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Abstract: We investigated the effects of creatine treatment on jejunal phenotypes in a rat model
of oxidative stress induced by acidosis. In particular, the activities of some antioxidant enzymes
(superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase), the level of
lipid peroxidation, the expression of heat shock proteins (HSP70), and the expression of the major
carriers of the cells (Na+/K+-ATPase, sodium-glucose Transporter 1—SGLT1, and glucose transporter
2—GLUT2) were measured under control and chronic acidosis conditions. Creatine did not affect the
activity of antioxidant enzymes in either the control or acidosis groups, except for catalase, for which
the activity was reduced in both conditions. Creatine did not change the lipid peroxidation level or
HSP70 expression. Finally, creatine stimulated (Na+/K+)-ATPase expression under both control and
chronic acidosis conditions. Chronic acidosis caused reductions in the expression levels of GLUT2
and SGLT1. GLUT2 reduction was abolished by creatine, while the presence of creatine did not
induce any strengthening effect on the expression of SGLT1 in either the control or chronic acidosis
groups. These results indicate that creatine has antioxidant properties that are realized through direct
interaction of the molecule with reactive oxygen species. Moreover, the administration of creatine
seems to determine a functional strengthening of the tissue, making it more resistant to acidosis.

Keywords: acidosis; antioxidant enzymes; creatine; heat shock proteins; malondialdehyde;
oxidative stress

1. Introduction

Creatine (Cr, N-[aminoiminomethyl]-N-methyl glycine) is an endogenous amino acid produced
in the liver, kidneys, and pancreas starting from glycine, methionine, and arginine [1]. In mammals,
creatine is also obtained from the diet in meat-containing products [2,3]. Under normal conditions,
dietary intake supplies about 50% of creatine requirements [2,3]. Creatine is then transported via
the blood to the tissues and absorbed into the cells against its concentration gradient by a specific
transporter [4–6]. As well as being an ergogenic aid that improves exercise performance in athletes,
creatine is increasingly being used as a possible dietary supplement for the treatment of various
diseases such as myopathies, neurodegenerative disorders, cancer, rheumatic diseases, and type 2
diabetes [7–11]. The neuroprotective potential of creatine has been illustrated in numerous models
of neurodegeneration as well as in animal and human models of traumatic brain injury and cerebral
oxygen deprivation [12–15]. Moreover, creatine has been shown to maintain intestinal homeostasis
and protect against colitis [16]. For instance, in mouse colitis models, creatine supplementation has
been shown to attenuate the inflammatory response [17]. The beneficial effect of creatine seems to be
due to its ability of buffering cellular ATP levels, which reduction leads to the formation of reactive
oxygen species (ROS), with consequent oxidative damage [3]. Indeed, oxidative stress has been stably
recognized as one of the multiple etiological factors involved in these pathologies. In fact, in vitro
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studies have revealed that creatine may have direct antioxidant properties by acting as a scavenger of
free radicals [18,19]. In addition, studies show that creatine affects oxidative stress parameters, such as
lipid peroxidation, in the livers of mice treated with pravastatin [20].

Acidosis promotes lipid peroxidation or other manifestations of oxidant-mediated damage
in various cell types [21–24]. Moreover, a number of studies indicate that acidosis is involved
in ROS-induced intestinal inflammatory diseases [25–27]. In turn, the acidosis associated with
inflammatory conditions produces oxidative stress and/or amplifies its effects [6,23,28–30]. In vivo and
in vitro studies indicate that at an acidotic pH, the response of the gut to an insult is magnified [31].

The gastrointestinal mucosa is repetitively exposed to oxidative stress exerted by luminal oxidants
ingested with food, despite its mucus lining shows antioxidant properties. Much evidence has
suggested that oxidant agents not only determine cytotoxicity, but they also play an important role in
mediating specific cell responses and gene expressions involved in degenerative pathophysiologic
conditions, such as inflammation and cancer. Reactive oxygen species are implicated in the pathogenesis
of various gastrointestinal diseases, including post-ischemic reperfusion injury of the small intestine,
gluten-related disorders [32], gastric ulcers [26,33], ulcerative colitis [34], Crohn’s disease [35], and
cancer and inflammation [36,37]. Antioxidants play a crucial role in preventing damage induced by
oxidative stress through the neutralization of free radicals. The aim of this study is, therefore, to show
if creatine supplementation in vivo should ameliorate the antioxidant response of intestinal cells and
prevent intestinal tissue injury induced by oxidative stress.

