)
∏

j∈J
(λ− λ+j )(λ− λ−j )

}
∪ {∞}

where J ≡ J(p) := {j ∈ S+ : λ+j (p) 6= λ−j (p)}. The variable z ∈ C around the point z = 0 gives a complex

chart in a neighborhood of the branch point ∞ ∈ Σp via the substitution λ = − 1
z2 . By construction, this

chart is defined uniquely up to a change of sign of the variable z, z 7→ −z, and is referred to as standard
chart. Then Σp admits an Abelian differential Ω4 of the second kind, uniquely determined by the following
properties: (i) Ω4 is holomorphic on Σp \ {∞}; (ii) near ∞, Ω4 is of the form

Ω4 =
1

z4
dz + h(z) dz, h holomorphic near z = 0

in the appropriate standard chart; (iii)
∫
aj

Ω4 = 0 for any j ∈ J where aj are the smooth cycles around the

gap [λ−j , λ
+
j ] defined in [17, Section 2]. The differential Ω4 is of the form

i

2

λM+1 + c1λ
M + · · ·+ cM+1√

(λ− λ+0 )
∏
j∈J (λ− λ+j )(λ− λ−j )

dλ (C.31)

whereM := |J(p)| and the coefficients c1, . . . , cM+1 are real analytic functions on V ∗
q,S . Then by [17, formula

(2.19)],

ωn = 12i

∫

bn

Ω4 , ∀n ≥ 1 ,

where bn, n ≥ 1, are the cycles as defined in [17, Section 2]. Let mS := 1 + max{k ∈ S}. Then for any
n ≥ mS , λ

−
n = λ+n = τn. It then follows from the definition of the cycles bn that for any n ≥ mS

ωn = ωmS
+ 12i

(
2

∫ τn

τmS

Ω4

)
(C.32)

with the appropriate choice of the root in the denominator of Ω4. The abelian integral
∫ λ
τmS

Ω4 has an

expansion as λ→ ∞ of the form

∫ λ

τmS

Ω4 = b∗λ
3
2 + b0λ

1
2 + b1

1

λ
1
2

+ · · ·+ b∗∗ = λ
1
2

(
b∗λ+ b0 + b1

1

λ
+ · · ·

)
+ b∗∗

and hence as n→ ∞ ∫ τn

τmS

Ω4 = b∗∗ +
√
τn
(
b∗τn + b0 + b1

1

τn
+ · · ·

)
. (C.33)

In view of the formula [17, (2.20)] of Ω4, the coefficients b∗, b∗∗, b0, b1, . . . are real analytic functions on V ∗
q,S .

Furthermore, it is well known (cf e.g. [16, Proposition 8.1]) that since
∫ 1

0
p(x) dx = 0

ωn = (2πn)3 +O(
1

n
) . (C.34)

Combining (C.32) - (C.34) with the results on τn and
√
τn of Lemma C.2 one obtains an expansion of ωn,

n ≥ mS , of the form (C.30) where ωae2k−1 : V ∗
q,S → C, k ≥ 1, and Rωn

2N : V ∗
q,S → C, n ≥ mS , are real analytic

and Rωn

2N : V ∗
q,S → C, n ≥ mS , have the claimed bounds. For n ∈ S⊥

+ with n < mS , one defines Rωn

2N by

(C.30) and since ωn are real analytic on V ∗
q,S , one then concludes that Rωn

2N , n ∈ S⊥
+ , are real analytic on

V ∗
q,S and satisfy the claimed bounds.
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D Reversibility structure

In this appendix we prove that the Birkhoff map Φkdv and hence also its inverse Ψkdv preserve the reversible
structure, defined by the maps

Srev : L2
0 → L2

0 , (Srevq)(x) := q(−x) and Srev : h00 → h00 , (Srevw)n := w−n , ∀n 6= 0.

Proposition D.1. One has
Φkdv ◦ Srev = Srev ◦ Φkdv .

As a consequence, Srev ◦Ψkdv = Ψkdv ◦ Srev and by the chain rule, for any q ∈ L2
0(T) and w ∈ h00

(dSrev(q)Φ
kdv) ◦ Srev = Srev ◦ dqΦkdv , (dSrev(w)Ψ

kdv) ◦ Srev = Srev ◦ dwΨkdv .

