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ON THE SHAPE OF COMPACT HYPERSURFACES WITH ALMOST

CONSTANT MEAN CURVATURE

G. CIRAOLO AND F. MAGGI

Abstract. The distance of an almost constant mean curvature boundary from a finite family

of disjoint tangent balls with equal radii is quantitatively controlled in terms of the oscillation

of the scalar mean curvature. This result allows one to quantitatively describe the geometry of

volume-constrained stationary sets in capillarity problems.

1. Introduction

We investigate the geometry of compact boundaries with almost constant mean curvature
in R

n+1, n ≥ 2. Beyond its intrinsic geometric interest, this problem is motivated by the
description of equilibrium shapes (volume-constrained stationary sets) of the classical Gauss
free energy used in capillarity theory [Fin86], and consisting of a dominating surface tension
energy plus a potential energy term. Our analysis leads to new stability estimates describing in
a quantitative way the distance of these shapes from compounds of tangent balls of equal radii.

1.1. Main result. Given a connected bounded open set Ω ⊂ R
n+1 (n ≥ 2) with C2-boundary,

we denote by H the scalar mean curvature of ∂Ω with respect to the outer unit normal νΩ to Ω
(normalized so that H = n if Ω = B = {x ∈ R

n+1 : |x| < 1}), and we introduce the Alexandrov’s
deficit of Ω,

δ(Ω) =
‖H −H0‖C0(∂Ω)

H0
, where H0 =

nP (Ω)

(n+ 1)|Ω| . (1.1)

This is a scale invariant quantity (i.e. δ(Ω) = δ(λΩ) for every λ > 0) with the property that
δ(Ω) = 0 if and only if Ω is a ball (Alexandrov’s theorem). The motivation for the particular
value of H0 considered in the definition of δ(Ω) is that if H is constant on ∂Ω, then by the
divergence theorem it must be H = H0 (see (2.16) below). Here and in the following, Hk

stands for the k-dimensional Hausdorff measure on R
n+1, |Ω| is the Lebesgue measure (volume)

of Ω, and P (E) is the distributional perimeter of a set of finite perimeter E ⊂ R
n+1 (so that

P (E) = Hn(∂E) whenever E is an open set with Lipschitz boundary).
Motivated by applications to geometric variational problems (see section 1.2) we want to

describe the shape of sets Ω with small Alexandrov’s deficit. This is a classical question in
convex geometry, where the size of δ(Ω) for Ω convex has been related to the Hausdorff distance
of ∂Ω from a single sphere in various works, see [Sch90, Arn93, Koh00]. However one should
keep in mind that, as soon as convexity is dropped off, the smallness of δ(Ω) does not necessarily
imply proximity to a single ball. Indeed, by slightly perturbing a given number of spheres of
equal radii connected by short catenoidal necks, one can construct open sets {Ωh}h∈N with
the property that, as h → ∞, δ(Ωh) → 0, while the necks contract to points and the sets Ωh

converge to an array of tangent balls, see [But11, BM12] (and, more generally for this kind of
construction, the seminal papers [Kap90, Kap91]). At the same time, if δ(Ω) is small enough in
terms of n and the largest principal curvature of ∂Ω, then Ω must be close to a single ball. More
precisely, denoting by A the second fundamental form of ∂Ω, in [CV15] it is proved the existence
of c(n, ‖A‖C0(∂Ω)) > 0 such that if δ(Ω) ≤ c(n, ‖A‖C0(∂Ω)), then the in-radius and out-radius of
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Figure 1. The situation in Theorem 1.1, with δ = δ(Ω) and α = 1/2(n+2). The grey

region depicts Ω∆G (whose area is of order δα), while (Id + ψGνG)(Σ) is depicted by a

bold line. The spheres ∂Bzj,1 are at a distance of order δα/4(n+1), while Σ is obtained

from ∂G by removing two spherical caps of diameter δα/4(n+1).

Ω must satisfy
rout(Ω)

rin(Ω)
− 1 ≤ C(n, ‖A‖C0(∂Ω)) δ(Ω) , (1.2)

where the linear control in terms of δ(Ω) is sharp, as shown for example by taking a sequence
of almost-round ellipsoids. In light of the examples from [But11], an assumption like δ(Ω) ≤
c(n, ‖A‖C0(∂Ω)) is necessary in order to expect Ω to be close to a single ball.

Our goal here is to address the situation when a different kind of smallness assumption on
δ(Ω) is considered. Indeed, we are just going to assume that δ(Ω) is small with respect to the
scale invariant quantity

Q(Ω) =
P (Ω)n+1

(n+ 1)n+1|Ω|n |B| =
(P (Ω)

P (B)

)n+1 ( |B|
|Ω|

)n
.

Notice that by the Euclidean isoperimetric inequality

P (Ω) ≥ (n + 1) |B|1/(n+1) |Ω|n/(n+1) = P (B)
( |Ω|
|B|

)n/(n+1)
, (1.3)

one always has Q(Ω) ≥ 1, and that

Q
(

a union of L disjoint balls of equal radii
)

= L , ∀L ∈ N , L ≥ 1 .

Hence, one may expect the integer part of Q(Ω) to indicate the number of balls of radius n/H0

that should be approximating Ω: and indeed, given L ∈ N, L ≥ 1, and a ∈ [0, 1), in Theorem
1.1 we are going to prove that if Q(Ω) ≤ L+ 1− a (so that the normalized perimeter of Ω is a
tad less than the normalized perimeter of (L+ 1)-many balls) and δ(Ω) ≤ δ(n,L, a), then Ω is
close (in the various ways specified below, and quantitatively in terms of powers of δ(Ω)) to a
compound of at most L-many mutually tangent balls of radius n/H0.

Before stating Theorem 1.1 it seems convenient to rescale Ω in such a way that the reference
balls have unit radius, that is, we rescale Ω (as we can always do) in such a way that

H0 = n and thus P (Ω) = (n+ 1)|Ω| , Q(Ω) =
|Ω|
|B| =

P (Ω)

P (B)
.

Here and in the following we also set Bx,r = {y ∈ R
n+1 : |y − x| < r} (so that B = B0,1) and,

given two compact sets K1,K2 in R
n+1, we define their Hausdorff distance as

hd(K1,K2) = max
{

max
x∈K1

dist(x,K2),max
x∈K2

dist(x,K1)
}

.
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Moreover, we let

α =
1

2(n+ 2)
, (1.4)

and we refer readers to the beginning of section 2 for our conventions about constants.

Theorem 1.1. Given n,L ∈ N with n ≥ 2 and L ≥ 1, and a ∈ (0, 1], there exists a positive
constant c(n,L, a) > 0 with the following property. If Ω is a bounded connected open set with
C2-boundary in R

n+1 such that H > 0 and

H0 = n , P (Ω) ≤ (L+ 1− a)P (B) , δ(Ω) ≤ c(n,L, a) ,

then there exists a finite family {Bzj ,1}j∈J of mutually disjoint balls with # J ≤ L such that if
we set

G =
⋃

j∈J

Bzj ,1 ,

then

|Ω∆G|
|Ω| ≤ C(n)L2 δ(Ω)α , (1.5)

|P (Ω)−# J P (B)|
P (Ω)

≤ C(n)L2 δ(Ω)α , (1.6)

maxx∈∂G dist(x, ∂Ω)

diam(Ω)
≤ C(n)Lδ(Ω)α , (1.7)

hd(∂Ω, ∂G)

diam(Ω)
≤ C(n)L3/n δ(Ω)α/4n

2(n+1) . (1.8)

Moreover, there exists an open subset Σ of ∂G and a function ψ : Σ → R with the following
properties. The set ∂G \Σ consists of at most C(n)L-many spherical caps whose diameters are
bounded by C(n) δ(Ω)α/4(n+1). The function ψ is such that (Id + ψ νG)(Σ) ⊂ ∂Ω and

‖ψ‖C1,γ (Σ) ≤ C(n, γ) , ∀γ ∈ (0, 1) , (1.9)

‖ψ‖C0(Σ)

diam(Ω)
≤ C(n)Lδ(Ω)α , ‖∇ψ‖C0(Σ) ≤ C(n)L2/n δ(Ω)α/8n(n+1) , (1.10)

Hn(∂Ω \ (Id + ψ νG)(Σ))

P (Ω)
≤ C(n)L4/n δ(Ω)α/4n(n+1) , (1.11)

where (Id + ψ νG)(x) = x+ ψ(x) νG(x) and νG is the outer unit normal to G. Finally:

(i) if # J ≥ 2, then for each j ∈ J there exists ℓ ∈ J , ℓ 6= j, such that

dist(∂Bzj ,1, ∂Bzℓ,1)

diam(Ω)
≤ C(n) δ(Ω)α/4(n+1) , (1.12)

that is to say, each ball in {Bzj ,1}j∈J is close to be tangent to another ball from the
family;

(ii) if there exists κ ∈ (0, 1) such that

|Bx,r \Ω| ≥ κ |B| rn+1 , ∀x ∈ ∂Ω , r < κ , (1.13)

and δ(Ω) ≤ c(n,L, κ), then # J = 1, that is, Ω is close to a single ball.

A first consequence of Theorem 1.1 is that examples of the kind constructed in [But11] are
actually the only possible examples of boundaries with almost-constant mean curvature which are
not close to a single sphere. Conversely, the examples of [But11] show that Theorem 1.1 provides
a qualitatively optimal information on sets with small Alexandrov’s deficit. But of course, the
strongest aspect of Theorem 1.1 is its quantitative nature. It is precisely this last feature which
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is needed in order obtain explicit (although arguably non-sharp) orders of magnitude in the
description of capillarity droplets, see Proposition 1.2 below and the discussion after it.

A second remark is that, thanks to conclusion (i) and up to a translation of the balls Bzj ,1

of the order of δ(Ω) appearing in (1.12), one can work with a reference configuration G such
that ∂G is connected, that is to say, for every j ∈ J one can assert that ∂Bzj ,1 is tangent to
∂Bzℓ,1 for some ℓ 6= j. Of course, in doing so, the various smallness estimates (1.5)–(1.11) will
be of the same order of δ(Ω) as in (1.12).

The use of the constant a should help to stress the “quantization” effect of the perime-
ter/energy (and of the volume) that happens under the small deficit assumption. Depending on
the situation, one could be already satisfied of working with the simpler statement corresponding
to the choice a = 1.

We also comment on assumption (ii). Our idea here is to provide more robust smallness
criterions for proximity to a single ball than δ(Ω) ≤ δ(n, ‖A‖C0(∂Ω)). The first criterion just
amounts in asking that P (Ω) ≤ (2− a)P (B), for a ∈ (0, 1]. The interest of the second criterion
is immediately understood if one considers that local minimizers of the capillarity energy satisfy
uniform volume density estimates. Of course, a third criterion for proximity to a single ball is
requiring the perimeter upper bound P (Ω) ≤ 2− a (which corresponds to taking L = 1).

We now illustrate the proof of Theorem 1.1. Our argument is based on Ros’ proof of
Alexandrov’s theorem [Ros87], which follows closely the ideas of Reilly [Rei77], and is based
on the following Heintze-Karcher inequality [HK78]: if Ω is a bounded connected open set with
C2-boundary in R

n+1 with H > 0, then
∫

∂Ω

n

H
dHn ≥ (n+ 1)|Ω| . (1.14)

Now, if H is constant, then it must be H = H0 = nP (Ω)/(n + 1)|Ω|, so that Ω must be an
equality case in (1.14). By exploiting Reilly’s identity [Rei77], Ros proves that if equality holds
in (1.14), then the solution f of

{

∆f = 1 in Ω ,

f = 0 on ∂Ω ,

satisfies ∇2f = Id/(n + 1) on Ω and |∇f | = n/H0(n + 1) on ∂Ω. By ∇2f = Id/(n + 1) on Ω,
there exist x0 ∈ R

n+1 and c < 0 such that f(x) = c+ |x− x0|2/2(n + 1) for every x ∈ Ω, i.e. Ω

is the ball of center x0 and radius r =
√

−2(n+ 1)c, while, by |∇f | = n/H0(n + 1) on ∂Ω, it
must be r = n/H0. When H is not constant, one can still infer from the proof of (1.14) that

C(n) |Ω| δ(Ω)1/2 ≥
∫

Ω

∣

∣

∣
∇2f − Id

n+ 1

∣

∣

∣
, (1.15)

C(n)
( n

H0

)2
P (Ω) δ(Ω) ≥

∫

∂Ω

∣

∣

∣

n/H0

n+ 1
− |∇f |

∣

∣

∣

2
, (1.16)

where the second estimate holds if δ(Ω) ≤ 1/2, and where ∇f = |∇f | νΩ 6= 0 on ∂Ω.
The problem of exploiting (1.15) and (1.16) in the description of Ω has some analogies with

the quantitative analysis of Serrin’s overdetermined problem [Ser71] addressed in [BNST08]. In
our terminology, the main result from [BNST08] states that, if H0 = n and for some t > 0 one
has

∫

∂Ω

∣

∣

∣

1

n+ 1
− |∇f |

∣

∣

∣
≤ P (Ω) t , ‖∇f‖C0(∂Ω) ≤

1 + t

n+ 1
, (1.17)

then there exist finitely many disjoint balls {Bxi,ri}mi=1 such that

∣

∣

∣
Ω∆

m
⋃

i=1

Bxi,ri

∣

∣

∣

(n+1)/2
+ max

1≤i≤m

∣

∣ri − 1
∣

∣ ≤ C(n,diam(Ω)) tβ , β =
1

4n+ 13
. (1.18)
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Because of the uniform upper bound on |∇f | in (1.17), it is not clear if one can take advantage
of this result in the proof of Theorem 1.1. At the same time, we have a different condition
at our disposal, namely (1.15), and by combining (1.15) with a global Lipschitz estimate for
f (which is based on [CGS94], and exploits the geometric assumption that H > 0 on ∂Ω), we
obtain a more precise control than (1.18) on the distance of Ω from a finite family of balls.
(Indeed, the power α in (1.5) is larger than the power 2β/(n+ 1) appearing in (1.18).) Finally,
in Serrin’s overdetermined problem the limiting balls need not to be tangent (sets Ω with small
t may contain arbitrarily long connecting necks) and one does not expect Hausdorff estimates
like (1.7) and (1.8) to hold (a set Ω with small t may contain small inclusions of large mean
curvature). In other words, although (1.18) provides a qualitatively sharp information in the
context of Serrin’s problem, in the case of Alexandrov’s theorem one expects, and thus wants to
obtain, stronger information on Ω.

Coming back to the proof of Theorem 1.1, the first step consists in proving a qualitative
result, see Theorem 2.5 below. Indeed, by combining a compactness argument, (1.15) and (1.16)
with Reilly’s identity, Pohozaev’s identity, and Allard’s regularity theorem (for integer rectifiable
varifolds with bounded distributional mean curvature) one comes to prove the following fact: if
{Ωh}h∈N is a sequence of open, bounded and connected sets with C2-boundary in R

n+1, n ≥ 2,
such that for some L ∈ N, L ≥ 1,

lim
h→∞

δ(Ωh) = 0 , sup
h∈N

Q(Ωh) < L+ 1 ,

then, setting

λh =
P (Ωh)

(n+ 1)|Ωh|
, Ω∗

h = λhΩh ,

and up to translations, one has

lim
h→∞

hd(∂Ω∗
h, ∂G) + |P (Ω∗

h)− P (G)| = 0 ,

where G is the union of at most L-many disjoint balls with unit radii, and with ∂G connected.
Moreover, for every h large enough there exist open sets Σh ⊂ ∂G (obtained by removing from
∂G at most C(n)L-many spherical caps) and functions ψh ∈ C1,γ(Σh) for every γ ∈ (0, 1) such
that (Id + ψh νG)(Σh) ⊂ ∂Ω∗

h, and

lim
h→∞

hd(Σh, ∂G) = 0 , ‖ψh‖C1,γ (Σh) ≤ C(n, γ) , lim
h→∞

‖ψh‖C1(Σh) = 0 .

