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Prosthetic joint replacement failure has a huge impact on quality of life and hospitalization
costs. A leading cause of prosthetic joint infection is bacteria-forming biofilm on
the surface of orthopedic devices. Staphylococcus epidermidis is an emergent, low-
virulence pathogen implicated in chronic infections, barely indistinguishable from aseptic
loosening when embedded in a mature matrix. The literature on the behavior of
quiescent S. epidermidis in mature biofilms is scarce. To fill this gap, we performed
comparative analysis of the whole proteomic profiles of two methicillin-resistant
S. epidermidis strains growing in planktonic and in sessile form to investigate
the molecular mechanisms underlying biofilm stability. After 72-h culture of biofilm-
forming S. epidermidis, overexpression of proteins involved in the synthesis of
nucleoside triphosphate and polysaccharides was observed, whereas planktonic
bacteria expressed proteins linked to stress and anaerobic growth. Cytological analysis
was performed to determine why planktonic bacteria unexpectedly expressed proteins
typical of sessile culture. Images evidenced that prolonged culture under vigorous
agitation can create a stressful growing environment that triggers microorganism
aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. The
choice of a unique late time point provided an important clue for future investigations
into the biofilm-like behavior of planktonic cells. Our preliminary results may inform
comparative proteomic strategies in the study of mature bacterial biofilm. Finally, there is
an increasing number of studies on the aggregation of free-floating bacteria embedded
in an extracellular matrix, prompting the need to gain further insight into this mode of
bacterial growth.

Keywords: proteomics, methicillin-resistant Staphylococcus epidermidis, biofilm, planktonic, sessile, prosthetic
joint infections, orthopedics
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INTRODUCTION

Prosthetic joint replacement is one of the most widely performed
orthopedic procedures and offers effective therapeutic options
in the treatment of severe osteoarthritis. Today, arthroplasty
enjoys high success rates and provides long-term pain relief and
restoration of knee or hip joint function (Cooper, 2014). Despite
the excellent clinical results, prosthetic joint replacements are
notoriously burdened by complications, including persistent
pain, implant loosening, and infection, ultimately requiring
revision surgery. Prosthetic joint infections (PJIs) are one of
the major causes of implant failure. Implant replacement affects
quality of life and hospitalization costs (Drago et al., 2012).

An aging population means a rise in total hip and knee
arthroplasties and the number of PJI cases. It has been estimated,
in fact, that a PJI develops in 1–2% of primary arthroplasties
and 5–40% of revision surgeries (Trampuz and Widmer,
2006). PJIs usually derive from accidental contamination in
the operating room, and the causative microorganisms that
colonize the implant and form biofilm on its surface are
primarily Staphylococcus aureus, Staphylococcus epidermidis,
and Pseudomonas aeruginosa (Trampuz and Widmer, 2006).
Staphylococci account for 82.3% of clinically isolated bacteria,
while S. aureus and S. epidermidis infections account for 31.7
and 39% of all isolates obtained from implants, respectively
(Arciola et al., 2015).

Staphylococcus epidermidis has recently been identified as
an emergent, low-virulence pathogen implicated in nosocomial
infections associated with medical devices (e.g., catheters,
pacemakers, metal implants) (Ziebuhr et al., 2006). S. epidermidis
is a commensal Gram-positive, coagulase-negative bacterium.
Depending on the biological context in which it grows, it
can be either a symbiont or a pathogen in chronic infection
characterized by the absence of specific clinical signs and
barely distinguishable from aseptic prosthetic failure (Lovati
et al., 2017). Successful treatment relies on establishing whether
the case is related to aseptic loosening or implant infection.
Unfortunately, the diagnostic criteria for PJIs are based on tests
that are not reliably predictive for implant-associated infections
(e.g., C-reactive protein, erythrocyte sedimentation rate) (Berger
et al., 2017), which poses diagnostic challenges especially when
confronted with a chronic state not characterized by severe signs
of infection caused by low-virulence bacteria like S. epidermidis
(Drago and De Vecchi, 2017; Li et al., 2018).

Unlike S. aureus, S. epidermidis does not encode many
pathogenicity islands; its major virulent property is the ability to
establish organized communities that regulate the expression of
genes involved in survival mechanisms such as forming biofilm
on implants (Patel, 2005; Fey and Olson, 2010). Furthermore,
biofilm confers S. epidermidis a protective niche in which
sessile bacteria can grow and evade the host’s immune defenses
and antimicrobial treatments, leading to the development
of antimicrobial-resistant strains such as methicillin-resistant
S. epidermidis (MRSE) (Patel, 2005; Heilmann et al., 2018).
The complete pathway that regulates biofilm formation in vivo
is subdivided into four progressive steps in the expression of
specific proteins: attachment, accumulation, maturation, and

detachment in which bacteria separate from the mature matrix
to spread the infection (Otto, 2008; Büttner et al., 2015).

The literature is scant on the behavior of quiescent cells
embedded in mature biofilms. To fill this gap, we wanted to
identify the proteins expressed by a mature biofilm on metallic
implants by comparing the whole proteomic profiles of two
different strains of device-related MRSE grown in plankton and
in sessile form. Analysis of the proteins expressed in these
different culture conditions after 72 h of growth disclosed the
mechanisms behind the biofilm stability and the differences
between the two bacterial strains. The preliminary study results
for the characterization of prokaryotic cell regulation may
lead to the identification of potential diagnostic biomarkers
or therapeutic targets to detect latent and chronic infections
mediated by low-virulence pathogens such as S. epidermidis.

MATERIALS AND METHODS

MRSE Strains, Culture Conditions, and
Sampling
Two different strains of MRSE were used. The reference
S. epidermidis strain (ATCC 35984) was obtained from
the American Type Culture Collection (Manassas, VA,
United States). Differently, the clinical MRSE strain
(GOI1153754-03-14) was isolated at the Center for
Reconstructive Surgery of Osteoarticular Infections (CRIO)
and subsequently characterized at the Laboratory of Clinical
Chemistry and Microbiology of the IRCCS Galeazzi Orthopedic
Institute (Milan, Italy), as described elsewhere (Lovati et al.,
2016; Bottagisio et al., 2017). The ability of MRSE GOI1153754-
03-14 to colonize implants was recently validated in an in vivo
study (Lovati et al., 2016); the whole genome sequence of the
clinical isolate revealed that biofilm formation is regulated
by the expression of polysaccharide intercellular adhesion
(PIA) encoded by the icaADBC and the icaR regulatory genes
(Bottagisio et al., 2017).

Both MRSE strains were cultured in their planktonic and
sessile form. Briefly, 1.5 × 108 CFU/ml of MRSE GOI1153754-
03-14 or ATCC 35984 were grown under vigorous agitation
(300 rpm) in brain heart infusion broth (BHI, bioMérieux,
Marcy-l’Étoile, France) at 37◦C under aerobic conditions. After
72 h, the bacterial suspension was centrifuged at 3000 rpm
for 10 min at 4◦C to obtain a triplicate 50 mg of bacterial
pellet of planktonic cultures. The cell pellets were carefully
washed six times with ice-cold PBS, the supernatant was
removed, and the pellets were stored at −20◦C until use.
The sessile cultures were grown on sandblasted titanium disks
to resemble the bacterial biofilm formation on prosthetic
implants, as previously reported (Drago et al., 2012). Briefly,
sterile sandblasted titanium disks (Ø 25 mm; thickness
5 mm) (Adler Ortho, Cormano, Italy; batch J04051) were
incubated in six-well plates containing 5 ml of fresh BHI and
approximately 1.5 × 108 CFU/ml of MRSE GOI1153754-03-
14 or ATCC 35984. The plates were statically incubated at
37◦C under aerobic conditions for 72 h, the titanium disks
were then washed three times with ice-cold PBS to remove
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any floating bacteria and scraped with a sterile silicone cell
scraper (VWR International, Milan, Italy) on ice. The bacterial
suspension was centrifuged and washed to obtain a triplicate
of 50 mg of bacterial pellet. All the samples were stored at
−20◦C until analysis.

