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10 We describe a method for calculating the solution of the electromagnetic field
in a non-rectilinear open waveguide by using a series expansion, starting from the
field of a rectilinear waveguide. Our approach is based on a method of variation
of boundaries. We prove that the obtained series expansion converges and we
provide a radiation condition at infinity in such a way that the problem has

15 a unique solution. Our approach can model several kinds of optical devices which
are used in optical integrated circuits. Numerical examples will be shown for the
case of finite aperiodic waveguide grating couplers.

Keywords: wave propagation; Helmholtz equation; optical waveguides

AMS Subject Classifications: 78A40; 78A50; 78M35; 35J05; 35A05

20 1. Introduction

In recent years, the growing interest in optical integrated circuits stimulated the study of
electromagnetic wave propagation in diffraction-dominated structures. The design and use
of diffraction-based integrated optics has led to the development of fast and accurate
numerical methods for the design of many kinds of optical devices, such as couplers,

25 tapers, gratings, bendings, imperfections of structures and so on.
In a waveguide grating coupler, a guided wave propagating inside the waveguide

is coupled to free-space radiation through an ad hoc perturbation of the profile of the
waveguide (that makes possible to excite a guided wave by illuminating the waveguide by
a radiation external to the waveguide). This phenomenon is due to the fact that, since the

30 waveguide is not rectilinear, a pure guided wave is not supported by the waveguide and
then the other supported guided waves (if any) and the free-space radiation appear.

Many numerical methods have been proposed for analyzing such structures [1–5].
In the present article we shall propose a rigorous treatment of a method of boundary
variation for waveguide problems. Our approach is strictly connected to the method

35 of boundary variation introduced in [6–8] (see also [9–11]), where the authors established
that solutions to problems of diffraction of light in a periodic structure behave analytically
with respect to variations of the interface. Starting from such results, in [1–5] the authors
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analysed infinite periodic and finite aperiodic waveguide grating couplers by using an

approximate version of the method of boundary variation. In the present article we
40 provide a rigorous approach of the method of boundary variation which allows us to study

problems arising from the study of optical devices. Even if our approach applies to a wider

class of problems, we shall focus our attention on finite aperiodic waveguide grating

couplers, i.e. structures of finite extent (Figure 2).
As it will be clear, our method is applicable whenever it is possible to find a change of

45 coordinates such that the non-rectilinear waveguide is mapped into a rectilinear one.

We wish to observe that our method provides a rigorous analysis of finite grating couplers,

since it takes into account the coupling between both guided modes and the free-space

radiation. Crucial to our approach are the results contained in [12–14]. In [12] the authors

found a Green’s function for the wave propagation problem in a 2D rectilinear waveguide.
50 The uniqueness of such a problem was studied in [14], where a Rellich type radiation

condition at infinity was introduced. Thus, [12] and [14] together provide the knowledge of

the only solution for the 2D rectilinear waveguide problem which satisfies a Rellich type

radiation condition at infinity. In [13], it was proven the existence of a solution for the

perturbed problem. In particular, that was made by showing that the linearized operator is
55 continuous. The main results from [12] and [13] are recalled in Section 2; the ones in [14]

are reported in Section 3, where we also generalize such uniqueness result to the case of

a non-rectilinear waveguide.
In Section 4 we shall describe our mathematical framework. The adopted method of

boundary variation is described in Section 4.1. The analyticity of the solution with respect
60 to the variation of the boundary of the waveguide is proven in Section 4.2.

In Section 5 we apply our analytical results for studying finite aperiodic gratings by

showing some numerical examples.

2. Preliminaries

In this section we recall the expression of the Green’s formula obtained by Magnanini and
65 Santosa in [12] and the main result in [13].

Our starting point is the Helmholtz equation:

�uþ k2n0ðxÞ
2u ¼ f, ðx, zÞ 2 R

2, ð1Þ

where k is the wavenumber and the index of refraction n0 is of the form

n0 :¼
ncoðxÞ, jxj � h,

ncl, jxj4h;

�
ð2Þ

70 here, nco(�) is a bounded function depending only on the transversal coordinate x and 2h is

the width of the waveguide. Under the weakly guided approximation [15] and with such

a choice of n, (1) describes the electromagnetic wave propagation in a rectilinear open

waveguide with axis along the z-direction.
In [12], the authors look for solutions of the homogeneous equation associated to (1)

75 in the form u(x, z)¼ v(x, �)eik�z; here, v(x, �) satisfies the associated eigenvalue problem

for v:

v00 þ �� qðxÞ½ �v ¼ 0, in R, ð3Þ

2 G. Ciraolo



XML Template (2008) [9.9.2008–5:45pm] [1–22]
{TANDF_FPP}GAPA/GAPA_A_343064.3d (GAPA) [First Proof]

with

n� ¼ max
R

n0, � ¼ k2 n2� � �
2

� �
, qðxÞ ¼ k2 n2� � n0ðxÞ

2
� �

: ð4Þ

80 The solutions of (3) can be written in the following form:

vjðx, �Þ ¼

�jðh, �Þ cosQðx� hÞ þ
�0jðh, �Þ

Q
sinQðx� hÞ, if x4h,

�jðx, �Þ, if jxj � h,

�jð�h, �Þ cosQðxþ hÞ þ
�0jð�h, �Þ

Q
sinQðxþ hÞ, if x5�h,

8>>>>>><
>>>>>>:

ð5Þ

for j¼ s, a, with Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� d 2
p

, d 2 ¼ k2ðn2� � n2clÞ and where the �j’s are solutions of (3) in

the interval (�h, h) and satisfy the following conditions:

�sð0, �Þ ¼ 1, �0sð0, �Þ ¼ 0,

�að0, �Þ ¼ 0, �0að0, �Þ ¼
ffiffiffi
�
p
:

ð6Þ

85 The indices j¼ s, a correspond to symmetric and antisymmetric solutions, respectively.
For 05�5d2, it exists a finite number of eigenvalues (corresponding to the guided

modes) �jm, m¼ 1, . . . ,Mj, j2 {s, a}, satisfying the equations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � �
p

�jðh, �Þ þ �
0
jðh, �Þ ¼ 0, j 2 fs, ag,

and corresponding eigenfunctions vj x, �
j
m

� �
which satisfy (3). In this case, vj x, �

j
m

� �
decays

90 exponentially for jxj4h:

vj x, �
j
m

� �
¼

�j h, �
j
m

� �
e�

ffiffiffiffiffiffiffiffiffiffiffi
d 2��jm

p
ðx�hÞ, x4h,

�j x, �
j
m

� �
, jxj � h,

�j �h, �
j
m

� �
e
ffiffiffiffiffiffiffiffiffiffiffi
d 2��jm

p
ðxþhÞ, x5�h:

8>>><
>>>:

ð7Þ

For �4d2, the spectrum is continuous and corresponds to radiation and evanescent modes.

The resulting solution u of (1) has the following form:

uðx, zÞ ¼

Z
R

2
Gðx, z; �, �Þfð�, �Þd� d�, ðx, zÞ 2 R

2, ð8Þ

95 where the Green’s function G is a superposition of guided, radiation and evanescent

modes:

Gðx, z; �, �Þ ¼
X
j2fs,ag

Z þ1
0

eijz��j
ffiffiffiffiffiffiffiffiffiffiffi
k2n2���
p

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

p vjðx, �Þvjð�, �Þd�jð�Þ, ð9Þ

with

d�j, �
� �

¼
XMj

m¼1

r jm� �
j
m

� �
þ

1

2�

Z þ1
d 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� d 2
p

ð�� d 2Þ�jðh, �Þ
2
þ �0jðh, �Þ

2
�ð�Þd�,

Applicable Analysis 3
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100 for all � 2 C10 ðRÞ, where

r jm ¼

Z þ1
�1

vj x, �
j
m

� �2
dx

	 
�1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � �jm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2 � �jm

p R h
�h �j x, �

j
m

� �2
dxþ �j h, �

j
m

� �2 :

We notice that (9) can be split up into three summands G¼Gg
þGr
þGe, where

Ggðx, z; �, �Þ ¼
X
j2fs,ag

XMj

m¼1

eijz��j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2���

j
m

p

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

j
m

q vj x, �
j
m

� �
vj �, �

j
m

� �
r jm, ð10aÞ

Grðx, z; �, �Þ ¼
1

2�

X
j2fs,ag

Z k2n2�

d 2

eijz��j
ffiffiffiffiffiffiffiffiffiffiffi
k2n2���
p

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

p vjðx, �Þvjð�, �Þ	jð�Þd�, ð10bÞ

Geðx, z; �, �Þ ¼ �
1

2�

X
j2fs,ag

Z þ1
k2n2�

e�jz��j
ffiffiffiffiffiffiffiffiffiffiffi
��k2n2�
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� k2n2�

p vjðx, �Þvjð�, �Þ	jð�Þd�, ð10cÞ

with

	jð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� d 2
p

ð�� d 2Þ�jðh, �Þ
2
þ �0jðh, �Þ

2
: ð11Þ

105 Gg represents the guided part of the Green’s function, which describes the guided modes,

i.e. the modes propagating mostly inside the core; Gr and Ge are the parts of the Green’s

function corresponding to the radiation and evanescent modes, respectively. The radiation

and evanescent components altogether form the radiating part Grad of G

Grad ¼ Gr þ Ge ¼
1

2�

X
j2fs,ag

Z þ1
d 2

eijz��j
ffiffiffiffiffiffiffiffiffiffiffi
k2n2���
p

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

p vjðx, �Þvjð�, �Þ	jð�Þd�, ð12Þ

110 and the corresponding radiating part of the solution

uradðx, zÞ ¼

Z
R

2
Gradðx, z; �, �Þ f ð�, �Þd� d�: ð13Þ

The main results in [13] was to bound an inverse of the Helmholtz operator. Since we

are dealing with unbounded domains, we shall introduce weighted Sobolev spaces.
115 Let 
 :R2

!R be a positive function such that j
j � 1 and


 2 C2ðR
N
Þ \ L1ðR

N
Þ, jr
j � C1
, jr

2
j � C2
, in R
N, ð14Þ

where C1 and C2 are positive constants; for instance


 ¼ 1þ jxj2 þ jzj2
� ���

, ð15Þ

�41, can be a good choice. We will denote by L2(
) the weighted space consisting of all
120 the complex valued measurable functions u(x, z), (x, z)2R

2, such that 

1
2u 2 L2ðR

2
Þ,

equipped with the natural norm

uk k2L2ð
Þ¼

Z
R

2
uðxÞ
�� ��2
ðx, zÞdxdz:

4 G. Ciraolo
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In a similar way we define the weighted Sobolev spaces H1(
) and H2(
).
The following theorem was proved in [13]:

125 THEOREM 2.1 Let u be the solution of (1) given by (8). Then

uk kH2ð
Þ � C0 f
�� ��

L2ð
�1Þ
, ð16Þ

where

C2
0 ¼

5

2
þ 2C2 þ

3

2
þ 4C2 þ 8C2

2 þ ð1þ 4C2Þk
2n2� þ 2k4n4�

	 

Gk k2L2ð
�
Þ, ð17Þ

where C2 is defined by (14).