This qualitative stability result, Theorem 2.5, is not needed in the proof of Theorem 1.1, and of
course it is actually a corollary of it. We have nevertheless opted for including a direct discussion
of it for the following reasons. First of all, it is a result of independent interest and possible
usefulness, so it seems interesting to have a shorter proof of it. Secondly, by having Theorem 2.5
at hand one is able to clean up to some later quantitative arguments and obtain better estimates.
Thirdly, Theorem 1.1 is actually proved by quantitatively revisiting the proof of Theorem 2.5,
and therefore the separate treatment of the latter should makes more accessible the argument
used in proving the former.

In this direction the main difficulty arises in the application of the area excess regularity
criterion of Allard, which is needed to parameterize a large portion of ∂Ω over a large portion of
∂G. A key point here is quantifying the size of Hn(∂Ω∩Bx,r) on a range of scales r proportional
to a suitable power of δ(Ω) and at points x ∈ ∂Ω sufficiently close to ∂G. We address this issue
by carefully partitioning R

n+1 into suitable polyhedral regions associated to the balls Bzj ,1, and
by then performing inside each of these regions a calibration type argument with respect to the
corresponding ball Bzj ,1 (see, in particular, step six of the proof of Theorem 1.1).

Summarizing, Theorem 1.1 is proved by combining a mix of different ideas from elliptic PDE
theory, global geometric identities, and geometric measure theory, and it contains a quantitative
(and qualitatively sharp) description of boundaries with almost-constant mean curvature.
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1.2. An application to capillarity surfaces. The study of the basic capillarity-type energy
functional in R

n+1 leads to consider sets Ω with small Alexandrov’s deficit. Indeed, given a
potential energy density g : Rn+1 → R, in capillarity theory one considers the free energy

F(Ω) = P (Ω) +

∫

Ω
g(x) dx ,

and its volume-constrained stationary points and local/global minimizers. Capillarity phenom-
ena are characterized by the dominance of surface tension over potential energy, which is the
case when the volume parameter m = |Ω| is small (as surface tension is of order mn/(n+1), while
potential energy is typically of order m). Under mild assumptions on g (essentially, coercivity at
infinity, g(x) → ∞ as |x| → ∞), one can show the existence of volume-constrained global mini-
mizers of F of any fixed volume. In particular, if Ωm is such a global minimizer with |Ωm| = m,

then by comparison with a ball B(m) of volume m one sees that

P (Ωm) ≤ P (B(m)) +

∫

B(m)\Ωm

g(x) dx ,

that is, the isoperimetric deficit δiso(Ωm) of Ωm is small in terms of m,

δiso(Ωm) =
P (Ωm)

P (B(m))
− 1 ≤ C(n)

mn/(n+1)

∫

B(m)\Ωm

g(x) dx ≈ C(n, g)m1/(n+1) .

By the quantitative isoperimetric inequality [FMP08, FMP10], one finds xm ∈ R
n+1 such that

( |Ωm∆(xm +B(m))|
m

)2
≤ C(n) δiso(Ωm) ,

so that, in conclusion, Ωm has to be close (in a normalized L1-sense) to a ball of volume m.
This observation is the starting point of the analysis performed in [FM11], where the proximity
of Ωm to a ball of volume m is quantified, under increasingly stronger smoothness assumptions
on g, in increasingly stronger ways. For example, if g ∈ C1

loc(R
n+1) and m ≤ m0(n, g), then Ωm

is shown to be convex and ∂Ωm is proved to a C2,γ-small normal deformation of xm + ∂B(m),
with explicit quantitative bounds on the C2,γ-norm of this deformation in terms of m.

When dealing with volume-constrained local minimizers or stationary points of F one cannot
rely anymore on the quantitative isoperimetric inequality, as one is not given the energy com-
parison inequality with B(m). However, in this more general context, Alexandrov’s deficit turns
out to be small in terms of the volume parameter m, thus opening the way for the application
of Theorem 1.1.

Let us recall that given a vector field X ∈ C∞
c (Rn+1;Rn+1), and denoted by ft the flow

generated by X, then the first variation of F at Ω along X is defined as

δF(Ω)[X] =
d

dt

∣

∣

∣

t=0
F(ft(Ω)) . (1.19)

One says that a set of finite perimeter Ω ⊂ R
n+1 is a volume-constrained stationary point of F if

δF(Ω)[X] = 0 for every X ∈ C∞
c (Rn+1;Rn+1) such that |ft(Ω)| = |Ω| for every t small enough.

The following proposition, combined with Theorem 1.1, provides a complete description of such
stationary boundaries, and its simple proof is presented in section 3.

Proposition 1.2. Let g ∈ C1
loc(R

n+1), R0 > 0, and Ω be an open set with C2-boundary such
that Ω ⊂ BR0 . If Ω is a volume-constrained stationary point of F with |Ω| = m, then

δ(Ω) ≤ C∗(n) ‖g‖C1(BR0
)m

1/(n+1) , (1.20)

for some constant C∗(n).
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Under the assumptions of Proposition 1.2, let us now pick L ∈ N, L ≥ 1, and a ∈ (0, 1],
define c(n,L, a) as in Theorem 1.1, and assume that

Q(Ω) ≤ L+ 1− a , m ≤
( c(n,L, a)

C∗(n) ‖g‖C1(BR0
)

)n+1
.

In this way, by Theorem 1.1 and (1.20), there exists a finite family {Bzj ,1}j∈J of disjoint balls
such that, looking for example at (1.5) and setting G =

⋃

j∈J Bzj ,1,

|Ω∆G∗|
|Ω| =

|Ω∗∆G|
|Ω∗| ≤ C(n)L2 ‖g‖αC1(BR0

)m
α/(n+1) ,

where Ω∗ = (H0/n)Ω, and thus G∗ =
⋃

j∈J Bwj ,n/H0
. Notice that this proves a quantization of

the volume of Ω, in the sense that |Ω∗| is close to #J |B| with an error of order C mα/(n+1),
where C = C(n,L, ‖g‖C1(BR0

)). Similar results carrying different geometric information are

obtained from the other estimates appearing in Theorem 1.1.
In conclusion, the quantitative side of Theorem 1.1 significantly strengthens the purely qual-

itative analysis that one could obtain by exploiting compactness arguments only, as it provides
explicit orders of magnitude for the errors one makes in approximating Ω∗ with a unit balls
compound.

We finally notice that Ω∗ will be close to a single ball as soon as volume-constrained station-
arity is strengthened into some local minimality property. For example, it will suffice to require
that F(Ω) ≤ F(E) whenever |E| = |Ω| and ∂E ⊂ Iσ(∂Ω) = {x ∈ R

n+1 : dist(x, ∂Ω) < σ}, with
σ = σ0 |Ω|/P (Ω) for some σ0 > 0. Notice that although E = B(m) is not an admissible competi-
tor in this local minimality condition, thus ruling out the possibility of applying [FMP08], Ω will
nevertheless be a volume-constrained stationary set for F . Moreover, by a standard argument
exploiting the local minimality of Ω, one obtains volume density estimates for Ω∗ which make
possible to apply statement (ii) in Theorem 1.1.

1.3. Organization of the paper. The proof of Theorem 1.1 and of Proposition 1.2 are dis-
cussed, respectively, in section 2 and section 3. In Appendix A we discuss the relation of the
Alexandrov’s stability problem with the study of almost-umbilical surfaces initiated by De Lellis
and Müller in [DLM05].

Acknowledgment: We thank Manuel Ritoré for stimulating the writing of Appendix A. This
work has been done while GC was visiting the University of Texas at Austin under the support
of NSF-DMS FRG Grant 1361122, of a Oden Fellowship at ICES, the GNAMPA of the Istituto
Nazionale di Alta Matematica (INdAM), and the FIRB project 2013 “Geometrical and Qual-
itative aspects of PDE”. FM is supported by NSF-DMS Grant 1265910 and NSF-DMS FRG
Grant 1361122.

2. Proof of Theorem 1.1

We begin by gathering various assumptions, preliminaries, and conventions.

Constants: The symbol C denotes a generic positive constant whose value is independent from
n and Ω. We use the symbols C0, C1, etc. for constants whose specific value is referred to in
multiple occasions (see, for instance (2.18) below). We denote by C(n) and c(n) generic positive
constants whose value does depend on n, but is independent from Ω, with the idea that C(n)
stands for a “large” constant, and c(n) stands for a “small” constant. Similar conventions hold
for C(n,L), etc.

Assumptions on Ω: Thorough this section we always assume that

Ω ⊂ R
n+1, n ≥ 2, is a bounded connected open set

with C2-boundary with H > 0 on ∂Ω .
(2.1)
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From a certain point of our argument on we shall assume that (as one can always do up to a
scaling)

(n+ 1)|Ω| = P (Ω) . (2.2)

Recall that, by the Euclidean isoperimetric inequality (see (1.3)), (2.2) implies

|B| ≤ |Ω| , P (B) ≤ P (Ω) , (2.3)

where B = {x ∈ R
n : |x| < 1}. Moreover, (2.2) is equivalent to H0 = n, so that

δ(Ω) = n−1 ‖H − n‖C0(Ω) ,

with δ(Ω) = 0 if and only if Ω is a ball of unit radius. Indeed, our convention for the scalar
mean curvature H is that

∫

∂Ω
div ∂ΩX dHn =

∫

∂Ω
(X · νΩ)H dHn , ∀X ∈ C1

c (R
n+1;Rn+1) ,

and thus the scalar mean curvature of B is equal to n. In addition to (2.2) we also assume that

P (Ω) ≤ (L+ 1− a)P (B) , where L ∈ N, L ≥ 1, a ∈ (0, 1]. (2.4)

Note that, by combining (2.4) with (2.2) one finds

|Ω| ≤ (L+ 1− a)|B| . (2.5)

We shall work under the assumption that δ(Ω) ≤ c(n,L, a) for a suitably small positive constant
c(n,L, a) ≤ 1/2: in particular,

n

2
≤ H(x) ≤ 2n , ∀x ∈ ∂Ω . (2.6)

By Topping’s inequality [Top08], one has

diam(Ω) ≤ C(n)

∫

∂Ω
|H|n−1 ,

so that (2.4) and (2.6) imply

diam(Ω) ≤ C(n)L . (2.7)

Alternatively, by the monotonicity identity (see [DL08, Theorem 2.1]) and by H ≤ 2n on ∂Ω,
one has that

s ∈ (0,∞) 7→ e2ns
Hn(∂Ω ∩Bx,s)

sn
is monotone increasing for every x ∈ R

n+1 . (2.8)

If x ∈ ∂Ω, then this function converges to Hn({z ∈ R
n : |z| < 1}) as s → 0+, and thus one

obtains the uniform lower perimeter estimate

Hn(∂Ω ∩Bx,s) ≥ c(n) sn , ∀x ∈ ∂Ω , s ∈ (0, 1) . (2.9)

We notice that this last fact can be used jointly with P (Ω) ≤ C(n)L to infer (2.7). Finally,
whenever Ω satisfies (2.1) we define the Heintze-Karcher deficit of Ω as

η(Ω) =

∫

∂Ω
n
H − (n+ 1)|Ω|
∫

∂Ω
n
H

= 1− (n+ 1)|Ω|
∫

∂Ω
n
H

. (2.10)

Just like δ(Ω), this is a scale invariant quantity such that η(Ω) = 0 if and only if Ω is a ball.
One has

η(Ω) ≤ δ(Ω) . (2.11)
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Indeed,

η(Ω) = 1− (n + 1)|Ω|
∫

∂Ω
n
H

=
(n+ 1)|Ω|
∫

∂Ω
n
H 0

− (n+ 1)|Ω|
∫

∂Ω
n
H

=
(n+ 1)|Ω|

n

∫

∂Ω
1
H −

∫

∂Ω
1
H 0

∫

∂Ω
1
H 0

∫

∂Ω
1
H

≤ (n+ 1)|Ω|
n

δ(Ω)
∫

∂Ω
1
H

∫

∂Ω
1
H 0

∫

∂Ω
1
H

= δ(Ω) .

Torsion potential: We denote by f and u the smooth functions defined on Ω by setting
{

∆f = 1 in Ω ,

f = 0 on ∂Ω ,
u = −f . (2.12)

Note that f < 0 on Ω, with ∇f = |∇f | νΩ on ∂Ω, and ∇νf = νΩ · ∇f = |∇f | > 0 on ∂Ω by
Hopf’s lemma. We shall use two integral identities involving f , namely, the Reilly’s identity
(see, e.g., [Ros87, Equation (3)])

∫

∂Ω
H |∇f |2 =

∫

Ω
(∆f)2 − |∇2f |2 , (2.13)

and the Pohozaev’s identity, see e.g. [AM07, Theorem 8.30],

(n+ 3)

∫

Ω
(−f) =

∫

∂Ω
(x · νΩ)|∇f |2 . (2.14)

The first one quickly leads to prove Alexandrov’s theorem and the Heintze-Karcher inequality,
as shown in [Ros87].

Lemma 2.1. If Ω and f are as in (2.1) and (2.12), then

|Ω|
n+ 1

(

∫

∂Ω

n

H
− (n+ 1)|Ω|

)

=

∫

∂Ω

1

H

∫

Ω
|∇2f |2 − (∆f)2

n+ 1
(2.15)

+

∫

∂Ω

1

H

∫

∂Ω
|∇f |2H −

(

∫

∂Ω
|∇f |

)2
,

In particular, (1.14) holds, and if H is constant on ∂Ω, then H = H0 > 0 and Ω is a ball.

Proof. By the divergence theorem and by Hölder’s inequality,

|Ω|2 =
(

∫

∂Ω
∇νf

)2
=

(

∫

∂Ω

√
H |∇f |√
H

)2
≤

∫

∂Ω

1

H

∫

∂Ω
|∇f |2H .

Thanks to (2.13),
∫

∂Ω
H |∇f |2 = n

n+ 1
|Ω|+

∫

Ω

(∆f)2

n+ 1
− |∇2f |2 ≤ n

n+ 1
|Ω| ,

where we have used the Cauchy-Schwartz inequality

(trM)2 = (M : Id)2 ≤ |Id|2 |M |2 = (n+ 1) |M |2 , ∀M ∈ R
n ⊗ R

n .

(Here and in the following, we denote by : the scalar product on R
n ⊗ R

n, and by | · | the
corresponding Hilbert norm on R

n ⊗ R
n.) This proves (2.15). Let us now assume that H is

constant on ∂Ω, then by applying the divergence theorem on ∂Ω and on Ω, one finds
∫

∂Ω

n

H
=

nP (Ω)

H
=

∫

∂Ω div ∂Ω(x) dHn
x

H
(2.16)

=

∫

∂Ω(x · νΩ)H dHn
x

H
=

∫

∂Ω
x · νΩ dHn

x =

∫

Ω
div (x) dx = (n + 1)|Ω| ,
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so that H = H0 and equality holds in (1.14). In particular, (2.15) gives that ∇2f(x) = Id/(n+1)
for every x ∈ Ω, so that, being Ω connected,

f(x) = c+
|x− x0|2
2(n+ 1)

,

for some c < 0 and x0 ∈ R
n. Since f = 0 on ∂Ω, we find that Ω is the ball of center x0 and

radius
√

−2(n+ 1)c. �

We now exploit [Tal76] and [CGS94] to obtain universal estimates on f .