Protein Extraction and Quantification
The bacterial pellets obtained from the planktonic and
sessile cultures were suspended at a ratio of 1:10 (w/v) in
rehydration buffer containing 7 M urea, 2 M thiourea, and 2%
3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate
hydrate (CHAPS) supplemented with a mix of protease inhibitors
and nucleases (GE Healthcare, Little Chalfont, Buckinghamshire,
United Kingdom) according to the manufacturer’s instructions.
The samples were processed with six cycles of 60-s bead beating
at 4,000 rpm (MiniLys, Bertin Technologies; Montigny-le-
Bretonneux, France) using 0.1-mm zirconium silica beads
(BioSpec, Bartlesville, OK, United States), added in a ratio
of 1:1 (w/v) to the pellet suspension, interspersed by 5 min
cooling on ice and 5 min centrifugation at 2◦C and 20,000 g.
After the bead beating cycles, the samples were centrifuged
at 20,000 g at 2◦C for 30 min. The supernatants were
collected and the protein concentration in the samples was
determined using Bradford assay (Bio-Rad protein assay,
Bio-Rad, Hercules, CA, United States). Absorbance was
measured using a spectrophotometer (Gene Quant 100, GE
Healthcare) at 595 nm. The extracted proteins were stored at
−80◦C until use.

Two-Dimensional Electrophoresis (2-DE)
Proteins were separated using two-dimensional electrophoresis
(2-DE). For the isoelectric focusing (IEF) step, immobilized pH
gradient (IPG) polyacrylamide gel strips (GE Healthcare, 7 cm,
pH 4.0–7.0) and Protean IEF Cell (Bio-Rad) were used. Prior
to IEF, 100 µg of protein sample was dissolved in a solution
containing 7 M urea, 2 M thiourea, 2% w/v CHAPS, 30 mM DTT,
0.5% w/v ampholine (pH 3.5–10.0), and 1% w/v bromophenol
blue. The IPG strips were actively rehydrated with the sample
at 50 V and 20◦C for 16 h. After rehydration, paper wicks
soaked in milliQ water (8 µl) were placed between the cathode,
the anode, and the gel strip to prevent the strips from burning
due to the high voltage. The voltage was gradually increased
as follows: 100 V (4 h), 250 V (2 h), 5000 V (5 h), and
5000 V until the cumulative voltage reached 50 kVh. A limit of
current up to 50 µA per gel strip was set. Following IEF, each
strip was reduced for 15 min in 5 ml of solution containing
6 M urea, 2% w/v SDS, 50 mM Tris–HCl buffer, pH 8.8, and
30% v/v glycerol with 1% w/v DTT added, and then alkylated
in 5 ml of the same solution with 2.5% w/v of IAA added
in place of DTT. The IPG strips were then washed quickly
in 1 × running buffer (25 mM Tris–HCl, pH 8.8, 192 mM
glycine, 1% w/v SDS, and milliQ water), loaded onto 10%
w/v polyacrylamide-resolving gels along with the protein ladder
and fixed with 0.5% w/v low-melting-point agarose gel. The
second dimension was carried out in Mini-PROTEAN R©Tetra
cell system (Bio-Rad). In the first step of electrophoresis, 8 mA
per gel were applied for 15 min until the bromophenol blue

front line entered the resolving gel. In the second step, 16 mA
per gel were applied until the bromophenol blue front line
reached the bottom of the gel. The gels were stained overnight
in 100 ml of Coomassie Blue G-250 (Sigma-Aldrich, St. Louis,
MO, United States).

Image Acquisition and Analysis
A series of 2-DE maps were acquired using a flatbed densitometer
(ImageScanner III, GE Healthcare, Uppsala, Sweden). Variations
in protein expression were analyzed using Progenesis SameSpots
Version 4.6 software (Non-linear Dynamics, Newcastle upon
Tyne, United Kingdom). The module for 2-DE gel analysis was
used for image aligning, background removal and detection,
normalization, and matching of the spots.

Protein Identification
Protein identification was carried out as previously described
(Piras et al., 2015). Briefly, analysis was performed on
an Ultraflex III MALDI-TOF/TOF spectrometer (Bruker-
Daltonics; Billerica, MA, United States) in positive reflectron
mode. For external calibration, the standard peptide mixture
calibration (Bruker-Daltonics: m/z: 1,046.5418, 1,296.6848,
1,347.7354, 1,619.8223, 2,093.0862, 2,465.1983, 3,147.4710) was
used. To select monoisotopic peptide masses, mass spectra
were analyzed with FlexAnalysis 3.3 software (Bruker-Daltonics).
After internal calibration (known autolysis peaks of trypsin,
m/z: 842.509 and 2,211.104) and exclusion of contaminant
ions (known matrix and human keratin peaks), the peak lists
were analyzed by MASCOT version 2.4.1 algorithm1 against
Uniprot/SwissProt database 2018_11 restricted to S. epidermidis
reviewed taxonomy (2,539 sequences). For the database search,
the parameters carbamidomethylation of cysteines and oxidation
on methionines were set for the fixed and variable modifications,
respectively; one missed cleavage site was set for trypsin,
and maximal tolerance was established at 70 ppm. For
protein identification assignment, only Mascot scores >56 were
considered significant (p < 0.05). To confirm the identification
obtained, MS/MS spectra were acquired by switching the
instrument in LIFT mode with 4–8 × 103 laser shots
using the instrument calibration file. For fragmentation, the
precursor ions were manually selected and the precursor
mass window was automatically set. For each MS/MS spectra
acquired, spectra baseline subtraction, smoothing (Savitzky–
Golay), and centroiding were operated using Flex-Analysis 3.3
software. The following parameters were used for the database
search: carbamidomethylation of cysteines and oxidation on
methionine were set for fixed and variable modifications,
respectively, maximum of one missed cleavage was established,
and the mass tolerance was set to 50 ppm for precursor
ions and to a maximum of 0.4 Da for fragments. The
confidence interval for protein identification was set to
95% (p < 0.05), and only peptides with an individual
ion score above the identity threshold were considered
correctly identified.