130 3. Uniqueness of solutions

In [14], it was proved that (8) is the only solution of (1) satisfying certain radiation

conditions at infinity. We recall such a result in the following and then generalize that to

the case of non-rectilinear waveguides.
Following [14], it will be useful to introduce slightly different notations. We denote by

135 � l, l¼ 1, . . . ,M, M¼MsþMa, the values �jm, m ¼ 1, . . . ,Mj, j ¼ s, a, and

�� ¼ max
l¼1,...,M

�l: ð18Þ

We set

eðx, �lÞ ¼
vjðx, �lÞ

vjð�, �lÞ
�� ��

2

, ð19Þ

where we choose vj, j2 {s, a}, according to the �jm corresponding to � l, and define

ulðx, zÞ ¼ eðx, �lÞUðz, �lÞ, ð20Þ

140 with

Uðz, �lÞ ¼

Z 1
�1

uð�, zÞeð�, �lÞd�, l ¼ 1, . . . ,M, ð21Þ

and

u0ðx, zÞ ¼ uðx, zÞ �
XM
l¼1

ulðx, zÞ: ð22Þ

145 Moreover, we set

�� ¼ ðx, zÞ 2 R
2 : maxðjxj � h, 0Þ½ �

2
þz2 � �2

 �
, ð23Þ

�0¼ kncl and �l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �l

p
, for l¼ 1, . . . ,M.

The main results in [13] are collected in the following theorem.

Applicable Analysis 5
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THEOREM 3.1 Let u be the solution of (1) defined by (8). Then u is the only solution of (1)
150 such that u2L2(
) and

XM
l¼0

Z 1
0

Z
@��

@ul

@
� i�lu

l

����
����
2

d‘ d�5þ1, ð24Þ

where  denotes the outward normal to the set @��.

In this section we shall prove an analogous result for the non-rectilinear problem

L"u :¼ �uþ k2n"ðx, zÞ
2u ¼ f, ðx, zÞ 2 R

2, ð25Þ

–Rcl

–Rco

0

Rco

Rcl

z–axis

x–
ax

is

s0 – ω s0 s0 +ω

Figure 2. The profile of the perturbed waveguide. This example models a finite aperiodic grating
coupler.

R 0 R

–R–h

–h

0

h

R+h

Figure 1. The set �R.
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155 where n" is a perturbation of the function n0 defined by (2). In particular, we assume that

n"� n0 is a compactly supported function, i.e.

suppðn" � n0Þ � ��0 , ð26Þ

for some �040, and prove that it exists a unique solution of (25) which satisfies (24).

In order to do that, we shall adapt the proofs of Lemma 2.5 and Theorems 2.6 and 2.7
160 in [14] to this case.

LEMMA 3.2 Let �2R and n"2L
1(R2). If u is a weak solution of

�uþ k2n"ðx, zÞ
2u ¼ 0, ð27Þ

then

Im

Z
@D

�u
@u

@
d	 ¼ 0,

165 i.e.

Z
@D

@u

@
� i�u

����
����
2

d	 ¼

Z
@D

@u

@

����
����
2

þ�2juj2

 !
d	, ð28Þ

for every ��R
2 bounded and sufficiently smooth.

The proof of this lemma is omitted, because it is analogous to the one done for

Lemma 2.5 in [14].
170 We introduce the following notations, which will be useful throughout the present

section:

S ¼ ðx, zÞ 2 R
2 : jzj � �0

 �
, �I

� ¼ �� \ S, �E
� ¼ �� \ ðR

2
nS Þ, ð29Þ

for �4�0, and set

@�I
� ¼ @S�I

� [ @e�
I
�, @�E

� ¼ @S�E
� [ @e�

E
� ,

175 where @S�I
� and @e�

I
� are the portions of @�I

� laying on @S and @��, respectively;

analogously we define @S�E
� and @e�

E
� and notice that

@�� ¼ @e�
I
� [ @e�

E
� : ð30Þ

For the sake of simplicity, we shall assume that 
 is as in (15). Analogous results hold

for more general 
 satisfying (14).

180 LEMMA 3.3 Let u2L2(
) be a solution of (27). Then

u� u0 ¼ Oðeðx, ��ÞÞ, ru� ru0
�� �� ¼ Oðeðx, ��ÞÞ, ð31Þ

uniformly as jxj!þ1 for z2R, where u0, e(x, ��) and �� are defined by (22), (19) and (18),

respectively.

Proof From (22) we need to prove that ul, jrulj ¼O(e(x, ��)), uniformly as jxj!þ1
185 for z2R, for each l¼ 1, . . . ,M. From (20) and (27) we have that U(z, � l) satisfies

U00ðz, �lÞ þ k2n2� � �l
� �

Uðz, �lÞ ¼ gðzÞ,

Applicable Analysis 7
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with

gðzÞ ¼

Z
R

n0ð�Þ � n"ð�, zÞ½ �uð�, zÞeð�, �lÞd�,

and thus

Uðz, �lÞ ¼ c1 �
i

2�l

Z
R

gð�Þe�i�l� d�

	 

ei�lz þ c2 þ

i

2�l

Z
R

gð�Þei�l� d�

	 

e�i�lz,

190 for some constants c1 and c2. We notice that u 2 H2
locðR

2
Þ (see Theorem 8.8 in [16]) and

thus, by Sobolev Embedding Theorem [17], u is bounded on every compact subset of R
2.