Lemma 2.2. If Ω and f are as in (2.1) and (2.12), then

‖f‖C0(Ω) ≤ 1

2(n + 1)

( |Ω|
|B|

)2/(n+1)
≤ C |Ω|2/(n+1) , (2.17)

‖∇f‖C0(Ω) ≤
√
2 ‖f‖1/2

C0(Ω)
≤ C0 |Ω|1/(n+1) , (2.18)

‖∇2f‖L2(Ω) ≤ |Ω|1/2 . (2.19)

Proof. By a classical result of Talenti [Tal76], the radially symmetric decreasing rearrangement
(−f)⋆ of −f satisfies the pointwise estimate

(−f)⋆(x) ≤ R2 − |x|2
2(n+ 1)

, where R =
( |Ω|
|B|

)1/(n+1)
, (2.20)

so that the first inequality in (2.17) follows immediately. The second inequality in (2.17) is then
obtained by recalling that

|{z ∈ R
k : |z| < 1}| = πk/2

Γ(1 + (k/2))
, lim

t→∞

Γ(1 + t)√
2πt(t/e)t

= 1 . (2.21)

(Thus (2.17) does not need the assumption that H > 0 on ∂Ω). Moreover, we immediately
deduce (2.19) from ∆f = 1 and (2.13), so that we are left to prove (2.18). With u = −f we set

p = |∇u|2 + 2(u− ‖u‖C0(Ω)) ,

and aim to prove that p ≤ 0. The key fact is the observation that

|∇u|2 ∆p+ 2∇u · ∇p ≥ |∇p|2
2

, on {|∇u| > 0} , (2.22)

see [CGS94, Equation (2.7)]. Given (2.22), we argue by contradiction and assume that the
maximum p0 of p in Ω is positive. We first claim that p0 is achieved on ∂Ω. Indeed, let
U = {x ∈ Ω : p(x) = p0}, then U is obviously closed. If x ∈ U , then |∇u(x)|2 ≥ p(x) = p0 > 0
and so p satisfies

∆p+ T · ∇p ≥ 0 , in a neighborhood of x ,

where the vector-field

T = 2
∇u
|∇u|2 (2.23)

is bounded on that same neighborhood. By the strong maximum principle, p must be constant
in that neighborhood. This shows that U is open, so that U = Ω by connectedness. At the same
time, there exists x∗ ∈ Ω such that ∇u(x∗) = 0, so that p0 = p(x∗) = 2

(

u(x∗) − ‖u‖C0(Ω)

)

≤ 0
a contradiction. This shows that there exists x0 ∈ ∂Ω such that

p(x0) = p0 > p(x) , ∀x ∈ Ω .

By Hopf’s lemma, ∇νu(x0) < 0, so that

∆p+ T · ∇p ≥ 0 , in a neighborhood of x0 in Ω ,



HYPERSURFACES WITH ALMOST CONSTANT MEAN CURVATURE 11

where once again the vector-field T (defined as in (2.23) above) is bounded. By Hopf’s lemma,

∇νp(x0) > 0 . (2.24)

At the same time one has

∇νp(x0) = 2
(

∇u(x0) · ∇(∇νu)(x0) +∇νu(x0)
)

.

Since u = 0 on ∂Ω, we have ∇u = (∇νu) ν on ∂Ω, so that the above identity becomes

∇νp(x0) = ∇νu(x0)
(

∇ν νu(x0) + 1
)

.

Since ∇νu(x0) < 0, (2.24) gives us

∇ν νu(x0) < −1 = ∆u(x0) . (2.25)

We now obtain a contradiction by showing that, thanks to H > 0, one has

∆u(x0) < ∇ν νu(x0) . (2.26)

Indeed, assuming without loss of generality that x0 = 0 and that Ω is (locally at 0) the subgraph
of a function ϕ on n-variables such that ϕ(0) = 0 and ∇ϕ(0) = 0 (so that νΩ(0) = en, and thus
−H(0) = ∆ϕ(0)), by differentiating u(z, ϕ(z)) = 0 at z = 0 twice along the direction zi, one
gets

0 = ∇ziziu(z, ϕ(z)) + 2∇zi νu(z, ϕ(z))∇ziϕ(z) +∇νu(z, ϕ(z))∇zi ziϕ(z) +∇ννu(z) (∇ziϕ(z))
2

which, evaluated at z = 0, by ∇ϕ(0) = 0 gives us

0 = ∇ziziu(0) +∇νu(0)∇zi ziϕ(0) .

By adding up over i = 1, ..., n, and by H(0) > 0 and ∇νu(0) < 0, we conclude that

0 = ∆u(0)−∇ν νu(0)−H(0)∇νu(0) > ∆u(0)−∇ν νu(0) ,

so that (2.26) holds. �

Lemma 2.3. If Ω and f are as in (2.1) and (2.12), then

C(n) |Ω|
√

η(Ω) ≥
∫

Ω

∣

∣

∣
∇2f − Id

n+ 1

∣

∣

∣
. (2.27)

If, in addition, δ(Ω) ≤ 1/2, then

C(n)
( n

H0

)2
P (Ω) δ(Ω) ≥

∫

∂Ω

∣

∣

∣

n/H0

n+ 1
− |∇f |

∣

∣

∣

2
. (2.28)

Remark 2.4. If we define ū = −f on Ω, ū = 0 on R
n+1 \ Ω, then the distributional gradient

Dū and the distributional Hessian D2ū of ū are given by

Dū = −∇f Ln+1
xΩ ,

D2ū = −∇2f Ln+1
xΩ +

∇f ⊗∇f
|∇f | Hn

x∂Ω ,

where Ln+1 is the Lebesgue measure on R
n+1. Indeed, for every ϕ ∈ C∞

c (Rn+1) one has

D2ū(ϕ) =

∫

Rn+1

ū ∂ijϕ = −
∫

Ω
f ∂ijϕ =

∫

Ω
∂if ∂jϕ =

∫

∂Ω
(νΩ)j ϕ∂if −

∫

Ω
ϕ∂ijf ,

where νΩ = ∇f/|∇f | on ∂Ω. Hence, under the assumption (2.2), (2.27) and (2.28) are equivalent
to

|D2ū− µ|(Rn+1) ≤ C(n)
(

P (Ω) δ(Ω) + |Ω| η(Ω)1/2
)

≤ C(n,L) δ(Ω)1/2 , (2.29)

where µ is the Radon measure defined by

µ = − Id

n+ 1
Ln+1

xΩ +
νΩ ⊗ νΩ
n+ 1

Hn
x∂Ω .



12 G. CIRAOLO AND F. MAGGI

This point of view on (2.27)–(2.28) is at the basis of the proof of Theorem 2.5 below.

Proof of Lemma 2.3. We first prove (2.27). If M1,M2 ∈ R
n ⊗ R

n with M1,M2 6= 0, then one
has

|M1| |M2| −M1 :M2 =
1

2

∣

∣

∣
µM1 −

M2

µ

∣

∣

∣

2
, µ = (|M2|/|M1|)1/2 ,

so that

|M1|2 |M2|2 − (M1 :M2)
2 ≥ (M1 :M2)

∣

∣

∣
µM1 −

M2

µ

∣

∣

∣

2
.

By (2.15), setting M1 = ∇2f (note that ∇2f 6= 0 as ∆f = 1 on Ω) and M2 = Id, and noticing
that |Id|2 = (n+ 1) and ∆f = ∇2f : Id, one finds

n |Ω| η(Ω) ≥
∫

Ω
|Id|2 |∇2f |2 − (∆f)2 ≥

∫

Ω
µ2

∣

∣

∣
∇2f − Id

µ2

∣

∣

∣

2
, (2.30)

where we have set µ(x) =
(

|Id|/|∇2f(x)|
)1/2

, x ∈ Ω. By (2.19) and (2.30), we get

(

∫

Ω

∣

∣

∣
∇2f − Id

µ2

∣

∣

∣

)2
≤

∫

Ω
µ2

∣

∣

∣
∇2f − Id

µ2

∣

∣

∣

2
∫

Ω

|∇2f |
|Id|

≤ C(n) |Ω|3/2 η(Ω)
(

∫

Ω
|∇2f |2

)1/2
≤ C(n) |Ω|2 η(Ω) ,

that is
∫

Ω

∣

∣

∣
∇2f − Id

µ2

∣

∣

∣
≤ C(n) |Ω|

√

η(Ω) . (2.31)

In particular, |tr (M1)− tr (M2)| ≤ |M1 −M2| and ∆f = 1 give us
∫

Ω

∣

∣

∣
1− n+ 1

µ2

∣

∣

∣
≤ C(n) |Ω|

√

η(Ω) ,

which leads to
∫

Ω

∣

∣

∣

Id

n+ 1
− Id

µ2

∣

∣

∣
=

√
n+ 1

∫

Ω

∣

∣

∣

1

n+ 1
− 1

µ2

∣

∣

∣
≤ C(n) |Ω|

√

η(Ω) .

We prove (2.27) by combining this last inequality with (2.31). We now prove (2.28). By (2.15)
one has

|Ω|
n+ 1

(

∫

∂Ω

n

H
− (n+ 1)|Ω|

)

≥ 2

∫

∂Ω
|∇f |

((

∫

∂Ω

1

H

∫

∂Ω
|∇f |2H

)1/2
−

∫

∂Ω
|∇f |

)

. (2.32)

Since
∫

∂Ω |∇f | = |Ω|, if λ > 0 is such that

λ4 =
(

∫

∂Ω

1

H

)−1
∫

∂Ω
|∇f |2H ,

then (2.32) gives us

1

2(n+ 1)

(

∫

∂Ω

n

H
− (n + 1)|Ω|

)

≥
(

∫

∂Ω

1

H

∫

∂Ω
|∇f |2H

)1/2
−
∫

∂Ω
|∇f |

=

∫

∂Ω

λ2

2

1

H
+

1

2λ2
|∇f |2H − |∇f |

=

∫

∂Ω

1

2

( λ√
H

− |∇f |
√
H

λ

)2
≥

∫

∂Ω

H

2λ2

(λ2

H
− |∇f |

)2
.

Again, by (2.6),

H0

λ2

∫

∂Ω

(λ2

H
− |∇f |

)2
≤ C(n) η(Ω)

∫

∂Ω

n

H
≤ C(n)P (Ω)

n

H0
η(Ω) .



HYPERSURFACES WITH ALMOST CONSTANT MEAN CURVATURE 13

Finally, by (2.13) one has
∫

∂ΩH|∇f |2 ≤ |Ω|, so that

λ4 ≤ C H0
|Ω|
P (Ω)

≤ C , (2.33)

and thus
∫

∂Ω

(λ2

H
− |∇f |

)2
≤ C(n)

( n

H0

)2
P (Ω) η(Ω) . (2.34)

Now let |∇f |∂Ω denote the average of |∇f | on ∂Ω, so that |∇f |∂Ω = |Ω|/P (Ω). By (2.33) and
(2.34) we thus find

∫

∂Ω

(

|∇f |∂Ω − |∇f |
)2

≤
∫

∂Ω

( λ2

H0
− |∇f |

)2
≤ 2

∫

∂Ω

( λ2

H0
− λ2

H

)2
+ 2

∫

∂Ω

(λ2

H
− |∇f |

)2

≤ C(n)
( n

H0

)2
P (Ω) δ(Ω) ,

where in the last inequality we have used (2.11) and δ(Ω) ≤ 1. We deduce (2.28) by noticing
that |∇f |∂Ω = n/(n+ 1)H0. �

We now exploit a compactness argument to show that if the Alexandrov’s deficit of Ω is
small enough, then Ω can be taken arbitrarily close (in various ways) to a finite family of tangent
balls of unit radii.

Theorem 2.5. Given n,L ∈ N, n ≥ 2, L ≥ 1, a ∈ (0, 1], and τ > 0 there exists c(n,L, a, τ) > 0
with the following property. If Ω satisfies (2.1), (2.2), (2.4), f is defined as in (2.12) (and then
extended to 0 on R

n+1 \ Ω) and δ(Ω) ≤ c(n,L, a, τ), then there exists a finite family of disjoint
unit balls {Bzj ,1}j∈J with # J ≤ L such that, setting

G =
⋃

j∈J

Bzj ,1 ,

∂G is connected (that is, each sphere ∂Bzj ,1 intersects tangentially at least another sphere ∂Bzℓ,1

for some ℓ 6= j) and

|Ω∆G|+ hd(∂Ω, ∂G) + |P (Ω)− P (G)|+ ‖f − fG‖C0(Rn+1) ≤ τ ,

where

fG(x) = −
∑

j∈J

max
{1− |x− xj |2

2(n+ 1)
, 0
}

, x ∈ R
n+1 .

Moreover, there exist Σ ⊂ ∂G and φ ∈ C1,γ(Σ) for every γ ∈ (0, 1) such that ∂G \ Σ consists
of at most C(n)L-many spherical caps whose diameters are bounded by τ , and such that (Id +
φ νG)(Σ) ⊂ ∂Ω with

‖φ‖C1(Σ) +Hn
(

∂Ω \ (Id + φ νG)(Σ)
)

≤ τ , ‖φ‖C1,γ (Σ) ≤ C(n, γ) .

Remark 2.6. Notice that by Theorem 2.5 and since ‖∇f‖C0(Ω) ≤
√
2 ‖f‖1/2

C0(Ω)
thanks to (2.18),

one can deduce that

‖f‖C1(Ω) ≤ C0(n) , (2.35)

whenever δ(Ω) ≤ c(n,L, a). (Indeed, it is enough to pick τ = τ(n) and use ‖f − fG‖C0(Ω) ≤ τ .)
As a consequence one can choose, in the proof of Theorem 1.1, if working with (2.17)–(2.18)
or with (2.35). In the former case, one obtains larger powers of L but explicitly computable
constants C(n) in the quantitative estimates of Theorem 1.1; in the latter case, we obtain smaller
powers of L but lose the ability of computing the corresponding constants C(n). We shall opt
for the second possibility.
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Proof of Theorem 2.5. Let us consider a sequence of sets {Ωh}h∈N satisfying (2.1), (2.2) and
(2.4) (with the same L and a for every h ∈ N), and correspondingly define fh starting from Ωh

by (2.12). Assuming that δ(Ωh) → 0, it will suffice to prove that, up extracting subsequences,

lim
h→∞

|Ωh∆G|+ hd(∂Ωh, ∂G) + |P (Ωh)− P (G)| + ‖fh − fG‖C0(Rn+1) = 0 , (2.36)

where G and fG are associated to a family of balls {Bzj ,1}j∈J as in the statement, and that

there exist Σh ⊂ ∂G and φh ∈ C1,γ(Σh) for every γ ∈ (0, 1) such that ∂G \ Σh consists of at
most C(n)L-many spherical caps with vanishing diameters, and (Id + φh νG)(Σh) ⊂ ∂Ωh with

lim
h→∞

‖φh‖C1(Σh) +Hn
(

∂Ωh \ (Id + φh νG)(Σh)
)

= 0 , sup
h∈N

‖φh‖C1,γ(Σh) ≤ C(n, γ) .