1www.matrixscience.com
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Liquid Chromatography High-Definition
Mass Spectrometrye (LC-HDMSE)
Analysis
Protein digestion was performed according to the filter-aided
sample preparation (FASP) protocol (Wiśniewski et al., 2009;
Distler et al., 2016) that combines both protein purification
and digestion. Each biological sample was run in quadruplicate.
Briefly, reduction (DTT 8 mM in urea buffer-8 M urea and
100 mM Tris), alkylation (IAA 50 mM in urea buffer-8 M
urea and 100 mM Tris), and digestion by trypsin at a final
concentration of 0.01 µg/µl (Promega Italia srl, Milan, Italy)
were performed on filter tubes (Nanosep centrifugal device
with Omega membrane-30 K MWCO, Sigma-Aldrich). LC-
MS analysis was performed as previously described (Greco
et al., 2018). First, 500 fmol/µl of digestion of enolase from
Saccharomyces cerevisiae (P00924) was added to each sample as
an internal standard, tryptic peptides were separated, and then
0.25 µg of each digested sample was loaded onto a Symmetry C18
5 µm, 180 µm× 20 mm precolumn (Waters Corp., Milford, MA,
United States) and subsequently separated by a 90-min reversed-
phase gradient at 300 nl/min (linear gradient, 2–85% CH3CN
over 90 min) using a HSS T3 C18 1.8 µm, 75 µm × 150 mm
nanoscale LC column (Waters Corp.) maintained at 40◦C.
The separated peptides were analyzed on a high-definition
Synapt G2-Si Mass spectrometer directly coupled to the
chromatographic system. Protein expression was evaluated via a
label-free ion mobility–enhanced data-independent acquisition
(DIA) proteomics analysis in expression configuration mode
(HDMSE). Processing of low and elevated energy, added to the
data of the reference lock mass [Glu1]-Fibrinopeptide B Standard
(Waters Corp.), provided a time-aligned inventory of accurate
mass-retention time components for both the low- and the
elevated-energy exact mass retention time (EMRT).

Label-Free Data Analysis
Label-free protein quantification was performed using Progenesis
QI for Proteomics v4.0.6403.35451 (Waters Ltd., Newcastle upon
Tyne). The samples were automatically aligned according to
retention time. The peak processing method was performed in
profile data mode and the peptide ion detection method was
set in high-resolution mode. Peptides with charges between
2 + and 7 + were retained. Database search was performed
using the ion accounting method against a custom-made Uniprot
S. epidermidis RP62A reviewed database (peptide mass tolerance
10 ppm and fragment ion tolerance 0.01 Da). Carbamidomethyl
cysteine and oxidation of methionine were selected as fixed
and variable modifications, respectively. The search results were
filtered to obtain a protein false discovery rate of 1%. Protein
quantification was based on relative quantitation using the Hi-
N method (n = 3) and averaging the individual abundances
for every unique peptide for each protein and comparing
the relative abundance across sample runs and between the
experimental groups. Proteins were considered differentially
expressed according to the following criteria: protein identified
in at least three out of four runs of the same sample with a fold
change of regulation >± 20%; only modulated proteins with a

p-value <0.05 [according to analysis of variance (ANOVA)] were
considered significant (Greco et al., 2018).

Bioinformatics Analysis
The ClueGO Cytoscape plugin 2.5.4 (Bindea et al., 2009)
and CluePedia 1.5.4 (Bindea et al., 2013) were used to
obtain functional interaction networks starting from the
statistically significant over- and underexpressed proteins in
each experimental group. Functions associated with the groups
were partitioned based on significant functional associations
between terms and protein sets. Gene ontology (GO) categories
and pathways included biological processes (BPs), molecular
functions (MFs), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) updated at the last release. Redundant terms were
grouped based on a kappa score of 0.4 (Bindea et al., 2009).
The p-value was calculated and corrected with a Bonferroni step
down. Only pathways with a p-value ≤0.05 were selected. These
analyses were carried out based on the S. epidermidis RP62A
annotations. Network visualization was performed on Cytoscape
version 3.7.1 (Shannon et al., 2003). Venn diagrams were drawn
using the Venny web service2.

Microbial Cytology
Following analysis of the proteomic profile of planktonic bacteria,
cytological evaluation of the behavior of S. epidermidis was
conducted after 72 h of culture. Briefly, both MRSE GOI1153754-
03-14 and ATCC 35984 were grown under vigorous agitation
(200 rpm) in BHI broth (bioMérieux) at 37◦C under aerobic
conditions to mimic the previously described experimental
design. An aliquot of bacteria was then collected at 24, 48, 72, and
96 h and the behavior of the bacteria was evaluated by cytological
staining. After heat fixation, the bacteria were marked with Gram
staining to assess cell morphology and arrangement and with
Alcian blue staining to appreciate any possible matrix production
(McKinney, 1953). Photomicrographs were acquired using an
Olympus IX71 light microscope with a 100× oil immersion
objective with a digital camera (Olympus, Corp. Tokyo, Japan).

Confocal Laser Scan Microscopy
Analysis
Sessile and planktonic forms of MRSE GOI1153754-03-14 and
ATCC 35984 were analyzed by confocal laser scan microscopy
(CLSM). Briefly, planktonic and sessile cultures were grown
as described above. After 72 h of incubation, the samples
were stained with FilmtracerTM LIVE/DEADTM Biofilm Viability
Kit (Thermo Fisher Diagnostics, Waltham, MA, United States)
according to the manufacturer’s instructions. Briefly, a staining
solution was prepared by adding 1 µl of SYTO9 and 3 µl
of propidium iodide to 1 ml of sterile water. The planktonic
samples were stained by incubating 10 µl of bacterial suspension
with an equal volume of staining solution and let to dry
in the dark at room temperature. Differently, the titanium
discs were gently washed three times with sterile saline to
remove any non-adherent cells. The samples were incubated

2http://bioinfogp.cnb.csic.es/tools/venny/
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with 200 µl of staining solution at room temperature in the
dark for 15 min. After incubation, the samples were washed
again with sterile saline to remove any excess dye and let to
dry under a laminar flow hood. The planktonic and sessile
samples were then examined with upright CLSM TCS SP8 (Leica
Microsystems CMS GmbH, Mannheim, Germany). A 488-nm
laser line was employed to excite SYTO9 and a 552-nm line
was used to excite propidium iodide. Sequential optical sections
were collected along the z-axis over the complete thickness of the
sample. Images from at least three randomly selected areas were
acquired for each disc with a 20× objective. The images were
then processed with Las X software (Leica Microsystems CMS
GmbH) and analyzed with Fiji software (Fiji, ImageJ, Wayne
Rasband National Institutes of Health). The live/dead cell ratio
was assessed as previously reported (Bidossi et al., 2017).

Statistical Analysis
Statistical analysis for 2D gel data was performed using the
Progenesis Stats module on the log-normalized volumes for all
spots. The Progenesis stats module automatically performs one-
way ANOVA on each spot to evaluate the p-value between
different groups; for this study, p-values <0.05 were considered
statistically significant. As indicated above, the differential
proteomic analysis for label-free data was done by analyzing all
the proteins identified in the experimental groups. All probability
values were calculated using one-way ANOVA; p-values <0.05
were considered statistically significant.

RESULTS

Proteomics
All 2D maps resolved approximately 573 ± 10 protein
spots. Gel imaging analysis showed that 16 proteins were
differently expressed in the planktonic and the sessile bacteria.
Table 1 presents the strains and culture conditions, along
with information on sequence coverage, Mascot score,
and peptide match. Figure 1 presents quantification of the
normalized spot volume.

Four of the 13 proteins showed increased expression as
the result of biofilm development; nucleoside diphosphate
kinase (Ndk, NDK_STAEQ–Q5HP76) was identified in both
MRSE GOI1153754-03-14 and ATCC 35984. Similarly, adenylate
kinase (adk, KAD_STAEQ–Q5HM20) was also overexpressed
after 72-h culture on the titanium disks. Together with the
higher expression of 3-oxoacyl-[acyl-carrier-protein] reductase
FabG (FABG_STAEQ–Q5HPW0), expression of these proteins
suggested active metabolism of sessile bacteria involved in the
synthesis of nucleoside triphosphate and polysaccharides.