First we establish some preliminary results. Recall that yj(x, q) ≡ yj(x, λ, q), j = 1, 2, denote the
fundamental solutions of −y′′ + qy = λy, ∆(λ) ≡ ∆(λ, q) the discriminant, and δ(λ) ≡ δ(λ, q) the anti-
discriminant,

∆(λ) = y1(1, λ) + y′2(1, λ) , δ(λ) = y1(1, λ)− y′2(1, λ) .

In a straightforward way, one verifies the following

Lemma D.1. For any q ∈ L2
0, λ ∈ C, x ∈ R,

y1(x, λ, Srevq) = y1(−x, λ, q) , y2(x, λ, Srevq) = −y2(−x, λ, q)

or alternatively,

y1(x, λ, Srevq) =
(
y′2(1)y1(1−x)−y′1(1)y2(1−x)

)
|λ,q , y2(x, λ, Srevq) =

(
y2(1)y1(1−x)−y1(1)y2(1−x)

)
|λ,q .

The latter identities imply that

∆(λ, Srevq) = ∆(λ, q), δ(λ, Srevq) = −δ(λ, q), y2(1, λ, Srevq) = y2(1, λ, q) . (D.1)

An immediate consequence of the first identity in (D.1) is that

λ+0 (Srevq) = λ+0 (q) , λ±n (Srevq) = λ±n (q), ∀n ≥ 1, γn(Srevq) = γn(q), ∀n ≥ 1 . (D.2)

Moreover by (D.1),

µn(Srevq) = µn(q) , δ(µn, Srevq) = −δ(µn, q) , ∀n ≥ 1 . (D.3)

For any q ∈ L2
0, the action variables In ≡ In(q), n ≥ 1, are defined by contour integrals (cf. [13, p 64]),

In =
1

π

∫

Γn

λ∆̇(λ)√
∆(λ)2 − 4

dλ .

Furthermore the normalizing factor ξn ≡ ξn(q), defined for q ∈ L2
0 with γn(q) > 0 by ξn =

√
8In/γ2n, extends

analytically to L2
0 (cf [13, Theorem 7.3]). By [13, Theorem 8.5], βn =

∑
k 6=n β

n
k is well defined on L2

0 where
βnk ≡ βnk (q) is given by (cf [13, p 70])

βnk =

∫ µ∗
k

λ−

k

ψn(λ)√
∆2(λ) − 4

dλ , µ∗
k = (µk, δ(µk))

with the sign of
√
∆2(λ) − 4 determined by ∗

√
∆(µk)− 4 = δ(µk). On the other hand, ηn ≡ ηn(q) and

θn ≡ θn(q) are well defined modul 2π on L2
0 \ Zn by

ηn =

∫ µ∗
n

λ−
n

ψn(λ)√
∆2(λ) − 4

dλ , θn = ηn + βn ,

where Zn =
{
q ∈ L2

0 : γn(q) = 0
}
. One then concludes from (D.1), (D.2), (D.3) that the following holds.
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Corollary D.1. For any q ∈ L2
0 and n ≥ 1,

In(Srevq) = In(q) , ξn(Srevq) = ξn(q) , βn(Srevq) = −βn(q) . (D.4)

Furthermore on L2
0 \ Zn, θn(Srevq) = −θn(q) modulo 2π.

With these preparations made we now prove Proposition D.1.

Proof of Proposition D.1. For any n ≥ 1 and q ∈ L2
0 \ Zn, the complex Birkhoff coordinates zn(q), z−n(q)

are given by zn(q) =
√
nπ

√
In(q)e

−iθn(q), z−n(q) =
√
nπ

√
In(q)e

iθn(q), whereas for q ∈ Zn, zn(q) = 0 and
z−n(q) = 0. Hence it follows from Corollary D.1 that zn(Srevq) = z−n(q) and z−n(Srevq) = zn(q) for any
n ≥ 1. This proves that Φkdv ◦ Srev = Srev ◦ Φkdv. �

E Properties of pseudodifferential and paradifferential calculus

In this appendix we collect some well known facts about pseudodifferential and paradifferential calculus on
the torus. We refer to [23] for further details. Let χ ∈ C∞(R2,R) be an admissible cut-off function. It means
that χ is an even function and that there exist 0 < ε1 < ε2 < 1 so that for any (ϑ, η) ∈ R2 and α, β ∈ Z≥0,

χ(ϑ, η) = 1, ∀|ϑ| ≤ ε1 + ε1|η| , χ(ϑ, η) = 0, ∀|ϑ| ≥ ε2 + ε2|η| , (E.1)

|∂αϑ∂βη χ(ϑ, η))| ≤ Cα,β(1 + |η|)−α−β . (E.2)

