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ABSTRACT 16 

The development of small unmanned aerial vehicles (UAVs) and advancements in sensors technology made consumer 17 

digital cameras suitable for the remote sensing of vegetation. In this context, monitoring the in-field variability of maize 18 

(Zea mays L.), characterized by high nitrogen fertilization rates, with a low-cost color-infrared airborne system could be 19 

the basis for a site-specific nitrogen (N) fertilization support system. An experimental field with different N treatments 20 

applied to silage maize was monitored during the years 2014 and 2015. Images of the field and reference destructive 21 

measurements of above ground biomass (AGB), N concentration in AGB and N uptake were taken at V6 and V9 22 

development stages. Classical normalized difference indices and the indices adjusted by crop ground cover were 23 

calculated and regressed against the measured variables. Finally, image colorgrams were used to build PLS regression 24 

models to explore the potential of band-related information in variable estimation. The best predictors were found to be 25 

the ground cover and the adjusted GNDVI: regression equation at V9 resulted in R2 of 0.7 and RRMSE<25% in 26 

external validation. Colorgrams did not improve prediction performances due to the spectral limitations of the camera. 27 

Therefore, the feasibility of the method should be tested in future research. In spite of limitations of sensor setup, the 28 

modified camera was able to estimate maize AGB due to the very high spatial resolution. Since AGB is a robust proxy 29 

of N status, the modified camera could be a promising tool for a low-cost N fertilization support system. 30 

  31 
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INTRODUCTION 32 

Efficient use of agronomic inputs represents an answer to the increasing attention of public opinion to agriculture 33 

intended as a source of environmental pollution, especially referring to nitrogen (N) fertilization that could cause severe 34 

air and water pollution with environmental drawbacks (Olfs et al., 2005). A more efficient preservation of resources in 35 

agriculture can be gained by modulating external inputs according to the variability in crop response within fields. Both 36 

between- and within-field variability can be evidenced with maps describing crop status. Maps could be obtained as 37 

outputs of proximal (tractor-mounted) and remote-sensing techniques adopting optical sensors and then used to interpret 38 

dynamics of plant N demand during crop growing season, rapidly and accurately substituting destructive and time-39 

consuming ground plant sampling and analytical measurements (Olfs et al., 2005).  40 

Different satellite-mounted sensors are suitable for monitoring crop N status, providing information at different level of 41 

spatial (pixels from 1000 to 0.5 m) and temporal (every 1-44 days) resolution (Mulla, 2013). They usually acquire crop 42 

spectral information in the visible (VIS) and near infra-red (NIR) regions of the spectrum allowing calculating common 43 

vegetation indices. However, images require post-processing for atmospheric and geometric correction prior vegetation 44 

indices calculation (Bastiaanssen et al., 2000). Furthermore, some authors have underlined the limited operational 45 

flexibility of such techniques for real time field monitoring or management, due to low spatial resolution of acquired 46 

images, long satellite re-visit times, cloud cover and total cost of the service (Berni et al., 2009; Swain et al., 2007). 47 

However, nowadays, the improvements of satellite spatial and temporal resolution and the availability of free images 48 

renewed the interest in satellite remote sensing for agricultural purposes applied to large surfaces even if the cloud 49 

cover is still an issue due to the limited field surfaces and the limited time window suitable for field operations. 50 

The limitations of satellite-based crop monitoring have allowed the development and spread of tractor-mounted 51 

proximal sensors. These sensors acquire reflectance at two to twenty wavebands in the vegetation indices and NIR 52 

range of the spectrum and have their own light source to avoid sunlight dependence. Moreover, tractor-based vegetation 53 

indices are used in combination with an N-rich reference filed strip that allows correcting the spectral response to local 54 

variables (Raun et al., 2008).  55 

Besides the satellite- and tractor-mounted optical sensors, in recent years, new opportunities for crop monitoring were 56 

opened by the innovative use of unmanned aerial vehicles (UAVs). These devices, equipped with multispectral digital 57 

cameras, can be used to periodically fly over fields and acquire crop spectral information in the VIS and NIR regions in 58 

order to calculate vegetation indices at very high spatial resolution (often less than 2 cm). Recent attempts to build crop-59 

specific calibration curves between UAV-derived vegetation indices and crop variables are recorded in the literature 60 

(Geipel et al., 2016; Huang et al., 2010; Lebourgeois et al., 2008). In fact, UAVs are more flexible in scheduling field 61 
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surveys compared to satellite- and tractor- based techniques, putting forward for interesting applications in the 62 

following fields: nutrient and water management, weed control, disease and pest detection, estimation of grain yield 63 

(Wójtowicz et al., 2016). However, the ability of UAV-mounted sensors to assess vegetation status hangs on images 64 

calibration and processing that implies to retrieve reflectance, to compensate for ambient light variation (Kim et al., 65 

2008; Noh et al., 2005), and to manage soil background noise (Noh et al, 2005). Nevertheless, UAV-based vegetation 66 

indices were successfully regressed against leaf chlorophyll concentration (R2>0.7; Lebourgeois et al., 2008; Miao et 67 

al., 2009; Noh and Zhang, 2012), above ground biomass (R2=0.70-0.85; Geipel et al., 2016; Reyniers e Vrindts, 2006), 68 

plant nitrogen concentration (R2=0.4-0.8; Geipel et al, 2016; Lebourgeois et al., 2012; Reyners e Vrindts, 2006) and 69 

grain yield (R2>0.7; Huang et al., 2010) of different crops.  70 

Maize (Zea mays, L.) is the main crop cultivated in the Po plain, Northern Italy, on a surface of 327,632 ha (in 71 

Lombardy), with an average production of 11 and 50 t ha-1 of grain and silage-maize, respectively (ISTAT, 2017). Most 72 

of the cultivation territory of maize was classified as vulnerable to nitrate leaching (Acutis et al., 2014), and therefore 73 

loads of livestock N is limited to 170 kg N ha-1 year-1, while, according to regional legislation, the maximum amount of 74 

N that can be annually supplied to maize (including mineral fertilizers) is 280 kg N ha-1 year-1. Therefore, the 75 

application of UAV-based crop monitoring at high spatial and temporal resolution, with the aim of mapping crop 76 

variability linked to N nutrition, would be crucial to support site-specific fertilization and optimize fertilizer 77 

distribution, both in terms of amounts and location. This kind of monitoring is particular interesting since side-dress and 78 

top-dress fertilization of maize is applied in a narrow time window, between V6 and V9 development stages. The 79 

relative short period suggests adopting UAV-based monitoring tools rather than satellites. 80 

