XXVI National Meeting in Medicinal Chemistry

XII Young Medicinal Chemists’ Symposium

ABSTRACT BOOK
TARGET-ORIENTED DEVELOPMENT OF NOVEL ANTIPROTOZOAL AGENTS: CELASTROL CARBOXAMIDES AS INHIBITORS OF *Leishmania* Hsp90

Bassanini, I.; Ferrandi, E. E.; Parapini, S.; Basilico, N.; and Sparatore, A.

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25 20133-Milano, Italy; Istituto di Chimica del Riconoscimento Molecolare - Consiglio Nazionale delle Ricerche, Via Mario Bianco 9 20131-Milano, Italy; Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36 20133-Milano, Italy.

E-mail of the presenting author: ivan.bassanini@unimi.it

The *Leishmania* isoform of the 90kDa Heat Shock Protein (*Ls*Hsp90), a chaperone known to assist the folding of more than 200 client proteins, was reported to be generally involved in parasite differentiation from promastigote to amastigote possessing a pivotal role during heat-induced cellular stress. Moreover, it was demonstrated that an impair of the native functions of *Ls*Hsp90 through the action of active-site inhibitors can exert a detrimental effect on the natural parasite life-cycle ultimately leading to its death.\(^1,2\) Celastrol (Figure 1) is a natural triterpene exhibiting a plethora of *in vitro* and *in vivo* activities. Among them, this pentacyclic compound is reported to possess a promising antiproliferative activity thanks to its ability of interacting with the chaperone cycle of the human isoform of Hsp90 (hHsp90).\(^3\) Moreover, celastrol derivatives (e.g. the methyl ester pristimerin, Figure 1) have also exhibited an interesting antiprotozoal activity.\(^4,5\)

With the aim of building a target-oriented approach to treat *Leishmania* infections based on the inhibition of *Ls*Hsp90, we prepared two basic carboxamides celastrol derivatives (SS-1 and SS-2, Figure 1) to enhance its leishmanicidal activity and selectivity of action by deducting its unspecific cytotoxicity (measured as IC\(_{50}\) on HMEC-1 cell lines). Accordingly, celastrol and the two basic derivatives SS-1 and SS-2 (Figure 1) were *in vitro* tested for their leishmanicidal activity against promastigotes of *Leishmania tropica* and *L. infantum* and, in parallel, their mechanism of action was investigated as well *via ad hoc in vitro* experiments using a recombinant Hsp90 from *L. braziliensis* (LbHsp90).\(^6\)

\[\text{Figure 1. Structures of celastrol, pristimerin and the basic derivatives SS-1 and SS-2.}\]

In virtue of their pH sensitive basic heads, both SS-1 and SS-2 were found to be more potent (IC\(_{50}\) in the nanomolar range) and selective leishmanicidal agents than celastrol itself. Furthermore, we were able to demonstrate that SS-1 and SS-2 successfully (*in vitro*) inhibited the native kinase activity of LbHsp90 highlighting the key role of the inhibition of this chaperone in their mechanism of action.

References