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ABSTRACT 32 

DNA holds genetic information in the nucleus of eukaryotic cells; and has three 33 

different functions: replication, storage of hereditary information, and regulation of cell 34 

division. Most studies described the association of single nucleotide polymorphism 35 

(SNP) to common orthopaedics diseases and the susceptibility to develop 36 

musculoskeletal injuries. Several mutations are associated with osteoporosis, 37 

musculoskeletal ailments and other musculoskeletal deformity and conditions. Several 38 

strategies, including gene therapy and tissue engineering with mesenchymal stem cells 39 

(MSC), have been proposed to enhance healing of musculoskeletal tissues. Furthermore, 40 

a recent technique has revolutionized gene editing: clustered regulatory interspaced 41 

short palindromic repeat (CRISPR) technology is characterized by simplicity in target 42 

design, affordability, versatility, and high efficiency, but needs more studies to become 43 

the preferred platform for genome editing. Predictive genomics DNA profiling allows to 44 

understand which genetic advantage, if any, may be exploited, and why a given 45 

rehabilitation protocol can be more effective in some individual than others. In 46 

conclusion, a better understanding of the genetic influence on the function of the   47 

musculoskeletal system and healing of its ailments is needed to plan and develop patient 48 

specific management strategies. 49 

Key Words: CRISP, DNA, Genetics, Muscles, Rehabilitation, Tendon. 50 
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INTRODUCTION 52 

Cell biology and genetics are rapidly evolving basic science fields currently being 53 

explored to provide a better understanding of the defects underpinning musculoskeletal 54 

diseases. Much research and development pertains to orthopaedics, and the study of 55 

genomics is the foundation to personalized medicine. 56 

DNA is composed of two nucleotide chains forming a double helix, each consisting of a 57 

deoxyribose sugar–phosphate (phosphodiester bonds) backbone with bases bonded with 58 

complementary bases on the opposite chain. Eukaryotic cells host many DNA types 59 

mostly located in the nucleus (Table 1). DNA has three cellular functions: replication 60 

(the two DNA strands separate, and each serves as a template for building a new 61 

complementary strand), hereditary information (every base pair and nucleotide sequence 62 

is necessary for build and maintain the organism), and regulation of cell division 63 

(through the expression of mRNA) (Figure 1).  64 

Nucleotides are the structural units of RNA and DNA. The current human genome 65 

sequence contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers 99% 66 

of the euchromatic genome, and is accurate to an error rate of one per 100 000 bases 1. 67 

The 46 human chromosomes, consisting of both DNA and RNA, are located in the 68 

nucleus of every cell: 44 autosomes, determining somatic characteristics, and two 69 

allosomes, responsible for sexual characteristics 1.  70 

The Human Genome Project, started in 1990, produced a complete sequence in 2003: 71 

there are only 20 000–25 000 protein-coding genes, contrary to the expectation of as 72 

high as 2 000 0001. 73 

74 
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GENOMICS OF ORTHOPAEDIC CONDITIONS 75 

At the beginning of this millennium, orthogenomics was born 2–5. The importance of 76 

genomics in future orthopaedic practice was mentioned, but implementation has been 77 

slow. Strategies were suggested to identify the genetic bases of diseases, such as those 78 

with a significant genetic component (osteoarthritis), with underdeveloped surgical or 79 

medical treatments (disk degeneration), and those affecting large population (infection) 80 

2–4 (Table 2).  81 

A recent review described the application of SNPs analysis in sports trauma, and 82 

discussed dosage effects between polymorphic collagen genes and Achilles 83 

tendinopathy or Ehlers-Danlos syndrome 6,7. Most of the existing studies are published 84 

in non-orthopaedic journal. For example, information regarding bone-related cancers 85 

focuses on pathologic identification and chemotherapeutic management rather than on 86 

surgical management 5. 87 

Paediatric osteosarcomas and Ewing sarcomas express platelet derived growth factor 88 

