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Abstract 

Neuroendocrine tumors (NETs) are rare neoplasms whose incidence is increasing. 

NETs constitute a heterogeneous group of tumors. Their clinical features, functional 

properties, and clinical course are different on the basis of their site of origin. Due 

to the heterogeneity of these tumors, a coordinated multidisciplinary approach is 

required in these patients. However, medical doctor encounters many difficulties 

when providing care for patients with NETs. This review provides an overview of the 

state of the art of zebrafish model in the cancer research with a main focus on 

NETs. 

 

Résumé 

Les tumeurs neuro-endocrines (TNE) sont des néoplasmes rares dont l’incidence est 

en augmentation. Les TNE constituent un groupe hétérogène de tumeurs avec 

caractéristiques cliniques, propriétés sécrétoires et fonctionnelles et évolution qui 

varient selon leur site de développement initial. En raison de l’hétérogénéité 

tumorale, il est necessaire d'adopter une approche multidisciplinaire pour la prise 

en charge de ces patients. Toutefois, les difficultés rencontrées par les 

médecins lorsque la prise en charge d’un patient atteint par un TNE sont 

nombreuses. Cette revue vise à analyser le potentiel du poisson zèbre dans la 

recherche sur le cancer, en portant une attention particulière aux TNE. 

 

 

 



 

 

Introduction 

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms 

derived from the neuroendocrine system. The term “neuroendocrine” is applied to 

widely dispersed cells with “neuro” and “endocrine” differentiation and properties. 

Due to the body-wide distribution of these cells, NETs can arise in several anatomic 

sites. The most common primary tumor sites are the gastroenteropancreatic tract 

and lungs (1). The biological behavior and clinical characteristics of NETs vary 

considerably. In addition, most of the standard treatments lead to the 

development of drug-resistance or undesirable adverse effects and have limited 

success rates. Because of the substantial heterogeneity in the clinical 

aggressiveness and the responses to therapy of these neoplasms, the optimal 

treatment selection for patients represents a clinically difficult challenge  (2-4). 

In the last decades considerable efforts have been made to develop a valid 

classification and grading system in order to better categorize NETs according to 

their clinical behavior and with respect to impact on treatment and prognosis (5-

7). However, given the heterogeneity of these tumors the therapeutic decision-

making is extremely difficult, and it requires a coordinated multidisciplinary 

approach involving surgeons, endocrinologists, oncologists, gastroenterologists, 

radiologists, pathologists, radiation oncologists, nuclear medicine specialists, 

genetic counselors, etc (8, 9). Through this strategy a personalization of the 

therapy is used, but managing criteria are still far from those that underlie the most 

recent applications of personalized medicine in Oncology. This emerging 

paradigm for the clinical oncology is focused on tailoring the optimal drug for 

each individual patient, not empirically on the basis of the clinical–pathological 



 

 

profile, but taking advantage of individual prognostic and predictive biomarkers or 

evaluating the effects of several candidate drugs in patient-derived preclinical 

models (10, 11).   

 

Patient derived xenograft (PDX) model in oncology: pros and cons 

In the last decade, PDX model has emerged as an important tool for translational 

research, retaining much of the complexity of the tumor microenvironment and 

heterogeneity of the original tumor in patient. This platform has been widely used 

for preclinical drug-screening and many evidences support its use to predict the 

individual response to cancer treatment (10-13). PDX procedure is based on 

transplanting primary tumor cells, obtained from surgery or from a biopsy, into an 

immunocompromised animal. Implanted mass consists in tissue fragment or single-

cell suspension, isolated after chemically digestion or physically manipulation. The 

most common used immunodeficient mice strains are SCID, NOD-SCID, NSG, and 

athymic nude mice. The tumor implantation could be performed heterotopically 

or orthotopically. Heterotopic PDX models consist in implanting cancer cells into an 

area of the mouse other than that of the original tumor site, generally into the 

subcutaneous flank of the animal. This method is technically simple and optimal for 

an easy monitoring of tumor growth. Orthotopic model involves the implantation 

of the patient’s tumor tissue into the corresponding anatomical organ of the 

animal. This method is more technically difficult, but it can reproduce the natural 

environment. This aspect could be relevant for the optimal growing of the tumor. 

Indeed, when a tumor is heterotopically transplanted into a mouse 

subcutaneously it often does not grow and metastasize as expected in a patient 



 

 

(10-13). While, orthotopic PDX models showed increased incidence of metastases 

from transplanted tumors, compared with heterotopic subcutaneous models (14). 