Moreover, we found overexpression of arsenate reductases 1
and 2 (ArsC 1 and 2, ARSC1_STAEQ–Q5HRI4; ARSC2_STAEQ–
Q5HKB7) in the sessile and the planktonic bacteria, respectively.
Both ArsCs exhibit the protein tyrosine phosphatases I (PTPases
I) fold typical of low-molecular-weight tyrosine phosphatases
(LMW PTPases) (Zegers et al., 2001). Overall, the data revealed
that most of the changes in the proteomic profile of both
S. epidermidis strains occurred when planktonically cultured.

A remarkable difference was found between the cells in response
to stress: the planktonic cells expressed higher levels of putative
universal stress protein (Y1273_STAEQ–Q5HNJ5) than their
sessile counterpart. Only one of the three detected isoforms was
shared between the two MRSE strains.

Similarly, another cytoplasmic protein expressed in response
to oxidative stress, hydroperoxide resistance protein-like 1
(OHRL1_STAEQ–Q5HQR8), was underexpressed in both
S. epidermidis strains when grown in sessile form. Once
again, the expression of S-ribosylhomocysteine lyase (LuxS,
LUXS_STAEQ–Q5HM88), a regulator of the quorum sensing
(QS) system by planktonic bacteria, confirmed the harsh culture
conditions. Not only was there a shortage of nutrient and an
accumulation of cells and catabolites, there were also low oxygen
levels due to the overexpression of the two enzymes alcohol
dehydrogenase (Adh, ADH_STAEQ–Q5HRD6) and L-lactate
dehydrogenase (Ldh, LDH_STAEQ–Q5HL31) involved in the
fermentative pathway.

Finally, the presence of a considerable amount of
isocitrate dehydrogenases (IDH_STAEQ–Q5HNL1) suggested
physiological heterogeneity of the bacterial populations in the
culture conditions. Label-free analysis confirmed the trend of all
the proteins identified by 2-DE, except for LuxS, which showed
overexpression in the sessile isolates (Supplementary File 1)
and a non-significant trend (data not shown) to overexpression
in the planktonic ATCC 35984. Furthermore, label-free analysis
enabled us to retrieve and confirm the missing 2D data for the
ATCC strain that were not detected in the 2-DE experiment
(Table 1). The proteins missing in the 2DE experiment from the
ATCC group were overexpressed in the planktonic group.

In this study, we investigated the proteome dynamics of the
planktonic (PA, PC) and sessile forms (SA, SC) of S. epidermidis
ATCC 35984 and clinical isolates, respectively. For each
condition, four biological replicates were analyzed. The proteins
were extracted and digested from each experimental sample as
described in Materials and Methods, and the resulting peptides
were analyzed using an LC/HDMSE quantitative approach. This
shotgun analysis quantified at 1% false discovery rate (FDR) 518
proteins for the SA condition, 530 for the SC condition, 488
for the PC condition, and 377 for the PA condition, with an
average of 8 peptides per protein (Supplementary Figures 1, 2).
Differential expression was considered only for proteins with
a p-value ≤0.05 (according to ANOVA) and a fold change of
20%. On this basis, a total of 315 proteins in the PC vs. the
SC condition was selected: 155 proteins showed a high level of
expression in the PC condition and 160 in the SC condition. For
the ATCC group, a total of 403 differentially expressed proteins
was selected, 266 of which showed a high level of expression in
the PA condition and 137 in the SA condition. The Venn diagram
(Figure 2) highlights the shared and the exclusive proteins for
each experimental group. The PA and PC conditions shared a
considerable amount of proteins (33.4%, n = 137), as did the SA
and SC conditions (23.4%, n = 96).

Comparative analysis of all the significant proteins for each
condition failed to reveal a core proteome, which may reflect
not only the different physiological states of planktonic and
sessile cells but also a relatively small part of the whole
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TABLE 1 | List of significant proteins identified in planktonic and sessile S. epidermidis by 2-DE and confirmed by label-free analysis.

UniProt ID UniProt
accession
number

Protein name EMW/MWa Sequence
coverageb

Mascot
scorec

Peptide
match

ATCC
sessile vs.
planktonicd

GOI sessile
vs.

planktonicd

NDK_STAEQ Q5HP76 Nucleoside
diphosphate kinase

16.75/16.75 34 86 7/44 ↑ (0.0082) ↑ (0.0082)

KAD_STAEQ Q5HM20 Adenylate kinase 24.02/24.03 32 66 10/42 ↓ (HDMSE) ↑ (0.0115)

FABG_STAEQ Q5HPW0 3-oxoacyl-[acyl-carrier-
protein] reductase
FabG

26.07/26.07 36 86 11/44 ↓ (HDMSE) ↑ (0.0013)

ARSC1_STAEQ Q5HRI4 Arsenate reductase 1 14.65/14.7 32 102 6/48 – ↑ (0.0318)

ARSC2_STAEQ Q5HKB7 Arsenate reductase 2 14.69/14.7 40 88 10/48 ↓ (HDMSE) ↓ (0.0062)

Y1273_STAEQ Q5HNJ5 Putative universal
stress protein
SERP1273

18.42/18.47 56 108 9/67 ↓ (0.0085) ↓ (0.0423)

Y1273_STAEQ Q5HNJ5 Putative universal
stress protein
SERP1273

18.42/18.47 58 110 10/67 ↓ (HDMSE) ↓ (<0.001)

Y1273_STAEQ Q5HNJ5 Putative universal
stress protein
SERP1273

18.42/18.47 64 120 12/67 ↓ (HDMSE) ↓ (<0.001)

OHRL1_STAEQ Q5HQR8 Organic hydroperoxide
resistance protein-like 1

15.35/15.46 35 70 6/65 ↓ (0.0102) ↓ (0.0013)

LUXS_STAEQ Q5HM88 S-ribosylhomocysteine
lyase∗

17.64/17.08 32 86 6/41 ↓ (0.0010) ↓ (0.0091)

ADH_STAEQ Q5HRD6 Alcohol dehydrogenase 36.45/36.83 49 86 15/67 ↓ (HDMSE) ↓ (0.0088)

LDH_STAEQ Q5HL31 L-lactate
dehydrogenase

34.10/34.14 33 68 10/48 ↓ (HDMSE) ↓ (0.0053)

IDH_STAEQ Q5HNL1 Isocitrate
dehydrogenase

46.62/46.64 37 120 16/74 ↓ (HDMSE) ↓ (0.0283)

aEstimated molecular weight/molecular weight (EMW/MW) expressed in kDa. bData referring to sequence coverage are expressed as percentage. cMascot scores were
obtained against S. epidermidis ATCC 35984 sequence presented in the database. dDifferences in the protein expression of sessile bacteria compared to their planktonic
counterparts, along with their p values. ∗LuxS was overexpressed in the clinical sessile group based on HDMSE data.

bacterial proteome. To obtain a complete description of the
functions associated with the differentially expressed proteins
for each experimental group, we performed functional analysis
using the ClueGO/CluePedia cytoscape plug-in, as described
in the Bioinformatics Methods paragraph. Biological process
(BP), molecular function (MF), and KEGG ontologies updated
to the last version were used for the functional analysis.
Two different network specificities (medium and high) were
applied to capture different levels of functionality within each
ontology for the experimental groups. In addition, a Bonferroni
step down correction set to 0.05 was used to keep only the
significant processes.