Previous experiments have shown that a creatine transporter operates at the brush border level of
the rat jejunal enterocyte [4,38]. Moreover, in vitro treatment with creatine had positive effects on rat
jejunal epithelium under conditions of oxidative stress induced by an ischemia and reperfusion model
in vitro [39]. In the present study, the effect of creatine was studied in vivo, by a subministration of
creatine lasting for 11 days, while oxidative stress was induced by acidosis. We measured various
oxidant and antioxidant parameters on cells extracted from rat jejunums after administration of
creatine under control and chronic acidosis conditions. In particular, we investigated whether creatine
administration had effects on the activities of the main antioxidant enzymes of the cell and whether
creatine could affect parameters associated with oxidative stress, such as the level of lipid peroxidation.
Furthermore, to investigate the effects of the molecule on intestinal function, the expression levels of
(Na+/K+)-ATPase, sodium-glucose transporter 1 (SGLT1), and glucose transporter 2 (GLUT2) were
examined. Finally, to assess whether the presence of creatine may have any cytoprotective effects in
relation to stress conditions, we measured the expression of heat shock proteins (HSP70), which are
known to play a protective role against thermal and oxidative stress in intestinal epithelial cells.

2. Materials and Methods

The experiments were performed according to national ethical guidelines and were approved by
“Comune di Milano—Uff. Diritti degli animali”, “Regione Lombardia” and “Ministero della Salute”
(prot. 5/2008). Male albino rats (Wistar strain, Charles River Italiana) weighing 250–300 g (about two
months old) were used.

Experiments were performed on 16 rats that were maintained on standard chow with access to
drinking water ad libitum. To induce metabolic acidosis, rats were given 0.28 M NH4Cl in drinking
water for 7 d. Four different experimental conditions were set up: (1) control, (2) creatine, (3) NH4Cl,
and (4) creatine + NH4Cl. For each condition, rats were watered with 75 mL of the respective solutions,
which were all prepared using tap water. Net water was administered to the first group, to the second
a 20 mM creatine monohydrate solution, to the third a 280 mM NH4Cl solution, while to the fourth a
solution of NH4Cl 280 mM and 20 mM creatine was added. For the first two conditions, the animals
were treated for a total of 11 d. For the last two conditions, the above-described treatment lasted a
total of 11 d and was preceded by a four-day pretreatment protocol in which rats were given only
water (third condition) or a 20 mM solution of creatine monohydrate (fourth condition). The body
weights of the animals were recorded on the first and last days. After treatment, animals were killed
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under anesthesia, always between 9:00 and 10:00 a.m., to avoid any possible cyclic daily variations in
antioxidant levels. To confirm acidosis, blood pH was measured immediately before death directly
from blood in the left ventricle. The intestinal tissues were dissected, the jejunums were resected, and
the mucosa was scraped, weighed, rapidly freeze-clamped at liquid nitrogen temperature, and stored
at −80 ◦C until use.

2.1. Enzyme Activities

The jejunal scraped material was homogenized in 50 mM potassium phosphate buffer (pH 7.4)
containing 1 mM ethylenediamine tetra-acetic acid (EDTA). The samples were centrifuged for 10 min
at 12,000× g, 4 ◦C, and the supernatant was used for activity assays of enzymes. All enzyme activities
are expressed as mU/mg proteins.

Catalase (CAT) activity was measured according to the method of Aebi [40] by measuring the
decrease in absorbance of H2O2 at 240 nm for 5 min.

Superoxide dismutase (SOD) activity was measured by the inhibition of pyrogallol autoxidation
at 420 nm according to Guzik et al. [41].

Glutathione peroxidase (GPx) activity was measured by following the oxidation of nicotinamide
adenine dinucleotide phosphate (NADPH) at 340 nm according to Anwer et al. [42].

Glutathione reductase (GR) activity was measured as a decrease in the absorbance of NADPH for
5 min at 340 nm according to Ojano-Dirain et al. [43].

2.2. Lipid Peroxidation

The jejunal scraped material was homogenized in 1.15% KCl and centrifuged for 10 min at
12000× g and 4 ◦C. Malondialdehyde (MDA) production, expressed as mU/mg protein, was assessed
spectrophotometrically on the supernatant with the method defined by Ohkawa et al. [44].