To this end, we first note that, by (2.7), up to translating the sets Ωh one has

Ωh ⊂ BR , ∀h ∈ N , (2.37)

where R = R(n,L). By (2.37) and since P (Ωh) ≤ C(n,L) thanks to (2.4), the compactness
theorem for sets of finite perimeter [Mag12, Theorem 12.26] implies that, up to extracting
subsequences,

lim
h→∞

|Ωh∆G| = 0 , (2.38)

where G ⊂ BR is a set of finite perimeter in R
n+1. Similarly, if we define ūh : Rn+1 → R by

setting ūh = −fh on Ωh, and ūh = 0 on R
n+1 \ Ωh, then by (2.18) and by (2.37) we find that,

again up to extracting subsequences,

lim
h→∞

‖ūh − ū‖C0(Rn+1) + ‖ūh − ū‖L1(Rn+1) = 0 , (2.39)

where ū : Rn+1 → [0,∞) is a Lipschitz function on R
n+1. Now, by Remark 2.4,

D2ūh = −∇2fhLn+1
xΩh + |∇fh| νΩh

⊗ νΩh
Hn

x∂Ωh . (2.40)

In particular,

|D2ūh|(Rn+1) =

∫

Ωh

|∇2fh|+
∫

∂Ωh

|∇fh|

≤ |Ωh|1/2‖∇2fh‖L2(Ωh) +
(

∫

∂Ωh

1

H

)1/2(
∫

∂Ωh

H |∇fh|2
)1/2

≤ |Ωh|+C(n)P (Ωh)
1/2 |Ωh|1/2 ≤ C(n,L) ,

where in the last line we have used, in the order, (2.19), (2.6), (2.13), (2.5) and (2.4); as a
consequence,

Dū ∈ BV (Rn+1;Rn+1) , D2ūh
∗
⇀ D2ū as Radon measures on R

n+1 . (2.41)

If ϕ ∈ C0
c (R

n+1), then by (2.27) and (2.38)

(D2ūhxΩh)(ϕ) = −
∫

Ωh

ϕ∇2fh → − Id

n+ 1

∫

G
ϕ ,

so that

D2ūhxΩh
∗
⇀ − Id

n+ 1
Ln+1

xG as Radon measures in R
n+1 . (2.42)

By (2.41) and (2.42), if µ denotes the weak-* limit of the Radon measures

µh = D2ūhx(R
n+1 \ Ωh) = |∇fh| νΩh

⊗ νΩh
Hn

x∂Ωh ,

then we have

D2ū = − Id

n+ 1
Ln+1

xG+ µ . (2.43)
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We claim that

|{ū > 0} \G| = 0 , sptµ ∩ {ū > 0} = ∅ . (2.44)

To prove the first part of (2.44), we note that if ū(x) > 0, then by uniform convergence ūh ≥
ū(x)/2 on Bx,sx for every h ≥ hx and for some sx > 0, so that Bx,sx ⊂ Ωh for every h ≥ hx. This
implies that |Bx,sx \G| = 0 (thus the first part of (2.44)), and also that Bx,sx ∩ sptµh = ∅: since
sptµ is contained in the set of the accumulation points of sequences {xh}h∈N with xh ∈ ∂Ωh, we
have proved (2.44). By combining (2.43) and (2.44) we deduce that

D2ūx{ū > 0} = − Id

n+ 1
Ln+1

x{ū > 0} . (2.45)

Now let {Aj}j∈J denote the connected components of the open set {ū > 0}, then by (2.45) we
can find zj ∈ R

n+1 and cj ∈ R such that

ū(x) = cj −
|x− zj |2
2(n + 1)

, ∀x ∈ Aj ,

and since ū ≥ 0 it must be

cj ≥ 0 , Aj ⊂ Bzj ,sj where sj = (2(n + 1)cj)
1/2 ,

thus cj > 0 because Aj is open. In conclusion,

{ū > 0} =
⋃

j∈J

Aj ⊂
⋃

j∈j

Bzj ,sj ⊂ {ū > 0} ,

that is, ū = −fG,

ū(x) =
∑

j∈J

max
{s2j − |x− zj |2

2(n + 1)
, 0
}

, Aj = Bzj ,sj . (2.46)

We now want to prove that |G∆{ū > 0}| = 0 and that J is finite with sj = 1 for every j ∈ J .
To this end we first notice that sj ≤ 1 for every j ∈ J . Indeed, by (2.46) we have that

{ū > ε} =
⋃

j∈J

B
zj ,

√

(s2j−2(n+1)ε)+
, ∀ε > 0 ,

so that, by uniform convergence,
⋃

j∈J

B
zj ,

√

(s2j−2(n+1)ε)+
⊂

{

uh >
ε

2

}

⊂ Ωh , ∀h ≥ hε .

In particular, if we fix j ∈ J , pick ε < s2j/2(n + 1), and let h ≥ hε,j, then by the previous
inclusion there exists y ∈ ∂Ωh such that

n
√

s2j − 2(n+ 1)ε
≥ H∂Ωh

(y) ≥ n(1− δ(Ωh)) ,

that is, letting h → ∞, s2j − 2(n + 1)ε ≤ 1. By the arbitrariness of ε, we conclude that sj ≤ 1.

We now apply Pohozaev’s identity (2.14) to fh to find

(n+ 3)

∫

Rn+1

ūh = (n+ 3)

∫

Ωh

(−fh) =
∫

∂Ωh

(x · νΩh
)|∇fh|2 ,

so that by (2.39), (2.28), and the divergence theorem we find

(n+ 3)

∫

Rn+1

ū = lim
h→∞

∫

∂Ωh

(x · νΩh
)

(n+ 1)2
=

|G|
n+ 1

≥ |B|
n+ 1

∑

j∈J

sn+1
j .
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At the same time, by (2.46) and a simple computation we find

(n+ 1) (n + 3)

∫

Rn+1

ū = |B|
∑

j∈J

sn+3
j ,

so that
∑

j∈J

sn+1
j (1− s2j) ≤ 0 .

Since sj ∈ (0, 1] for every j ∈ J , we conclude that sj = 1 for every j ∈ J . As a consequence,
# J ≤ L, because of

(L+ 1− a)|B| ≥ lim
h→∞

|Ωh| = |G| ≥ |{ū > 0}| = #J |B| .

Since J is finite we deduce from (2.46) that

D2ū = − Id

n+ 1
Ln+1

x

⋃

j∈J

Bzj ,1 +
∑

j∈J

νBzj,1
⊗ νBzj,1

n+ 1
Hn

x∂Bzj ,1 .

By comparing this formula with (2.43) we conclude that |G∆{ū > 0}| = 0, provided we can
show that the measure µ appearing in (2.43) is singular with respect to Ln+1, of course. To
this end, it suffices to consider the multiplicity one varifolds Vh associated to ∂Ωh. Since (in the
notation and terminology of [Sim83, Chapter 8]) the varifolds {Vh}h∈N have uniformly bounded
masses (as M(Vh) = Hn(∂Ωh)) and uniformly bounded generalized mean curvatures (thanks
to (2.6)), by [Sim83, Theorem 42.7, Remark 42.8] there exists an integer multiplicity rectifiable

n-varifold V such that Vh
∗
⇀ V as varifolds. In particular, if V is supported on the n-rectifiable

set M , and if θ denotes the integer multiplicity of V , then, denoting by νM a Borel vector-field
such that νM (x)⊥ = TxM for Hn-a.e. x ∈M , we get

∫

M
ϕθ νM ⊗ νM dHn = lim

h→∞

∫

∂Ωh

ϕνΩh
⊗ νΩh

dHn , ∀ϕ ∈ C0
c (R

n+1) .

Hence, by (2.28) and by definition of µh and µ we conclude that

µ =
θ

n+ 1
νM ⊗ νM Hn

xM .

As explained this shows that |G∆{ū > 0}| = 0, and thus, from now one we directly set

G =
⋃

j∈J

Bzj ,1 .

Let us prove that P (Ωh) → P (G). By the divergence theorem,

∣

∣(n+ 1)|Ωh| − P (Ωh)
∣

∣ =
∣

∣

∣

∫

∂Ωh

(

1− H∂Ωh

n

)

(x · νΩh
)
∣

∣

∣
≤ diam(Ωh) δ(Ωh) ,

while at the same time (n+ 1)|G| = P (G), so that

|P (Ωh)−P (G)| ≤ (n+1)||Ωh|−|G||+diam(Ωh) δ(Ωh) ≤ (n+1)|Ωh∆G|+diam(Ωh) δ(Ωh) , (2.47)

and P (Ωh) → P (G), as claimed. This last fact implies in particular that

Hn
x∂Ωh

∗
⇀ Hn

x∂G as Radon measures in R
n+1 . (2.48)

By (2.48), (2.9) and a classical argument we immediately prove that hd(∂Ωh, ∂G) → 0. Since
∂Ωh is connected for every h, hd(∂Ωh, ∂G) → 0 implies that ∂G is connected. We are thus left
to prove the existence of sets Σh and maps φh with the claimed properties. To this end we put
the proof of the theorem on hold, and recall some basic useful facts from the regularity theory
for integer rectifiable varifolds. �
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Given x ∈ R
n+1, ν ∈ Sn and r > 0 we set

Cν
x,r =

{

y ∈ R
n+1 : |pν(y − x)| < r , |(y − x) · ν| < r

}

, Cr = Cen
0,r , C = C1 ,

Dν
x,r =

{

y ∈ R
n+1 : |pν(y − x)| < r , (y − x) · ν = 0

}

, Dr = Den
0,r , D = D1 ,

where pν(v) = v− (v · ν)ν for every v ∈ R
n+1. Given u ∈ Ck,γ(Dr), it will be useful to consider,

along with the standard Ck,γ-norms on Dr, the scaled norms

‖u‖∗Ck,γ (Dr)
=

k
∑

j=0

rj−1 ‖Dju‖C0(Dr) + rk−1+γ [Dku]C0,γ(Dr) ,

which are invariant by scaling in the sense that, if we set λr(u)(x) = r−1 u(r x) for x ∈ D, then

‖λr(u)‖Ck,γ (D) = ‖λr(u)‖∗Ck,γ (D) = ‖u‖∗Ck,γ (Dr)
, ∀r > 0 .

We shall need the following technical lemma, which just amounts to a simple application of
the implicit function theorem, and whose proof can be found in [CLM14, Lemma 4.3]. In the
statement, given u : D4r → R with |u| < 4r on D4r, we set

Γr(u) = (Id + u en)(D4r) ⊂ C4r .

Lemma 2.7. Given n ≥ 1,M > 0 and γ ∈ [0, 1] there exist positive constants κ0 = κ0(n,M, γ) <
1 and κ1 = κ1(n,M, γ) with the following property. If u1 ∈ C2,1(D4r), u2 ∈ C1,γ(D4r), and

max
i=1,2

‖ui‖∗C1(D4r)
≤ κ0 , max

{

‖u1‖∗C2,1(D4r)
, ‖u2‖∗C1,γ(D4r)

}

≤M ,

then there exists ψ ∈ C1,γ(C2r ∩ Γr(u1)) such that

Cr ∩ Γr(u2) ⊂ (Id + ψν)(C2r ∩ Γr(u1)) ⊂ Γr(u2) ,

‖ψ‖C0(C2r∩Γr(u1))

r
+ ‖∇ψ‖C0(C2r∩Γr(u1)) + rγ [∇ψ]C0,γ (C2r∩Γr(u1)) ≤ κ1 ,

‖ψ‖C0(C2r∩Γr(u1))

r
+ ‖∇ψ‖C0(C2r∩Γr(u1)) ≤ κ1 ‖u1 − u2‖C1(D4r) .

Here, ν ∈ C1,1(Γr(u1);S
n) is the normal unit vector field to Γr(u1) defined by

ν(z, u1(z)) =
(−∇u1(z), 1)

√

1 + |∇u1(z)|2
, ∀z ∈ D4r .

Next, let S be a Hn-rectifiable set in R
n+1 with bounded generalized mean curvature in

some open set V , that is, there exists H ∈ L∞(V ;Hn
xS) such that

∫

S
div S X dHn =

∫

S
X ·H dHn , ∀X ∈ C1

c (V ;Rn+1) ,

and assume that S = spt(Hn
xS), i.e., Hn(S ∩Bx,r) > 0 for every x ∈ S, r > 0. Set

σ(S, x, r) = r ‖H‖L∞(Bx,r ;HnxS) +max
{Hn(S ∩Bx,r)

ωn rn
− 1, 0

}

, x ∈ S , r > 0 , (2.49)

where ωn = Hn(B ∩ {x1 = 0}). Then for every γ ∈ (0, 1), Allard’s regularity theorem [All72]
(as stated in [Sim83, Theorem 24.2] – see also [DL12, Theorem 3.2]) gives us positive constants
σ0(n, γ) < 1 and C(n, γ) with the following property:

Allard’s theorem: With S as above, if x ∈ S and r > 0 are such that Bx,r ⊂⊂ V and

σ(S, x, r) ≤ σ0(n, γ) , (2.50)

then there exist ν ∈ Sn and a Lipschitz map u : (x+ ν⊥) → R with u(x) = 0 such that

S ∩Cν
x,σ0 r =

{

z + u(z)ν : z ∈ Dν
x,σ0 r

}

, ‖u‖∗C1,γ (Dν
x,σ0 r)

≤ C(n, γ)σ(S, x, r)1/4n .
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x

λ

Bz2,1

C
µx

x,c0λ2

Bz1,1

z2z1

Figure 2. If x ∈ Σλ ∩ ∂Bzj ,1, then ∂G ∩ C
µx

x,c0(n)λ2 = ∂Bzj,1 ∩ C
µx

x,c0(n)λ2 , see also

(2.62). Here µx = νG(x) = νBz1,1
(x).

(Note that this statement is a particular case of Allard’s theorem in the sense that we consider
only density one varifolds and we restrict to the codimension one case.) In the following we shall
apply this theorem with γ = 1/4n. Correspondingly, we simply set

σ0(n) = σ0

(

n,
1

4n

)

< 1 .

We now prove a technical lemma which will be useful in the proof of Theorem 1.1 too.

Lemma 2.8. There exist positive constants λ(n) < 1 and c0(n) with the following property. Let
Ω satisfy (2.1), (2.2), and (2.4), let {Bzj ,1}j∈J be a disjoint family of unit balls, and set

G =
⋃

j∈J

Bzj ,1 , Σλ = ∂G \
⋃

j,ℓ∈J,j 6=ℓ

B(zj+zℓ)/2,λ λ > 0 . (2.51)

Assume that to each λ ≤ λ(n) and x ∈ Σλ one can associate ρx ∈ (0, 1) and y ∈ ∂Ω in such a
way that

c0(n)λ
2

2
≤ ρx ≤ c0(n)λ

2 , (2.52)

|x− y| = dist(x, ∂Ω) ≤ σ0(n)ρ
2
x

2
, (2.53)

σ(∂Ω, y, ρx) ≤ σ0(n)λ(n) , (2.54)

|Ω∆G| ≤ C(n) ρn+1
x σ(∂Ω, y, ρx)

1/4n . (2.55)

Then for every λ ≤ λ(n) there exists ψλ : Σλ → R such that

‖ψλ‖C1,γ (Σλ) ≤ C(n, γ) , ∀γ ∈ (0, 1) , (2.56)

λ−2 ‖ψλ‖C0(Σλ) + ‖∇ψλ‖C1(Σλ) ≤ C(n) max
x∈Σλ

σ(∂Ω, y, ρx)
1/4n , (2.57)

(Id + ψλνG)(Σλ) ⊂ ∂Ω . (2.58)

Remark 2.9. Note that we do not assume ∂G to be connected. In other words, the balls Bzj ,1

need not to be tangent, although the may be arbitrarily close or even mutually tangent, and
actually this last case will somehow be the “worst” case to keep in mind. We also note that
for λ(n) small enough, if λ ≤ λ(n), then ∂G \ Σλ consists of finitely many (precisely, at most
C(n)# J-many) spherical caps of diameters bounded by C λ.
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Proof of Lemma 2.8. We claim that for every λ ≤ λ(n) and x ∈ Σλ there exists

ψx ∈ C1,1/4n(Cµx

x,σ0 ρx/4
∩ ∂G)

such that

C
µx

x,σ0 ρx/8
∩ ∂Ω ⊂ (Id + ψxνG)(C

µx

x,σ0 ρx/4
∩ ∂G) ⊂ C

µx

x,σ0 ρx/2
∩ ∂Ω ,

‖ψx‖C1,1/4n(Cµx
x,σ0 ρx/4

∩∂G) ≤ C(n) , (2.59)

ρ−1
x ‖ψx‖C0(Cµx

x,σ0 ρx/4
∩∂G) + ‖∇ψx‖C0(Cµx

x,σ0 ρx/4
∩∂G) ≤ C(n)σ(∂Ω, y, ρx)

1/4n .