(PDGF) ligand and receptor and/or KIT kinase. Drugs designed to target PDGF or KIT 89 

kinase (eg, imatinib mesylate) demonstrated effectiveness only against gastrointestinal 90 

stromal tumors and chronic myeloid lymphomas. However, one phase II trial did not 91 

support this treatment in pediatric orthopaedic tumors, but it is possible than, in the 92 

future, PDGF or KIT will allow investigation into application of orthopaedic oncology 93 

related drugs 8. 94 

Genotype may predict the risk for osteosarcoma, Paget disease and chondrosarcoma and 95 

the prognosis following diagnosis 9–11. More mutations (eg, p53 gene) occur exclusively 96 

in high-grade but not low-grade disease, and some patients progress from low to high 97 
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grade, suggesting evolution simultaneously with progression. Additionally, SNPs in 98 

genes associated with osteosarcoma linked multiple biological processes with this 99 

cancer type 12. 100 

Genetic contributions to the etiology and progression of common orthopaedic 101 

conditions are well studied in comparison with treatments and outcomes. Several 102 

mutations are associated with osteoporosis such as OPG genes, vitamin D receptor 103 

genes (VDR), LRP5 and others 13,14. These genes are implicated in the inhibitions of 104 

osteoclast production and Wnt signalling, decreasing bone mineral density (BMD) and 105 

osteoporosis.  106 

SNPs near OPG and Lrp5 increase the risk for osteoporotic fracture independent of 107 

decreased BMD. In particular, the prevalence of OPG related risk alleles in 108 

approximately 8,500 white women was 10-fold higher than the prevalence of 109 

glucocorticoid use 13. This suggests that genomic profiles are more relevant. 110 

A recent study 15 confirms the importance of 12 loci as risk factors for bone fracture 111 

(2p16.2 (SPTBN1), 7q21.3 (SHFM1), 10q21.1 (MBL2/DKK1), 11q13.2 (LRP5), and 112 

18p11.21 (FAM210A), SOST, CPED1/WNT16, FUPB3, DCDC5, RPS6KA5, 113 

STARD3NL, and CTNNB1. Furthermore, in the same study, using a scale GWAS meta-114 

analysis identified other 4 new genetic determinants of fracture, all of which also 115 

influence bone mineral density (6q22.33 (RSPO3), 6q25.1 (ESR1), 7p12.1 116 

(GRB10/COBL), and 21q22.2 (ETS2)) 15. Moreover, genetic predisposition to lower 117 

levels of vitamin D and estimated calcium intake from dairy sources were not associated 118 

with fracture risk 15. 119 
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Polymorphisms in the “disintegrin and metalloproteinase domain with thrombospondin 120 

motifs” 18 (ADAMTS18) gene encoding for antiangiogenic properties and transforming 121 

growth factor-β receptor type 3 (TGFBR3) genes, which regulates TGF-β signaling and 122 

extracellular matrix assembly, have been associated with BMD alterations, which have 123 

a heritability greater than 70% 16. Associations between cortical BMD and SNPs near 124 

the OPG, RANK, and RANKL genes have been discovered both in adolescents and 125 

elderly 16,17.  126 

Developmental dysplasia of the hip (DDH) and primary protrusio acetabuli (PPA) 127 

encompass the spectrum of acetabular development from a shallow acetabulum in DDH 128 

to a deep acetabulum in PPA. Both have an indeterminate aetiology and result in early 129 

onset osteoarthritis of the hip 18. A genetic hormone-related aetiology has been proposed 130 

19–21. The association of developmental DDH and PPA with VDR polymorphisms Taq I 131 

and Fok I and oestrogen receptor (OR) polymorphisms Pvu II and Xba I suggest a 132 

possible correlation between gene polymorphisms and susceptibility and severity of 133 

DDH22. Indeed, the Taq I VDR polymorphisms may be associated with abnormal 134 

acetabular morphology while the Xba I OR XX genotype with an increased risk of 135 

developing DDH; no associations were found with PPA. 136 

The contribution of genetics to osteoarthritis (OA) has been estimated at 65% for the 137 

knee, 60% for the hip, and 39% for the hand 23. Association studies have detected two 138 

loci: growth differentiation factor-5 (GDF5), associated with bone and cartilage 139 

development, and component of oligomeric Golgi complex-5 (COG5) 11,24. 140 

There are 56 SNPs from 50 genes or gene loci, which have been associated with OA or 141 

OA subtypes 25. These genes affect Wnt-associated bone mass, bone changes in 142 
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response to compression, cartilage turnover, chondrogenic processes mediated by TGF-143 