Focusing on maize UAV-based monitoring, the survey of literature highlighted that only few experiments were 81 

conducted studying the behavior of a low-cost camera for the estimation of maize ground-measured variables. Different 82 

authors agreed in finding green band-based vegetation indices as the best predictors for the studied nitrogen-related 83 

variables (Osborne et al., 2004; Sakamoto et al., 2012a and 2012b; Rorie et al., 2011a and 2011b). The coefficients of 84 

determination ranged between 0.5-0.98 for the estimation of the above ground biomass (AGB), 0.49-0.7 for the 85 

estimation of AGB N concentration (Nc) and 0.38-0.59 for the estimation of N uptake (Nu). Furthermore, it must be 86 

considered that these experiences were often carried out for one or two years and often at late crop development stages 87 

(V13-R6; Ritchie et al., 1993), far from those identified as the best time window for N side-dress fertilization (V6-V9). 88 

Finally, even if V6 and V9 development stages were sensed, regression analysis was not performed specifically for 89 

those stages but comprehensive of vegetative and reproductive stages, that is including samples taken after maize 90 

flowering (Osborne et al., 2004; Sakamoto et al., 2012a and 2012b).  91 
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In the cited experiments, few vegetation indices were used to predict crop variables because sensors mounted on UAVs 92 

rarely acquired more than three broad bands. However, the most recent image analysis techniques allow expanding 93 

band-related information to be used as multivariate predictors of target features. An example is represented by the 94 

technique of colorgram extraction that was designed and implemented for food systems by Antonelli et al. (2004) to 95 

evaluate food color and defects by multivariate image analysis. It was developed for laboratory applications (Antonelli 96 

et al., 2004; Ulrici et al., 2012) and it consisted in the extraction of different color features by deriving new descriptors 97 

from the original image, and by projecting them into principal component space. Unluckily, the presented approach has 98 

never been used to extract vegetation/canopy signals from aerial images to be used as multivariate predictors of crop 99 

variables. If satisfactory, as laboratory applications suggest (Antonelli et al., 2004; Ulrici et al., 2012), this new method 100 

would allow deriving information from crop images in a fast, effective and unsupervised way. Colorgrams could be 101 

therefore an answer to the main challenge of UAV-based crop monitoring: having fast and reliable image analysis and 102 

interpretation (Rasmussen et al., 2016). In this context, such a technique is a very interesting application, especially 103 

suited to exploit the potential of band-related information recorded by a low-cost imaging system. 104 

We present here a two years-case study where a consumer digital camera, modified to detect a NIR band and mounted 105 

on board a UAV, was used to estimate maize AGB, Nc and Nu. To this end, an experimental field with an induced 106 

fertilization gradient was used to test the opportunities and limitations of low-cost technology following three strategies. 107 

A classical strategy dealt with the calculation of common normalized difference VIs, the Green Normalized Difference 108 

Vegetation Index and the Blue Normalized Difference Vegetation Index (GNDVI and BNDVI). The second strategy 109 

first considered the estimation of the ground cover (GC), representing the fraction of soil covered by plants. Thereafter 110 

two new indices, the BNDVIadj and GNDVIadj were calculated combining the signals coming from pixels belonging to 111 

vegetation and the value of GC. In this way, indices adjusted by the GC emphasize the contribution of vegetation both 112 

in terms of reflected radiation (they do not consider pixels from soil) and soil coverage. The third strategy involved the 113 

extraction of colorgram signals from multispectral images of the field (soil plus vegetation) and of the solely vegetation. 114 

Finally, linear and multivariate partial least square (PLS) regression models were applied to estimate maize variables 115 

from vegetation indices and colorgrams, respectively. Therefore, based on regression model performances, we tested 116 

whether the modified camera could be used to provide low-cost advices for maize N fertilization.  117 
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MATHERIALS AND METHODS 118 

The UAV survey was carried out on a flat field located in Montanaso Lombardo (Lodi), Italy (45°20’32” N, 9°26’43” 119 

E, altitude 80 m asl) during 2014 and 2015 maize growing seasons. The field hosted a multi-year experiment (Cavalli et 120 

al., 2014 and 2016) aimed at quantifying N use efficiency of livestock manures applied to silage-maize (Hybrid 121 

PR33M15, Pioneer Hi-Bred Italia S.r.l.) followed by an unfertilized catch crop of Italian Ryegrass (Lolium perenne, 122 

Lam. Cv Asso). The trial started in spring 2011 and comprised the following six treatments: 1) unfertilised control 123 

(CON); 2) ammonium sulphate (AS); 3) unseparated digestate from a mix of cattle slurry and maize (DSMM); 4-5) the 124 

liquid (LF) and solid (SF) fractions of DSMM; 6) unseparated anaerobically stored cattle slurry (US). 125 

Treatments were applied on plots of 112.5 m2 (15 m long and 7.5 m wide) and were arranged in a randomized block 126 

design with four replicates (plots 1-24 in Figure 1). Blocks were separated each other by ten meters strips. Every year, 127 

from 2011 to 2014, manures and AS were applied to the same plots at similar NH4-N rates (on average 140 kg NH4-N 128 

ha-1). Differences in applied organic N and in N use efficiency among fertilizers provided a wide range of variability in 129 

plant available N within the field. For this reason, the field was chosen to be surveyed by the UAV mounting the 130 

modified camera, for calibration purposes. In spring 2015 fertilizations were suspended in order to quantify residual N 131 

effects of previous fertilizations (Cavalli et al., 2016). An additional treatment of ammonium sulphate (AS150; 150 kg N 132 

ha-1) was applied in half of the original AS plots in order to compare apparent N recovery of 2014 with that of previous 133 

years (plots 25-28 in Figure 1). Furthermore, three other treatments of mineral fertilizers were added to the original 134 

design to rise further variability of plant available N. Additional treatments comprised ammonium sulphate applied at 135 

35 and 70 kg N ha-1 (AS35 and AS70), and calcium nitrate applied at a rate of 150 kg N ha-1 (CAN150). They were applied 136 

on plots of 60 m2 (8 m long and 7.5 m wide) arranged in a randomized block design with four replicates, and located in 137 

the strips between blocks of the original experiment (plots 29-40 in Figure 1). Finally, during 2015, eight unfertilized 138 

areas of about 1.5 m2 outside the experimental plots were sampled in order to further increase variability in the collected 139 

samples (points 41-48 in Figure 1). 140 

FIGURE 1, HERE. 141 

Crop sampling and analysis 142 

Plants were sampled at maize phenological stages V6 and V9 (six and nine fully expanded leaves; Ritchie et al., 1993) 143 

in both years, corresponding to 18 July and 1 August 2014 and 3 July and 13 July 2015, respectively. Aboveground 144 

biomass (AGB) was estimated by collecting 15 whole plants per plot (three plants per row of the five inner rows of each 145 

plot). Plants were oven dried (105°C) until constant weight in order obtain AGB values on a dry matter (DM) basis. 146 