Since the support of n"� n0 is contained in ��0
, we have

Uðz, �lÞ
�� �� � jc1j þ jc2j þ e�kn" � n0k1

�l
max
ðx,zÞ2��0

uðx, zÞ
�� ��,

195 and

U0ðz, �lÞ
�� �� � �lðjc1j þ jc2jÞ þ e�kn" � n0k1 max

ðx,zÞ2��0

uðx, zÞ
�� ��,

where

e� ¼ max
l¼1,...,M

eð�, �lÞ
�� ��

1
:

Thus, since e(x, �l) and e0(x, �l) are O(e(x, ��)) as jxj!þ1, from (20) and (22) we
200 obtain (31). g

Now, we derive some asymptotic formulas which will be useful for proving the next

theorem.
By following the proof of Lemma 2.3 in [14], it is easy to show that

u

1
2

��� ���
L1ðS Þ



1
2ru

��� ���
L1ðS Þ

5þ1, ð32Þ

205 where S is given by (29). Let ! : [0,þ1)!R be the function defined by

!ð�Þ ¼ 1þ �2
� ��

eð�, ��Þ, ð33Þ

with �41 (notice that ! is a C1 function and, furthermore, !2L1(Rþ)\L1(Rþ)).

By using (31) and (32), it is easy to prove the following asymptotic relations that hold

uniformly as �!þ1:

Z
@e�I

�

@u

@
� i�0u

����
����
2

d‘�

Z
@e�I

�

@u0

@
� i�0u

0

����
����
2

d‘ ¼ Oð!ð�ÞÞ, ð34aÞ

Z
@e�I

�

@u

@

����
����
2

þ�20juj
2

 !
d‘�

Z
@e�I

�

@u0

@

����
����
2

þ�20ju
0j2

 !
d‘ ¼ Oð!ð�ÞÞ, ð34bÞ

Im

Z
@S�I

�

�u
@u

@
d‘ � Im

Z
@S�I

�

�u0
@u0

@
d‘ ¼ Oð!ð�ÞÞ: ð34cÞ

8 G. Ciraolo
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210 Moreover, from (7), we have

Z
@e�I

�

@ul

@

����
����
2

þ�20 ul
�� ��2

 !
d‘ ¼ Oð eð�, ��Þ

2
Þ, ð35aÞ

Im

Z
@S�I

�

�ul
@ul

@
d‘ ¼ Oð eð�, ��Þ

2
Þ, ð35bÞ

for l¼ 1, . . . ,M, as �!1.

THEOREM 3.4 Let u2L2(
) be a weak solution of (27),with n"2L
1(R2) as in (26), and

215 assume that u satisfies (24). Let

Jð�Þ ¼
XM
l¼0

Z
@��

@ul

@

����
����
2

þ�2l ul
�� ��2

" #
d‘; ð36Þ

then Z þ1
0

Jð�Þd�5þ1, ð37Þ

and, in particular, Z
R

2
ul
�� ��2 dx dz5þ1, ð38Þ

220 for every l¼ 0, 1, 2, . . . ,M.

Proof In this proof, we will make use of Lemma 3.2. We notice that we can apply
Lemma 3.2 to u and to any set � (in particular �I

�). The same does not hold for ul,
l¼ 0, 1, . . . ,M; in this case, ul, l¼ 0, 1, . . . ,M, is solution of (27) in �E

� , for �4�0,
225 (Theorem 2.6 in [14]) and thus we can apply Lemma 3.2 to ul, l¼ 0, 1, . . . ,M, and by using

� ¼ �E
� .

From (30), (34b) and (35a) it follows that

Jð�Þ ¼

Z
@e�I

�

@u

@

����
����
2

þ�20juj
2

 !
d‘þ

XM
l¼0

Z
@e�E

�

@ul

@

����
����
2

þ�2l ju
lj2

 !
d‘þOð!ð�ÞÞ,

uniformly as �!þ1. Since n"� n0 in R
2
n��0, each ul, l¼ 0, 1, . . . ,M, is a weak solution

230 of (27) in �E
� , for �4�0 (Theorem 2.6 in [14]). Thus, from the above equation and by

applying Lemma 3.2 to u and ul, l¼ 0, 1, . . . ,M, in �I
� and �E

� , respectively, we obtain

Jð�Þ ¼

Z
@�I

�

@u

@
� i�0u

����
����
2

d‘�

Z
@S�I

�

@u

@

����
����
2

þ �20juj
2

 !
d‘þ

XM
l¼0

Z
@�E

�

@ul

@
� i�lu

l

����
����
2

d‘

�
XM
l¼0

Z
@S�E

�

@ul

@

����
����
2

þ�2l ju
lj2

 !
d‘þOð!ð�ÞÞ

¼

Z
@e�I

�

@u

@
� i�0u

����
����
2

d‘� 2�0

Z
@S�I

�

Im �u
@u

@
d‘þ

XM
l¼0

Z
@e�E

�

@ul

@
� i�lu

l

����
����
2

d‘

�
XM
l¼0

2�l

Z
@S�E

�

Im �ul
@ul

@
d‘þOð!ð�ÞÞ,
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as �!þ1, and, from (34a), we have

Jð�Þ ¼

Z
@e�I

�

@u0

@
� i�0u

0

����
����
2

d‘þ
XM
l¼0

Z
@e�E

�

@ul

@
� i�lu

l

����
����
2

d‘

� 2�0

Z
@S�I

�

Im �u0
@u0

@
d‘�

XM
l¼0

2�l

Z
@S�E

�

Im �ul
@ul

@
d‘þOð!ð�ÞÞ,

235 as �!þ1. By adding

XM
l¼1

Z
@e�I

�

@ul

@
� i�lu

l

����
����
2

d‘

to the above equation and since

Z
@S�I

�

þ

Z
@S�E

�

Im �u0
@u0

@
d‘ ¼ 0,

from (30) and (35b), we get

Jð�Þ �
XM
l¼0

Z
��

@ul

@
� i�lu

l

����
����
2

d‘þOð!ð�ÞÞ,

240 as �!þ1. From (24) and since !(�), e(�, ��)
2
2L1(Rþ), we obtain (37) and (38). g

The uniqueness theorem for (25) is the following:

THEOREM 3.5 Let n" satisfy (26). There exists at most one weak solution u2L2(
) of (25)
which satisfies (24).