β1, and the development of type II cartilage 25–28. 144 

However, the effect size of these loci is very small, and more factors are necessary to 145 

produce clinical OA. Some OA SNPs are risk factors in both sexes or in select ethnic 146 

populations25. For example, calmodulin-1 (CALM1) and asporin (ASPN) SNPs, 147 

identified in Japanese but not white and Greek patients with OA 26,29–31; or frizzled-148 

related protein-2 (FRZB2) and collagen type II alpha-1 (COL2A1) were associated with 149 

OA in females and males, respectively; cartilage oligomeric matrix protein (COMP) 150 

demonstrated differential effects in both sex 26,32. 151 

The origin of chronic pain, whose presence defines symptomatic OA, is not clear: 152 

indeed, the presence of radiographic abnormalities is not always associated with pain 33. 153 

The prevalence of radiographic knee degenerative joint disease was 19% and 28% 154 

among adults aged >45 years in the Framingham study and in the Johnston County OA 155 

Project, respectively, while the prevalence of symptomatic knee OA was 7% in the 156 

Framingham study and 17% in the Johnston County OA Project34. Initially, pain in OA 157 

occurs episodically during movement and loading 35, while constant pain may occur 158 

later 35. Three relevant areas should be considered to explain OA pain: local processes 159 

in the joint, alterations of the nociceptive system, and general factors including 160 

comorbidities. Genetics is related to the second area, which is the most variable 36. 161 

There is an increase of mechano-sensitivity 37, a downregulation of substance P in 162 

neurons38 and a genetic contribution with the association of 400 genetic markers in the 163 

genome of patients with OA 39. A genetic variant of catechol-O-methyltransferase 164 

(COMT) was associated with stronger hip OA pain40, but not with knee OA pain 41. 165 
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Another report described the association of a TRPV1 gene variant and a SNP in the 166 

PCSK6 gene with a lower risk of symptomatic knee OA42,43.  167 

Annually, 1 million of total hip arthoplasties (THA) are implanted worldwide 44, and 168 

aseptic loosening (AL) has become more common 45, with high morbidity and 169 

mortality, especially in the elderly 46. AL results in progressive bone loss and 170 

periprosthetic osteolysis, accounting for 75.7% of all THA revisions 47. Pro-171 

inflammatory mediators are implicated in aseptic osteolysis 48. SNPs in TNF-238 A 172 

allele and TNF-a promoter 49,50, IL6-174G/597/572 50–52, TGF-b1 52, MBL 53,54, GNAS1 173 

55,56, OPG-163 57,58, RANK 50,57,59 and MMP-1 51,52,60 predispose to aseptic loosening. 174 

The mechanisms of regulation and gene activation are still unclear. In the future, this 175 

knowledge would allow better planning and anticipating the need for early intervention 176 

61. 177 

Congenital idiopathic talipes equinovarus (CTEV) has a prevalence of 1 to 5 per 1000 178 

live births 62,63. Its etiology remains unknown, but it has both genetic and environmental 179 

components 62–65, with extrinsic factors (e.g. congenital constriction bands, intrauterine 180 

poisoning), chromosomal abnormalities, and neuromuscular disorders. The role of 181 

inheritance in CTEV needs to be clarified 62,66,67. 182 

GENOMICS IN SOFT TISSUE INJURIES 183 

The limit of each individual to perform a given type of exercise depends on the nature 184 

of the task, and is influenced by a variety of factors, including genetic make-up 68,69. 185 

Recently, the relationship between polymorphisms and susceptibility to develop 186 

ligament and tendon injuries has been explored 68–70. 187 
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Collagen type I is the major constituent of tendons and ligaments. An alteration of 188 

COLIA1 genotype with the polymorphism Sp1 TT was associated with reduction of 189 