According to the GO BP analysis, differentially expressed
proteins at medium network specificity (GO Tree interval 3–8)
were organized in 22 GO Terms, 7 of which were highly enriched
in the SC group and 2 in the PA group. The other 14 terms were
equally enriched in all the groups (Figure 3A). The two processes
mainly enriched in the PA group were related to the organic and
carboxylic acid metabolic process. In the SC group, the seven
processes were related to translation, ribonucleoside triphosphate
and amide biosynthetic processes, and ribose phosphate and
peptide metabolic processes. Differentially expressed proteins at
high network specificity (GO Tree interval 7–15) were organized
in 14 GO BP terms, 3 mainly associated with the PA group, 7 with

the SC group, and 4 common to all groups. The biological PA
processes were related to the removal of superoxide radicals and
glycine decarboxylation, and the SC processes were similar to the
medium network specificity, except for ATP synthesis coupled
to proton transport, ATP synthase activity, and regulation of
translation coupled to elongation factor activity (Figure 3B).

GO MF analysis showed differentially expressed proteins at
medium network specificity (GO Tree interval 3–8) organized in
14 GO Terms, two of which were highly enriched in the SC group
and three in the PA group. The other nine terms were equally
enriched in all the groups (Figure 4A). The three processes
mainly enriched in the PA group were related to cation and metal
ion binding and tRNA ligase activity. In the SC group, the two
processes were related to RNA and rRNA binding (Figure 4A).
Differentially expressed proteins at detailed network specificity
(GO Tree interval 7–15) were organized in four GO MF terms,
two common to all the conditions and two mainly enriched
in the SC group. The two SC-enriched MFs were related to
proton-transporting ATP synthase, whereas the common MFs
were related to ATP and adenyl nucleotide binding and purine
ribonucleotide binding (Figure 4B).

To obtain good complementarities to the GO analysis,
enrichment analysis was performed for each experimental
group against KEGG ontology. Thirteen pathways were globally
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FIGURE 1 | Quantification of the identified proteins. The histograms present the normalized volumes of the spots processed by Progenesis SameSpots software.
Data are expressed as mean ± SD. Statistical significance for ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE 2 | Venn diagram showing the distribution of statistically significant
proteins in the four experimental conditions: planktonic ATCC (PA), planktonic
clinic (PC), sessile ATCC (SA), and sessile clinic (SC), respectively.

enriched for all groups: seven were mainly enriched for the
PA group and one for the SC group (Figure 5A). The
seven pathways mainly enriched in PA were related to several

metabolic pathways: glycolysis, pyruvate, TCA cycle, cysteine
and methionine, glyoxylate and dicarboxylate, glycine, serine and
threonine, and aminoacyl-tRNA biosynthesis. The ribosome was
mainly enriched in the SC group. To better assign the remaining
pathways to the experimental groups, the percentage of the
contributing proteins to each pathway is shown in Figure 5B.
Careful analysis of the data associated with Figure 5B showed
for the two-component systems (TCSs) an enrichment mainly
related to the PA and PC groups, for purine metabolism mainly
to SC and SA, pentose phosphate was linked mainly to PC and
PA, oxidative phosphorylation to SC followed by SA and PA, and
pyrimidine metabolism mainly to SC and PC. GO and KEGG
analysis based on ClueGO and Cytoscape correctly retrieved the
annotation for two-thirds of all proteins analyzed; the remaining
one-third was discussed for the most important functions related
to biofilm formation and maintenance.

Microbial Cytology
To determine whether the planktonic bacteria could aggregate
after a long culture period without renewed nutrient supplies,
representative images were acquired of Gram and Alcian blue
staining of MRSE after 24, 48, 72, and 96 h of planktonic
culture (Figure 6). Starting at 48 h, MRSE ATCC 35984 started
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FIGURE 3 | ClueGO cytoscape network of statistically significant proteins. (A) GO BP at medium network specificity. Enriched processes in the PA group (red
circles), in the SC group (violet circles), and enriched processes common to all conditions (gray circles). Proteins are highlighted in different shapes and colors: PA
(red), SA (cyan), PC (green), SC (blue). (B) GO BP at high network specificity. Enriched processes in the PA group (red circles), in the SC group (violet circles), and
enriched processes common to all conditions (gray circles). Proteins for each condition are highlighted in different shapes and colors: PA (red), SA (cyan), PC (green),
SC (blue).

FIGURE 4 | ClueGO cytoscape network of statistically significant proteins. (A) GO MF at medium network specificity. Enriched processes in the PA group (red
circles), in the SC group (violet circles), and enriched processes common to all conditions (gray circles). Proteins are highlighted in different shapes and colors: PA
(red), SA (cyan), PC (green), SC (blue). (B) GO MF at high network specificity. Enriched processes in the PA group (red circles), in the SC group (violet circles), and
enriched processes common to all conditions (gray circles). Proteins for each condition are highlighted in different shapes and colors: PA (red), SA (cyan), PC (green),
SC (blue).

to aggregate, forming sporadic clusters of bacteria tightly held
together by a thin layer of extracellular matrix, as highlighted
by the Alcian blue staining. Differently, the clinical isolate
(GOI1153754-03-14) had a slower production of extracellular
polymeric substances (EPS) compared to the reference strain,
which was appreciable starting at 72 h of culture. At the later
time points, the clinical isolate demonstrated the ability to not
only produce biofilm but also aggregate. Though the two bacterial
strains are biofilm-forming, a difference in their behavior after

96 h of culture was evident. MRSE ATCC 35984 formed biofilm-
like aggregates at the last experimental time point. The bacterial
clumps were characterized by a three-dimensional structure
embedded in an EPS matrix.

CLSM Analysis
The cytological results were corroborated by CLSM analysis of
planktonic and sessile cultures of both MRSE GOI1153754-03-
14 and ATCC 35984. Figure 7 presents representative images of
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FIGURE 5 | ClueGO cytoscape network of KEGG pathways network from statistically significant proteins. Proteins are highlighted in different shapes and colors: PA
(red), SA (cyan), PC (green), SC (blue). Each circle denotes an enriched pathway proportional to the color. (A) Enriched processes in the PA group (red circles), in the
SC group (violet circles), and enriched processes common to all conditions (gray circles). (B) The percentage of the contributing proteins to each pathway is shown
in each circle.

FIGURE 6 | Gram and Alcian blue staining of planktonic S. epidermidis. Panel (A) shows the planktonic behavior of MRSE ATCC 35984 by Gram staining over time;
panel (B) depicts the matrix deposited by MRSE ATCC 35984 by means of Alcian blue staining; panel (C) illustrates the morphology of MRSE GOI1153754-03-14
stained with Gram, and panel (D) shows the EPS matrix deposited by MRSE GOI1153754-03-14 stained with Alcian blue.
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FIGURE 7 | Live and dead staining of planktonic and sessile S. epidermidis. Panel (A) shows the planktonic and panel (B) shows the sessile behavior of MRSE
ATCC 35984 after 72-h culture; panel (C) depicts the planktonic and panel (D) depicts the sessile behavior of MRSE GOI1153754-03-14 at the same experimental
time point.

the sample. After 72 h of culture, biofilm-like aggregates were
clearly visible in both MRSE strains grown in their planktonic
form (Figures 7A–C). Quantitative analysis of the live/dead ratio
indicated that planktonic culture of the clinical isolates affected
bacterial viability. Approximately 18% of the total amount of
detected cells resulted dead at the final time point (Table 2). Dead
cells can be seen in the core of the bacterial clusters (Figure 7C).

Differently, biofilm-forming MRSE GOI1153754-03-14 and
ATCC 35984 showed homogeneous growth on the titanium disks
characterized only by the presence of a few bacterial aggregates
(Figures 7B–D). The ratio between live and dead bacteria

TABLE 2 | Live/dead cell ratio expressed as percentage.