Postponing for the moment the proof of the claim, let us show how it allows one to complete
the proof of the lemma. Indeed, (2.59) implies that, for every x1, x2 ∈ Σλ, ψx1 = ψx2 on the
intersection of their respective domains of definition. Then, by setting

ψλ(z) = ψx(z) , ∀z ∈ C
µx

x,σ0 ρx/4
∩ ∂G , x ∈ Σλ ,

one defines a function ψλ ∈ C1,1/4n(Σλ) such that (2.56), (2.57) and (2.58) hold. Moreover,
(2.56) follows from elliptic regularity, as ‖ψλ‖C1,1/4n(Σλ)

≤ C(n) and the mean curvature of the

graph of ψλ over Σλ is the mean curvature of Ω, and thus it is bounded and continuous.
We are thus left to prove our claim. To this end we consider r(n) > 0 such that

Hn(Bz,s ∩ ∂B) ≤ (1 + C(n) s2)ωn s
n , ∀z ∈ ∂B ,∀s < r(n) , (2.60)

sup
{

|(p− z) · νB(z)| : p ∈ Bz,s ∩ ∂B
}

≤ C(n) s2 , ∀z ∈ ∂B ,∀s < r(n) , (2.61)

we fix x ∈ Σλ, λ ≤ λ(n), let y and ρx be as in the statement, and set

µx = νG(x) = νBzj ,1
(x) for the unique j ∈ J such that x ∈ ∂Bzj ,1 .

If c0(n)λ(n)
2 ≤ r(n), then by definition of µx there exist Ĉ(n) and a Lipschitz map wx :

(x+ µ⊥x ) → R such that

∂G ∩C
µx

x,c0(n) λ2 = ∂Bzj ,1 ∩C
µx

x,c0(n)λ2 =
{

z + wx(z)µx : z ∈ D
µx

x,c0(n)λ2

}

,

‖wx‖C2,1(Dµx
x,c0(n) λ2

) ≤ Ĉ(n) , ‖wx‖∗C1(Dµx
x,r)

≤ Ĉ(n) r , ∀r ≤ c0(n)λ
2 .

(2.62)

By (2.54) and by Allard’s theorem, there exist νx ∈ Sn and a Lipschitz map ux : (y + ν⊥x ) → R

such that ux(y) = 0,

∂Ω ∩Cνx
y,σ0 ρx =

{

z + ux(z)νx : z ∈ Dνx
y,σ0 ρx

}

,

‖ux‖∗C1,1/4n(Dνx
y,σ0 ρx)

≤ C(n)σ(∂Ω, y, ρx)
1/4n .

(2.63)

Now we let

Ky =
{

z ∈ Cνx
y,σ0 ρx : (z − y) · νx ≤ 0

}

, Kx =
{

z ∈ Cµx
x,σ0 ρx : (z − x) · µx ≤ 0

}

.

Up to switching νx with −νx, and since |ux| ≤ C(n) ρx σ(∂Ω, y, ρx)
1/4n on Dνx

y,σ0 ρx by (2.63) we
can assume that

∣

∣(Ky∆Ω) ∩Cνx
y,σ0 ρx

∣

∣ ≤ C(n) ρn+1
x σ(∂Ω, y, ρx)

1/4n . (2.64)

Similarly, by (2.62) we have |wx| ≤ C(n) ρ2x on D
µx
x,σ0 ρx , and thus

∣

∣(Kx∆G) ∩Cµx
x,σ0 ρx

∣

∣ ≤ C(n) ρn+2
x ≤ C(n) ρn+1

x σ(∂Ω, y, ρx)
1/4n , (2.65)

as (2.49) and (2.6) imply ρx ≤ C(n)σ(∂Ω, y, ρx). Since |y − x| ≤ σ0 ρx/2 by (2.53) and ρx < 1,
we find

Bx,σ0 ρx/2 ⊂ By,σ0 ρx ⊂ Cνx
y,σ0 ρx , as well as Bx,σ0 ρx/2 ⊂ C

µx
x,σ0 ρx of course ,
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and thus, by (2.64) and (2.65),

|Ω∆G| ≥ |(Ω∆G) ∩Bx,σ0 ρx/2| ≥ |(Kx∆Ky) ∩Bx,σ0 ρx/2| − C(n) ρn+1
x σ(∂Ω, y, ρx)

1/4n

≥
∣

∣

(

(Ky + x− y)∆Kx

)

∩Bx,σ0 ρx/2

∣

∣ (2.66)

−C(n) ρn+1
x σ(∂Ω, y, ρx)

1/4n −
∣

∣

(

Ky + x− y
)

∆Ky

∣

∣ .

On the one hand, for every z ∈ R
n+1, r > 0 and ν, ν ′ ∈ Sn one has

∣

∣

∣

(

{

p ∈ Cν
z,r : (p−z) ·ν ≤ 0

}

∆
{

p ∈ Cν′
z,r : (p−z) ·ν ′ ≤ 0

}

)

∩Bz,r/2

∣

∣

∣
≥ c(n) |ν−ν ′| rn+1 ; (2.67)

on the other hand, again by |y − x| ≤ σ0 ρ
2
x/2,

|Ky∆(x− y +Ky)| ≤ C(n)P (Ky) |y − x| ≤ C(n) ρnx |y − x| ≤ C(n) ρn+2
x . (2.68)

By (2.66), (2.67), and (2.68) we conclude that

c(n) |νx − µx| ρn+1
x ≤ C(n) ρn+1

x σ(∂Ω, y, ρx)
1/4n + |Ω∆G| ,

so that (2.55) and (2.54) give us

|νx − µx| ≤ C(n)σ(∂Ω, y, ρx)
1/4n . (2.69)

By (2.53), (2.63), and (2.69), provided λ(n) is small enough, there exist a constant C∗(n) and a
Lipschitz map vx : (x+ µ⊥x ) → R such that

∂Ω ∩C
µx

x,σ0 ρx/2
=

{

z + vx(z)µx : z ∈ D
µx

x,σ0 ρx/2

}

,

‖vx‖C1,1/4n(Dµx
x,σ0 ρx/2

) ≤ C∗(n) , ‖vx‖∗C1(Dµx
x,σ0 ρx/2

) ≤ C∗(n)σ(∂Ω, y, ρx)
1/4n .

By this last property, by (2.52), and by (2.62) we can apply Lemma 2.7 into the cylinder
C

µx

x,σ0 ρx/2
: indeed, setting by a rigid motion x = 0 and µx = 0, and choosing

4 r =
σ0ρx
2

, u1 = wx , u2 = vx , γ =
1

4n
, M = max{Ĉ(n), C∗(n)} ,

we find that

max
i=1,2

‖ui‖∗C1(D4r)
= max

{

‖wx‖∗C1(Dµx
x,σ0 ρx/2

), ‖vx‖∗C1(Dµx
x,σ0 ρx/2

)

}

≤ max
{

Ĉ(n)
σ0 ρx
2

, C∗(n)σ(∂Ω, y, ρx)
1/4n

}

≤ C(n)λ(n)1/4n ≤ κ0
(

n, γ,M
)

,

provided λ(n) is small enough. By Lemma 2.7, there exists ψx ∈ C1,1/4n(Cµx

x,σ0 ρx/4
∩ ∂G)

satisfying (2.59). �

Proof of Theorem 2.5, conclusion. We now conclude the proof of Theorem 2.5. Let us recall the
situation we left: we have {Ωh}h∈N satisfying (2.1), (2.2) and (2.4) (with the same L and a) and

lim
h→∞

|Ωh∆G|+ hd(∂Ωh, ∂G) + |P (Ωh)− P (G)| = 0 , (2.70)

where G is the union over a finite family of disjoint unit balls {Bzj ,1}j∈J . To complete the proof
of the theorem, we need to prove the existence of Σh ⊂ ∂G and of φh : Σh → R such that ∂G\Σh

consists of at most C(n)L-many spherical caps with vanishing diameters, (Id + φh νG)(Σh) ⊂
∂Ωh, and

lim
h→∞

‖φh‖C1(Σh) +Hn
(

∂Ωh \ (Id + φh νG)(Σh)
)

= 0 , sup
h∈N

‖φh‖C1,γ(Σh) ≤ C(n, γ) , (2.71)

for every γ ∈ (0, 1). To this end, we want to apply Lemma 2.8 to Ω = Ωh. Let us fix λ ≤ λ(n),
define Σλ as in (2.51), and for every x ∈ Σλ let us set

ρx = c0(n)λ
2 ,
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so that (2.52) holds trivially. Let us now fix x ∈ Σλ, and consider yh ∈ ∂Ωh such that |x− yh| =
dist(x, ∂Ωh). By hd(∂Ωh, ∂G) → 0 we have

|x− yh| ≤ hd(∂Ωh, ∂G) ≤
σ0(n)c0(n)

2 λ4

2
, ∀h ≥ hλ ,

provided hλ ∈ N is large enough; in particular, (2.53) holds for h large enough. Next, we notice
that by (2.48) and |yh − x| → 0 we have

lim sup
h→∞

P (Ωh;Byh,ρx) ≤ P (G;Bx,ρx) ,

so that (2.6), the definition of ρx, and (2.60) (applied with s = c0(n)λ
2 ≤ r(n)) give us

lim sup
h→∞

σ(∂Ωh, yh, ρx) ≤ 2nρx +
P (G;Bx,ρx)

ωn ρnx
− 1 ≤ C(n)

(

λ2 +
P (G;Bx,c0(n)λ2)

ωn (c0(n)λ2)n
− 1

)

≤ C(n)λ2 ≤ σ0(n)λ

2
≤ σ0(n)λ(n)

2
; (2.72)

in particular, (2.54) holds for h large enough. Finally, (2.6) and (2.49) imply σ(∂Ωh, yh, ρx) ≥
(n/2)ρx ≥ c(n)λ2, thus up to take hλ large enough to entail |Ωh∆G| ≤ C(n)λn+3 we find that
(2.55) holds. By Lemma 2.8 we conclude that for every λ ≤ λ(n) there exists {ψλ

h}h≥hλ
⊂

C1,γ(Σλ) for every γ ∈ (0, 1) such that

(Id + ψλ
hνG)(Σλ) ⊂ ∂Ωh , ‖ψλ

h‖C1,γ (Σλ) ≤ C(n, γ) , ‖ψλ
h‖C1(Σλ) ≤ C(n)λ1/2n , (2.73)

where in proving the last bound we have also taken into account the first inequality in (2.72).
Since

Hn
(

∂Ωh \ (Id + ψλ
h νG)(Σλ)

)

≤ P (Ωh)− P (G) +Hn(∂G \ Σλ)

+
∣

∣Hn(Σλ)−Hn
(

(Id + ψλ
h νG)(Σλ)

)∣

∣ ,

by P (Ωh) → P (G) and by ‖ψλ
h‖C1(Σλ) ≤ C(n)λ1/2n we find that

lim sup
h→∞

Hn
(

∂Ωh \ (Id + ψλ
h νG)(Σλ)

)

≤ Hn(∂G \ Σλ) + C(n)Hn(Σλ)λ
1/2n .

We complete the proof of the theorem by first considering any λh → 0, and then by setting

φh = ψλh

k(h) for a properly chosen k(h) → ∞. �

We now begin the proof of Theorem 1.1, that is, we consider the problem of turning the
qualitative information provided in Theorem 2.5 into quantitative estimates in terms of δ(Ω).
Recall that, as in the introduction, we set

α =
1

2(n+ 2)
.

Proof of Theorem 1.1. Step one: With f as in (2.12), let us set

ε = |Ω|1/(n+1) η(Ω)α , Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} , fε = f ⋆ wε , (2.74)

where wε(x) = ε−(n+1) w(x/ε) for w ∈ C∞
c (B) with w ≥ 0, w(x) = w(−x) for every x ∈ R

n+1,
and

∫

Rn+1 w = 1. We claim that, if C0(n) is the constant appearing in (2.35), then

‖∇fε‖C0(Ωε) ≤ C0(n) , (2.75)

‖fε − f‖C0(Ωε) ≤ C0(n) ε , (2.76)

∥

∥∇2fε −
Id

n+ 1

∥

∥

C0(Ωε)
≤ C(n) η(Ω)α , (2.77)

‖∇2fε‖C0(Ωε) ≤ C(n) , ∇2fε(x) ≥
Id

2(n + 1)
, ∀x ∈ Ωε . (2.78)
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Indeed, (2.75) and (2.76) are obvious. If x ∈ Ωε, then (2.77) follows by (2.27) and (1.4),

∣

∣∇2fε(x)−
Id

n+ 1

∣

∣ ≤
‖w‖C0(Rn+1)

εn+1

∫

Ω

∣

∣

∣
∇2f − Id

n+ 1

∣

∣

∣
≤ C(n) η(Ω)(1/2)−α(n+1) .

Finally, (2.78) follows from (2.77) and (2.11) provided δ(Ω) ≤ c(n) for c(n) small enough.

Step two: Next we define

ρ = C0(n) ε = C0(n) |Ω|1/(n+1) η(Ω)α , A = {fε < −3ρ} . (2.79)

We claim that

{f < −4ρ} ⊂ A ⊂ {f < −2ρ} , {f < −ρ} ⊂ Ωε , (2.80)

and that if {Ai}i∈I are the connected components of A, then each Ai is convex and there exist
xi ∈ Ai and 0 < ri1 ≤ ri2 <∞ such that

Bxi,ri1
⊂ Ai ⊂ Bxi,ri2

, 1 ≥ ri1
ri2

≥ 1− C(n) η(Ω)α ≥ 1

2
, (2.81)

ri1 ≤ 1 +C1 δ(Ω) , ri2 ≤ 1 + C(n) δ(Ω)α , (2.82)
∫

Ω\
⋃

i∈I Bxi,r
i
1

(−f) ≤ C(n) |Ω|(n+2)/(n+1) η(Ω)α . (2.83)

Let us first prove that {f < −ρ} ⊂ Ωε: indeed, if f(x) < −ρ but there exists y ∈ ∂Ω with
|y − x| = dist(x, ∂Ω) ≤ ε, then the segment joining x to y is contained in Ω, and thus by (2.35)

−ρ > f(x) ≥ f(y)− C0(n) |x− y| ≥ f(y)− ρ = −ρ ,
a contradiction. Similarly, our choice of ρ and (2.76) imply the other inclusions in (2.80). By
(2.78), A = {fε < −3ρ} is an open set with convex connected components {Ai}i∈I . Let xi ∈ Ai

be such that fε(xi) ≤ fε(x) for every x ∈ Ai, and define

gi(x) =
|x− xi|2
2(n+ 1)

+ fε(xi) , x ∈ R
n+1 .

By (2.77),
∣

∣∇2(fε − gi)(x)
∣

∣ ≤ C(n) η(Ω)α , ∀x ∈ Ωε , (2.84)

so that, by the convexity of Ai, gi(xi) = fε(xi), and ∇gi(xi) = ∇fε(xi) = 0,

|∇fε(x)−∇gi(x)| ≤ C(n) η(Ω)α |x− xi| , ∀x ∈ Ai , (2.85)

|fε(x)− gi(x)| ≤ C(n) η(Ω)α |x− xi|2 , ∀x ∈ Ai . (2.86)

Let now ri1 ≤ ri2 be such that

ri1 = sup
{

r > 0 : Bxi,r ⊂ Ai

}

, ri2 = inf
{

r > 0 : Ai ⊂ Bxi,r

}

.