Samples were ground with a ZM 100 centrifugal mill equipped with a sieve of 0.2 mm mesh (Retsch Gmbh & Co., 147 
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Haan, Germany). Total nitrogen concentration in AGB (Nc; g N 100 g DM-1) was determined by dry combustion using 148 

a ThermoQuest NA1500 elemental analyser (Carlo Erba, Milano, Italy). Nitrogen uptake of maize (Nu; g N m-2) was 149 

calculated by multiplying AGB (g DM m-2) by Nc. 150 

Image acquisition and processing 151 

A consumer digital camera Canon® Powershot SX260 HS was converted to a color-infrared camera (CIR) by removing 152 

the infrared blocking filter and adding a Super Blue IR filter (www.publiclab.com). Therefore, the red channel was used 153 

to acquire reflectance in the NIR, while the blue (B) and green (G) channels remained the same. After the modification, 154 

the spectral resolution of the camera was tested in laboratory conditions by single waveband measurements in the range 155 

between 400 and 800 nm, every 10 nm using a monochromator equipped with a Xenon lamp. Images were acquired in a 156 

dark room, at a distance of 7 cm from the light source, with the monochromatic ray normally striking the camera sensor. 157 

The camera was manually set up to eliminate saturated values in any band using the following settings: focus, 8.0, 158 

exposure time 1/60 s and sensitivity ISO100. 159 

The CIR camera was mounted on board a prototype UAV coaxial octocopter. The UAV was made of carbon fiber with 160 

a maximum payload of 12 kg and was equipped with a GNSS (Global Navigation Satellite System) NEO-M8N (u-blox, 161 

Thalwil, Switzerland) and double gimbal platform for mounting the camera. 162 

Images were acquired immediately before plant sampling, under clear sky conditions, between 11:00 and 13:00 a.m. 163 

solar time, assuring no variation in the incident light angle, and under homogeneous soil wetness level. The UAV 164 

survived the field at a speed of 5 m s-1 and an altitude of 35 m above ground level. The flight plan guaranteed a 75% 165 

forward and sideward overlap between images. 166 

Images were recorded in 8-bit JPEG format with the camera pointing to the nadir direction. The JPEG file format was 167 

chosen because JPEG file dimensions were more feasible for UAV-applications at farmer level. Furthermore, geometric 168 

and vignetting corrections were done by the original Canon firmware. The camera was set up with autofocus mode, 169 

maximum wide angle, a fixed ISO value of 200, 1/1250 s shutter speed. The automatic aperture stop resulted to be the 170 

same each flight (3.625) due to the short flight duration time and optimal light conditions. The output images were 12.1 171 

MP (Mega pixel), 3-band 8-bit per band JPEG files, with a spatial resolution of 1.5 cm. Orthomosaics of the images 172 

were made, separately for each day of acquisition, using the software Pix4Dmapper (Pix4D SA, Lausanne, Switzerland) 173 

that performed a 3D points-based stitching. No radiometric calibration was carried out at this step. Areas belonging to 174 

ground points were extracted from orthomosaics, obtaining images representative of the sampled areas of the field. In 175 

the year 2014 and 2015, the area corresponding to the inner five rows of each plot was extracted. In addition, areas 176 

corresponding to points 41-48 was selected close to ground sample using GPS coordinates as reference. Thus, given the 177 
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different size of some plots in 2014 and 2015 and that of additional points out of plots, extracted images had different 178 

size. A white tile positioned in each plots was used to calculate the reflectance values of the images, by normalizing 179 

pixel intensities by the value of the white reference, after subtracting the black reference. Black reference consisted by 180 

sampling the lowest intensity value recorded by all the images of the same flight. 181 

Vegetation indices 182 

The Blue Normalized Difference Vegetation Index (BNDVI) and the Green Normalized Difference Vegetation Index 183 

(GNDVI) were calculated, for each pixel of extracted images according to the following equations: 184 

Classical NDVI-based indices=
NIR-Band

NIR+Band
 

Eq. 1 

Were Band stands for the blue band in the case of BNDVI and green band in the case of GNDVI. Indices were 185 

calculated using MATLAB version R2014b (MathWorks, Natick, MA). 186 

The Otsu algorithm (Otsu, 1975) was used to identify, within each image, pixels belonging to vegetation. Segmentation 187 

was based on BNDVI or GNDVI providing, in both cases, a mask of the vegetation (Maskveg). The BNDVI-based 188 

segmentation strategy resulted in a better separation between soil and vegetation, while GNDVI did not discriminate 189 

soil shadows from leaves, resulting in undersegmentation. Therefore, the canopy ground cover (GC), representing the 190 

fraction of total pixels classified as vegetation, was calculated using Maskveg based on BNDVI. 191 

After GC calculation, two additional indices were derived from BNDVI and GNDVI in order to give a zero weight to 192 

pixels classified as soil, and thus emphasize the signal coming from vegetation. The two indices, BNDVIadj and 193 

GNDVIadj, were calculated using following the equation: 194 

𝑉𝐼𝑎𝑑𝑗 =
∑ ∑ 𝑉𝐼𝑖𝑗 × 𝑀𝑎𝑠𝑘𝑣𝑒𝑔 𝑖𝑗

𝑚
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑀𝑎𝑠𝑘𝑣𝑒𝑔 𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1

× 𝐺𝐶 
Eq. 2 

where VIij and Maskveg ij are the value of the vegetation index (BNDVI or GNDVI) and the classification value (zero or 195 

one) of the pixel ij, respectively, while n and m represent the number of rows and columns of the image. For both 196 

indices, the classification mask Maskveg was based on BNDVI values. 197 

Image colorgrams 198 

Colorgrams were constructed following the method proposed by Antonelli et al. (2004) with the aim of extracting the 199 

most complete information related to image color. Each colorgram is a linear signal that sequentially combines 200 

frequency distributions of the following band-related information: 1) intensity values of the three channels NIR, G, and 201 