85% the risk of cruciate ligament tears and shoulder dislocation 71,72. No significant 190 

association was found between this SNP and Achilles tendinopathy compared with 191 

healthy Caucasian controls 73.  192 

Type V collagen, quantitatively minor fibrillar collagen which heterotypic fibrils, 193 

regulates the size and configuration of type I collagen. Polymorphisms of the COL5A1 194 

gene have been associated with Achilles and quadriceps tendon injuries and anterior 195 

cruciate ligament tears 74–76. 196 

Tenascin-C (TNC) plays a critical role in transmitting mechanical tendon force, and it is 197 

expressed in the myotendinous and osteotendinous junctions 77–79, controlling cell-198 

matrix interactions80. The guanine-thymine (GT) dinucleotide repeat polymorphism was 199 

analyzed in association with Achilles tendon injuries 81, showing a significantly lower 200 

frequency of injuries between patients with 13 and 17 GT dinucleotide repeats, and 201 

control. 202 

On the chromosome 9, between COL5A1 gene and TNC gene, lies the single gene 203 

determining the ABO blood group 82. Individuals with blood group O are more 204 

susceptible to tendon injuries 83,84. 205 

206 
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GENETICS AND REHABILITATION 207 

Genetics determines the response of individuals to their surroundings 85. Predictive 208 

genomics DNA profiling for athletic performance and injury rehabilitation allows to 209 

understand which genetic advantages should be exploited. These findings could 210 

partially explain why an individual is able to excel in one sport discipline, and why 211 

rehabilitation protocol can be more effective in some individuals than others. Genetic 212 

factors play a critical role in determining high levels of sport performances and 213 

satisfactory rehabilitation results 86,87. The physical performance phenotypes for which a 214 

genetic basis can be suspected include endurance capacity, muscle performance, and 215 

determinants of the behaviour of tendons and ligaments. 216 

Endurance is the ability to perform high level aerobic exercise for prolonged periods. It 217 

is supported by enhanced mitochondrial function, as suggested by increased 218 

mitochondrial gene expression, and mitochondrial enzyme activity 88. The nuclear 219 

respiratory factor (NRF) 2 organizes the expression of nuclear and mitochondrial genes, 220 

explaining some of the inter-individual variance in endurance capacity 88.  221 

Hemoglobin is a determinant of endurance performance, and SNPs in the hemoglobin 222 

gene could decrease the oxygen cost of running, explaining part of an individual 223 

variation in cardiorespiratory adaptation to endurance training 89. The Arg16Gly 224 

polymorphism in the b2-adrenergic receptor (ADRB2) gene may be associated with 225 

endurance performance status in white men 90. 226 

Some other gene polymorphisms have been associated with sport performance and 227 

rehabilitation, although results are still preliminary or controversial. These include 228 
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polymorphisms in the alpha2a-adrenoceptor gene 91, bradykinin beta 2 receptor, 229 

endothelial nitric oxide synthase 3 genes 92, vitamin D receptor gene 93, HIF-1 alpha 94. 230 

Muscle performance is a direct consequence of the heterogeneity essential for its 231 

function, and is directed at optimizing the contractile responses 69. For example, the 232 

creatine kinase isoenzyme MM (CM-MM) is responsible of the rapid regeneration of 233 

ATP during muscle contraction, the actin-binding protein [alpha]-actinin-3 (ACTN3) a 234 

component of fast skeletal muscle fibres, and the myosin light chain kinase (MLCK) 235 

plays a critical role in the regulation of smooth muscle contraction 95, in particular, the 236 

R577X polymorphism (premature stop codon) associated with complete ACTN3 237 

deficiency is more prevalent among elite endurance athletes 101,102. The humans CK-238 

MM gene sequence variation show a significant association with maximal oxygen 239 

uptake following 20 weeks of training 98, peak performance and less decline in force 240 

generation 99.  241 

The ACE gene has ‘I’ (insertion) and ‘D’ (deletion) alleles 100,101. Controversy exists 242 

about the association of the ACE gene variation and many heritable traits, including 243 

skill parameters and physical performance 102. For example, elite endurance athletes 244 

exhibit an increased frequency of the ACE I allele 103.  245 

Other SNPs have been associated with muscle performance such as in the adenosine 246 

monophosphate deaminase 1 (AMPD1) gene or insulin-like growth factor 1 protein 247 

(IGF-1) gene 104. In particular, sedentary subjects with the TT genotype at the C34T 248 

AMPD1 gene showed diminished cardiorespiratory response to rehabilitation exercise 249 

105–107.  250 
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To the best of our knowledge, no published study suggests to identify these 251 

polymorphisms to guide rehabilitation after musculoskeletal injuries. More evidence is 252 

needed to evaluate the benefits of genomic screening in patients to improve the 253 

outcomes of specific rehabilitation protocols.   254 

255 
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CAN WE INFLUENCE OUR GENETICS?  256 