By definition there are ν1, ν2 ∈ Sn such that xi + ri1ν1 , xi + ri2ν2 ∈ ∂Ai ⊂ {fε = −3ρ}: hence,
0 = fε(xi + ri2ν2)− fε(xi + ri1ν1) (2.87)

≥ gi(xi + ri2ν2)− gi(xi + ri1ν1)− C(n) η(Ω)α ((ri1)
2 + (ri2)

2)

=
(ri2)

2 − (ri1)
2

2(n + 1)
− C(n) η(Ω)α ((ri1)

2 + (ri2)
2) ,

that is, setting t = ri2/r
i
1 ≥ 1,

C(n) η(Ω)α ≥ (ri2)
2 − (ri1)

2

(ri1)
2 + (ri2)

2
=
t2 − 1

t2 + 1
≥ t− 1

t
= 1− ri1

ri2
,
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thus proving (2.81). The second inequality in (2.82) follows from (2.81) and (2.11), while the
first one is proved by noticing that Bxi,ri1

⊂ Ω, and thus for some x0 ∈ ∂Ω one has n/ri1 ≥
H(x0) ≥ H0(1− δ(Ω)) = n(1− δ(Ω)). Finally, thanks to (2.80) and (2.5),

∫

Ω\A
(−f) ≤

∫

{−f≤4ρ}
(−f) ≤ 4ρ|Ω| ≤ C(n) |Ω|(n+2)/(n+1) η(Ω)α , (2.88)

while (2.81), tn+1 − 1 ≤ 2n+1 (t− 1) for t = ri2/r
i
1 ∈ [1, 2], and (2.35) give us

∫

A\
⋃

i∈I Bxi,r
i
1

(−f) ≤ ‖f‖C0(Ω) |B|
∑

i∈I

(ri2)
n+1 − (ri1)

n+1

≤ C(n) η(Ω)α |B|
∑

i∈I

(ri1)
n+1

≤ C(n) η(Ω)α |A| ≤ C(n) |Ω| η(Ω)α ,
where in the last inequality we have used |A| ≤ |Ω|. This proves (2.83).
Step three: We show the existence of {Bxj ,sj}j∈J ⊂ {Bxi,ri1

}i∈I such that {sj}j∈J satisfies

maxj∈J |sj − 1|
diam(Ω)

≤ C(n) |Ω| δ(Ω)α , (2.89)

and, if G∗ =
⋃

j∈J Bxj ,sj (so that G∗ ⊂ Ω by construction), then

|Ω \G∗|
|Ω| ≤ C1(n) diam(Ω) |Ω| δ(Ω)α , (2.90)

|P (Ω)−# J P (B)|
P (Ω)

≤ C(n) diam(Ω) |Ω| δ(Ω)α , (2.91)

# J ≤ L , # J ≤ C(n) |Ω| . (2.92)

(Note that (2.91) implies (1.6) by (2.5) and (2.7).) Having in mind to exploit the Pohozaev’s
identity (2.14) (recall the proof of Theorem 2.5), we first notice that, by the divergence theorem
and by (2.35),

∣

∣

∣

|Ω|
n+ 1

−
∫

∂Ω
(x · νΩ)|∇f |2

∣

∣

∣
=

∣

∣

∣

∫

∂Ω
(x · νΩ)

( 1

(n+ 1)2
− |∇f |2

)∣

∣

∣

≤ diam(Ω)
( 1

n+ 1
+ ‖∇f‖C0(Ω)

)

∫

∂Ω

∣

∣

∣

1

n+ 1
− |∇f |

∣

∣

∣

≤ C(n) diam(Ω)

∫

∂Ω

∣

∣

∣

1

n+ 1
− |∇f |

∣

∣

∣
.

By (2.28) and P (Ω) ≤ C(n) |Ω|, we thus find
∣

∣

∣

|Ω|
n+ 1

−
∫

∂Ω
(x · νΩ)|∇f |2

∣

∣

∣
≤ C(n) diam(Ω)

(

P (Ω)

∫

∂Ω

∣

∣

∣

1

n+ 1
− |∇f |

∣

∣

∣

2)1/2

≤ C(n) diam(Ω)P (Ω) δ(Ω)1/2 . (2.93)

By (2.76), (2.86), and diam(Ai) ≤ 2, one has

‖f − gi‖C0(Ai) ≤ C(n) |Ω|1/(n+1) δ(Ω)α ,

thus, by (2.83)
∣

∣

∣

∫

Ω
f −

∑

i∈I

∫

B
xi,r

i
1

gi

∣

∣

∣
≤ C(n) |Ω|(n+2)/(n+1) δ(Ω)α . (2.94)
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With xi + ri1ν1 as in (2.87), by definition of ρ and by (2.86) we have

C |Ω|1/(n+1) δ(Ω)α ≥ 3ρ = −fε(xi + ri1ν1)

≥ −gi(xi + ri1ν1)− C(n) (ri1)
2 η(Ω)α

= − (ri1)
2

2(n + 1)
− fε(xi)−C(n) (ri1)

2 η(Ω)α ,

that is, since we definitely have ri1 ≤ 2,

− (ri1)
2

2(n+ 1)
− fε(xi) ≤ C(n) |Ω|1/(n+1) δ(Ω)α .

By this last estimate and the definition of gi,
∫

B
xi,r

i
1

(−gi) =

∫

B
xi,r

i
1

−fε(xi)−
|x− xi|2
2(n+ 1)

≤ C(n) |Bxi,ri1
| |Ω|1/(n+1) δ(Ω)α +

∫

B
xi,r

i
1

(ri1)
2 − |x− xi|2
2(n + 1)

= C(n) |Bxi,ri1
| |Ω|1/(n+1) δ(Ω)α +

|Bxi,ri1
|(ri1)2

(n+ 3)(n + 1)
.

By combining (2.94) with this last inequality we find

∫

Ω
(−f) ≤

∑

i∈I

|Bxi,ri1
|(ri1)2

(n+ 3)(n + 1)
+ C(n) |Ω|(n+2)/(n+1) δ(Ω)α . (2.95)

By Pohozaev’s identity (2.14), (2.93) and (2.95), and by taking into account that |Ω|1/(n+1) ≤
C(n) diam(Ω) and (2.2), we find

diam(Ω)P (Ω) δ(Ω)1/2 + |Ω|(n+2)/(n+1) δ(Ω)α ≤ C(n) diam(Ω) |Ω| δ(Ω)α ,
and thus

|Ω| ≤
∑

i∈I

|Bxi,ri1
|(ri1)2 + C(n) diam(Ω) |Ω| δ(Ω)α . (2.96)

By |Ω| ≥ ∑

i∈I |Bxi,ri1
| we finally get

|B|
∑

i∈I

(ri1)
n+1

(

1− (ri1)
2
)

≤ C(n) diam(Ω) |Ω| δ(Ω)α . (2.97)

Let us set ϕ(r) = rn+1 (1 − r2), r ≥ 0, and note that

ϕ(r) ≥











3

4
rn+1 , if 0 ≤ r ≤ 1

2 ,

1− r

2n+1
, if 1

2 ≤ r ≤ 1 .

(2.98)

With C1 as in (2.82), let us now set

I∗ =
{

i ∈ I : 1 ≤ ri1 ≤ 1 +C1 δ(Ω)
α
}

, I∗∗ =
{

i ∈ I :
1

2
≤ ri1 ≤ 1

}

.

Since Bxi,ri1
⊂ Ω for each i ∈ I and by δ(Ω) ≤ c(n) we find

# I∗ ≤ |Ω|
|B| , 0 ≥ ϕ(ri1) ≥ −C(n) δ(Ω)α , ∀i ∈ I∗ ,
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so that
−|B|

∑

i∈I∗

ϕ(ri1) ≤ C(n) |Ω| δ(Ω)α . (2.99)

By combining (2.99) with (2.97) one finds

|B|
∑

i∈I\I∗

ϕ(ri1) ≤ C(n) diam(Ω) |Ω| δ(Ω)α . (2.100)

Since ϕ(ri1) ≥ 0 for every i ∈ I \ I∗, (2.98) implies that

3

4

∑

i∈I\(I∗∪I∗∗)

|Bxi,ri1
| ≤ |B|

∑

i∈I\(I∗∪I∗∗)

ϕ(ri1) ,

and thus, by (2.100),
∑

i∈I\(I∗∪I∗∗)

|Bxi,ri1
| ≤ C(n) diam(Ω) |Ω| δ(Ω)α . (2.101)

We now prove that ri1 is close to 1 for every i ∈ I∗∗. Indeed, by exploiting again the fact that
ϕ(ri1) ≥ 0 for every i ∈ I \ I∗, together with (2.100) and (2.98), we find that

1

2n+1

∑

i∈I∗∗

(1− ri1) ≤ C(n) diam(Ω) |Ω| δ(Ω)α ,

which in particular gives

1 ≥ ri1 ≥ 1− C(n) diam(Ω) |Ω| δ(Ω)α , ∀i ∈ I∗∗ . (2.102)

Finally, if we set J = I∗ ∪ I∗∗ and sj = rj1 for j ∈ J , then (2.89) follows from (2.102) and the
definition of I∗, while (2.96), (2.101) and (2.89) give us

|Ω| ≤
∑

j∈J

|Bxj ,sj | s2j + C(n) diam(Ω) |Ω| δ(Ω)α

≤ (1 + C(n) diam(Ω) |Ω| δ(Ω)α) |G∗|+ C(n) diam(Ω) |Ω| δ(Ω)α ,
i.e.

|Ω \G∗| ≤ C(n) diam(Ω) |Ω| |G∗| δ(Ω)α ≤ C(n) diam(Ω) |Ω|2 δ(Ω)α .
This proves (2.90). Now by (2.89) and since sj ≥ 1/2

|P (G∗)− (n+ 1)|G∗|| = (n+ 1)|B|
∑

j∈J

snj |sj − 1| ≤ C(n) max
j∈J

|sj − 1| |B|
∑

j∈J

sn+1
j

≤ C(n) diam(Ω) |Ω|2 δ(Ω)α ,
so that (2.2) gives us

|P (Ω)− P (G∗)| = |(n+ 1)|Ω| − P (G∗)| ≤ C(n)
∣

∣|Ω| − |G∗|
∣

∣+ C(n) diam(Ω) |Ω|2 δ(Ω)α

≤ C(n) diam(Ω) |Ω|2 δ(Ω)α ,
which proves (2.91) as |Ω| ≤ C(n)P (Ω), and since, by an entirely similar argument,

|P (G∗)−#J P (B)| ≤ C(n)P (Ω) diam(Ω) |Ω| δ(Ω)α .
We conclude this step by proving (2.92): indeed, by (2.5), (2.7) and (2.89)

(L+ 1− a)|B| ≥ |Ω| ≥ |G∗| ≥
(

1− C(n,L) δ(Ω)α
)

|B|#J ,
and thus we conclude by δ(Ω) ≤ c(n,L, a).

Step four: We prove that

maxx∈∂G∗ dist(x, ∂Ω)

diam(Ω)
≤ C(n) δ(Ω)α . (2.103)
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We first notice that if x0 ∈ ∂Ai, then by (2.85), Ai ⊂ Bxi,ri2
and ri2 ≤ 2, one has

∣

∣

∣
∇fε(x0)−

(x0 − xi)

n+ 1

∣

∣

∣
≤ C δ(Ω)α ,

so that, by |x0 − xi| ≥ ri1 ≥ 1/2, one finds

|∇fε(x0)| ≥ c1(n) , ∀x0 ∈ ∂Ai .

Let A∗
i be the set of points x ∈ Ωε \ Ai such that if x0 ∈ ∂Ai denotes the projection of x onto

the convex set Ai, then the open segment joining x to x0 is entirely contained in Ωε (and thus
in A∗

i : in particular, A∗
i is connected). By (2.78), fε(x) ≤ 0 and ∂Ai ⊂ {fε = −3ρ}, we get

3ρ ≥ fε(x)− fε(x0) = ∇fε(x0) · (x− x0) +
1

2

∫ 1

0
∇2fε(tx+ (1− t)x0)[x− x0, x− x0] dt

≥ |∇fε(x0)||x− x0| − C2(n) |x− x0|2 ≥
c1(n)

2
|x− x0| ,

where we have used the fact that both ∇fε(x0) and x− x0 are orthogonal to ∂Ai at x0, and we
have assumed that |x− x0| ≤ c1(n)/2C2(n). If we denote by

Id(X) =
{

z ∈ R
n+1 : dist(z,X) < d

}

, X ⊂ R
n+1 , d > 0 ,

the d-neighborhood of a set X, then, setting k0(n) = c1(n)/2C2(n), we obtain

Ik0(n)(Ai) ∩A∗
i ⊂ I6ρ/c1(n)(Ai) .

By connectedness of A∗
i and by δ(Ω) ≤ c(n,L), this proves that

A∗
i ⊂ I6ρ/c1(n)(Ai) .

Since Ai ⊂⊂ Ωε (thanks to (2.80)), for every x ∈ ∂Ai, there exists y ∈ ∂Ωε such the open
segment joining x and y is entirely contained in A∗

i , and the length of this segment is bounded
by 6ρ/c1(n), so that

∂Ai ⊂ I6ρ/c1(n)(∂Ωε) ⊂ Iε+(6ρ/c1(n))(∂Ω) .

Step five: We construct a family of disjoint balls {Bzj ,1}j∈J such that if we set

G =
⋃

j∈J

Bzj ,1 ,

then

|Ω∆G|
|Ω| ≤ C(n) diam(Ω) |Ω| δ(Ω)α , maxx∈∂G dist(x, ∂Ω)

diam(Ω)
≤ C(n) |Ω| δ(Ω)α . (2.104)

(Note that (2.104) imply (1.5) and (1.7) thanks to (2.5) and (2.7).) Indeed if we set s′j =

min{sj, 1}, then {Bxj ,s′j
}j∈J is a family of disjoint balls such that G′ =

⋃

j∈J Bxj ,s′j
satisfies

G′ ⊂ Ω and

|Ω \G′|
|Ω| ≤ C(n) diam(Ω) |Ω| δ(Ω)α , maxx∈∂G′ dist(x, ∂Ω)

diam(Ω)
≤ C(n) |Ω| δ(Ω)α , (2.105)

thanks to (2.90), (2.103) and (2.89). Next, let us fix j0 ∈ J such that 1 > sj0 . By translating
each xj with j 6= j0 into

x̂j = xj + (1− sj0)
xj − xj0
|xj − xj0 |

,

and setting ŝj = sj if j 6= j0, ŝj0 = 1, x̂j0 = xj0 , we find that {Bx̂j ,ŝj}j∈J is a family of disjoint

balls such that Ĝ =
⋃

j∈J Bx̂j ,ŝj satisfies

|Ω∆Ĝ|
|Ω| ≤ C(n) diam(Ω) |Ω| δ(Ω)α ,

maxx∈∂Ĝ dist(x, ∂Ω)

diam(Ω)
≤ C(n) |Ω| δ(Ω)α , (2.106)
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thanks to (2.105) and (2.89). By iteratively repeating this procedure on each j ∈ J such that
ŝj < 1 we finally construct a family G with the required properties.