For any a ∈ H1, the paraproduct Tau of the function a with u ∈ L2 (with respect to the cut-off function χ)
is defined as

(Tau)(x) :=
∑

k,n∈Z

χ(k, n)akune
i2π(k+n)x (E.3)

where we recall that un, n ∈ Z, denote the Fourier coefficients of u, un =
∫ 1

0
u(x)e−2πinx dx. Note that

since a, u, and χ are real valued and χ is even, Tau is real valued as well. Given any s, s′ ∈ Z, we denote
by B(Hs, Hs′) the Banach space of all bounded linear operators Hs → Hs′ , endowed with the operator
norm ‖ · ‖B(Hs,Hs′ ). In case s = s′, we also write B(Hs) instead of B(Hs, Hs). Given any linear operator

A ∈ B(Hs, Hs′), we denote by At the transpose of A with respect to the L2−inner product. It is an element
in B((Hs′)∗, (Hs)∗) where (Hs)∗ denotes the dual of Hs.

Lemma E.1. (i) For any s ∈ Z≥0 and a ∈ H1, the linear operator Ta : u 7→ Tau is in B(Hs). Furthermore
the linear map H1 → B(Hs), a 7→ Ta, is bounded, ‖Ta‖B(Hs) .s ‖a‖1.
(ii) Let a ∈ Hs1 , b ∈ Hs2 and s1, s2 ∈ Z≥1. Then

ab = Tab+ Tba+R(B)(a, b)

where the bilinear map R(B) : Hs1 ×Hs2 → Hs1+s2−1, (a, b) 7→ R(B)(a, b), is continuous and satisfies the
estimate

‖R(B)(a, b)‖s1+s2−1 .s1,s2 ‖a‖s1‖b‖s2 .
(iii) Let a ∈ Hρ with ρ ∈ Z≥2. Then for any s ≥ 0, T ta − Ta ∈ B(Hs, Hs+ρ−1) and

‖T ta − Ta‖B(Hs,Hs+ρ−1) .s,ρ ‖a‖ρ .

(iv) Let a, b ∈ Hρ with ρ ∈ Z≥1. Then for any s ≥ 0, Ta ◦ Tb − Tab ∈ B
(
Hs, Hs+ρ−1

)
and

‖Ta ◦ Tb − Tab‖B(Hs,Hs+ρ−1) .s,ρ ‖a‖ρ‖b‖ρ .

Lemma E.2. (i) Let k, j ∈ Z≥0 and a ∈ C∞(T). Then for any s ∈ Z≥0 and N ∈ N with N ≥ k + j, the
composition ∂−kx ◦ a∂−jx is a bounded linear operator Hs → Hs+k+j which admits an expansion of the form

∂−kx ◦ a∂−jx = a∂−k−jx +

N−k−j∑

i=1

Ci(k, j) (∂
i
xa) ∂

−k−j−i
x +Rψdo

N,k,j(a)
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where Ci(k, j), 1 ≤ i ≤ N − k− j, are constants depending on k, j and the remainder Rψdo
N,k,j(a) is a bounded

linear operator Hs → Hs+N+1, satisfying the estimate

‖Rψdo
N,k,j(a)‖B(Hs,Hs+N+1) .s,N ‖a‖s+2N . (E.4)

(ii) Let k, j ∈ Z≥0 and N ≥ k + j. There exists a constant σN > N − k − j + 1 such that for any a ∈ HσN

and any s ∈ Z≥0, the composition ∂−kx ◦ Ta ◦ ∂−jx is a bounded linear operator Hs → Hs+k+j which admits
an expansion of the form

∂−kx ◦ Ta ◦ ∂−jx = Ta∂
−k−j
x +

N−k−j∑

i=1

Ci(k, j)T∂i
xa
∂−k−j−ix +R(B)

N,k,j(a)

where Ci(k, j), 1 ≤ i ≤ N−k−j, are constants depending on k, j and for any s ≥ 0, the remainder R(B)
N,k,j(a)

is a bounded linear operator Hs → Hs+N+1, satisfying the estimate

‖R(B)
N,n,k(a)‖B(Hs,Hs+N+1) .s,N ‖a‖σN

. (E.5)

Finally, we record the following well known tame estimates of products of functions in Sobolev spaces.

Lemma E.3. For any s ∈ Z≥1,

‖uv‖s .s ‖u‖s‖v‖1 + ‖u‖1‖v‖s , ∀u, v ∈ Hs .
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