245 Since n" coincides with n0 outside a compact set, the proof of Theorem 2.7 in [14] can be

easily adapted to prove the above theorem.

4. The method of variation of boundaries

In the present section we propose an analytical approach to the study of non-rectilinear

waveguides. We shall study the Helmholtz equation (25) and the corresponding operator
250 L"¼�þ k2n"(x, z)

2. Again, we remark that the waveguide is no more rectilinear and thus

we are assuming that the index of refraction n depends on both the x- and z-coordinates.

In particular, we are interested in perturbations which can be described by a geometric

transformation of the plane, in a sense that we are going to explain shortly.
Our approach consists in finding a suitable change of coordinates such that, after

255 having changed the coordinates, n" depends only on the ‘new’ transversal coordinate or it

can be represented in Neumann series with the zeroth order term depending only on the

new transversal coordinate. Then, in the new coordinates, we formally represent u and the

operator L" by their Neumann series:

u ¼ u" ¼ u0 þ "u1 þ "
2u2 þ � � � , L" ¼ L0 þ "L1 þ "

2L2 þ � � � ,

260 where "40 is supposed to be small. Here, L0¼�þ k2n0(x)
2 is the operator corresponding

to the Helmholtz equation for the case of a rectilinear waveguide. By using the above
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formulas and equating the asymptotic terms of the same order, we can solve L"u"¼ f

by iteration:

L0u0 ¼ f, L0u1 ¼ �L1u0, . . . ,L0uN ¼ �
XN�1
j¼0

Ljþ1uN�1�j, . . . : ð39Þ

265 Each step of (39) can be solved by using (8). Then, we prove that the resulting Neumann

series for u converges and, thanks also to the results in the previous section, we have the

existence and uniqueness of the solution.
In Section 4.1 we shall give a rigorous treatment of the boundary variation method

described above. In Section 4.2 we prove that the iterative procedure (39) leads to
270 a converging series for the solution u.

4.1. A method of variation of boundaries

As already mentioned, our idea is that of transforming a non-rectilinear waveguide

into a rectilinear one by a change of variables � :R2
!R

2. For this reason, we suppose

that � is a C2 invertible function:

�ðs, tÞ ¼ ðxðs, tÞ, zðs, tÞÞ:

275 By setting w(s, t)¼ u(x, z), a solution u of (1) is converted into a solution w of

rsj j2wss þ jrtj
2wtt þ 2rs � rt wst þ�s � ws þ�t � wt þ cðs, tÞ2w ¼ Fðs, tÞ, ð40Þ

where c(s, t)¼ kn(x(s, t), z(s, t)) and F(s, t)¼ f(x(s, t), z(s, t)).
For simplicity of exposition, we shall assume that �¼�" is of the form1

�"ðt, sÞ ¼
x ¼ tþ " ðt, sÞ,

z ¼ s,

(
ð41Þ

280 with

 ðt, sÞ ¼ TðtÞSðsÞ, ð42Þ

where T 2 C2
cðRÞ and S 2 C2

cðRÞ describes the ‘profile’ of the perturbation, in a sense that

we are going to explain shortly. We will explain which roles are played by T and S later.
285 We consider �" as in (41) and assume that  (t, s) is such that n"(�

"(t, s))¼ n0(t).

By changing the coordinates and using (40), the operator L" in (25) becomes

L"w :¼
1þ "2 2

s

ð1þ " tÞ
2
wtt � 2

" s

1þ " t
wts þ wss

�
1

ð1þ " tÞ
3
" 1þ "2 2

s

� �
 tt � 2"2 1þ " tð Þ s st þ "ð1þ " tÞ

2 ss

� �
wt

þ k2n0"ðtÞ
2w ¼ ~fðt, sÞ, ðt, sÞ 2 R

2, ð43Þ

with ~fðt, sÞ ¼ f ðx, zÞ, w(t, s)¼ u(x, z). Again, we stress the fact that �" is chosen in such

a way that the new refraction coefficient in (43) is n0(t), where n0 is the function defined
290 by (2) that models a rectilinear waveguide. More general functions � can be considered,

but we will restrict to the simpler and significative one introduced above.

Applicable Analysis 11
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The smoothness assumption on S and T makes the coefficients of L" continuous.

By choosing S compactly supported we suppose that the waveguide is rectilinear

outside a bounded region of the plane, that is L"¼L0 outside a compact set. The function
295 T(t) is introduced in order to make � be a smooth and invertible transformation of the

plane.
For instance, in the example shown in Figure 2 (a finite aperiodic grating coupler),

a good choice of S and T are the ones represented in Figure 3. In Figure 4, we visualize

how � transforms the plane, by representing in the (x, z)-plane the image of a rectangular
300 grid in the (t, s)-plane.

The parameter " controls the amplitude of the perturbation (note that when "¼ 0 there

is no perturbation at all).

0 2 4 6 8 10 12 14 16 18 20

−Rcl

−Rco

0

Rco

Rcl

Figure 4. The effect of � on the (x, z)-plane. Notice that, with the choice of T as in Figure 3, the
perturbed region is bounded.