ATCC 35984 MRSE GOI1153754-03-14

Sessile 92.08/7.92 91.65/8.35

Planktonic 97.85/2.15 82.67/17.33

was the same between the clinical isolates and the reference
strain (Table 2).

DISCUSSION

Costerton et al. (1999) defined bacterial biofilm as a “structured
community of bacterial cells enclosed in a self-produced
polymeric matrix and adherent to an inert or living surface”.
The structure of mature biofilms is both complex and well
organized; channels provide nutrients to cells that circulate
through the biofilm matrix (Donlan, 2002), and bacteria in
different regions of the same matrix exhibit different gene
expression patterns according to their exposure to external
agents (Stewart and Franklin, 2008). This dynamic system is in
constant development and it enables bacteria to survive in hostile
environments (Costerton et al., 1999). Indeed, biofilm can quietly
protect bacteria for long periods, without being detected by the
host’s immune system.
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Recent efforts to identify biomarkers for biofilm development
have profiled the gene expression patterns of sessile bacteria
through proteomics to decipher the genetic basis of biofilm
formation (Carvalhais et al., 2015a,b; Solis et al., 2016; Freitas
et al., 2018). The identification of therapeutic targets or diagnostic
biomarkers is crucial to detect latent or chronic infection
mediated by low-virulence, biofilm-producing bacteria such
as S. epidermidis. Hence, investigation of the mechanisms
underlying chronic infections would better define markers linked
to the presence of a specific bacterium rather than to the host
response to an infective status.

With the aim to set a basis for future research, the present
study examined the mature biofilms produced by two different
S. epidermidis strains via a proteomic approach to reveal changes
in functions related to mature bacterial biofilm compared with
the free cell counterpart. While planktonic cells serve as the
control to evaluate modulations in the proteomic profile of sessile
bacteria, there are important differences in growth phases and
developmental stages that need to be kept in mind when reading
the following analyses to avert misinterpretation of the data
(Azeredo et al., 2016).

Protein Profile of Sessile Bacteria
We observed overexpressed proteins produced by biofilm-
forming S. epidermidis related to active metabolic activity (e.g.,
proteins involved in the synthesis of nucleoside triphosphate
and polysaccharides). This phenomenon can be easily explained
by the protection that the self-produced EPS matrix confers to
sessile bacteria (Fux et al., 2005). After 72 h of static culture
on titanium disks, both S. epidermidis GOI1153754-03-14 and
ATCC 35984 were metabolically active, as assumed from the
up-regulation of Ndk. Being involved in the biosynthesis of
polysaccharides, this kinase plays an active role in bacterial
virulence and adaptation (Yu et al., 2016, 2017). As reported
by Yu et al. (2017), Ndk can suppress host defense mechanisms
(e.g., phagocytosis, inflammatory response, cell death) or have
a cytotoxic effect on host cells, depending on its intracellular or
extracellular expression. The main role of Ndk is the biosynthesis
of nucleoside triphosphates other than ATP (CTP, UTP, and GTP)
(EC 2.7.4.6). By virtue of its housekeeping function, Ndk is a
highly conserved enzyme that can be found in both eukaryote
and prokaryote cells, where it plays a key role in the synthesis
of DNA and RNA (Ray and Mathews, 1992; Lu and Inouye,
1996). Indeed, Ndk was long considered uniquely responsible
for nucleoside triphosphate synthesis. This dogma was confuted
by Lu and Inouye (1996) who demonstrated that adenylate
kinase also possesses Ndk activity through its dual role in the
biosynthesis of nucleoside triphosphates and in the synthesis of
ADP from AMP with the use of ATP (EC 2.7.4.3). Accordingly,
we noted that adenylate kinase was also overexpressed in sessile
S. epidermidis GOI1153754-03-14.

Similarly, 3-oxoacyl-[acyl-carrier-protein] reductase FabG
(EC 1.1.1.100) was overexpressed in sessile MRSE. A member
of the ketoacyl reductase family, FabG plays a crucial role in
the elongation cycles required to synthesize long-chain fatty
acids in the type II fatty acid biosynthesis (FAS II) process (Lai
and Cronan, 2004). It is also involved in the phospholipidic

membrane adaptation of bacteria growing in a sessile state. It
has been suggested that reduced membrane fluidity enhances
survival in a harsh environment probably because there are fewer
exchanges between the protected bacteria and their surroundings
(Dubois-Brissonnet et al., 2016). Furthermore, its ubiquitous
presence and essential biological role make FabG a possible target
for the development of a broad-spectrum antibiotic (Heath and
Rock, 2004). Brinster et al. (2009) demonstrated, however, that
major Gram-positive pathogens might not require the FAS II
process for their survival since they can assimilate fatty acids
straight from host serum.

Protein Profile of Planktonic Bacteria
Based on the proteins we identified, it appears that many of
the changes in the proteomic profile of both S. epidermidis
strains occurred when planktonically cultured. Our data revealed
the overexpression of proteins linked to bacterial stress and to
anaerobic growth typical of sessile culture conditions. When
embedded in a mature biofilm matrix, bacteria must deal with
conditions of scarce oxygen availability, metabolic waste, and
high cell density (Fey and Olson, 2010). These environmental
factors have a crucial role in biofilm development because
they can trigger stress response genes and shift staphylococcal
metabolism toward anaerobiosis to compensate for the oxygen
shortage, as demonstrated by Rani et al. (2007).

Specifically, after 72 h of culture, the putative universal stress
protein was significantly up-regulated in both S. epidermidis
strains growing in planktonic form. The universal stress protein
A (uspA) superfamily is a conserved group of proteins expressed
in a variety of species including bacteria, fungi, Archaea,
and insects (Kvint et al., 2003). A high cell density in a
closed environment without renewed nutrient supplies inevitably
alters physiological cell balance; harsh conditions (i.e., nutrient
deprivation, decreased pH, and exposure to oxygen and nitrogen
species) predictably lead to global stress responses (Foster,
2007). Similarly, organic hydroperoxide resistance protein-like 1,
another cytoplasmic protein expressed in response to oxidative
stress, was up-regulated in both S. epidermidis strains grown in
planktonic aggregates. This protein belongs to the peroxiredoxin
family, which is considered the primary cellular protector system
against oxidative stress in all living organisms; it contributes to
detoxifying organic peroxides and favoring microbial survival
(Cao and Lindsay, 2017).

Staphylococci have evolved many defense strategies to survive
in the presence of exogenous and endogenous oxidants (Gaupp
et al., 2012). Furthermore, as cell density increases, the quorum
sensing (QS) system is activated to coordinate the expression
of different genes through small signaling molecules called
autoinducers (Xu et al., 2006). LuxS is involved in the synthesis
of the autoinducer-2, a QS signaling pheromone expressed by
both Gram-positive and -negative bacteria (EC 4.4.1.21) (Piras
et al., 2012; Kırmusaoğlu, 2016), and its up-regulation is known
to be closely connected to QS stress (Li et al., 2008; Arciola
et al., 2012). Conversely, LuxS enzyme inhibitors have been
demonstrated to actively increase the virulence of S. epidermidis,
boosting its ability to form biofilm (Xu et al., 2006). Once again,
the overexpression of this protein in planktonic aggregates of
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S. epidermidis suggests the activation of a protective mechanism
against the harsh environmental condition after 72-h culture.