B (region 1-768); 2) lightness, calculated as the sum of the three channels intensities (region 769-1024); 3) relative 202 

channel intensities, calculated as the ratio between channel intensity and lightness (region 1025-1792); 4) values of the 203 

original channels after projection in the hue space (region 1793-2560). Finally, scores values derived from a three-PCA 204 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

model applied to the image are calculated and joined to the colorgram signal (region 2561-4864). The model is applied 205 

on the raw, the mean centered and the autoscaled spectra matrices because the process is unsupervised, without any 206 

prior knowledge on which pretreatment performs better than others (Antonelli et al., 2004). Loadings and eigenvalues, 207 

derived from the PCA model, are added as the final part of the signal (region 4865-4900). In this work, we introduced a 208 

standardization procedure not used in the original paper. The frequency distributions forming each colorgram were 209 

divided by the number of pixels of each image. In the original method (Antonelli et al., 2004) no standardization was 210 

required because images had the same dimensions, however, in this work, we worked on both full and segmented 211 

images (i.e. considering only pixels classified as vegetation). Therefore, the number of pixels used in the procedure 212 

differed among images, and standardization was needed. 213 

Standardized colograms of whole images (CLRG) and segmented images (CLRGveg) were built using MATLAB and an 214 

ad-hoc self-built function. Figure 3 shows the resulting signals. 215 

Statistical analysis 216 

Analysis of variance (ANOVA) was carried out, separately for each year and sampling date, to test the significant effect 217 

of treatment on AGB, GC and GNDVIadj. The ANOVA model considered the treatment as a fixed factor and block as 218 

random. The homogeneity of variances was evaluated using the Levene test (P<0.05). Significant effects of treatments 219 

are reported when the P is below 0.05. Treatments were grouped according to the HSD Tukey test (P<0.05). All 220 

ANOVAs were performed using the SPSS procedure UNIANOVA (SPSS Versions 24.0.0). 221 

The aim of mean separation was to evaluate whether treatments statistically affected measured variables and vegetation 222 

indices in a similar way. Therefore, we were interested in assessing if vegetation indices could be able to discriminate 223 

among statistically different means of measured variables originated from different available N rates (originating from 224 

both yearly added N fertilizers or mineralized residual organic N). 225 

Linear regression models were built, separately for each crop development stage V6 and V9, to estimate AGB, Nc and 226 

Nu from the six predictors: BNDVI and GNDVI, GC based on BNDVI and GNDVI, and indices BNDVIadj and 227 

GNDVIadj. 228 

Multivariate analysis was used to predict AGB, Nc and Nu from standardized colorgrams. Partial least square 229 

regression models (PLS) were built, separately for V6 and V9, using CLGR or CLGRveg colorgrams. 230 

The entire dataset (24 and 48 sampling points for 2014 and 2015, respectively) was divided into a calibration and a 231 

validation dataset. The calibration dataset (48 samples) comprised all samples from the 2014 campaign (24 samples) 232 

and samples from the 2015 campaign belonging to plots 27-40 and sampling points 41-48 (24 samples). The remaining 233 
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24 samples of the year 2015 were used as validation datasets. The resulting datasets partially minimized the occurrence 234 

of autocorrelation between samples taken on the same plot in the two consecutive years. 235 

Finally, linear and PLS regressions models were built on the pooled data of the two phenological stages by joining the 236 

dataset of V6 and V9, resulting in a global dataset of 96 and 48 samples for calibration and validation, respectively. 237 

These models provided prediction of maize variables for a time window suitable for side-dress N fertilization. 238 

The statistics coefficient of determination (R2) and relative root mean squared error (RRMSE; %) were used to judge 239 

the performances of linear and PLS regression models, both applied to the calibration and validation datasets.  240 
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RESULTS 241 

Camera sensitivity 242 

FIGURE 2, HERE. 243 

Sensitivity test on the CIR camera showed that the blue channel had a peak at 460-490 nm, centered at the blue 244 

wavelengths of 460 nm. However, blue pixels acquired also wavelengths from 400 to 560 nm, covering part of the 245 

green region of the visible spectrum. The green channel resulted narrower than the blue one and it was sensible to the 246 

wavelengths from 470 to 570 nm with a peak on the green region (540-550 nm). Finally, the red channel, after 247 

modification, recorded the NIR wavelengths going from 680 to 800 nm. The removal of the NIR filter caused the 248 

overlapping of the three channels in the NIR region: in fact, also the blue and the green channel recorded wavelengths 249 

from 680 to 800 nm. The NIR channel, finally, acquired a small portion of the visible light in the blue and green regions 250 

of the spectrum due to the applied superblue filter. 251 

Measured datasets 252 

During each season, maize AGB and Nu markedly increased from V6 to V9 (Table 1), while N in AGB tissues was 253 

progressively diluted, as confirmed by lower Nc values at V9 compared to V6 (Table 1). Variability of measured 254 

variables was narrow at V6, and it was similar for the years 2014 and 2015, suggesting that fertilizer N effects occurred 255 

at later stages of crop development in both years. Indeed, despite variable applied N fertilization levels, only few 256 

significant differences (P<0.05; Table 1) in AGB and Nu were found among treatments. In particular, AGB was higher 257 

in SF compared to CON, AS and DSMM in 2014, while in 2015, only SF and chemical fertilizers added at a rate of 150 258 

kg N ha-1 (AS150 and CAN150) significantly enhanced maize AGB compared to CON. A similar pattern was observed for 259 

Nu and Nc in 2015, while in 2014 Nc did not significantly varied among treatments. 260 

Conversely, when crop reached V9, higher variability was measured in 2015 than in 2014, in agreement with the wider 261 

range of applied N rates. ANOVA confirmed that treatments in 2015 significantly (P<0.05) affected both crop biomass 262 

and Nu (Table 1). Conversely, maize did not responded significantly to N fertilization in 2014, when all treatments 263 

showed similar AGB and Nu. 264 

TABLE 1, HERE. 265 

Vegetation indices 266 

Vegetation indices, both classical (BNDVI and GNDVI) and adjusteded (BNDVIadj and GNDVIadj), and GC increased 267 

during crop development from V6 to V9, according to the increase in AGB and plant N uptake (Table 1).  268 
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In general, the effect of treatments on vegetation indices and GC was similarly to that on AGB and Nu, as confirmed by 269 

homogeneous groups reported in Table 1. However, at V6 in 2015, grouping based on vegetation indices and GC did 270 

not differentiate between treatments receiving fertilizers at a rate of 150 kg N ha-1 and CON, as grouping for AGB and 271 

Nu suggested. 272 

At V9, all indices showed a relationship with AGB characterized by a linear response followed by a flat response, 273 

suggesting a saturation of the blue and green channels at high AGB levels (Figure 3 for GNDVI and GNDVIadj). 274 