Rcl–ρ Rcl+ρRcls0 – ω s0 s0 +ω

Figure 3. The figures show the choice we made for the functions S and T, respectively. Such a choice
corresponds to a perturbed waveguide as in Figure 2.

12 G. Ciraolo



XML Template (2008) [9.9.2008–5:45pm] [1–22]
{TANDF_FPP}GAPA/GAPA_A_343064.3d (GAPA) [First Proof]

By expanding w and L" by their Neumann series as described before, we find that

L0w ¼ �wþ k2n0ðtÞ
2w, ð44aÞ

L1w ¼ �2 twtt � 2 swst � ð tt þ  ssÞwt, ð44bÞ

L2w ¼ 3 2
t þ  

2
s

� �
wtt þ 2 s twst þ ð3 tt t þ 2 s st þ  ss tÞwt, ð44cÞ

305 and

Ljw ¼ ð�1Þ
j

�
ð jþ 1Þ j

t þ ð j� 1Þ j�2
t  2

s

h i
wtt þ 2 s 

j�1
t wst

þ
1

2
ð jþ 1Þj j�1

t  tt þ ð j� 1Þð j� 2Þ j�3
t  2

s tt þ 4ð j� 1Þ j�2
t  s st þ 2 j�1

t  ss

h i
wt

�
,

ð44dÞ

for j	 3. Thus, by (39), w can be found by solving

L0wN ¼ FN,

wN satisfies (24),

�
ð45Þ

where we set F0 ¼
~f and

FN ¼
XN�1
j¼0

Ljþ1wN�1�j, N 	 1, ð46Þ

310 with Lj, j	 0, given by (44). We notice that, thanks to Theorem 3.1, each step of the

iterative method described by (45) determines a unique solution wN.

4.2. Analyticity of the solution

In this subsection we shall prove that the solution w of (43) given by (45) and (46) is
315 analytic in ". We shall assume that  satisfies the following assumption:

j tj, j sj, j ttj, j tsj, j ssj � K
 in R
2, ð47Þ

for some constant K independent of ". We notice that if  2 C2
0ðR

2
Þ, then (47) is satisfied.

Before proving the main theorem, we need the following two lemmas, where we prove

estimates for the right-hand side of (44) at each step of the inductive procedure.

320 LEMMA 4.1 Let Lj be defined by (44) and assume that  satisfies (47). Then

Ljw
�� ��

L2ð
�1Þ
� jð jþ 1ÞKjkwkH2ð
Þ, ð48Þ

j	 1, where K is defined by (47).

Proof We notice that, since 05
� 1, it holds that 
2j�1
�
, for j	 1. Then, (48) follows

easily by applying Minkowski inequality and using (47). g

325 LEMMA 4.2 Let N	 1 and suppose that

wmk kH2ð
Þ � ABm, ð49Þ
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for every m5N and for positive constants A and B. Let FN be defined by (46). If B4K, then

FNk kL2ð
�1Þ � 2AK 1�
K

B

� ��3
BN�1, ð50Þ

with K given by (47).

330 Proof By Minkowski inequality and Lemma 4.1 we have

kFNkL2ð
�1Þ �
XN�1
j¼0

Ljþ1wN�1�j

�� ��
L2ð
�1Þ

�
XN�1
j¼0

ð jþ 1Þð jþ 2ÞKjþ1kwN�1�jkH2ð
Þ:

From (49) we get

kFNkL2ð
�1Þ � AKBN�1
XN�1
j¼0

ð jþ 1Þð jþ 2Þ
K

B

� �j

,

and then, since

X1
k¼1

kðkþ 1Þqk ¼
2q

ð1� qÞ3
,

335 for jqj51, (50) follows. g

THEOREM 4.3 Let f2L2(
�1) and let C0 be given by (17). If  satisfies (47), then it exists

a solution

w ¼
Xþ1
N¼0

wN"
N

340 of (40), with wN, N¼ 0, 1, . . . , given by (45), satisfying

kwNkH2ð
Þ � C0k f kL2ð
�1ÞB
N, ð51Þ

for any "5B�1 and B4B0, where B04K is the solution of

B ¼ 2KC0 1�
K

B

� ��3
, ð52Þ

with C0 and K given by (17) and (47), respectively.
345 Moreover, if  is compactly supported, w is the only solution of (40) which satisfies (24).

Proof Since each wN, N¼ 0, 1, . . . , satisfies (24), it is clear that, once we have (51),

w satisfies (24) and the uniqueness of the solution follows by Theorem 3.1.
To prove (51) we proceed inductively. For N¼ 0, (51) follows by Lemma 2.1. Assume

that (51) holds for all j5N. By applying Lemma 2.1 we have

kwNkH2ð
Þ � C0kFNkL2ð
�1Þ;
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350 Lemma 4.2 and the above inequality imply

kuNkH2ð
Þ � 2C2
0 1�

K

B

� ��3
K f
�� ��

L2ð
�1Þ
BN�1,

and, by choosing B4max f2C0Kð1�
K
B Þ
�3,Kg, we obtain (51). g

5. Numerical examples

355 In this section, we use the results in Section 4 for studying the wave propagation in

presence of finite aperiodic gratings, by showing some numerical results.
Following the scheme described in Section 4.1, we assume that w0 is a pure guided

mode of a rectilinear waveguide, without perturbations. In other words we are taking

a special choice of f. Thus, w0 propagates undisturbed if no imperfections are present.
360 If the waveguide is perturbed, radiating energy together with the remaining guided modes

(if any) supported by the waveguide appear. The occurrence of these phenomena will be

made clear by pictures presented in this section Figure 5.
We shall assume that the ‘perturbed region’ P is a compact set in R

2, as follows from

the assumptions on T and S made in Section 4.1. Thus, it is clear that, in such a case,
365 we can apply Theorem 4.3, because the coefficients of L" are smooth and with compact

support.
In our simulations we compute w1: its computation is made easier by the fact that

we know the explicit expression of w0. The computation of w2,w3, . . . would require

a larger numerical effort. However, since we know that " cannot be taken larger than
370 "0 ¼ B�10 , with B0 given by (52), the contribution of "2w2, "

3w3, . . . would be, generally,

rather small.
We consider a 2D waveguide in all its components: a central zone (the core), a finite

cladding and then an infinite jacket, see Figure 2.