The ability to adapt in response to stressful situations is
crucial for bacterial survival and S. epidermidis is an extremely
versatile microorganism. Because it is a facultative anaerobe,
it can cope with oxygen shortage and survive in a wide
range of oxygen concentrations by switching between aerobic
and anaerobic pathways (Uribe-Alvarez et al., 2016). Though
planktonic aggregates were cultured under aerobic conditions,
the clinical isolates also expressed two enzymes related to oxygen
shortage: alcohol dehydrogenase (EC 1.1.1.1) and L-lactate
dehydrogenase (EC 1.1.1.27). In anaerobic growth in the absence
of electron acceptors, staphylococci are able to metabolize glucose
to pyruvate, and then to reduce pyruvate to lactate, ethanol,
and acetate in a process of mixed-acid fermentation (Shan
et al., 2012). Fuchs et al. (2007) reported that the expression
of lactate dehydrogenase and alcohol dehydrogenase is highly
induced in S. aureus when the electron transport chain is
interrupted, indicating that oxygen concentration alone might
not be sufficient to regulate the genes involved in this process.
They went on to speculate that fermentation in S. aureus might
be activated also by the changes in membrane potential or in the
levels of NADH and/or state of components of the respiratory
chain (Fuchs et al., 2007).

In our proteomic analysis, overexpression of ArsC 1 was
observed in the sessile form and that of ArsC 2 was observed
in the planktonic aggregates of S. epidermidis clinical isolates.
Arsenate reductase is a complex system comprising at least
three enzymes that reduce As (V) in As (III) (Zegers et al.,
2001). Not only is ArsC able to reduce arsenic but it can
act as a phosphatase in specific conditions. Sequence analysis
using the Pfam database3 highlighted the presence of an LMW
PTPases domain in both enzymes. Moreover, the phosphatase
active site cys10, which catalyzes the dephosphorylation reaction,
is extremely sensitive to oxidation (Messens et al., 2003) that
impairs this function. The importance of this phosphatase
activity in biofilm maintenance and release was demonstrated
in P. aeruginosa where increased expression of phosphatase
TbpA led to a signal cascade and the detachment of the mature
biofilm (Ueda and Wood, 2009). Taken together, these findings
corroborate our observations. Since ArsC1 was increased in the
sessile form, the anaerobic environment associated with mature
biofilm could reactivate the phosphatase activity and lead to the
detachment of mature biofilm. This phenomenon is not possible
in planktonic aggregates, however, where ArsC2 and the LMW
PTPases domain are subjected to a higher oxygen concentration
than the sessile form.

The expression of enzymes related to anaerobic growth does
not exclude the possibility that other proteins may be identified,
such as isocitrate dehydrogenases (EC 1.1.1.42) related to the
tricarboxylic acid (TCA) cycle. The physiological heterogeneity of
bacterial populations enables the expression of distinct metabolic
pathways related to specific biological activities depending on
the gradients of metabolic substrates and products present in
the local environment, particularly when embedded in biofilm

3https://pfam.xfam.org/

(Stewart and Franklin, 2008). Accordingly, our analysis of
proteins expressed by planktonic MRSE aggregates revealed
phenomena linked to bacterial stress and growth under anaerobic
conditions and a biofilm-like behavior of planktonic cells.

We performed cytological and CLSM analyses to verify the
hypothesis that bacteria can aggregate and secrete EPS as a
survival mechanism. The preliminary evidence strengthened our
hypothesis that 72-h culture under vigorous agitation can create
a stressful growing environment that triggers the aggregation of
microorganisms in a biofilm-like matrix as a means to survive
harsh environmental conditions. The aggregation of free-floating
staphylococci to survive unfavorable culture conditions was
previously reported by Haaber et al. (2012). In particular, they
concluded that bacterial aggregates display a higher metabolic
activity compared to planktonic or cells embedded in biofilm.
These findings could explain those reported in the present
study, suggesting that high metabolic activity of aggregates could
lead faster to a nutrient- and oxygen-deprived environment,
and subsequently, to stress response and anaerobiosis, whereas
a mature biofilm seems to handle more efficiently adverse
conditions (Haaber et al., 2012).

Adhesion Proteins Showed Different
Expression Dynamics in Planktonic vs.
Sessile Bacteria
Bifunctional autolysin Atl was found overexpressed in the
SC group (Supplementary File 1). This surface-associated
proteinaceous adhesin is known to be involved in cell wall
turnover, cell division, and cell lysis (Paharik and Horswill, 2016).
As described elsewhere, the expression of this adhesion protein
was decreased during the first 12 h of biofilm growth compared
to the planktonic bacteria but rose 10-fold after 48 h, suggesting
an important role later in the biofilm cycle (Rohde et al., 2010).
In the SC group, this overexpression was detected at 72 h when
autolysis was probably massively induced and eDNA released. In
contrast, this protein was massively expressed in the PA and not
in the SA group, partially supporting a biofilm-like behavior at
least for the planktonic ATCC.

Careful analysis of the dataset revealed an alternative protein,
N-acetylmuramoyl-L-alanine amidase Sle1, through which only
the SA group controlled its adhesive activity in the sessile form.
This protein is a 35-kDa surface-associated protein involved in
cell wall metabolism and in some adhesion processes; it binds to
fibrinogen, fibronectin, and vitronectin (Heilmann et al., 2003).
Based on these data, different mechanisms by which sessile cells
control biofilm formation and management can be imagined,
though further analyses are needed to clarify the role of Atl
overexpression in planktonic ATCC cells.

Several TCSs Are Differentially
Modulated in Planktonic and Sessile
Bacteria
As in other pathogenic bacteria, TCSs regulate bacterial
metabolism, development, survival, and virulence in addition to
the important role they play in S. epidermidis biofilm formation.
KEGG analysis highlighted several proteins associated with the
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TCS as being enriched in the two planktonic conditions (PA and
PC). Several systems and proteins were specifically detected. As
depicted in Figure 5B, at least 11 proteins were mapped to the
TCSs pathway. One of the most represented was the essential
YycFG (or WalKR) TCS detected by KEGG analysis (Figure 5B).
This system was mainly overexpressed in both PA and PC in
which, after 72 h of culture, CLSM analysis confirmed biofilm-
like aggregates. Corroborating our experimental data, a recent
study suggested that YycF (WalR) up-regulates cell aggregation
and other biofilm-related functions (Xu et al., 2017).

Also, we identified in our data the icaB protein, encoded by
the icaADBC operon involved in deacetylation and activation
of PIA. This protein was overexpressed in the SA and the PC
group compared to their counterparts. Our dataset did not detect
the biofilm PIA synthesis protein icaA in the main regulated
protein of the YycFG system (Xu et al., 2017), probably due to
the late sampling time (72 h). Nonetheless, it is intriguing to
note that there was a direct relation between overexpression of
the YycFG system and icaB overexpression only for the clinical
isolates, hinting at a possible role of this system in the biofilm-like
behavior of the PC group.

A previous study linked YycFG system expression to altered
fatty acid biosynthesis and bacterial membrane composition
(Mohedano et al., 2005). In this view, over-representation of the
response regulator protein VraR (vraR gene, Q8CNP9) observed
in the planktonic aggregates might suggest a restructuring of
the bacterial cell wall, resembling, once again, the biofilm-like
behavior of the sessile bacteria. Besides conferring resistance
against antibiotics acting on the cell wall (e.g., vancomycin)
(Qureshi et al., 2014), VarR is also a member of the TCS
VraS/VraR involved in the positive regulation of peptidoglycan
biosynthesis (Kuroda et al., 2003). In addition, the D-alanine-
D-alanyl carrier protein ligase (dlta gene, Q8CT93) plays an
important role in modulating the cell wall properties in Gram-
positive bacteria. A recent study performed on Gram-positive
bacterium Parvimonas micra linked this protein to both bacterial
growth and biofilm production (Liu and Hou, 2018). Hence, the
higher expression of this protein in the free-floating bacteria is
consistent with and reinforces the suggested biofilm-like behavior
of planktonic bacteria.