Optimization of a simple linear-plateau model confirmed that lack of response occurred at AGB levels higher than 220 275 

g DM m-2.  276 

Correction of BNDVI and GNDVI by GC allowed increasing the slope of the relations between the indices and AGB, 277 

and increasing the value of the plateau by about 10% compared to corresponding uncorrected indices, and thus to extent 278 

the linear relationship (Figure 3). 279 

Linear PLS Regression models 280 

Division of collected data into a calibration and a validation dataset provided sufficient variability in measured variables 281 

in both generated sets (Table 2). In addition, the validation sets were always included into calibration limits, ensuring to 282 

respect the domain of applicability of the calibrated models. 283 

Regressions between vegetation indices and Nc were not significant at both phenological stages (Table 3). The lack of a 284 

strong biochemical relationship between the broad bands collected by the CIR camera and Nc resulted in poor 285 

calibration models when the range of variation explored by the measured data was not wide enough. Indeed, joining the 286 

datasets of the two phenological stages (V6+V9) enabled improving calibration performances, obtaining significant 287 

regression models and acceptable validation errors (RRMSE <18%). Even if similar calibration performances were 288 

found among all the tested indices, those adjusted by the GC gave better results in validation, without visible difference 289 

among GC, BNDVIadj and GNDVIadj. The fact that Nc was successfully estimated due to the effect of nitrogen 290 

treatments on AGB and not thanks to the different levels of greenness recorded by the camera was confirmed by the 291 

similar results in the external validation between vegetation indices and colorgrams (Table 3). 292 

TABLE 2 AND 3, HERE. 293 

The calibrated regression models for the estimation of Nu at V6 gave poor results (R2<0.2), probably due to the low 294 

capability of the camera in recording low AGB levels at early development stages. In fact, also AGB estimation gave 295 

poor results at V6 (Table 3). The good performances in calibration shown by the PLS regression models built using 296 

colorgrams as AGB predictors seemed contradictory. In fact, very high coefficients of determination (R2>0.8) and 297 
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RRMSEs less than 10% were obtained in calibration. Despite these good results, in the external validation (R2<0.5 and 298 

RRMSE ~ 20%) the PLS models based on colorograms proved not to be robust.  299 

Very satisfactory results were found in AGB estimations performed at V9. Similar performances were found among 300 

classical vegetation indices and the indices adjusted by the GC in terms of R2 and RRMSE of calibration: 0.85 and 301 

17.5% on average, respectively. PLS regression models built on colorgrams led to slightly better results in calibration. 302 

The similar performances of the colorgrams of the entire image and of vegetation only were expected, because at V9 the 303 

contribution of soil pixels to the canopy signal was minimal due to the high GC of maize canopy. External validation 304 

proved that models based on GC and indices adjusted for the vegetation fraction were very similar to each other and the 305 

best performing (in particular GC and GNDVIadj) compared to the classical vegetation indices (Figure 3), BNDVI and 306 

GNDVI, and colorgrams.  307 

Finally, the best results were found when the V6 and V9 datasets were joined. The high variability explored (Table 2) 308 

led to the best calibration models for all the tested indices. The higher sensibility of the indices to the variation of AGB 309 

levels was confirmed and Nc estimation greatly improved. 310 

FIGURE 3, HERE.  311 
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DISCUSSION 312 

At first, the spectral response of the camera after the modification was studied. This step was needed in order to 313 

understand the feasibility of the camera for crop monitoring in terms of accuracy of the band-related information 314 

acquired by the sensor. In agreement with previous studies on modified digital cameras (Pauly, 2014 and 2016) it was 315 

found out that the CIR camera suffered of channel overlapping (Figure 2). This caused the resulting channel intensities 316 

to be correlated and therefore, band-related information, as acquired by the CIR camera, was not the most relevant 317 

feature at the basis of the capacity of the camera to discriminate among different AGB, Nc and Nu levels. Indeed, PLS 318 

models built using colorgrams as predictors of AGB, Nc and Nu, even with good calibration performances, did not 319 

improve validation performances compared to classical vegetation indices and to indices adjusted by GC (Table 3). This 320 

result supported the hypothesis that features of the camera other than band-related information mostly contributed to 321 

maize variable predictions (Table 3), since colorgrams were thought as a technique to extract redundant band-related 322 

information (Antonelli et al., 2004). Indeed, the ability of the image-based vegetation indices to assess vegetation status 323 

relied on the strong relationship existing between the indices and canopy GC that was related, in turn, to AGB (Hunt et 324 

al., 2010; Li et al., 2010; Zhou et al., 2018), at least in early stages of crop development. Imaging sensors basically 325 

acquire information about soil coverage by canopy: as GC increases, the portion of vegetation pixels increases until 326 

canopy closure (that usually occurs after V9, in maize). Thus, in the time window from emergence to canopy closure, 327 

very high spatial resolution imagery could play a role in the assessment of AGB variability even if the sensors used are 328 

characterized by low radiometric resolution and overlapping channels. 329 

In this context, the difficult estimation of Nc at V6 and V9 (Table 1 and 3) was expected because vegetation indices 330 

were known to be affected by the confounding effects of changings of canopy architecture (Eitel et al., 2008). 331 

Moreover, our best results, obtained by combining data of V6 and V9 (Table 3), were similar to those obtained in 332 

comparable experiments on maize conducted with airborne multispectral imagery (Osborne et al., 2004; Vergara-Dìaz 333 

et al., 2016). In both cited experiments, linear regression models to predict Nc based on GNDVI performed better than 334 

those based on red NDVI, and provided similar prediction performances in the two experiments (R2 0.23-0.49) when 335 

maize was at phenological stages V14-R1 (flowering). The lack of channel signal accuracy of the CIR camera used in 336 

our experiment was probably balanced by the high range of variation of the measured Nc (1.69-4.07% for the V6+V9 337 

dataset; Table 2) that allowed gaining similar performances. 338 

As expected, estimation of AGB gave the best results while the goodness of Nu estimation depended on the 339 

performances in the estimation of both, AGB and Nc. Therefore, we will focus our discussion on AGB estimation. The 340 

ANOVA highlighted that differences in AGB among treatments were sensed by all indices quite well (Table 1), 341 
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irrespective to the saturation phenomenon that probably affected the vegetation index at high AGB levels (Figure 3). 342 

The fact that treatment groups based on measured maize variable and vegetation indices agreed, together with 343 

prediction performances for the V9 and V6+V9 datasets (Table 3) led to the conclusion that the modified digital camera 344 

could be a valuable tool in identifying the within-field variability of maize in the time window from V6 to V9, suitable 345 

for N fertilization.  346 

However, results at V6 suffered from problems of image acquisition in the 2015 campaign. Indeed, the 2015 dataset, 347 

that constituted part of the calibration dataset (Figure 3), was characterized by a narrow variation in GC (0.19-0.23) 348 

against a wide range of measured AGB (28-55 g DM m-2). Therefore, the error in the estimation of AGB was probably 349 

due to some blurred images collected during the 2015 survey, as confirmed by individually visual inspection of 350 

acquired images. These images prevented the algorithm of segmentation working properly and maize plants resulted 351 

oversegmented and consequently, the GC underestimated. Another issue that could have played a role is the correlation 352 

observed among the collected bands (Figure 2). Pauly (2016) noted that it caused a more difficult discrimination 353 

between leaves and soil when using modified cameras that are affected by channel overlapping, as in this case. The 354 

described factors probably affected the estimation performances at V6, where the confounding effects of soil and 355 

shadows were higher than at V9 (Sripada et al., 2005). An example of the segmentation procedure is provided in figure 356 