2.3. Protein Extraction and Western Blot

The jejunal scraped material from each rat was resuspended in cold buffer sucrose-histidine (IS)
containing 0.3 M sucrose, 25 mM histidine, and 1 mM EDTA, supplemented with protease inhibitors
(Roche, Monza, Italy). This was homogenized and then centrifuged at 4 ◦C for 15 min at 5000× g.
The supernatant was recovered; protein concentration was measured according to the Bradford
method [45], and equal amounts of protein (5 µg for Na+/K+-ATPase and 60 µg for GLUT2, SGLT1,
and HSP70) were analyzed on the same SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel
electrophoresis). Each sample was dissolved in Laemmli sample buffer (final concentration 2% (w/v)
sodium dodecyl sulfate (SDS), 50% (v/v) glycerol, 1% (v/v) 2-mercaptoethanol, 50 mM Tris, pH 6.8) and
heated at 65 ◦C for 10 min. A 7% polyacrylamide mini-gel was run in a mini-gel apparatus (Miniprotean
3, Biorad, Segrate, Italy) for 2 h at 120 V. Proteins were electrophoretically transferred to a polyvinylidene
difluoride (PVDF) membrane. After blocking with 5% nonfat dry milk in Tris-buffered saline with
Tween (TBST) buffer (50 mM Tris, 150 mM NaCl, 0.1% Tween, pH 8) for 2 h at room temperature,
the proteins were probed overnight at 4 ◦C with the specific primary antibodies. Specifically, the
antibodies used were: anti-ATPase alpha 1 (Na+/K+) (Novus Biologicals, Centennial, CO, USA)
diluted 1:5000, polyclonal anti-GLUT2 (Chemicon, Temecula, CA, USA) diluted 1:1000, anti-SGLT1
(Millipore, Burlington, MA, USA) diluted 1:1000, and anti HSPA1A-Heat shock protein 70 kDa protein
1A (Aviva, San Diego, CA, USA) diluted 1:5000. The primary antibodies for GLUT2, SGLT1, and HSP70
were detected with goat anti-rabbit IgG conjugated to horseradish peroxidase (Chemicon, Temecula,
CA, USA) diluted 1:40,000. Anti-ATPase alpha 1 (Na+, K+) was detected with goat anti-mouse IgG
conjugated to horseradish peroxidase (Santa Cruz Biotech, Dallas, TX, USA) diluted 1:3000. All primary
and secondary antibodies were diluted in 5% nonfat dry milk TBST buffer (Tris-buffered saline with
Tween). Sites of antibody–antigen reactions were visualized using Amersham ECL Plus (Amersham,
Cologno Monzese, Italy), according to the manufacturer’s instructions, before exposure to X-ray film
(Celbio, Pero, Italy). After autoradiography, the ratio among different experimental conditions was



Antioxidants 2019, 8, 225 4 of 15

determined on each CL-Xposure film. The densitometric analysis was conducted in a blinded fashion
by two researchers who independently chose the regions of interest by analyzing western blot signals.
The chosen areas were numerically integrated and measured with ImageJ Tool software (version
1.52d, National Institutes of Health, Bethesda, MD, USA). The data shown are the means of 4 different
experiments. To assess equal loading of the lanes, the quality of the electrophoretic run, and the
efficiency of the transfer, the electrophoresis gel and the blotted membrane were stained with 0.25%
Coomassie Blue and 0.1% Ponceau in acetic acid, respectively [46].

2.4. Statistics

Statistical analysis was performed by Student’s t test or by analysis of variance (ANOVA) followed
by post hoc Tukey’s limitation. Values are reported as means ± S.E.

3. Results and Discussion

3.1. Blood pH and Body Weight

The measurement of blood pH immediately before the death of treated animals (Figure 1)
confirmed previously published data [6]. In rats treated with NH4Cl there was a statistically significant
decrease in the pH value with respect to the control, confirming that the acidosis condition was actually
induced. As in previous research [6], the acidosis condition was associated with reduced animal
growth (Figure 2), including in the rats treated with creatine.
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3.2. Antioxidant Enzyme Activities, Malondialdehyde (MDA) Production, and HSP70 Expression

Figure 3 shows the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx),
glutathione reductase (GR), and catalase (CAT) under the different studied conditions, respectively.
As shown in previous research [6], the activity of SOD, GPx, and GR did not vary significantly in chronic
acidosis with respect to the control condition. Creatine did not show any effects in the control condition
or in acidosis. Evidence from previous studies suggests that in murine neurons, chronic acidosis
reduces the activity of GPx and GR [47], while in renal tubular cells, GPx activity is increased [48].
In rats, 6 d of oral creatine supplementation decreased the ROS content in slow- and fast-twitch skeletal
muscle but did not change the expression and activity of antioxidant enzymes [49]. Our data show
that none of these effects occurred in the jejunal portion of the intestine undergoing chronic acidosis,
and creatine did not influence the activity of these antioxidant enzymes under basic conditions.
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Figure 3. Effects of 11 d administration of 20 mM creatine on superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) activity in jejunal mucosal homogenate
under control conditions and chronic acidosis. Values are means ± S.E. Number of experiments = 4
with duplicate estimation. *** p ≤ 0.001 vs. control and acidosis. ** p ≤ 0.05 vs. control and acidosis.