Step six: In this step we complete the proof of Theorem 1.1 up to statements (i) and (ii). To this
end, we want to apply Lemma 2.8 to Ω and G. We first notice that for every x ∈ ∂G, thanks to
(1.7), there exists g(x) ∈ ∂Ω such that

|x− g(x)| ≤ C(n) diam(Ω) |Ω| δ(Ω)α . (2.107)

(The point g(x) will play the role of y in Lemma 2.8.) Setting Sj = ∂Bzj ,1 for j ∈ J , we define
{rx}x∈∂G by the rule

rx = sup
{

r ∈ (0, 2δ(Ω)β) : Bx,r ∩ (∂G \ Sj) = ∅
}

, if j ∈ J , x ∈ Sj , (2.108)

and then set

Σ∗ =
{

x ∈ ∂G : rx ≥ δ(Ω)β
}

, (2.109)

for some β = β(n) ∈ (0, α) to be suitable chosen later on, see (2.134). With Σλ defined as in
(2.51), see the statement of Lemma 2.8, it is clear that we can choose c3(n) > 0 in such a way
that

Σλ ⊂ Σ∗ , for λ = c3(n) δ(Ω)
β/2 . (2.110)

In particular, by Remark 2.9 and by (2.92),

∂G \ Σ consists of at most C(n)#J-many spherical caps

whose diameters are bounded by C(n)λ ≤ C(n) δ(Ω)β/2 .
(2.111)

We now claim that for every x ∈ Σλ, λ as in (2.110), one can find ρx such that,

c0(n)λ
2

2
≤ ρx ≤ c0(n)λ

2 , (2.112)

σ(∂Ω, g(x), ρx) ≤ σ0(n)λ(n) , (2.113)

|x− g(x)| ≤ σ0(n)ρ
2
x

2
, (2.114)

|Ω∆G| ≤ C(n) ρn+1
x σ(∂Ω, g(x), ρx)

1/4n , (2.115)

where σ0(n) and λ(n) are as in Lemma 2.8. In proving the claim, the harder task is accommo-
dating (2.113), because it requires to control the perimeter convergence of Ω to G localized in
balls in terms of the Alexandrov’s deficit.

We now prove the claim. First of all we notice that in order to entail (2.112), and thanks
to Σλ ⊂ Σ∗, (2.108) and (2.109), it is enough to pick ρx satisfying

c4(n)

2
rx ≤ ρx ≤ c4(n) rx , (2.116)

for a suitable constant c4 ∈ (0, 1). Next, we notice that by δ(Ω) ≤ c(n,L) we can entail

sup
x∈Σλ

rx ≤ 2 δ(Ω)β ≤ r∗(n) , (2.117)

for an arbitrarily small constant r∗(n). Provided r∗(n) is small enough, then (2.117), (2.60) and
(2.61) give us

P (G;Bx,r) ≤ (1 + C(n) r2)ωn r
n , ∀r < rx , (2.118)

sup
{

|(p − x) · νG(x)| : p ∈ Bx,r ∩ ∂G
}

≤ C(n) r2 , ∀r < rx . (2.119)
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(We are going to use this bounds to quantify the size of P (G;Bg(x),ρx), see (2.132) below.) By
Chebyshev inequality and by (2.90), we can pick ρx satisfying (2.116) and

Hn
(

(Ω \G∗) ∩ ∂Bg(x),ρx

)

≤ C(n) |Ω|2 diam(Ω) δ(Ω)α−β , (2.120)

Hn
(

(∂Ω ∪ ∂G∗ ∪ ∂G) ∩ ∂Bg(x),ρx

)

= 0 . (2.121)

(Notice that we are using G∗ in place of G here, because G∗ is contained in Ω, and this will
simplify a key computation based on the divergence theorem.) We include a brief justification
of (2.120) for the sake of clarity: let us set

W =
{

ρ ∈
(c4 rx

2
, c4 rx

)

: Hn
(

(Ω \G∗) ∩ ∂Bg(x),ρ

)

≥ K(n) |Ω|2 diam(Ω) δ(Ω)α−β
}

,

then, with C(n) as in (2.90) and for a suitably large value of K(n), we have H1(W ) ≤
(C(n)/K(n)) δ(Ω)β < c4 δ(Ω)

β/2 ≤ c4 rx/2. Now let us consider the open sets

Uj =
{

y ∈ R
n+1 : |y − zj | < |y − zj′ | ∀j′ 6= j

}

, j ∈ J ,

so that Bzj ,1 ⊂ Uj for every j ∈ J , and {Uj}j∈J is a partition of Rn+1 modulo a Hn-dimensional

set. The boundary of each Uj is contained into finitely many hyperplanes {Lj,i}mj

i=1, where
mj ≤ # J ≤ C(n) |Ω|. Thus

#{(j, i) : j ∈ J , 1 ≤ i ≤ mj} ≤ C(n) |Ω|2 . (2.122)

We claim the existence of v ∈ Sn and t∗ ∈ R such that, setting L∗
j,i = t∗ v + Lj,i,

Hn(L∗
j,i ∩ (Ω \G∗)) ≤ C(n) |Ω|6 diam(Ω) δ(Ω)α/2 , (2.123)

|t∗| ≤ δ(Ω)α/2 , (2.124)

Hn
(

L∗
j,i ∩ (∂Ω ∪ ∂G∗)

)

= 0 . (2.125)

To choose v, we let νj,i be a normal vector to Lj,i, and require v ∈ Sn to be such that

|v · νj,i| ≥
c2(n)

|Ω|2 , ∀j ∈ J , 1 ≤ i ≤ mj . (2.126)

(The existence of such v is deduced by observing that if θ > 0, then each spherical stripe
Y θ
j,i = {u ∈ Sn : |u · νj,i| < θ} satisfies Hn(Y θ

j,i) ≤ C(n)θ so that by (2.122)

Hn
(

Sn \
⋃

j∈J

mj
⋃

i=1

Y θ
j,i

)

≥ Hn(Sn)− C(n) |Ω|2 θ > 0 ,

provided θ = c(n)/|Ω|2 for a suitably small value of c(n).) We now find t∗. For a constant M(n)
to be properly chosen, let us set

Ij,i =
{

t ∈ R : |t| < δ(Ω)α/2 ,Hn
(

(Ω \G∗) ∩ (t v + Lj,i)
)

≥M(n) |Ω|6diam(Ω) δ(Ω)α/2
}

.

If ℓj,i(y) = y · νj,i then Lj,i = {ℓj,i = βj,i} for some βj,i, while t v + Lj,i = {ℓj,i = βj,i + t v · νj,i}.
By (2.90) and Fubini’s theorem we find

C1(n) |Ω|2 diam(Ω) δ(Ω)α ≥ |Ω \G∗| =
∫

R

Hn((Ω \G∗) ∩ {ℓj,i = s}) ds

≥ |v · νj,i|
∫

R

Hn((Ω \G∗) ∩ {ℓj,i = βj,i + t v · νj,i}) dt

≥ |v · νj,i|H1(Ij,i)M(n) |Ω|6diam(Ω) δ(Ω)α/2 ,
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that is, by (2.126),

|Ω|2 H1(Ij,i) ≤
C1(n) δ(Ω)

α/2

c2(n)M(n)
, ∀j ∈ J , 1 ≤ i ≤ mj .

By combining this estimate with (2.122), we see that if M(n) is large enough, then

H1
(

(−δ(Ω)α/2, δ(Ω)α/2) \
⋃

j∈J

mj
⋃

i=1

∩Ij,i
)

> 0 ,

that is, there exists t∗ such that (2.123), (2.124) and (2.125) hold. If we set U∗
j = t∗ v+Uj, then

{U∗
j }j∈J is a partition of Rn+1 modulo a Hn-dimensional set such that ∂U∗

j is contained into

the hyperplanes {L∗
j,i}

mj

i=1 and such that

Hn
(

∂U∗
j ∩ (Ω \G∗)

)

≤ C(n) |Ω|6 diam(Ω) δ(Ω)α/2 , (2.127)

Hn
(

∂U∗
j ∩ (∂Ω ∪ ∂G∗)

)

= 0 , (2.128)

Hn
(

(U∗
j ∩ ∂G∗)∆Sj

)

) ≤ C(n) δ(Ω)α/2 . (2.129)

Here, (2.127) and (2.128) are immediate from (2.123) and (2.125). To prove (2.129), let us recall
that Sj = ∂Bxj ,sj ⊂ Uj , so that by translating the boundary hyperplanes of Uj by t∗ v with

|t∗| ≤ δ(Ω)α/2 we have possibly cut out from Sj at most mj-many spherical caps of Hn-measure
bounded above by

C(n) |t∗|n/2 ≤ C(n) δ(Ω)n α/4 ,

that is, thanks also to mj ≤ L,

Hn((U∗
j ∩ Sj)∆Sj) ≤ C(n)Lδ(Ω)n α/4 ≤ C(n) δ(Ω)α/2 ,

thanks to δ(Ω) ≤ c(n,L). By a similar argument, since Hn(Sj′ ∩ Uj) = 0 for j 6= j′, we have

that Hn(U∗
j ∩ Sj′) ≤ C(n) δ(Ω)α/2, and thus (2.129) is proved.

We now apply the divergence theorem to the vector field y 7→ (y− zj)/|y − zj| on the set of
finite perimeter (Ω \ G∗) ∩ (U∗

j \ Bg(x),ρx). Since div ((y − zj)/|y − zj|) = n/|y − zj | for y 6= zj
and G∗ ⊂ Ω, by exploiting [Mag12, Theorem 16.3], one finds

0 <

∫

(U∗

j \Bg(x),ρx )∩∂Ω

y − zj
|y − zj |

· νΩ(y) dHn
y −

∫

(U∗

j \Bg(x),ρx )∩∂G
∗

y − zj
|y − zj |

· νG∗(y) dHn
y

+

∫

∂(U∗

j \Bg(x),ρx )∩(Ω\G∗)

y − zj
|y − zj |

· νU∗

j \Bg(x),ρx
(y) dHn

y

≤ P (Ω;U∗
j \Bg(x),ρx) +Hn

(

(∂U∗
j ∪ ∂Bg(x),ρx) ∩ (Ω \G∗)

)

−P (G∗;U∗
j \Bg(x),ρx) + C(n) δ(Ω)α/2

where in the last inequality we have used νG∗(y) · [(y − zj)/(y − zj)] = 1 if y ∈ Sj and (2.129).
By combining this last inequality with (2.120) and (2.127) we thus find

P (G∗;U∗
j \Bg(x),ρx) ≤ P (Ω;U∗

j \Bg(x),ρx)

+C(n) |Ω|2 diam(Ω)
(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

.

By adding up over j ∈ J , and since # J ≤ C(n) |Ω|, we thus find

P (G∗;Rn+1 \Bg(x),ρx) ≤ P (Ω;Rn+1 \Bg(x),ρx)

+C(n) |Ω|3 diam(Ω)
(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

,
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which gives us, keeping in mind the construction used in step five to define G starting from G∗,
and also thanks to (2.89) and δ(Ω) ≤ c(n),

P (G;Rn+1 \Bg(x),ρx) ≤ P (Ω;Rn+1 \Bg(x),ρx) (2.130)

+C(n) |Ω|3 diam(Ω)
(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

,

which, combined with (1.6) and (2.121), gives us

P (Ω;Bg(x),ρx) = P (Ω)− P (Ω;Rn+1 \Bg(x),ρx) (2.131)

≤ P (G)− P (G;Rn+1 \Bg(x),ρx) + C(n) |Ω|3 diam(Ω)
(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

= P (G;Bg(x),ρx) + C(n) |Ω|3 diam(Ω)
(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

.

By (2.107), (2.5), (2.7), and thanks to δ(Ω) ≤ c(n,L), we entail Bg(x),ρx ⊂ Bx,rx, so that, by
definition of rx,

P (G;Bg(x),ρx) = Hn(Bg(x),ρx ∩ ∂G) = Hn(Bg(x),ρx ∩ Sj)
≤ (1 + C(n) ρx)Hn(Bx,ρx ∩ Sj) = (1 + C(n) ρx)P (G;Bx,ρx) .

By combining this inequality with (2.131), (2.118), (2.109) and (2.116) we find

P (Ω;Bg(x),ρx)

ωn ρnx
− 1 ≤ C(n) ρx +

C(n)

ρnx
|Ω|3 diam(Ω)

(

δ(Ω)α−β + |Ω|4 δ(Ω)α/2
)

(2.132)

≤ C(n)
(

δ(Ω)β + |Ω|3diam(Ω)
(

δ(Ω)α−(n+1)β + |Ω|4δ(Ω)(α/2)−nβ
)

)

.

By combining (2.132) with (2.49) (the definition of σ(∂Ω, g(x), ρx)), (2.6) and ρx ≤ 2δ(Ω)β , we
find

σ(∂Ω, g(x), ρx) ≤ C(n)
(

δ(Ω)β + |Ω|3diam(Ω)
(

δ(Ω)α−(n+1)β + |Ω|4δ(Ω)(α/2)−nβ
)

)

.

For this estimate to be nontrivial we definitely need

α > max{(n+ 1)β, 2nβ} = 2nβ .

Under this assumption we have α− (n+ 1)β > (α/2) − nβ, and thus

σ(∂Ω, g(x), ρx) ≤ C(n)
(

δ(Ω)β + |Ω|7 diam(Ω)δ(Ω)(α/2)−nβ
)

≤ C(n) |Ω|7 diam(Ω) δ(Ω)α/2(n+1) , (2.133)

where we have set

β =
α

2(n+ 1)
, (2.134)

in order to have β = (α/2) − nβ. By δ(Ω) ≤ c(n,L) and by (2.133), we have thus proved so far
that for every x ∈ Σλ one can find g(x) ∈ ∂Ω and ρx ∈ (0, 1) such that (2.112) and (2.113) hold.

In order to prove our claim, we are left to prove (2.114) and (2.115). By (2.107), (2.5)
and (2.7) we have |x− g(x)| ≤ C(n,L) δ(Ω)α while σ0(n)ρ

2
x/2 ≥ c(n)δ(Ω)2β by (2.112), so that

(2.114) follows by δ(Ω) ≤ c(n,L) thanks to the fact that α > 2β. Similarly, concerning (2.115)
we see by (2.6) that σ(∂Ω, g(x), ρx) ≥ n ρx so that

ρn+1
x σ(∂Ω, g(x), ρx)

1/4n ≥ c(n) ρn+2
x = c(n) δ(Ω)β(n+2) ,

while (1.5) gives us |Ω∆G| ≤ C(n,L) δ(Ω)α, so that δ(Ω) ≤ c(n,L) implies (2.115) thanks to
the fact that α > β(n+ 2).
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We thus proved our claim: for every x ∈ Σλ there exists g(x) ∈ ∂Ω and ρx satisfying
(2.112)–(2.115). By (2.110) and δ(Ω) ≤ c(n,L) we have that λ ≤ λ(n), and thus we can apply
Lemma 2.8 to find a function ψ : Σλ → R such that,

‖ψ‖C1,γ (Σλ) ≤ C(n, γ) , ∀γ ∈ (0, 1) , (2.135)

λ−2‖ψ‖C0(Σλ) + ‖∇ψ‖C0(Σλ) ≤ C(n) max
x∈Σλ

σ(∂Ω, g(x), ρx)
1/4n , (2.136)

(Id + ψνG)(Σλ) ⊂ ∂Ω . (2.137)

(Notice that (2.135) is (2.56).) Moreover, let us recall from the proof of Lemma 2.8 (see (2.59))
that if x ∈ Σλ ∩ Sj, then the function ψ is actually defined on C

µx

x,σ0 ρx/4
∩ ∂G = C

µx

x,σ0 ρx/4
∩ Sj,

with

C
µx

x,σ0 ρx/8
∩ ∂Ω ⊂ (Id + ψ νG)(C

µx

x,σ0 ρx/4
∩ ∂G) ⊂ C

µx

x,σ0 ρx/2
∩ ∂Ω ,

‖ψ‖C1(Cµx
x,σ0 ρx/4

∩∂G) ≤ C(n)σ(∂Ω, g(x), ρx)
1/4n .