4. This reason could explain the low performances at V6 of the indices and, in particular, the worse performance of the 357 

GC and of the adjusted indices if compared to the classical BNDVI and GNDVI that were not affected by the 358 

segmentation procedure.  359 

FIGURE 4, HERE. 360 

The most satisfactory results were obtained at V9. Indeed, good quality images in both years guaranteed the extraction 361 

of reliable vegetation indices; in addition, the high range of the measured AGB at V9 was markedly suited for 362 

calibration purposes. High R2 (0.68-0.71; Table 3) and low RRMSE (22-24%) were gained in validation for GC and 363 

adjusted indices BNDVIadj and GNDVIadj. The better performances of GC and of the adjusted indices could be 364 

explained by the fact that the GC had a more linear response to AGB than the classical indices themselves (Figure 3). 365 

Therefore, the use of GC as a weighting factor allowed linearizing responses of the vegetation indices to the AGB 366 

levels. Accordingly, the distributions of the indices weighted for GC were more similar to the distribution of AGB 367 

values and less affected by saturation: GNDVI saturated at 234 g DM m-2 while GNDVIadj saturated at 250 g DM m-2, 368 

similarly to GC. Our results in AGB estimation were very positive compared to those found in multispectral imagery-369 

based experiments on maize, even done with airborne sensors specific for vegetation monitoring: 0.18-0.65 of R2 370 

(Osborne et al., 2004) vs 0.80-0.88 of our experiment. Finally, experiments with digital camera mounted on ground 371 

stations (Sakamoto et al., 2012a and 2012b) gave comparable results (R2=0.79-0.99 obtained by non-linear fitting and 372 
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by vegetation indices other than NDVI and GNDVI). The better results could be ascribed to the wide window of the 373 

explored maize development stages (the entire season), to the good quality of the images, more manageable form a 374 

ground station compared to airborne sensors, to the quality of the camera spectral response and to the different fitting 375 

methods and vegetation indices studied. None of the cited literature gave information about performance in validation 376 

of the proposed equations. Even in the cases of models based on indices acquired with hyperspectral imaging sensors 377 

characterized by high spectral and radiometric resolution (Cilia et al., 2014; Perry and Roberts, 2008), calibration 378 

results were from worse to comparable with R2 of 0.45 (V14) and 0.77 (V10). The fact that the estimation of AGB was 379 

reliable and comparable to those obtained with more refined approaches, confirmed the promising results of the 380 

proposed method, in spite of the limitations of our sensor setup. However, some aspects must be taken into account for 381 

future research to fully explore the feasibility of the use of a modified low-cost camera for maize monitoring: the time 382 

window going from V6 to V9 should be adequately investigated in order to provide a unique calibrated equation 383 

suitable for the estimation of maize AGB and Nu at the time of N fertilization. More attention should be paid for image 384 

quality in terms of absence of blurred images, a calibrated reference panel should be used to get more reliable image 385 

intensity values (Pauly, 2014) and RAW (native image file format) images acquisition should be considered (Verhoeven 386 

et al., 2010). Finally, since the colorgram-based estimations were affected by overfitting, probably due to redundancies 387 

in band-related information as acquired by the CIR camera, in future research, the feasibility of the method could be 388 

studied by testing it on ground-based images taken by an RGB camera or by a multispectral narrow-band camera, to 389 

avoid channel overlapping and the related issues. In fact, the colorgram approach that offers an unsupervised image 390 

processing for object classification and prediction of object properties could be an interesting tool for ground-based 391 

monitoring in controlled environment, more suitable to enhance the power of the band-related information.  392 
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CONCLUSION 393 

The experiment aimed testing the potential of a low-cost consumer camera, modified into a CIR camera, to detect maize 394 

variables (AGB, Nc and Nu) as influenced by different nitrogen treatments. The CIR camera resulted to have issues 395 

related to channel overlapping and thus, correlated bands with consequences on the accuracy of the acquired band-396 

related information. Moreover, JPEG compression reduced the tonal values of the images. However, vegetation indices 397 

were tested using one-way ANOVA, providing N treatment separation in accordance with measured variables, and thus 398 

the capability of the camera to detect the within-field variability was proved.  399 

In order to explore the potential of the imaging sensor, colorgrams were extracted and, for the first time applied in-field 400 

vegetation monitoring. They were used as predictors of the chemical and physical properties of the canopy via 401 

multivariate data analysis. This new technique turned out not to be superior to linear regression models based on 402 

vegetation indices, probably due to the correlation observed among the acquired bands. In addition, colorgrams 403 

provided very good performances of calibration models at both V6 and V9 (R2>0.8 and RRMSE<15%) but failed in 404 

estimating maize nitrogen-related variables of external validation datasets probably due to model overfitting. 405 

The outlined issues in band acquisition (overlapping channels) could also explain the similar behavior of the common 406 

vegetation indices BNDVI and GNDVI. The best performing indices were the ones calculated using the information of 407 

the vegetation fraction, in particular GC and GNDVIadj. In spite of camera limitations, very good performances in AGB 408 

and Nu estimation were found at V9 stage and then at V6+V9 stages, when a larger range of variation in the measured 409 

variables was explored: AGB was estimated with R2 of 0.9 and RRMSE=25% were gained in the external validation 410 

step by GNDVIadj. At V6+V9 stages, nitrogen concentration was estimated (external validation) with R2 of 0.67 and 411 

RRMSE=17%, as well. Results at V6 were affected by low quality of some images and thus, in future research, the time 412 

window V6-V9 should be fully investigated to provide a calibrated equation suitable for the estimation of maize AGB 413 

and Nu at the time of N fertilization. In conclusion, the low cost imaging system, even with the limitations due to bands 414 

overlap and JPEG compression, was able to detect the within-field variability and to produce reliable estimates of maize 415 

AGB. This was possible thanks to the very high spatial resolution of the imaging sensor that allowed estimating the 416 

canopy ground cover.  417 
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Figure 1. – Aerial orthomosaic of the field acquired at 18 July 2014 (maize at V6 stage). Plots 1-24: original experimental 

design (sampled in 2014 and 2015); plots 25-40: additional N treatments (sampled only in 2015); points 41-48: additional 

2015 sampling points. 
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Figure 2. – Spectral sensitivity of the three channels of the modified Canon Powershot SX260 HS digital camera. 
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Figure 3. – Datasets used for the estimation of AGB from GC, GNDVI and GNDVIadj. 
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Figure 4. – the original image showing maize leaves, soil and shadowed soil (on the left) and the vegetation mask applied 

to calculate GC (on the right). The darker part of the mask identifies soil and shadows pixels, eliminated by the 

segmentation process. 