As previously shown [6], CAT activity (Figure 3) is not influenced by chronic acidosis. Thus,
an inhibiting effect of creatine on the activity of the enzyme was evident both in the control and
acidosis groups. It is known that the CAT cell level is substrate-dependent [50]. Since it has been
suggested that the antioxidant effect of creatine is due to a direct scavenging action on ROS [51],
it could be hypothesized that the interaction of administered creatine with ROS (H2O2) produced
by normal cellular metabolism led to the observed decrease in CAT activity. The reduction of CAT
activity in the presence of creatine could also be explained by taking mitochondrial metabolism
into account. In fact, ROS production in the mitochondria depends strongly on the mitochondrial
transmembrane potential. When mitochondrial ADP levels decrease, the membrane potential increases
in association with ROS formation [52]. One of the enzymes involved in the recycling mechanism
of ADP is mitochondrial creatine kinase (mt-CK), which is located in the transmembrane space
of the mitochondria. This enzyme catalyzes the reaction: MgATP + Cr ↔ PCr + MgADP + H+.
Phosphocreatine produced at the mitochondrial level is exported to the cytosol, while ADP produced
at the cytosolic level is pumped into the mitochondrion. This causes an increase in ADP levels in the
mitochondria and, therefore, reduces the production of ROS and H2O2. Thus, the administration of
creatine could have an antioxidant role by acting through this mechanism [52].

Lipid peroxidation is one of the detrimental consequences of oxidative damage. In fact, it elicits
structural and functional damage to membranes and gives rise to several secondary products, including
malondialdehyde (MDA). From Figure 4, it can be observed that the MDA levels of the jejunal mucosa
did not undergo modifications in the different experimental cases, suggesting that chronic acidosis
does not induce oxidative damage, and creatine does not influence the degree of lipid peroxidation
in the control condition or in acidosis. Discordant data are reported in the literature on this subject.
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At the plasma level, for example, creatine administration is associated with a significant reduction in
lipid peroxidation biomarkers [53]. Also, lipid peroxidation was shown to be reduced by creatine in
the skeletal muscle of rats subjected to hyperhomocysteinemia [54]. However, the antioxidant effect of
creatine found in plasma has not been observed in the liver [55], suggesting that the actions of the
molecule may be different in different tissues.
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HSP70 confers stress tolerance and cytoprotection against several environmentally induced injury
conditions [56,57]. Thus, the possible induction of HSP70 by creatine was investigated. HSP70 protein
expression was measured using a western blot analysis (Figure 5). In all experimental conditions the
presence of a band at 45 kDa, corresponding to the molecular weight of the 1A subunit of the tested
protein, was observed. The related densitometric analysis showed no significant variations among all
considered cases. However, we cannot exclude that there is a temporal dependence on the expression
of HSP70, whose levels are notoriously modulated in a transient manner [58].
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Figure 5. Effects of 11 d administration of 20 mM creatine on HSP70 expression in jejunal mucosal
homogenates under control conditions and chronic acidosis. Western blot analysis for HSP 70 was
performed on jejunum total proteins and was carried out on 4 experiments. Densitometric analysis of
the bands did not reveal significant statistical differences in the intensity of the signals.

3.3. Expression of Na+/K+-ATPase, GLUT2, and SGLT1

To evaluate the effects of creatine treatment on intestinal function under the control and
chronic acidosis conditions, we investigated the expression of some important transport proteins:
Na+/K+-ATPase, GLUT2, and SGLT1.