Tissue Engineering  257 

In the last few decades, several strategies, including growth factors, gene therapy and 258 

tissue engineering with mesenchymal stem cells (MSC), have been proposed to enhance 259 

soft tissue healing 108. 260 

Tissue engineering can be accomplished through the in vivo approach, which permits 261 

the self-regeneration of small tissue lesions, and the ex vivo, de novo approach, which 262 

produces functional tissue implantable in the body 109,110. It is a multidisciplinary field 263 

founded on the use of healthy multipotent cells that are nonimmunogenic, the 264 

development of carrier scaffolds that provide short-term mechanical stability of the 265 

transplant, a template for spatial growth of the regenerate tissue and the delivery of 266 

growth factors that drive the process of cell differentiation and maturation 109,110. 267 

Growth factors (GFs), the signaling molecules involved in cell proliferation and 268 

differentiation, play an important role in regulation of tendon healing 111, determining 269 

intracellular changes and DNA synthesis or expression 87,112–115. They can improve the 270 

strength of the repair by promoting the formation of more scar tissue modulating 271 

stiffness and creep 111 and delivered to the site of injury by direct application, for 272 

example, via local injection, or by using impregnated sutures or scaffolds. The main 273 

disadvantage of direct application is that GFs only remain at the site for a short duration 274 

time.  275 

Many other factors can be used, including cartilage-derived morphogenetic protein 276 

(CDMP) growth factor 116, PDGF 117, Interleukin-10 118, VEGF 119, antibody to TGF-b1 277 
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120 and IGF-1 117,121. Media consisting of PRP used for equine flexor digitorum 278 

superficialis tendon explants showed enhanced gene expression of collagen type I 279 

(COL1A1), collagen type III (COL3A1) and collagen oligomeric matrix protein 280 

(COMP), but no increase of catabolic molecules matrix metalloproteinase (MMP) 3 and 281 

13 compared with other blood products tested 122. A double-blind, placebo-controlled 282 

trial demonstrated no benefit of intramuscular PRP injections compared with placebo 283 

injections123. 284 

MSCs can differentiate into a variety of specialized mesenchymal tissues 108. They can 285 

be applied directly to the site of injury or delivered on a suitable carrier matrix, which 286 

functions as a scaffold while tissue repair takes place 87,112–115. Delivering MSC in 287 

organized collagen implants applied to large tendon defects can significantly improve 288 

the biomechanics, structure and probably the function of tendons after injury 124,125. 289 

MSCs derived from synovium have a higher proliferation and differentiation potential 290 

than the other MSCs. Indeed, they can accelerate the early remodeling of tendon–bone 291 

healing producing more collagen fibers at 1 week and forming more oblique collagen 292 

fibers resembling Sharpey’s fibers at 2 weeks 126. MSCs have been investigated in the 293 

management of tendinopathy, showing significantly improved tendon histological 294 

scores when injected in tendinopathic equine flexor digitorum superficialis 127. In 295 

rabbits, MSCs suspended in type I collagen gel and implanted into a surgically induced 296 

defect in the donor’s patellar tendon demonstrated significant increases in maximum 297 

stress and strain energy density 128. 298 

Gene Therapy 299 
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Gene therapy delivers genetic material to cells using viral or nonviral vectors or direct 300 

gene transfer, resolving the problem of short time permanence of GFs in the site of 301 

injury 109,110 (Table 3). The use of vectors is associated with loss of transgene expression 302 

and adhesion formation secondary to inflammation 129. Gene transfer using vectors can 303 

be achieved via “in vivo”, with direct application of the gene to the tissue, or “ex vivo” 304 

transfection, in which target cells are first removed and gene transfer is performed in the 305 

laboratory 129. In vivo transfection is less invasive, but with the risk of nonspecific 306 

infection of cells adjacent to the target site. 307 

Adenovirus-based gene therapy is an efficient means of gene delivery to rabbit flexor 308 

tendons, but the transduction efficiency of transgenes was dose dependent 130. Rickert et 309 

al. 131 injected adenovirus particles into transected Achilles tendons of rats: in vitro, 310 