PDX takes about 2 to 4 months for the tumor to engraft, depending on the tumor 

features (histotype, stage, grade, and aggressiveness), implant location and strain 

of mice. Upon engraftment and when the tumour burden becomes too high, the 

tumour is harvested and prepared for transplantation into several animals to 

develop a mice cohort of PDX that could be used for preclinical experiments (13). 

One of the most intriguing applications of PDXs is their use in decision-making, to 

identify the most appropriate and personalized therapy. For example, PDXs have 

been recently used in co-clinical studies, in which patient-derived tumor cells are 

implanted into immunocompromised mice, subsequently treated with the same 

drug or the same combination therapy that the patient receives in the study. PDX-

based co-clinical studies, integrating preclinical and clinical data in real time, 

offers the unique possibility to personalize the therapy at the time of disease 

progression, eventually identifying more quickly strategies to overcome resistance 

to the treatment (15).  

Although murine PDX model remains the gold standard, this model has relevant 

limitations: it usually takes several months to have a visible tumor implant, this could 

be too long for cancer treatment decision-making processes; the immune system 

is compromised in the recipient mice in order to avoid transplant rejection, this 

may limit predictive value for a specific therapeutic approach and animals are 

more susceptible to infection and drug toxicity than normal mice; its laborious and 

time-consuming process makes this model very expensive; large number of cells 

(about 1 million) are required to generate a tumor; high difficulties to generate 



 

 

mouse xenotransplant models able to metastasize (12, 13). In NETs these limitations 

are further complicated by the limited availability of tumour cells (because of the 

small size of post-surgical samples) and the extremely low engraftment rate of 

these in mice (because of the slow tumour growth). 

In the frame of developing new preclinical in vivo models for NETs, our group have 

exploited the zebrafish, an attractive human disease model, particularly for cancer 

research. 

 

Introduction to Zebrafish as a cancer model 

The telostean zebrafish (Danio rerio) is a popular vertebrate model system that 

offers unique advantages for the study of a variety of biological processes. The 

small size and low cost of maintenance, together with the high prolific nature, the 

external fertilization and the rapid development of its transparent embryos have 

led to the first emergence of the zebrafish as reliable and suitable embryological 

model. Moreover, due to the proved conservation in genetic programs and 

physiology between fish and mammals, zebrafish has become a powerful model 

for studying human diseases, including cancer (16).  

Zebrafish can develop tumors in various organs with high degree of histological 

and molecular conservation compared with human malignances (17, 18). It has 

been shown that many aspects of human cancer, comprising both 

cancerogenesis and tumor progression, can be recapitulated in zebrafish, offering 

a unique opportunity for exploiting molecular mechanism underlying this disease 

and testing new pharmacological strategies (16, 19). 



 

 

Several strategies have been used to generate cancer models in zebrafish. Initial 

studies relied on tumor induction through chemical carcinogens, added into the 

fish water or administered by injection or food. Chemical carcinogens have been 

successfully used in toxicological studies, in forward genetic screens or in 

combination with genetic manipulation in defining a tumor susceptibility 

phenotype (20-23). Although the exposure of zebrafish to different carcinogens  

can  induce the formation of a wide variety of neoplasms (24, 25), it has been 

reported that tumor incidence is generally low, tumor induction is not organ-

specific and more frequently regards liver (26). Another approach to study cancer 

in zebrafish consists in the generation of mutant and transgenic lines as gene-

based tumor models. Zebrafish lines harboring inactivating mutations in tumor-

suppressor genes (e.g. tp53, apc, and pten) have been identified in forward 

genetic screens or generated by several technologies, such as Zinc finger 

endonucleases (27), TALENs (28) and CRISPR/Cas9 (29), that induce local lesions in 

zebrafish genome (20, 30, 31). A representative example is the tp53M214K mutant 

line, harboring a missense mutation in tp53 tumor-suppressor gene. During 

development, tp53M214K embryos failed to undergo apoptosis in response to γ 

radiation and, starting from at 8.5 months of age, 28% of mutants developed 

malignant peripheral nerve sheath tumors (30). In addition, several zebrafish 

transgenic lines have been developed with oncogenes under the control of tissue 

specific promoters. For instance, the stable expression of BRAFV600E, the most 

common mutation in melanoma, under the control of the melanocytes-specific 

promoter Mitfa, induced the development of melanocyte lesions, histologically 

resembling human nevi. Interestingly, when BRAFV600E was expressed in the 



 

 

melanocytes of tp53M214K fish, some of the fish nevi progressed to melanoma by the 

time (32). Transgenic lines have been generated to create disease models not 

only of solid tumors but also of lymphoid neoplasms. In this context, the first stable 

transgenic line of T-cells acute lymphoblastic leukemia was obtained by expressing 

Myc oncogene in zebrafish T-cells (33). 