Figure 6 shows the results of western blot assays on Na+/K+-ATPase expression. In all experimental
conditions considered, the immunoblots showed the presence of a 110 kDa band, corresponding to
the molecular weight of the α1 subunit of the Na+/K+-ATPase. A significant increase in the signal
obtained was observed after treatment with creatine and under conditions of chronic acidosis (about
+200% in both conditions), as previously observed in other tissues. In fact, it has been reported that
chronic treatment with creatine induces an increase in the expression of Na+/K+-ATPase in the cerebral
cortex [13], probably as a result of a functional enhancement due to the ergogenic properties of this
molecule. As previously observed [6], and similarly to what was already proposed in the duodenum [59],
an increase in the signal observed under conditions of chronic acidosis could be interpreted as a
long-term adaptive response that is able to compensate for the reduction in Na+/K+-ATPase expression
(and the consequent functional alterations of the reabsorption of ions and glucose) induced by acidosis
over a short time period. Moreover, this compensatory effect would allow the acidosis itself to be
counteracted, since it can be hypothesized that the increase in protein expression leads to an increase in
its activity and, therefore, to the electrochemical potential gradient of Na+ through the plasmalemma.
This could, in turn, lead to an increase in Na+/H+ exchanger activity in an attempt to resolve acid/base
decompensation by bringing the pH back to the physiological value. In this regard, it should be noted
that there is no additivity between the effects of chronic acidosis and creatine, so chronic treatment
with creatine in the simultaneous presence of conditions of chronic acidosis would not exert any
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enhancement on the expression of Na+/K+-ATPase, since acidosis by itself should have induced a
compensatory increase in the expression of the carrier.
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Figure 7 shows the results of western blot assays on GLUT2 expression. In all experimental
conditions, the immunoblots show the presence of a band at the expected weight of about 53 kDa.
Creatine administration did not lead to any differences in the expression of GLUT2 with respect to
the control condition. The molecule, therefore, does not appear to have any ergogenic effect on the
levels of this carrier, at least at physiological pH. As previously shown, chronic acidosis causes a
reduction in the expression of GLUT2 [6], confirming the data in the literature [60] that shows that the
expression of this transporter is influenced by perturbations of the physiological conditions related to
stresses of various nature. This reduction is abolished by creatine. In fact, following the simultaneous
administration of NH4Cl and creatine, the expression levels of GLUT2 are comparable to those of the
control. Under these conditions, therefore, creatine would exert a protective action on the expression
of GLUT2 that is able to counteract the negative effects of chronic acidosis.
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Figure 7. Effects of 11 d administration of 20 mM creatine on glucose transporter 2 (GLUT2) expression
in jejunal mucosal homogenates under control conditions and chronic acidosis. Western blot analysis for
GLUT2 was performed on jejunum total proteins and was carried out on 4 experiments. Densitometric
analysis of the bands revealed a significant statistical difference in the intensity of the signals. ** p ≤ 0.05
vs. control.

Figure 8 shows the results of the western blot assays on SGLT1 expression. In all experimental
conditions considered, the immunoblots showed the presence of a band at the expected molecular weight
of 72 kDa. Following chronic treatment with creatine at physiological pH, there were no significant
changes in the signal, which was instead significantly reduced (by approximately −20%) following the
administration of NH4Cl and did not undergo further modifications following simultaneous treatment
with NH4Cl and creatine. Chronic acidosis, therefore, led to a certain reduction in the expression of the
protein, both in the absence and in the presence of creatine, which, contrary to what was observed
for the Na+/K+-ATPase, did not induce any strengthening effect on the expression of SGLT1 at either
physiological pH or under conditions of chronic acidosis.
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expression in jejunal mucosal homogenates under control conditions and chronic acidosis. Western
blot analysis for SGLT1 was performed on jejunum total proteins and was carried out on 4 experiments.
Densitometric analysis of the bands revealed a significant statistical difference in the intensity of the
signals. ** p ≤ 0.05 vs. control.

4. Conclusions

To sum up, chronic treatment with creatine was shown to have beneficial effects on the jejunal
epithelium. Creatine seems to have antioxidant properties that are realized through direct interaction of
the molecule with ROS. In fact, the antioxidant status of the cell is not influenced by its administration,
except for CAT, whose activity is significantly reduced both in the presence and in the absence of
acidosis. The administration of creatine seems to make the tissue more resistant. In fact, its presence
leads to functional strengthening of the tissue, increasing the expression of Na+/K+-ATPase. Chronic
treatment with creatine also counteracts the inhibitory effect of acidosis on GLUT2, whose level of
expression does not differ from the control under acidosis conditions if creatine is present. There is no
involvement of HSP70 in the effects shown for creatine, as its expression does not change in its presence.
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Abbreviations

ATP adenosine triphosphate
ANOVA analysis of variance
CAT catalase
Cr creatine
EDTA ethylenediamine tetra-acetic acid
GLUT2 glucose transporter 2
GPx glutathione peroxidase
GR glutathione reductase
HSP70 heat shock protein 70
NADPH nicotinamide adenine dinucleotide phosphate
MDA malondialdehyde
PCr phosphocreatine
ROS reactive oxygen species
SGLT1 Sodium-Glucose Transporter 1
SOD superoxide dismutase
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