Figure 5. Real part of the near field of w0.
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The index of refraction is supposed to be piecewise constant. In particular nco, ncl
375 and nja will denote the index of refraction of the core, cladding and jacket, respectively

(Table 1).
We notice that there is no symmetry in the perturbation, but, thanks to the fact that the

the index of refraction is piecewise constant, it is possible to find a transformation � such

that n"(x, z) is mapped into n0(t), where n0(t) represents the index of refraction in the
380 new coordinates (t, s). We choose S(s) and T(t) as in Figure 3:

SðsÞ ¼ A 1�
s� s0
!

� �2	 
3
sinð2�a0sÞ�ðs0�!,s0þ!ÞðsÞ, ð53Þ

and

TðtÞ ¼ 1�
t� Rcl

�

� �2
" #3

�ðRcl��,Rclþ�ÞðtÞ, ð54Þ

with �¼Rcl�Rco and where s0 and ! are the centre and the half of the width of the
385 perturbation, respectively. This choice of S and T amounts to a perturbation of the

interface between cladding and jacket as in Figure 2.
The simulations presented here, refers to the following choices of a0: a0¼ 0.5 and

a0¼ 1.0.
In Section 5.1 we describe how we can obtain estimates for "0 (the maximum

390 amplitude of the perturbation). In Sections 5.2 and 5.3 we study the behaviour of the

solution in proximity of the waveguide (near-field) and far from that ( far-field),

respectively.

5.1. Computing e0

In this subsection we describe how we obtain an estimate for "0. We notice that "0 depends
395 on the the constants C0 and K, where C0 depends only on the weight function 
 chosen

and K depends also on the perturbation. We will calculate such constants for several

choices of the weight function 
, and then evaluate the corresponding "0. In particular,

we will consider functions 
 of the form


ðx, zÞ ¼ 1þ
x� x0j j2þjz� z0j

2

�2

� ��m1

, ð55Þ

400 where P0� (x0, z0) is the centre of the perturbation, and


ðx, zÞ ¼ 
a1 ðjxjÞ
a2 ðjzjÞ, ð56Þ

Table 1. Parameters of the waveguide.

nco ncl nja k Rco h¼Rcl d2

1.45 1.40 1.00 2� 0.4 1.4 43.52
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where


alðtÞ ¼
1, 0 � t � al,

1þ ðt� alÞ
2

� ��m2
, t4al,

�

with l¼ 1, 2, m141, m240 and where al, l¼ 1, 2 is half of the side of P parallel to the
405 x- and z-directions, respectively. All the results in [13 and 14] and the ones of the Section 4

can be easily generalized to such choices of 
.
Tables 2 and 3 show the resulting estimates for "0.

5.2. Near-field

We show what happens near the perturbed zone of the waveguide represented in Figure 2.
410 We will consider perturbations represented by the function in (53) corresponding to the

values a0¼ 0.5 and a0¼ 1.0 and show the numerical results in Figures 6–8 and 9–10,

respectively.
In Table 1, we report the values of the relevant parameters of the waveguides. With

these parameters, the waveguide supports several guided modes; the first one corresponds
415 to the values �s1 ¼ 3:3016 and �s1 ¼ 8:9276.

Table 2. Bounds for "0 when 
 is as in (55).


 as in (55)

(x0, z0) B m a0 "0 C0 K B0

O 1 2 0.5 3.54e�5 7.54eþ2 7.46eþ3 2.82eþ4
O 1 2 1.0 1.19e�5 7.54eþ2 2.21eþ4 8.36eþ4
P0 1 2 0.5 1.50e�3 7.54eþ2 1.74eþ2 6.58eþ2
P0 1 2 1.0 1.50e�3 7.54eþ2 1.74eþ2 6.58eþ2
P0 0.5 2 0.5 2.97e�3 1.11eþ3 1.73eþ2 3.36eþ2
P0 0.5 2 1.0 2.97e�3 1.11eþ3 1.73eþ2 3.36eþ2
P0 2 2 0.5 1.51e�3 7.66eþ2 1.73eþ2 6.60eþ2
P0 2 2 1.0 1.51e�3 7.66eþ2 1.73eþ2 6.60eþ2
P0 1 1.2 0.5 5.49e�2 1.29eþ3 9.03 1.82eþ1
P0 1 1.2 1.0 3.53e�2 1.29eþ3 14.05 2.83eþ1

Table 3. Bounds for "0 when 
 is as in (56).


 as in (56)

(x0, z0) m a0 "0 C0 K B0

P0 1 0.5 5.72e�2 4.29eþ3 5.91 1.75eþ1
P0 1 1.0 1.65e�2 4.29eþ3 20.48 6.06eþ1
P0 0.4 0.5 5.70e�2 4.32eþ3 5.91 1.75eþ1
P0 0.4 1.0 1.64e�2 4.32eþ3 20.48 6.07eþ1
P0 2 0.5 5.51e�2 4.69eþ3 5.91 1.81eþ1
P0 2 1.0 1.59e�2 4.69eþ3 20.48 6.28eþ1
P0 2/3 0.5 5.73e�2 4.26eþ3 5.91 1.74eþ1
P0 2/3 1.0 1.65e�2 4.26eþ3 20.48 6.04eþ1