 



1 

 

Table 1. Measured and estimated maize variables as a result of fertilization. Letters indicate significant differences among treatments within year, phenological stage and variable 

(P < 0.05) (HSD Tukey test). 

Year DVSa Variableb Units Treatment 

    CON AS DSMM LF SF US AS35 AS70 AS150 CAN150 

2014 V6 AGB g DM m-2 42a 42a 45a 49ab 58b 49ab n.a. c n.a. n.a. n.a. 

  Nc g N 100 g DM-1 3.1a 3.5a 3.7a 3.7a 3.4a 3.4a n.a. n.a. n.a. n.a. 

  Nu g N m-2 1.3a 1.5ab 1.7ab 1.8ab 2.0b 1.7ab n.a. n.a. n.a. n.a. 

  BNDVI – 0.12a 0.12ab 0.12ab 0.12ab 0.13b 0.12ab n.a. n.a. n.a. n.a. 

  GNDVI – 0.13a 0.13a 0.14a 0.14a 0.16b 0.14a n.a. n.a. n.a. n.a. 

  GC – 0.37a 0.38a 0.40a 0.41a 0.49b 0.41a n.a. n.a. n.a. n.a. 

  BNDVIadj – 0.06a 0.06ab 0.06ab 0.07b 0.08c 0.07ab n.a. n.a. n.a. n.a. 

  GNDVIadj – 0.06a 0.06ab 0.07ab 0.07b 0.09c 0.07ab n.a. n.a. n.a. n.a. 

 V9 AGB g DM m-2 212a 242a 244a 248a 277a 240a n.a. n.a. n.a. n.a. 

  Nc g N 100 g DM-1 2.0a 2.7b 2.5ab 2.5ab 2.3ab 2.4ab n.a. n.a. n.a. n.a. 

  Nu g N m-2 4.3a 6.4a 6.2a 6.3a 6.3a 5.7a n.a. n.a. n.a. n.a. 

  BNDVI – 0.16a 0.15a 0.16a 0.16a 0.16a 0.16a n.a. n.a. n.a. n.a. 

  GNDVI – 0.22a 0.23b 0.23b 0.23b 0.23b 0.23b n.a. n.a. n.a. n.a. 

  GC – 0.74a 0.80a 0.81a 0.80a 0.82a 0.79a n.a. n.a. n.a. n.a. 

  BNDVIadj – 0.13a 0.13ab 0.13ab 0.13ab 0.14b 0.13ab n.a. n.a. n.a. n.a. 

  GNDVIadj – 0.16a 0.17a 0.18a 0.18a 0.18a 0.18a n.a. n.a. n.a. n.a. 

2015 V6 AGB g DM m-2 35a 42ab 41ab 40ab 53b 41ab 46ab 48ab 43b 48b 

  Nc g N 100 g DM-1 3.3a 3.3a 3.5ab 3.5abc 3.6abcd 3.4a 3.9abcd 3.9cd 3.6d 3.8bcd 

  Nu g N m-2 1.2a 1.4ab 1.4ab 1.4ab 1.9b 1.4ab 1.8ab 1.9b 1.6b 1.8b 

  BNDVI – 0.11a 0.12a 0.12a 0.12ab 0.14b 0.12ab 0.13ab 0.12ab 0.12ab 0.12ab 

  GNDVI – 0.10a 0.11a 0.11a 0.12a 0.14b 0.11a 0.12a 0.11ab 0.12a 0.12a 

  GC – 0.19a 0.21a 0.21a 0.24a 0.32b 0.22a 0.26a 0.24a 0.23a 0.25a 

  BNDVIadj – 0.03a 0.03a 0.03a 0.04a 0.05b 0.04a 0.04a 0.04ab 0.04a 0.04a 

  GNDVIadj – 0.03a 0.03a 0.03a 0.04a 0.06b 0.04a 0.04a 0.04a 0.04a 0.04a 

 V9 AGB g DM m-2 86a 102ab 116ab 112ab 168bcd 128abc 204abc 186d 132cd 127abc 

  Nc g N 100 g DM-1 2.4a 2.3a 2.5ab 2.4a 2.5ab 2.5ab 3.0ab 3.3bc 2.5c 2.8abc 

  Nu g N m-2 2.0a 2.4a 2.8a 2.7a 4.2ab 3.1a 6.1a 6.2b 3.4b 3.6a 

  BNDVI – 0.12a 0.13ab 0.14ab 0.13ab 0.15b 0.13ab 0.14ab 0.14ab 0.13ab 0.12a 

  GNDVI – 0.15a 0.16ab 0.18abc 0.17abc 0.20c 0.17abc 0.19abc 0.19bc 0.17bc 0.16bc 

  GC – 0.43a 0.46ab 0.57abc 0.53abc 0.63c 0.50abc 0.62abc 0.59c 0.49bc 0.48abc 

  BNDVIadj – 0.06a 0.07ab 0.09abc 0.08abc 0.10c 0.08abc 0.10abc 0.09bc 0.08bc 0.07ab 

  GNDVIadj – 0.08a 0.08ab 0.11abc 0.10abc 0.13c 0.10abc 0.13abc 0.12c 0.09bc 0.09abc 
aMaize developments stage according to Ritchie et al. (1993). 
bAGB, above ground biomass;  Nc, plant N concentration; Nu, plant N uptake; BNDVI, Blue Normalized Difference Vegetation Index; GNDVI, Green Normalized Difference 

Vegetation Index; GC, ground cover; BNDVIadj, adjusted Blue Normalized Difference Vegetation Index; GNDVIadj, adjusted Green Normalized Difference Vegetation Index. 
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cnot available in 2014 because it was a treatment added in 2015.  
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Table 2. Statistics of calibration and validation datasets used to estimate maize variables. 