Another strategy to study cancer in zebrafish is based on the xenotransplantation 

of human or mouse cancer cells in several sites of embryos, larvae, juvenile and 

adult fish. Due to intrinsic features of zebrafish embryos, together with the 

availability of transgenic lines that express fluorescent proteins in normal tissues, 

tumor xenograft in embryos currently represents the most used transplantable 

zebrafish platform to rapidly monitor cell–stromal interactions, tumor-induced 

angiogenesis and migration of implanted tumor cells (34). Although murine 

xenotransplantable model remains the gold standard, tumor xenograft in zebrafish 

embryos can overcome some drawbacks, previously reported in mice. For 

instance, maintenance cost of zebrafish model is lower than that of mice and its 

logistic is much simpler than a mammalian facility. All observations on grafted 

embryos can be made in vivo and the response to tumor implantation is faster 

than in mice. Indeed, proangiogenic effects of implanted cells or their metastatic 

behavior can be observed only after 24 hours post injection (hpi). As 48–72 hours 

post fertilization (hpf) zebrafish embryos do not have a fully developed immune 

system, no rejection occurs, thus immunosuppression is not needed as in mouse 

model. 

Zebrafish embryos have been used as recipient for xenotransplantation assays with 

both immortalized cell lines and primary culture generated from post-surgical 



 

 

tumor samples. In this context, zebrafish PDXs have been recently suggested as 

promising platform for the development of precision medicine applications, due to 

the high potential in predicting the individual response to anticancer treatments. In 

particular, a recent study has demonstrated that PDXs of human colon rectal 

cancer in zebrafish respond to the available therapeutic options, present in the 

international guidelines, as in human patients (35).  

 

NET transplantable models in zebrafish embryos 

In order to develop a preclinical platform for the study of NETs, our group has firstly 

set up a system based on the injection of several human NET cell lines in the 

subperidermal cavity of Tg(fli1a:EGFP)y1 zebrafish embryos (36), that expresses 

EGFP in the entire vascular tree under the control of the endothelial fli1a promoter. 

We demonstrated that this platform is very useful to quickly analyze in vivo the 

proangiogenic potential of implanted NET cell lines (37). Indeed, the presence of 

grafted cells affected the physiological angiogenesis of both sub intestinal  vein 

(SIV) plexus and the common cardinal vein (CCV), leading to the formation of 

endothelial sprouts in only 24 hpi, that progressively converted in vessels in the next 

time window of 48 hours.  

More recently, we have set up a procedure, based on the injection of patient-

derived NET tumor cells in zebrafish embryos, that offers unique advantages to 

evaluate in vivo two relevant aspects linked to the individual tumor progression, 

such as tumor-induced angiogenesis and invasiveness (38). Post-surgical samples 

of several NET patients were firstly used to generate primary cultures. Then, NET 

cells were stained with a fluorescent dye into the subperidermal cavity of 



 

 

Tg(fli1a:EGFP)y1 zebrafish embryos. While control embryos did not display 

alterations of vascular network, grafted embryos showed vessels that sprout from 

the subintestinal vein plexus toward the tumor mass after only 24 hpi. At the same 

time, grafted NET cells showed a strong invasive behavior, migrating out from the 

tumor mass at the injection site and invading different parts of the embryo, in 

particular the area of the posterior caudal vein plexus (figure 1). Moreover, we 

demonstrated that injected NET cells preserved nuclear morphology and the 

expression of specific molecular markers (38-40). 

Due to the possibility to study the effects of small tumor implants 

(100 cells/embryo), the platform resulted particularly suitable for NETs, where the 

post-surgical availability of tumor cells is often limited. Moreover, the success of 

transplantation in zebrafish embryos resulted to be extra ordinary higher compared 

to that reported for PDX murine model (41, 42). 