Applicable Analysis 17



XML Template (2008) [9.9.2008–5:45pm] [1–22]
{TANDF_FPP}GAPA/GAPA_A_343064.3d (GAPA) [First Proof]

As already mentioned, we are interested in what happens to the wave propagation

when a pure guided mode is propagating in the waveguide. Thus, we suppose that w0 is the

first forward propagating guided mode supported by the rectilinear waveguide (Figure 5):

w0ðt, sÞ ¼ vs t, �s1
� �

ei�
s
1
s,

420 with �s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

s
1

p
.

Figure 8. Real part and modulus of w0þ "w1, with a0¼ 0.5 and "¼ 0.057.

Figure 6. The two pictures show, respectively, the real part and the absolute value of w1 for a0¼ 0.5.

Figure 7. Real part and modulus of the near field of w0þ "w1 for a0¼ 0.5 with "¼ 1.
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In Figures 6 and 9 the real part and the modulus of w1 are represented. To compute

w1(t, s), i.e. the integral

w1ðt, sÞ ¼ �

Z
P

Gðt, s; t1, s1ÞL1w0ðt1, s1Þdt1 ds1,

we use the trapezoidal rule on a rectangular grid in the (t, s)-plane (which corresponds
425 to a ‘perturbed’ grid in the (x, z)-plane, as shown in Figure 4). The sampling intervals are

been chosen by dividing the perturbed zone P in 12� 24 rectangles.
Now, we show how we computed the integrals defining G. Firstly, by changing the

variables, we write Gr and Ge as

Gr ¼ �i
X
j2fs,ag

Z kncl

0

eijz��j
vj x, k
2n2� � 


2
� �

vj �, k
2n2� � 


2
� �

	j k
2n2� � 


2
� �

d
,

430 and

Ge ¼ �
X
j2fs,ag

Z þ1
0

e�jz��j
vj x, k
2n2� þ 


2
� �

vj �, k
2n2� þ 


2
� �

	j k
2n2� þ 


2
� �

d
;

then we use the trapezoidal rule with sampling intervals of length kncl/80 in Gr and of

kn�=40 in Ge, where we truncate the integral at 
 ¼ kn�.

Figure 9. The two pictures show, respectively, the real part and the absolute value of w1 for a0¼ 1.0.

Figure 10. Real part and modulus of the near field of w0þ "w1, for a0¼ 1.0.
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Figures 7 and 10 show w0þ "w1 corresponding to the two different perturbations
435 considered. Here we set "¼ 1 in order to emphasize w1 out. As already mentioned, our

results hold for "� "0, where "0 ¼ B�10 is given by (52). In Tables 2 and 3 we computed

several estimates of "0. Figure 8 shows the real part and the modulus of w0þ "w1 with

"¼ 0.057 (the best estimate for "0 we obtained) for the case in which a0¼ 0.5.
We notice that in the first example, a small perturbation in the profile of the cladding

440 determines a sort of plane wave going out from the waveguide. In the second example,

the different shape (in frequency) of the perturbation does not create an important

outgoing wave, but the intensity of w1 is mostly confined in the region close to the

perturbation.
We want to stress that Figures 6–10 represent the near field of the wave propagation.

445 The computations in a wider region of the plane would require a large increase in terms of

time and more appropriate quadrature formulas. This problem is due to the oscillatory

behaviour of the functions defining G.

5.3. Far-field

As well as in the near field, we are interested in the behaviour of the far-field, which
450 describes the behaviour of the solution far from the waveguide. A method for calculating

a uniform asymptotic expansion of the far-field of the solution was proposed in [14].

Even if the far-field expansion was not computed explicitly, the following formulas follow

easily from the results in [14]. Let urad be given by (13), then

urad 

ei Rkncl�

3
4�ð Þffiffiffiffi

R
p �ð#Þ þ O

1

R

� �
, ð57Þ

455 uniformly for #2 [0,�/2], as R!þ1, where

�ð#Þ ¼

ffiffiffiffiffiffiffiffi
kncl
2�

r X
j2fs,ag

sin# 	jð�0ð#ÞÞ�j k
2n2� � 
0ð#Þ

2
� �

F̂ j �0ð#Þ,
0ð#Þð Þ,

with

�jð�Þ ¼
e�ih

ffiffiffiffiffiffiffiffi
��d 2
p

2
�jðh, �Þ þ

�0jðh, �Þ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� d 2
p

	 

,


0ð#Þ ¼ kncl cos#, �0ð#Þ ¼ k2 n2� � n2cl cos
2 #

� �
, �jm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2� � �

j
m

q
,

460 and

Fjð�, �Þ ¼

Z þ1
�1

f ð�, �Þvjð�, �Þd�, F̂ jð�,
Þ ¼

Z þ1
�1

Fjð�, �Þe�i�
 d�:

Figure 11 shows the absolute value of the angular component of the far-field of urad

as a function of the angular variable #, with #2 [0,�/2]. The two pictures in Figure 11
465 correspond to the two cases described in the previous subsection. We notice that different

kind of perturbations affect the far-field in a remarkable different way.
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Note

475 1. Here and in the rest of the section, we use the following notation: by a subscript, as in L"u,
we denote functions of the variables (x, z), whereas a superscript, as in L"w, indicates (the
corresponding) functions of the variables (t, s).
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