DVSa Model Statistic Variableb 

   AGB 

(g DM m-2) 

Nc 

(g 100 g DM-1) 

Nu 

(g N m-2) 

BNDVI 

– 

GNDVI 

– 

GC 

– 

BNDVIadj 

– 

GNDVIadj 

– 

V6 Calibration Range 26-70 2.8-4.1 0.9-2.6 0.10-0.15 0.09-0.16 0.16-0.53 0.02-0.08 0.02-0.10 

Mean±sdc 45±9 3.6±0.3 1.6±0.4 0.12±0.01 0.13±0.02 0.32±0.10 0.05±0.02 0.05±0.02 

Median 45 3.6 1.6 0.12 0.13 0.33 0.05 0.06 

n 48 48 48 48 48 48 48 48 

Validation Range 32-61 3.1-3.6 1.0-2.2 0.11-0.14 0.10-0.15 0.14-0.41 0.02-0.07 0.02-0.07 

Mean±sd 42±7 3.4±0.1 1.4±0.3 0.12±0.01 0.12±0.01 0.23±0.06 0.04±0.01 0.04±0.01 

Median 42 3.4 1.4 0.12 0.11 0.22 0.03 0.03 

n 24 24 24 24 24 24 24 24 

V9 Calibration Range 18-320 1.7-3. 5 0.4-9.4 0.09-0.16 0.09-0.23 0.20-0.84 0.02-0.14 0.03-0.19 

Mean±sd 184±83 2.6±0.4 4.8±2.2 0.14±0.02 0.19±0.04 0.63±0.20 0.10±0.04 0.13±0.05 

Median 199 2.6 5.2 0.15 0.21 0.70 0.12 0.15 

n 48 48 48 48 48 48 48 48 

Validation Range 59-218 2.0-2.9 1.5-5.3 0.11-0.15 0.13-0.21 0.36-0.68 0.05-0.11 0.06-0.15 

Mean±sd 119±35 2.4±0.2 2.9±0.8 0.13±0.01 0.17±0.02 0.52±0.08 0.08±0.02 0.10±0.02 

Median 114 2.4 2.8 0.13 0.17 0.50 0.08 0.10 

n 24 24 24 24 24 24 24 24 

V6+V9 Calibration Range 12-320 1.7-4.1 0.4-9.4 0.09-0.16 0.09-0.23 0.16-0.84 0.02-0.14 0.02-0.19 

Mean±sd 114±91 3.1±0.6 3.2±2.2 0.13±0.02 0.16±0.05 0.48±0.22 0.08±0.04 0.09±0.05 

Median 53 3.2 2.0 0.12 0.14 0.42 0.06 0.07 

n 96 96 96 96 96 96 96 96 

Validation Range 32-218 2.0-3.6 1.0-5.3 0.11-0.15 0.10-0.21 0.14-0.68 0.02-0.11 0.02-0.15 

Mean±sd 80±46 2.9±0.5 2.2±1.0 0.13±0.01 0.14±0.03 0.38±0.16 0.06±0.03 0.07±0.04 

Median 59 3.0 1.8 0.13 0.15 0.39 0.06 0.07 

n 48 48 48 48 48 48 48 48 
aMaize developments stage according to Ritchie et al., (1993). 
bAGB, above ground biomass;  Nc, plant N concentration; Nu, plant N uptake; GC, ground cover; GNDVI, Green Normalized Difference Vegetation Index; GNDVIadj, adjusted 

Green Normalized Difference Vegetation Index; BNDVI, Blue Normalized Difference Vegetation Index; BNDVIadj, adjusted Blue Normalized Difference Vegetation Index. 
csd, standard deviation.  
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Table 3. – Performances of regression models used to estimate maize variables applied to the calibration and validations data sets. Reported statistics are the coefficient of 

determination (R2) and the Relative Root Mean Square Error (RRMSE). Significance of linear regressions is reported closed to calibration R2 as follow: not significant (ns), P < 

0.05 (*), P < 0.01 (**). 

Dependent  

variablea 

 

DVSb Statistic Dataset 

  Calibration Validation 

  Independent variablec 

  BNDVI GNDVI GC BNDVIadj GNDVIadj CLGRM CLGRMveg BNDVI GNDVI GC BNDVIadj GNDVIadj CLGRM CLGRMveg 

AGB V6 R2 0.25** 0.38** 0.27** 0.30** 0.32** 0.94 0.8 0.34 0.49 0.64 0.67 0.69 0.46 0.15 

  RRMSE 17 16 17 17 17 5 9 16 12 13 12 12 15 18 

 V9 R2 0.80** 0.84** 0.88** 0.86** 0.87** 0.89 0.94 0.61 0.67 0.68 0.71 0.71 0.58 0.46 

  RRMSE 20 18 16 17 16 15 11 41 31 24 24 22 33 49 

 V6+V9 R2 0.73** 0.88** 0.86** 0.85** 0.89** 0.95 0.99 0.49 0.87 0.88 0.88 0.9 0.87 0.85 

  RRMSE 42 28 30 31 27 18 9 54 31 31 26 25 40 41 

Nu V6 R2 0.19** 0.21** 0.11* 0.14** 0.15** 0.9 0.76 0.33 0.5 0.59 0.64 0.67 0.41 0.05 

  RRMSE 21 21 22 22 22 7 11 21 15 16 15 15 26 28 

 V9 R2 0.59** 0.66** 0.69** 0.64** 0.68** 0.8 0.84 0.54 0.6 0.63 0.64 0.65 0.5 0.39 

  RRMSE 30 28 26 28 26 20 18 52 42 35 35 32 64 76 

 V6+V9 R2 0.64** 0.78** 0.77** 0.74** 0.79** 0.95 0.77 0.53 0.81 0.8 0.82 0.83 0.75 0.7 

  RRMSE 42 33 34 36 33 15 13 51 37 34 28 28 66 66 

Nc V6 R2 0.01ns 0.01ns 0.06ns 0.04ns 0.03ns 0.81 0.28 0.11 0.2 0.13 0.16 0.19 0.003 0.19 

  RRMSE 9 9 8 8 8 4 7 6 6 8 7 7 11 9 

 V9 R2 0.14** 0.10ns 0.08ns 0.12ns 0.08ns 0.42 0.74 0.01 0.02 0.01 0.01 0.01 0.003 0 

  RRMSE 14 14 15 14 15 11 8 13 14 14 14 14 21 7 

 V6+V9 R2 0.29** 0.47** 0.47** 0.45** 0.46** 0.83 0.58 0.18 0.65 0.71 0.65 0.67 0.78 0.63 

  RRMSE 17 14 14 15 15 8 13 18 16 16 17 17 16 17 
aAGB, Above Ground Biomass; Nu, plant N uptake; Nc, N concentration. 
bMaize development stage according to Ritchie et al., (1992). 
cBNDVI, Blue Normalized Difference Vegetation Index; GNDVI, Green Normalized Difference Vegetation Index; GC, Ground Cover; BNDVIadj, adjusted Blue Normalized 

Difference Vegetation Index; GNDVIadj, adjusted Green Normalized Difference Vegetation Index; CLGRM, cologram; CLGRMveg, cologram of the vegetation. 