Together with the possibility to better investigate the tumor–host microenvironment, 

angiogenesis and invasiveness, NET xenografts represent an advantageous 

platform to test new anticancer molecules, due to the versatility of zebrafish 

embryos in drug screenings. Indeed, because of the permeability of zebrafish 

embryos to small molecules, a number of compounds can be added directly to 

the embryo water, whereas larger or not water-soluble molecules can be injected 

into the blood circulation (37). 

 

Conclusions 

In the field of NETs, where only few preclinical models are currently available, 

zebrafish xenograft model seems to be an innovative tool to study the tumor–host 



 

 

microenvironment and drug discovery. NET PDXs in zebrafish embryos may 

contribute to the development of new precision medicine applications, predicting 

the individual clinical response to novel compounds or to a combination of those. 

Moreover, they could be helpful to identify the correct sequence of treatment in 

each individual NET patient, finalized to a better efficacy and less toxicity. This 

strategy could be relevant to improve survival and quality of life in patients with 

NETs. 
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Figure legend 

Figure 1. Tumor induced angiogenesis and tumor cell migration in zebrafish 

embryos grafted with primary culture cells derived from a patient with NET. Red 

stained NET cells (by Celltracker CM-DiI, Invitrogen) were grafted into the 

subperidermal space (between the periderm and the yolk syncytial layer) close to 

the SIV plexus of 48 hours post fertilization tg(fli1a:EGFP)y1 zebrafish embryos, that 

express EGFP in vascular endothelium. After the injection, embryos showing cells 

into the yolk sac and/or in the vasculature were discarded. At 24 hpi, while PBS-

injected control embryos (A) showed a normal development of SIV plexus, PDX 

embryos (B, C) showed endothelial structures (green) that sprouted from the SIV. In 

panel B the red channel has been omitted to highlight the tumor-induced 

angiogenic sprouts. Panels B’ and C’ represent a digital magnification of boxed 

regions in B and C, respectively. The spread throughout the body of stained tumor 

cells was evaluated comparing their localization soon after the implantation (D), 

when tumor cells were well-confined at the injection site, and 24 hpi (E), when cells 

were detected in distant areas, such as the head or the posterior caudal vein 

plexus. Representative fluorescent and bright-field images were merged in D and 

E. All images are oriented so that rostral is to the left and dorsal is at the top. CCV, 

common cardinal vein; SIV, subintestinal vessels. Scale bars in A and D, 100 µm. 

 

Figure 1. Angiogenèse tumorale et migration de cellules tumorales dans les 

embryons de poisson zèbre, greffés avec des cellules d'un patient atteint d'un 

tumeur neuroendocrine. Des cellules d’un tumeur neuroendocrine, marquées en 



 

 

rouge (par Celltracker CM-DiI, Invitrogen), ont été greffées dans l'espace sous-

péridermique (entre le périderme et la membrane qui enveloppe le jaune), près 

du plexus de la SIV, des embryons tg (fli1a: EGFP) y1 au stade de 48 heures après 

la fécondation, qui ont vasculature fluorescent. Après la grèffe, les embryons 

présentant des cellules dans le sac vitellin et / ou dans le système vasculaire ont 

été jetés. À 24 heures après la fécondation, les embryons de control injectés avec 

du PBS (A) présentaient un développement normal du plexus. Au contraire, les 

embryons xénogreffés (B, C) présentaient des structures endothéliales (vert) qui 

naissaient de la SIV. Dans le panneau B, le canal rouge a été omis pour mettre en 

évidence les germes angiogéniques induits par la tumeur. Les panneaux B ’et C’ 

représentent un agrandissement numérique des régions encadrées dans B et C, 

respectivement. La propagation des cellules tumorales a été évaluée en 

comparant leur localisation peu après l’implantation (D), lorsque les cellules 

tumorales étaient bien confinées au site d’injection, et à 24 hpi (E), lorsque les 

cellules ont été détectées dans des zones éloignées telles que la tête ou le plexus 

de la veine caudale postérieure. Des images représentatives des champs 

fluorescents et lumineux ont été fusionnées en D et E. Toutes les images sont 

orientées de sorte que le rostral soit à gauche et le dorsal en haut. CCV, veine 

cardinale commune; SIV, vaisseaux sous-intestinaux. Barres d'échelle en A et D, 

100 µm. 

 

 

 



 

 

 

 

 

 

 

 

 