GDF-5 was secreted with a peak after 2 weeks, and in vivo after 4 weeks. The use of 311 

AAV vectors to transfer exogenous bFGF gene to proliferating tenocytes showed 312 

significantly increased levels of expression of type I and III collagen genes compared 313 

with those in the cells treated with sham vectors or in nontreatment controls 132. 314 

The rate of transfection of a gene in rat patellar tendons using the HVJ liposome-315 

mediated gene transfer method was significantly greater than controls 133, and, 316 

compared to adenoviral and AAV vectors it showed the most prominent healing 317 

response on injured flexor tendons of rabbit 134. Injecting directly into the injured 318 

patellar tendon of rats a HVJ-liposome suspension containing PDGF-B cDNA enhances 319 

the expression of PDGF in healing ligaments with angiogenesis promotion and collagen 320 

deposition in the wound 135. Gene therapy with BMPs may improve the healing ability 321 

of tissues. Achilles tendon transduced with BMP-14 exhibited less visible gapping, a 322 

greater number of neotenocytes and 70% greater tensile strength than controls at 2 323 
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weeks after repair 136. Majewski et al. 137 evaluated the effects of BMP-12 gene transfer 324 

on the healing of rat Achilles tendons using a genetically modified muscle flap, 325 

reporting acceleration and improvement of tendon healing. 326 

A plasmid carrying the lacZ marker gene was injected into the Achilles tendons of rats 327 

and mice and into the patellar tendons of rabbits showing at 48 h transduced cells, a 328 

minority of the tendon cells 138. Kinetics study in rats showed a gradual decrease of β-329 

gal-expressing cell number; at day 42, gene expression was no longer detected, without 330 

inflammatory reaction 138. Wang et al. 139 transferred, using a plasmid, the PDGF-B 331 

gene to tenocytes obtained from explant cultures of rat intrasynovial tendons: RT-PCR 332 

showed significantly increased expression of type I collagen gene by tenocytes.  333 

With the advent of clustered regulatory interspaced short palindromic repeat (CRISPR) 334 

technologies, AAV has shown promising therapeutic efficacy with good safety profile 335 

in animal and human clinical trials 140. It revolutionized gene-editing techniques because 336 

of its simplicity in target design, affordability, versatility, and high efficiency 141. 337 

CRISPR/Cas9-based RNA-guided DNA endonuclease has, rapidly, become the 338 

preferred platform of genome-editing for interrogating endogenous gene function in 339 

vivo 142,143.  340 

The CRISPR/Cas9 complex can be introduced into the cell in forms of DNA, messenger 341 

RNA, or protein 144. Because of the great potential of viral vectors, the major classes — 342 

lentiviruses 145, adenoviruses 146, retroviruses 147, AAVs 148, and baculoviruses 149 — 343 

have been employed to present CRISPR components into eukaryotic cells for genome 344 

editing. The AAV-CRISPR system has also been successfully used in mice to restore 345 

gene function in Duchenne muscular dystrophy 150–153 and other conditions. The AAV-346 



17 

 

CRISPR system holds enormous translational potential to develop therapeutic 347 

treatments for patients with severe and life-threatening genetic diseases by editing 348 

disease-causing or risk genes in the human body. The AAV-CRISPR system needs 349 

more tests in vivo to become a successful human gene therapy 140. 350 

351 
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CONCLUSIONS 352 

A better understanding of musculoskeletal system function and healing will allow 353 

specific management strategies to be developed. Many interesting techniques, discussed 354 

in this article, are at an early stage of development. Although these emerging 355 

technologies may develop into substantial clinical management options, their full 356 

impact needs to be evaluated critically in a scientific fashion. 357 
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FIGURES & TABLES 758 

Table 1 | Rapid overview and description of DNA and RNA types.  759 

Table 2 | Overview of major musculoskeletal-related disorders and their inheritance 760 

patterns. 761 

Table 3 | Overview on the main vectors used in gene therapy. AAV: adeno-associated 762 

virus, HVJ: hemagglutinating virus of Japan. 763 

Figure 1 | Central dogma of molecular biology: from DNA replication to protein 764 

synthesis. dNTP: deoxyribose nucleoside triphosphate, rNTP: ribonucleoside nucleoside 765 

triphosphate.  766 