Despite the enrichment obtained with ClueGO, the lack of
a complete annotation for S. epidermidis ATCC 35984 (RP62A)
led to undersampling in the TCS analysis. To overcome this
problem, we performed a manual survey of data and discovered
another important S. epidermidis TCS: the SaeRS TCS was
detected in a supervised manner and our data showed a relevant
overexpression only in the SA group. An equal amount of this
system was detected in both biofilm and planktonic aggregates
of the clinical strain (Supplementary File 1). As previously
reported, deletion of SaeRS altered bacterial autolysis, increased
eDNA release, and decreased bacterial cell viability in both
the planktonic and the biofilm state (Lou et al., 2011). These
data may support the increase in the biofilm-forming capacity
of the SC group, together with the overexpression of the
autolysin Atl. Moreover, expression of this system in the PC
group at levels comparable to SC could support a biofilm-
like behavior, as confirmed from the microbial cytology and

the CLSM. Such a similar medium-low expression level of
SaeRS in the PC compared to the ATCC may influence strain
viability, as confirmed here by the CLSM analysis and previously
(Lou et al., 2011).

Planktonic Bacteria Are Strongly
Involved in Central Metabolism
Other KEGG metabolic pathways overrepresented in planktonic
aggregates include the so-called central metabolism (i.e.,
glycolysis/gluconeogenesis, pyruvate metabolism, and TCA
cycle). We identified the pyruvate dehydrogenase complex
(pdhA gene, Q8CPN3; pdhB gene Q8CPN2), probable
malate:quinone oxidoreductase-1 (mqo-1 gene, Q8CN91),
probable malate:quinone oxidoreductase-3 (mqo-3 gene,
Q8CN91), and fumarate hydratase class II (fumC gene,
Q8CNR1). Altogether, these proteins indicate active bacterial
metabolism and an overall trend toward carbohydrate
degradation. Moreover, the overexpression of putative aldehyde
dehydrogenase SERP1729 (SERP1729 gene, Q5HMA0), alcohol
dehydrogenase (SERP0257 gene, Q8CQ56), and zinc-type
alcohol dehydrogenase-like protein SERP1785 (SERP1785 gene,
Q5HM44) strongly support the previous finding of anaerobic
bacterial growth, besides the initial aerobic culture condition.
This reflects a further attempt of the planktonic bacteria to
resemble the sessile biofilm-forming community.

Sessile Bacteria Are Mainly Involved in
Ribosome Pathway, Purine, and
Pyrimidine Biosynthesis
Although planktonic aggregates showed most of the metabolic
changes, the bacteria grown under the sessile condition were
more active in ribosome, purine, and pyrimidine metabolism
(Figure 5B). The overexpression of the ribosome pathway
proteins indicates overall involvement of the sessile strains
in active metabolism, featured by a steady turnover of
the translational apparatus and the production of accessory
macromolecules required for accurate throughput protein
biosynthesis. Consistent with previous evidence, the biofilm-
producing phenotypes (i.e., sessile bacteria) expressed a high
abundance of Ndk protein, along with other proteins belonging
to purine and pyrimidine metabolism. Recent investigations have
demonstrated the importance of de novo purine biosynthesis
for biofilm formation (Haas and Défago, 2005; Ge et al.,
2008; Ruisheng and Grewal, 2011; Kim et al., 2014). Using
Pseudomonas fluorescens as a biofilm-producing model, Yoshioka
recently applied transposon-mediated mutagenesis of different
purine biosynthesis genes to obtain purine auxotrophic bacteria
with a significantly reduced biofilm formation capability
(Yoshioka and Newell, 2016).

In our study, the activation of de novo biosynthesis
of purine was also confirmed by the overexpression
of the pur L and pur M genes, encoding, respectively,
for phosphoribosylformylglycinamidine synthase and
phosphoribosylformylglycinamidine cyclo-ligase. Both enzymes
are sequentially involved in the de novo biosynthetic
pathway of inosine monophosphate, a purine precursor.
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Phosphoribosylformylglycinamidine synthase catalyzes the ATP-
dependent conversion of formylglycinamide ribonucleotide
(FGAR) and glutamine to yield formylglycinamidine
ribonucleotide (FGAM) and glutamate. In turn, phosphoribosyl
formylglycinamidine cyclo-ligase converts FGAM into
aminoimidazole ribonucleotide (AIR), ADP, and inorganic
phosphate in an ATP-dependent manner (Li et al., 1999).
Nevertheless, overexpression of other genes such as xpt, ure
A, ure C, and arc C suggest the simultaneous activation of the
salvage pathway for purine biosynthesis, resulting in enhanced
production of purine, most likely required for biofilm production
and maintenance.

Pyrimidine biosynthesis was also found to play a crucial
role in the biofilm production phenotype (Garavaglia et al.,
2012; Ahmar et al., 2019). In the present study, de novo
biosynthesis of pyrimidine is supported by the identification,
among others, of orotate phosphoribosyltransferase (pyr E
gene, Q8CSW7). This protein is involved in the first step of
uracyl monophosphate (UMP) biosynthesis by catalyzing the
transfer of a ribosyl phosphate group from 5-phosphoribose 1-
diphosphate to orotate, leading to the formation of orotidine
monophosphate (OMP) (Henriksen et al., 1996). Also, the
overexpression of CTP synthase (citidine triphosphate synthase,
pyr G gene, Q8CNI2) supports the de novo biosynthesis of the
nucleotide cytosine by catalyzing the ATP-dependent amination
of the UTP pyrimidine ring at 4-position to obtain CTP
using either L-glutamine or ammonia as a nitrogen source
(Endrizzi et al., 2004). Other proteins such as uridine kinase
(udk gene, Q8CSB2) highlight the effort bacteria mount in
pyrimidine biosynthesis by activating the salvage pathway,
resulting in pyrimidine biosynthesis in a more cost-effective way
(Beck and O’Donovan, 2008).

CONCLUSION

The biofilm-like phenotypes of floating bacteria are an
emerging concept. Recent evidence of biofilm-like aggregates of
staphylococci in synovial fluids has been described (Dastgheyb
et al., 2015; Perez and Patel, 2015). The dogma of biofilm
formation following bacterial adhesion to a biotic or abiotic
surface is slowly changing. Currently, it is unclear whether the
expression of biofilm-related genes is triggered by attachment or
is consequent to altered nutrient and oxygen of supply, metabolic

product accumulation, and/or consequent to activation of a QS
mechanism (Becker et al., 2001). Even though the majority of
studies aim to elucidate the phases of biofilm formation starting
from the bacterial adhesion to a surface, there are more and more
articles in the literature reporting the aggregation of free-floating
bacteria embedded in an extracellular matrix (Alhede et al., 2011;
Haaber et al., 2012; Crosby et al., 2016; Kragh et al., 2016). In
our study, the choice of the unique late time point revealed
an important clue for future investigation into the biofilm-like
behavior of planktonic cells in harsh culture conditions. Though
preliminary, the present results may contribute to changing the
perspective on comparative proteomic strategies in the study
of mature bacterial biofilm and challenge the dogma of biofilm
formation on surfaces.
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