(2.138)

Now, by (2.107), δ(Ω) ≤ c(n,L), and σ0 ρx/8 ≥ c(n) δ(Ω)β we find

g(x) ∈ C
µx

x,σ0 ρx/8
∩ ∂Ω ,

and thus, by the first inclusion in (2.138), there exists y ∈ C
µx

x,σ0 ρx/4
∩ ∂G such that

g(x) = y + ψ(y)νG(y) .

By (2.138), (2.133), and δ(Ω) ≤ c(n,L) we can definitely ensure

‖ψ‖C1(Cµx
x,σ0 ρx/4

∩∂G) ≤ c(n) , (2.139)

so that, taking into account that (2.119) gives |(y − x) · νG(y)| ≤ C(n) |y − x|2, we find that

|g(x)− x|2 ≥ |x− y|2 + |ψ(y)|2 − 2‖ψ‖C0(Cµx
x,σ0 ρx/4

∩∂G) |νG(y) · (y − x)| ≥ |x− y|2
2

+ |ψ(y)|2 .

Again by (2.107) we conclude |x − y| + |ψ(y)| ≤ C(n) |Ω|diam(Ω) δ(Ω)α, and thus, provided
c(n) ≤ 1 in (2.139), |ψ(x)| ≤ C(n) |Ω|diam(Ω) δ(Ω)α. We have thus improved the C0-bound on
ψ in (2.136), by showing that

‖ψ‖C0(Σλ) ≤ C3(n) |Ω|diam(Ω) δ(Ω)α . (2.140)

By combining (2.133) with (2.136) and diam(Ω) ≤ C(n)P (Ω) ≤ C(n)|Ω|, we obtain

‖∇ψ‖C0(Σλ) ≤ C(n) |Ω|2/n δ(Ω)β/4n . (2.141)

(By (2.140) and (2.141) we deduce (1.10).) Next, by (2.111) and by # J ≤ C(n) |Ω| ≤
C(n)P (Ω), we have

Hn(∂G \ Σλ) ≤ C(n)P (Ω) δ(Ω)n β/2 , (2.142)

while by the area formula

Hn
(

(Id + ψ νG)(Σλ)
)

=

∫

Σλ

√

(1 + ψ)2n + (1 + ψ)2(n−1)|∇ψ|2 ,

so that
∣

∣Hn(Σλ)−Hn
(

(Id + ψ νG)(Σλ)
)
∣

∣ ≤ P (G)
(

‖ψ‖C0(Σλ) + ‖∇ψ‖2C0(Σλ)

)

≤ C(n)P (Ω) |Ω|4/n δ(Ω)β/2n ,
where in the last inequality we have used P (G) ≤ 2P (Ω) (which follows by δ(Ω) ≤ c(n,L) and
(2.91)) together with (2.140) and (2.141). By (2.91), (2.142), and

Hn
(

∂Ω \ (Id + ψ νG)(Σλ)
)

≤ P (Ω)− P (G) +Hn(∂G \ Σλ) +
∣

∣Hn(Σλ)−Hn
(

(Id + ψ νG)(Σλ)
)∣

∣
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we thus obtain
Hn

(

∂Ω \ (Id + ψ νG)(Σλ)
)

P (Ω)
≤ C(n) |Ω|4/n δ(Ω)β/2n . (2.143)

Now let x0 ∈ ∂Ω and τ > 0 be such that

τ = max
x∈∂Ω

dist(x, ∂G) = dist(x0, ∂G) ,

and assume that τ ≥ 2 θ for θ = C3(n) diam(Ω) |Ω| δ(Ω)α. By (2.140) and since Bx0,τ ⊂
R
n+1 \ ∂G, one has

Bx0,τ−θ ⊂ R
n+1 \ Iθ(∂G) ⊂ R

n+1 \ (Id + ψνG)(Σλ) ,

so that, thanks to (2.9),

c(n) min{1, τ − θ}n ≤ P (Ω, Bx0,τ−θ) ≤ Hn(∂Ω \ (Id + ψνG)(Σλ)) ≤ C(n)P (Ω) |Ω|4/n δ(Ω)β/2n .
By δ(Ω) ≤ c(n,L) we thus find min{1, τ − θ} = τ − θ, and thus

τ ≤ θ + C(n)P (Ω)1/n |Ω|4/n2
δ(Ω)β/2n

2 ≤ C(n)P (Ω)1/n |Ω|4/n2
δ(Ω)β/2n

2
.

Since P (Ω) ≤ C(n)|Ω| ≤ C(n) diam(Ω)n+1 and diam(Ω) ≤ C(n)|Ω|, we find P (Ω)1/n ≤
C(n) diam(Ω) |Ω|1/n and thus conclude that

maxx∈∂Ω dist(x, ∂G)

diam(Ω)
≤ C(n) |Ω|3/n δ(Ω)β/2n2

. (2.144)

where have simplified some powers on |Ω| by noticing that (4/n2)+ (1/n) ≤ 3/n. By combining
(2.104) and (2.144) we obtain (1.8).

Step seven: We complete the proof of the theorem. By contradiction, and by definition of Σλ, if
# J ≥ 2 and dist(Sj , Sℓ) ≥ 4λ for every ℓ 6= j, then Sj ⊂ Σλ, and thus Γj = (Id+ψνG)(Sj) ⊂ ∂Ω,
with Γj connected. Since ∂Ω is connected, we conclude that ∂Ω = Γj, thus that # J = 1. This
proves that if # J ≥ 2, then for every j ∈ J there is ℓ 6= j such that dist(Sj , Sℓ) ≤ 4λ, and

then (i) follows by diam(Ω) ≥ c(n) |Ω|1/(n+1) ≥ c(n). In order to prove (ii), let us assume that
# J ≥ 2, and let j 6= ℓ ∈ J be such that (1.12) holds. Let us set

x =
zj + zℓ

2
=
z̄j + z̄ℓ

2
,

where z̄j and z̄ℓ belong to the closed segment joining zj and zℓ and are such that

∂Bz̄j ,1 ∩ ∂Bz̄ℓ,1 = {x} .
In this way, for every r ∈ (0, κ) and thanks to (1.12) we have

C(n) rn+2 ≥
∣

∣Bx,r \
(

Bz̄j ,1 ∪Bz̄ℓ,1

)
∣

∣ ≥
∣

∣Bx,r \
(

Bzj ,1 ∪Bzℓ,1

)
∣

∣− C(n) δ(Ω)α/4(n+1) .

By (1.5) we have
∣

∣Bx,r \
(

Bzj ,1 ∪Bzℓ,1

)∣

∣ ≥ |Bx,r \G| ≥ |Bx,r \Ω| − C(n)L3 δ(Ω)α ,

so that by (1.13) we finally get

κ |B| rn+1 ≤ C(n)
(

L3δ(Ω)α + δ(Ω)α/4(n+1) + rn+2
)

, ∀r < κ .

We now use this inequality with r = ϑκ, with ϑ = ϑ(n) ∈ (0, 1) to be properly chosen. By
δ(Ω) ≤ c(n,L, κ) we can entail,

L3δ(Ω)α + δ(Ω)α/4(n+1) ≤ ϑn+2 κn+2 ,

thus finding κn+2 |B|ϑn+1 ≤ C(n)ϑn+2 κn+2. This is of course a contradiction if we pick ϑ small
enough. The proof of Theorem 1.1 is complete. �
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3. An application to capillarity-type energies

Proof of Proposition 1.2. It is well-known that (1.19) implies the existence of a constant λ ∈ R

such that
∫

∂Ω
div ∂ΩX +

∫

Ω
g (X · νΩ) = λ

∫

∂Ω
(X · νΩ) , ∀X ∈ C∞

c (Rn+1;Rn+1) . (3.1)

Since R0 > 0 is such that Ω ⊂⊂ B2R0 , by testing (3.1) with X(x) = ϕ(x)x for some ϕ ∈
C∞
c (B2R0) with ϕ = 1 on Ω, one easily obtains that

(n+ 1) |Ω|λ = nP (Ω) +

∫

Ω
div (x, g(x)) dx . (3.2)

At the same time, since ∂Ω is of class C2, (3.1) implies that H + g = λ on ∂Ω, which combined
with (3.2) gives

H(x)−H0

H0
=

1

H0

(

− g(x) +

∫

Ω div (x g(x)) dx

(n+ 1)|Ω|
)

⇒ δ(Ω) ≤
C ‖g‖C1(BR0

)

H0
.

By the isoperimetric inequality,

H0 =
nP (Ω)

(n+ 1) |Ω| ≥
n (n+ 1) |B|1/(n+1) |Ω|n/(n+1)

(n+ 1) |Ω| = n
( |B|
|Ω|

)1/(n+1)
.

so that δ(Ω) ≤ C(n) ‖g‖C1(BR0
)m

1/(n+1), that is (1.20). �

Appendix A. Almost-constant mean curvature implies almost-umbilicality

The purpose of this appendix is to discuss the relation between the Alexandrov’s deficit δ(Ω)

and the size of the traceless part Å of the second fundamental form A of ∂Ω. Having in mind
the quantitative results for almost-umbilical surfaces by De Lellis-Müller [DLM05, DLM06] and

Perez [Per11], we seek for a control of Å in Lp(∂Ω) for some p ≥ n. In this direction, we have
the following proposition, where η(Ω) denotes the Heintze-Karcher deficit of Ω, see (2.10).

Proposition A.1. If Ω ⊂ R
n+1 (n ≥ 2) is a bounded connected open set with C2-boundary,

H > 0 on ∂Ω, and δ(Ω) ≤ 1/2, then

C(n)
(

P (Ω) η(Ω)
)1/(n+1) ‖A‖Lp⋆ (∂Ω) ≥ ‖Å‖Lp(∂Ω) , ∀p ∈ [1, n + 1] , (A.1)

where p⋆ = (n+ 1)p/[(n + 1)− p] if p < n+ 1, and p⋆ = +∞ otherwise.

Before proving Proposition A.1, let us discuss (A.1) in connection with the above mentioned
results for almost-umbilical surfaces. Let us consider

θp(Ω) = inf
λ∈R

‖A− λ Id‖Lp(∂Ω) , p ≥ 1 ,

as a measure of the non-umbilicality of ∂Ω. In [Per11, Theorem 1.1] it is shown that if Ω is a
bounded connected open set with smooth boundary such that

P (Ω) = P (B) , ‖A‖Lp(∂Ω) ≤ K ,

for some p ∈ (n,∞), then

inf
λ∈R

‖A− λ Id‖Lp(∂Ω) ≤ C(n, p,K) ‖Å‖Lp(∂Ω) . (A.2)

Moreover, in [Per11, Corollary 1.2] it is shown that for every ε > 0 there exists c = c(n, p,K, ε)
such that if

‖Å‖Lp(∂Ω) ≤ c ⇒ inf
x∈Rn+1

hd(∂Ω, ∂Bx,1) < ε . (A.3)
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By combining (A.1) and (A.2) with η(Ω) ≤ δ(Ω), we deduce that, if P (Ω) = P (B), H > 0 and
δ(Ω) ≤ 1/2, then

θp(Ω) ≤ C(n, p, ‖A‖Lp⋆ (∂Ω)) δ(Ω)
1/(n+1) .

If, in addition, δ(Ω) ≤ c(n, p, ‖A‖Lp⋆ (∂Ω), ε), then, by (A.3),

inf
x∈Rn+1

hd(∂Ω, ∂Bx,1) < ε .

A similar comparison is possible with the results of De Lellis and Müller, which pertain the case
n = p = 2. In conclusion, the use of almost-umbilicality in attacking Theorem 1.1 does not seem
to provide one with a starting point as effective as the one based on the study of the torsion
potential discussed in section 2. We finally prove the above proposition.

Proof of Proposition A.1. This is consequence of the proof of the Heintze-Karcher inequality by
Montiel-Ros [MR91], which we now recall for the reader’s convenience. For each x ∈ ∂Ω let
{κi(x)}ni=1 be the principal curvatures of ∂Ω at x, so that, if we set κ = max1≤i≤n κi, then
κ ≥ H/n > 0 on ∂Ω. Let us consider the set

Γ =
{

(x, t) ∈ ∂Ω× (0,∞) : t ≤ 1

κ(x)

}

,

and the function g : ∂Ω× (0,∞) → R
n+1

g(x, t) = x− t νΩ(x) , (x, t) ∈ ∂Ω× (0,∞) .

We claim that Ω ⊂ g(Γ). Indeed, given y ∈ Ω let x ∈ ∂Ω be such that |x − y| = dist(y, ∂Ω). If
γ is a curve in ∂Ω with γ(0) = x and γ′(0) = τ ∈ Sn, then we obtain

(γ − y) · γ′ = 0 , (γ(0) − y) · γ′′(0) + γ′(0)2 ≥ 0 .

In particular, there exists t > 0 such that x = y − t νΩ(y), and it must be 1 − κ(y) t ≥ 0. We
now combine Ω ⊂ g(Γ) with the area formula, the arithmetic-geometric mean inequality, and
κ ≥ H/n, to prove the Heintze-Karcher inequality

|Ω| ≤ |g(Γ)| ≤
∫

g(Γ)
H0(g−1(y)) dy =

∫

Γ
JΓ g(x, t) dHn(x) dt

=

∫

∂Ω
dHn

∫ 1/κ

0

n
∏

i=1

(1− t κi) dt

≤
∫

∂Ω
dHn

∫ 1/κ

0

( 1

n

n
∑

i=1

(1− t κi)
)n
dt =

∫

∂Ω
dHn

∫ 1/κ

0

(

1− t
H

n

)n
dt

≤
∫

∂Ω
dHn

∫ n/H

0

(

1− t
H

n

)n
dt =

1

n+ 1

∫

∂Ω

n

H
.

This chain of inequalities implies of course the following identity
∫

∂Ω

n

H
dHn η(Ω)

n+ 1
=

1

n+ 1

∫

∂Ω

n

H

(

1− 1

κ

H

n

)n+1
+

∫

Γ
µnA − µnG (A.4)

+

∫

g(Γ)

(

H0(g−1(y))− 1
)

dy +
(

|g(Γ)| − |Ω|
)

,

where for every (x, t) ∈ Γ we have set µi(x, t) = 1− t κi(x) (note that µi ≥ 0 on Γ) and

µA =
1

n

n
∑

i=1

µi , µG =

n
∏

i=1

µ
1/n
i .
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The first two terms on the right-hand side of (A.4) provide some control on Å. Since |Å(x)| ≤
C(n) |κ(x) − (H(x)/n)| for every x ∈ ∂Ω, by looking at the first term, we get

C(n) η(Ω)

∫

∂Ω

n

H
≥

∫

∂Ω

n

H

( |Å|
κ

)n+1
,

that is, by exploiting δ(Ω) ≤ 1/2 to infer H0/2 ≤ H(x) ≤ 2H0 for every x ∈ ∂Ω,

C(n)P (Ω) η(Ω) ≥
∫

∂Ω

( |Å|
κ

)n+1
,

We thus conclude the proof by Hölder inequality. �
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quasi-linear equations and its consequences. Comm. Pure Appl. Math., 47(11):1457–
1473, 1994.

[CLM14] M. Cicalese, G. P. Leonardi, and F. Maggi. Improved convergence theorems for
bubble clusters. I. The planar case. 2014. Preprint arXiv:1409.6652.

[CV15] G. Ciraolo and L. Vezzoni. A sharp quantitative version of Alexandrov’s theorem via
the method of moving planes. Preprint arXiv:1501.07845, 2015.

[DL08] C. De Lellis. Rectifiable sets, densities and tangent measures. Zurich Lectures in
Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
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